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[1] It is shown that ion-acoustic waves propagating along an external magnetic field and
generated by parametric decays of circularly polarized finite amplitude waves have the
properties of ion-acoustic waves observed in the solar wind.
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1. Introduction

[2] Electrostatic ion-acoustic instabilities have been ob-
served in several space plasma environments. In some cases
they have been positively identified as ion-acoustic waves
because all the conditions for their generation, according to
linear theory, have been properly identified. These condi-
tions are their free energy source and small Landau damping
effects, Te � Tp. However, in some instances like, e.g., in
the solar wind, ion-acoustic waves seem to be present under
conditions where both the nature of the free energy source
of the instability and the condition for small damping are
not consistent with the theory [see, e.g., Marsch, 1991;
Gurnett, 1991, and references therein].
[3] It is shown here that electrostatic waves generated

from parametric decays of large-amplitude left-hand polar-
ized waves might be responsible for ion-acoustic waves
observed in the solar wind. It is also shown that the
instability can also be triggered by right-hand polarized
waves for any frequency, provided that w� W e, where We =
eB0/cme is the electron cyclotron frequency. Using a colli-
sional-like term in the fluid equations and the linear Landau
damping expression obtained from kinetic theory, we show
that the instability does not depend on the relative ratio
between Te/Ti, where Te and Ti are the electron and ion
temperature, respectively, and depends only on the total
temperature of the system, Te + Ti. It is also shown here that
the instability is almost monochromatic and the growth rate
decreases with increasing be + bi, where bl = (vth.l/vA)

2 <
1, vth.l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kTl=Ml

p
is the thermal velocity of species

l and vA is the Alfvén velocity. It has been observed that
the number of events and the growth rate increases with
decreasing b values [see, e.g., Gurnett, 1991, and refer-
ences therein]. In other words, the instability is much
more frequent closer to the Sun. Therefore the properties
of these waves can help to explain some of the events
involving ion-acoustic waves in the solar wind.

2. Dispersion Relation

[4] Assuming that the system consists of a magnetized
plasma composed of protons and massless electrons and
also that it is current-free, the dispersion relation in the
proton rest frame is given by

y20 ¼
x20

1� x0ð Þ ; ð1Þ

where y0 = k0vA/Wp, x0 = w0/Wp, vA = (B0/(4pnpmp)
1/2, Wp =

qB0/cmp is the proton gyrofrequency, and B0 is the external
magnetic field.
[5] Equation (1) is the dispersion relation satisfied by

circularly polarized waves. The minus (plus) sign refers to
left-handed (right-handed) waves. The dispersion relation is
valid for w0 � We.
[6] Assuming now that the system consists of protons,

electrons, and a large-amplitude wave satisfying equation
(1) and propagating in the direction of the external magnetic
field, the nonlinear dispersion relation can be written in the
following form [see, e.g., Wong and Goldstein, 1986;
Jayanti and Hollweg, 1993a, 1993b; Hollweg, 1994;
Gomberoff, 2000],

L� LþDþ RþBþð Þ þ LþR�B� ¼ 0; ð2Þ

where

L	 ¼ y2	 � x2	=x	; ð3Þ

R	 ¼ y	

2x0
x0 �

yx20
y0x

þ x	

x	

� �
; ð4Þ

D ¼ rbey
2 � x2D; ð5Þ

B	 ¼ 	
Axx� x	y	x20 � y0x0x2	

� �
y0y	

; ð6Þ

D ¼ Aþ r 1� bp
y2

x2

� �
; ð7Þ
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with the definitions

A ¼ B

B0

� �2

;

r ¼ x0xþx�;

x0 ¼ 1� x0;

x	 ¼ 1� x	;

x	 ¼ x0 	 x;

y	 ¼ y0 	 y;

be;p ¼
4pnpge;pkTe;p

B2
0

:

[7] In the last relations, k is Boltzmann’s constant and
dp/p0 = gdn/n0, with g the adiabaticity coefficient. When
A = 0, the nonlinear dispersion relation reduces to

LþL�D ¼ 0; ð8Þ

which corresponds to the sideband waves and the ion-
acoustic modes. In particular, for A = 0, the acoustic modes
are given by D = 0, namely

x2 ¼ be þ bp
� �

y2: ð9Þ

3. Numerical Solutions

[8] In Figure 1a we show the numerical solution of
equation (2) for x0 = 0.1, b = 0.02, and A = 0. The lines
denoted by ±S correspond to the ion acoustic waves
propagating forward, +S, and backward, �S, relative to
the external magnetic field. The line denoted by �F
corresponds to a backward propagating left-hand polarized
wave. In Figure 2b, we show the same as in Figure 1a, but
for A = 0.3. At the point A there is a parametric decay
instability involving an ion acoustic sound wave, +S, and a
backward propagating left-hand polarized wave belonging
to the lower sideband waves, �F. The instability ends up at
point B, where it is mostly electrostatic. The instability
threshold of the parametric instability occurs at a very low
value of A ’ 0.0001.
[9] In Figure 2a we have plotted the threshold behavior of

At as a function of the left-hand polarized finite amplitude
frequency, x0, for b = 0.1, 0.2, 0.3. As shown in the figure,
the threshold amplitude decreases with increasing frequency
for b � 0.1. For b � 0.1 a similar behavior is observed until
it reaches a value such that for frequencies above this value,
the system is stable. For b > 0.5 and x0 = 0.1 the growth rate
becomes very small. Likewise, in Figure 2b we have plotted
At versus right-hand polarized forward propagating finite

amplitude wave frequency, for b = 0.01, 0.1, 0.3, 0.4, 0.5.
Here again the system is unstable, and At decreases for
increasing x0. As before, the system is stable for b � 0.5,
but there is no frequency limit for the unstable cases except
that w0 � We.
[10] In order to simulate Landau damping in the ion-

acoustic modes, we introduce a collisional-like term in the
direction of the external magnetic field, ~B0 of the fluid
equations [Gomberoff, 2000; Gomberoff et al., 2001],

@

@t
þ V  r

� �
~V ¼ q

m
~E þ 1

c
~V �~B

� �
�

~rp

mn
� n~V ; ð10Þ

where n is the damping rate.
[11] After linearization of equation (10), the new term

adds a contribution in to w in the left-hand side of the
equation. It is simple to show that the effect of this term on
the nonlinear dispersion relation, equation (2), is equivalent

Figure 1. Nonlinear dispersion relation y versus Re(x), x0 =
0.1, b = 0.02 for (a) A = 0 and (b) A = 0.3.
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to replacing x2 by x(x + i�n) in the expression for D,
equation (5), with �n = n/Wp.
[12] Using the analytic fit to the exact Landau damping

solution [Chen, 1984; Gomberoff, 2000],

� Imw
Rew

¼ 1:1q7=4 exp �qð Þ ¼ f qð Þ; ð11Þ

valid for 1 < q < 10, where q = Te/Tp, From the equations (9)
and (11) and denoting by b = be + bp, it follows that

Im xð Þð Þ2¼ by2f 2

1þ f 2=4
’ by2f 2: ð12Þ

Therefore using equation (12), equation (11) can be written
in the form

�nj j ’ bð Þ1=2yf qð Þ

because f 2/4 � 1 even for the maximum of f(q) which
occurs for q = 1.75. Replacing this value of �n in equation (5),
we obtain an expression of the damping rate in terms of y, q,
and b.

[13] In Figure 3 we have plotted g = Im(x) as a function of
y for x0 = 0.1, A = 0.3, and b = 0.1. We have done it for q = 0
(no damping, see equation (11)) and for q = 1.75. Note that q =
1.75maximizes the Landau damping, equation (11). From the
figure it follows that the growth rate is almost the same for
zero damping (thick line) and for maximum damping (thin
line). For smaller b values, Landau damping is completely
negligible. Therefore the instability does not depend on the
relative value between Te and Tp. It depends only on the
total b value of the plasma. The maximum growth rate
increases with decreasing b. For A = 0.3, the maximum
growth rate approaches the value g = 0.05 as b tends to
zero. The behavior of the growth rate of the ion-acoustic
instability for finite amplitude right-hand polarized waves
is similar. The emissions are very narrow in frequency.
The frequency width of the instability (see Figure 1a) is
in this case xA � xB � 10�2 and becomes smaller as
closer to the point B where the instability becomes
mostly electrostatic.
[14] This procedure to simulate Landau damping works

very well both numerically and analytically. For a compar-
ison between the results obtained using this approximation
and the exact kinetic theory along the direction of the
external magnetic field see it Araneda [1998] andGomberoff
and Araneda [2001]. This method yields results which
are in agreement with those of Inhester [1990] and Vasquez
[1995] obtained by using simulation techniques [Gomberoff,
2000; Gomberoff and Araneda, 2001; Gomberoff et al.,
2001].

4. Summary and Conclusions

[15] By solving graphically the nonlinear dispersion rela-
tion equation (2) [Longtin and Sonnerup, 1986], we have
shown that the forward propagation ion acoustic waves
involved in the parametric decay of a large-amplitude
circularly polarized wave experience negligible Landau
damping. The growth rate of the instability does not depend
on the relative value of Te and Tp but on the total b = be + bp.
In other words, they are almost unaffected by linear Landau
damping. To illustrate the effect, we have chosen b = 0.1 in

Figure 2. Threshold At versus x0 for (a) left-hand
polarized finite amplitude waves for b = 0.1, 0.2, 0.3, and
(b) right-hand polarized large amplitude waves for b = 0.01,
0.1,0.3, 0.4, 0.5.

Figure 3. Growth rate g versus y, for x0 = 0.1, b = 0.1, A =
0.3, q = 0 (thick line), and q = 1.75 (thin line).
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Figure 3. In the same way it is simple to show that for
smaller beta values, Landau damping becomes even smaller.
For larger b values, b � 0.3, Landau damping increases, but
it is still too small to damp the electrostatic modes. For even
larger b, b � 0.7, the system is stable. Although we have
considered here plasma systems in the absence of ion
beams, these parametric instabilities as well as new nonlin-
ear ion-acoustic instabilities have been shown to exist in the
presence of beams [see Gomberoff et al., 2004].
[16] These instabilities can account for observations in

the solar wind which point at ion-acoustic instabilities under
conditions which are not consistent with linear ion-acoustic
instability theory [see, e.g., Gurnett, 1991; Marsch, 1991,
and references therein]. They occur in environments where
Te/Tp � 1. Under these conditions the ion-acoustic waves
should be strongly damped. Also, assuming that the waves
detected by Helios are indeed ion-acoustic waves, it is not
clear what is the energy source of these instabilities. It is
well known that upstream of the Earth’s bow shock ion-
acoustic waves are closely associated with energetic, 1 to
10 keV, proton beams originated at the bow shock [Scarf
et al., 1970]. However, no definite relationship has been
established in the interplanetary medium between ion
beams an ion acoustic waves [Gurnett, 1991]. In a few
of the cases analyzed by, e.g., Dum et al. [1980] and
Marsch [1991], waves were seen when the ion-acoustic
mode was found to be stable. Measurements from Voyager 2
show that the ion-acoustic waves consist of nearly mono-
chromatic emissions [Kurth et al., 1979], which is also
consistent with the ion-acoustic waves triggered by finite
amplitude circularly polarized waves [Gomberoff et al.,
2004]. Ion acoustic waves detected by HELIOS show en-
hanced wave activity which tends to be more frequent and
intense closer to the Sun [Gurnett et al., 1979]. This fact is in
agreement with the behavior of the growth rate of the
instability, which has been shown to increase with decreasing
b values. The instability does not occur in the absence of a
large-amplitude wave, and they can occur even in the pres-
ence of ion beams. This situation is similar to that where
electromagnetic ion-beam plasma linear instabilities in the
solar wind are stable for beam velocities such that, in the
absence of a large-amplitude wave, should be unstable
[Araneda and Gomberoff, 2004].
[17] It is important to note that large-amplitude Alfvénic

fluctuations have been observed in a number of space
environments. These include the solar wind where they
dominate the fast and a fraction of the slow solar wind [see.,
e.g., Marsch and Tu, 1990, 1993; Cranmer, 2002], the
Earth’s bow shock [see, e.g., Spangler, 1992], and in comets
[see, e.g., Tsurutani, 1991]. Finally, since the calculations
have been performed in the proton rest frame, i.e., in the
solar wind frame, the ion-acoustic frequencies must be
Doppler shifted by an amount proportional to the solar
wind velocity [see, e.g., Gurnett, 1991].
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