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1. Introduction

[2] Electromagnetic ion beam-plasma interactions take
place in several space and astrophysics environments as
well as in laboratory plasmas. In the linear theory these
waves have been studied both numerically and analytically
[see, e.g., Gary, 1991; Gomberoff and Elgueta, 1991; Gnavi
et al., 1996; Gomberoff et al., 1996; Gomberoff and
Astudillo, 1998; Gomberoff et al., 2000].
[3] Nonlinear behavior of left-hand polarized electromag-

netic waves in a solar wind-like plasma involving alpha
particles drifting relative to the proton, have been studied by
Hollweg et al. [1993] and Gomberoff et al. [1994]. Studies
of parametric decays of right-hand waves have been carried
out by Hollweg [1994] [see also Jayanti and Hollweg,
1994a, 1994b]. Their nonlinear evolution has also been
studied by using drift kinetic effects [Inhester, 1990], and
hybrid computer simulation techniques [Vasquez, 1995].
Studies including dissipation effects have been carried out
by Gomberoff et al. [2000, 2001]. The effect and evolution
of the beam for right and left hand polarized waves, have
also been studied by using simulation experiments [see, e.g.,
Daughton et al., 1999]. The effect of varying beam speed
on the parametric decays of right-hand polarized waves
have been recently considered by Gomberoff et al. [2002].
[4] In this paper a new phenomenon is investigated. It

consists of the stabilization of linear right-hand polarized
instabilities due to nonlinear left-hand polarized waves. It is
a saturation mechanism of right-hand polarized ion-beam
induced instabilities. As Alfvén or ion-cyclotron waves
grow, they can stabilize the linear right-hand instability
triggered by an ion beam. Apart from being an interesting
effect in itself, this saturation process may be important in
the understanding of processes in space plasma regions

where right-hand polarized beam-plasma instabilities are
active or in regions where large amplitude Alfvén or ion-
cyclotron waves are observed to coexist with ion beams.
[5] The paper is organized as follows. In section 2 the

linear electromagnetic beam plasma dispersion relation in
the semicold approximation is briefly discussed. In section 3
a brief derivation of the nonlinear dispersion relation is
presented. The dispersion relation is then solved graphically
in order to illustrate the saturation mechanism. In section 4
the results are discussed.

2. Linear Dispersion Relation

[6] The plasma dispersion for polarized electromagnetic
waves propagating in the direction of an external magnetic
field, in a system consisting of electrons, a proton core, and
a proton beam is given by [Gomberoff, 1992; Gomberoff
and Hernández, 1992; Gnavi et al., 1996; Gomberoff and
Astudillo, 1996],

y20 ¼
x20

1� x0
þ hðx0 � y0UÞ2

1� ðx0 � y0UÞ : ð1Þ

where x0 = w0/�p, y0 = k0vA/�p, vA = B0/(4pnpMp)
1/2 is the

Alfvén speed, U = V/vA is the normalized beam velocity, h =
nb/nc is the beam density relative to the core density, and
�p = qB0/cMp is the proton gyrofrequency.
[7] The dispersion relation, equation (1), is valid in a

current-free plasma and in the reference frame where the
proton core is at rest [Gomberoff and Elgueta, 1991]. For an
alpha particle beam, the dispersion relation was first derived
by using kinetic theory in the semi-cold approximation
[Gomberoff and Elgueta, 1991] and later on by using fluid
theory [Hollweg et al., 1993]. The dispersion relation for an
arbitrary ion beam is given by Gomberoff [1992].
[8] In Figure 1 the dispersion relation given by equation

(1) is shown for U = 2 and h = 0.2. For h = 0.2 the threshold
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for right-hand instabilities is U ’ 1.9 [Gomberoff and
Astudillo, 1998; Gomberoff et al., 2000]. Proton beams with
large drift velocity have been observed in several regions of
space [Hoppe et al., 1981, 1982; Marsch, 1991; Gary,
1991]. The first and fourth quadrant describe the dispersion
relation for forward and backward propagating left-hand
polarized waves, respectively. The third and second quad-
rant describe right-hand polarized electromagnetic ion-
cyclotron waves propagating forward and backwards,
respectively. The line crossing the x-axis at x = 1 in the
first quadrant is due to the proton beam, and it satisfies (x0 �
y0U ) ’ 1 (being equal to 1 on the axis, y0 = 0). This branch
in the third quadrant has been shown to have negative
energy [Gnavi et al., 1996]. The dispersion relation is a
third-order polynomial in x0 and y0 with real coefficients.
Therefore the roots are either real or complex conjugate.
The straight line between �0.3 � x0 � �1.4, in the third
quadrant of Figure 1 and indicated by an arrow, is the real
part of two complex conjugate roots of equation (1). It
corresponds to a right-hand polarized instability for waves
moving in the direction of the external magnetic field
[Gomberoff and Astudillo, 1998; Gomberoff et al., 2000].

3. Nonlinear Dispersion Relation

[9] We now derive very briefly the nonlinear dispersion
relation assuming the plasma to be composed by electrons,
background protons, beam protons, and a left-hand circu-
larly polarized wave propagating along the external mag-
netic field. This wave corresponds to the pump wave. Each
plasma component satisfies the following fluid equation of
motion,

@

@t
þ u � r

� �
~u ¼ ql

ml

~E þ 1

c
~u
~B

� �
�

~rp

nlml

; ð2Þ

where ~u is the bulk velocity, ql is the electric charge, ml is
the mass, ~E and ~B are the electric and magnetic field
respectively, and p is the pressure.

[10] As pointed out before, the dispersion relation given
by equation (1) was first derived by linearizing Vlasov’s
equation [Gomberoff and Elgueta, 1991] and using the
semicold approximation. Later on, it was derived by using
first order perturbation theory on the fluid equation (2) for
zero temperature [Hollweg et al., 1993]. Finally, it was also
shown to be an exact solution of equation (1) for zero
pressure [Gomberoff et al., 1994].
[11] In order to derive the nonlinear dispersion relation,

we follow a similar procedure to Hollweg et al. [1993] [see
also Gomberoff et al., 1994, 1995, 1996]. Thus we perturb
the fluid equations (2) including the left-hand polarized
electromagnetic wave moving in the direction of the exter-
nal magnetic field along the x-axis, as follows,

dux ¼ Re½u expðikx� iwt�

dEx ¼ Re½�expðikx� iwtÞ

dnp ¼ n0Re
uk

w� kV0x

expðikx� iwtÞ
� �

;

ð3Þ

where V0x = V is the beam speed.
[12] For quantities perpendicular to the external magnetic

field we write,

du? ¼ uþ expðikþx� iwþtÞ þ u� expðik�x� iw�t

dB? ¼ bþ expðikþx� iwþtÞ þ b� expðik�x� iw�tÞ

dj? ¼ jþ expðikþx� iwþtÞ þ j� expðik�x� iw�tÞ;

ð4Þ

where u? = uy + iuz, and similarly for B? and j?. On the
other hand, k± = k0 ± k and w± = w0 ± w, where k0 and w0 are
the frequency and wavenumber of the pump wave, which
satisfies the dispersion relation shown in the first quadrant
of Figure 1.
[13] Linearizing equation (2) by replacing the perturbed

quantities given by equations (3) and (4) upon elimination
of all Fourier coefficients appearing in these equations,
using also the resonance conditions and taking the electrons
to be massless, we obtain the nonlinear dispersion relation
[Gomberoff et al., 2002]

LþL�Dþ LþR�B�cc þ LþR�bB�ccb þ L�RþBþ þ L�RþbBþb

þðB�ccBþb � B�ccbBþÞðR�Rþb � R�bRþÞ=D ¼ 0 ð5Þ

In the last equation,

L� ¼ y2� � x2�=y� � h x2�=y�b

R� ¼ y�

�
x0 �

yx20
y0x

þ x�

y�

�
=2y0

R�b ¼ h y�
�
x0b �

yx20b
y0xb

þ x�b

y�b

�
=y0b

D ¼ b0e�hrbx2 þ b0e�brx
2
b ���bðxxbÞ2

Bþ ¼ �b0eBþb1hrbbxxb þ Bþ1x
2ðb0ehrb ��bx

2
bÞ

Bþb ¼ �b0eBþ1rbxxb þ Bþbx
2
bðb

0
er ��x2Þ

B�cc ¼ �b0eB�ccb1hrbxxb þ B�cc1x
2ðb0erb ��bx

2
bÞ

B�ccb ¼ �b0eB�cc1rbxxb þ B�ccb1x
2
bðb

0
er ��x2Þ

Figure 1. Linear dispersion relation, equation (1), x0 vs.
y0, for h = 0.2 and U = 2.
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BþðbÞ1 ¼ �
AyðbÞðyþyþðbÞx

2
0ðbÞ � y0y0ðbÞxþðbÞÞ

y0yþxðbÞ

B�ccðbÞ1 ¼
AyþðbÞðy�y�ðbÞx

2
0ðbÞ � y0y0ðbÞx

2
�ðbÞÞ

y0y�xðbÞ

� ¼ Aþ rð1� bpy2=x2Þ

�b ¼ Aþ rb

�
1� bby2

x2b

�

bl ¼ 4pnpgKTl=B2
0 ðl ¼ e; c; bÞ

where x = w/�p, y = kvA/�p, K is the Boltzmann constant, Tl
is the temperature of species l, and

xb ¼ x� yU

x0b ¼ x0 � y0U

A ¼ ðB=B0Þ2

rðbÞ ¼ y0ðbÞyþðbÞy�ðbÞ

y0 ¼ 1� x0

y0b ¼ 1� x0b

y� ¼ 1� x�
y�b ¼ 1� x�b

x� ¼ x0 � x

y� ¼ y0 � y

x0b ¼ x0 � y0U

x�b ¼ x� � y�U

b0e ¼ bey2=ð1þ hÞ:

[14] These quantities differ slightly from Hollweg et al.
[1993] because they considered an alpha particle beam,
whereas we are considering a proton beam. The differences
lie in factors of 2 and 4 in some of the definitions. These are
L±, R±b, B+, B�cc, db, y0b, y±b, and b0e. The general structure
of the terms appearing in equation (5) for different types of
plasmas is given by Gomberoff [1995] and Galvão et al.
[1996].
[15] The pump wave is characterized by the coordinates

x0 and y0, and it is at the origin of the (x, y) coordinate
system. For zero pump intensity, A = 0, equation (5) reduces
to L+L_D = 0. The solution L± = 0 corresponds to the
dispersion relation of the upper and lower side band waves,
respectively. The other solution D = 0 corresponds to the
sound waves present in the system which, for h � 1, are
given by,

x ’ �ðbe þ bpÞ
1=2

y ð6Þ

ðx� yUÞ ’ �ðbbÞ
1=2

y ð7Þ

[16] Equation (6) represents the ordinary ion-acoustic
waves propagating forward and backward relative to the
proton core, and equation (7) corresponds to ion-acoustic
waves, supported mainly by the proton beam. They also
move forward and backward but relative to the beam. The
solutions of L± = 0 give the various branches of the
dispersion relation. The crossings between the solutions
give the position and nature of the possible wave couplings
of the system. The solutions of the nonlinear dispersion

relation equation (5) are invariant under a rotation through
an angle of 180�. Therefore it is sufficient to analyze the
solutions in the upper half w � k plane [see, e. g., Hollweg
et al., 1993; Jayanti and Hollweg, 1994a, 1994b; Gomberoff
et al., 1994; Gomberoff, 2000; Gomberoff et al., 2001].
Note that for A = 0, only the ion-acoustic modes depend on
the temperature. Note also that the cold plasma dispersion
relation for electromagnetic modes is a good approximation
in those region of space where bki = vth.i/vA � 1 (vth.i =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KTi=Mi

p
is the thermal velocity of species i). This may

happen either for small temperatures, and also for not so
small temperatures [see, e. g. Gomberoff and Neira, 1983;
Gomberoff, 1992], or for very large Alfvén velocity relative
to the thermal velocity, like, e.g., in coronal holes [see, e.g.,
Cranmer, 2002, Hollweg and Isenberg, 2002, and refer-
ences therein].
[17] In order to study the nonlinear dispersion relation

equation (5) we use a graphical method first derived by
Longtin and Sonnerup [1986]. Thus as an example, in
Figure 2a we have plotted equation (5) for x0 = 0.1, h =
0.2, U = 2, be = bp = bb = 0.001, and A = 0 (for a discussion
of the meaning of equation (5) in the A = 0 limit [see, e. g.,
Hollweg et al., 1993; Gomberoff et al., 1994]. From equa-
tion (1) it follows that the corresponding y0 = 0.121. The
various lines in Figure 2a correspond to the upper and lower
sideband waves and the ion-acoustic modes. In Table 1 we
define the meaning of the labels given to the various lines in
equation (5). All plus signs refer to upper sideband waves
and minus signs to lower sideband waves. As explained
before, the upper and lower sideband waves are solutions of
L± = 0, respectively. On the other hand, the ion-acoustic
waves satisfy D = 0. The solutions of equations (6) and (7)
are denoted by ±s and ±sb and correspond to the ion-acoustic
waves carried mainly by the background protons and proton
beam, respectively. There are four solutions for D = 0.
Therefore the dispersion relation given by equation (5) is a
10 degree polynomial. Since the coefficients of the poly-
nomial are real, the roots are either real or complex
conjugate. The latter correspond to instabilities. Therefore
instabilities appear in the diagram as horizontal gaps. Con-
sequently, the presence of such gaps shows the existence of
instabilities. In Figure 2a there is a large gap between two
forward propagating lower side band waves (�F, �b). This
gap is indicated with an arrow. Since for A = 0 there are no
nonlinear instabilities, the gap corresponds to the linear
right-hand polarized instability shown in Figure 1. The
maximum growth rate of this linear instability is gm/�p ’
0.15. On the other hand, as it is well known [Hollweg et al.,
1993], the crossings preserving energy conservation are
resonant crossings that for A > 0 can lead to instabilities.
In fact, in Figure 2b the pump wave amplitude has been
raised to A = 0.1. One can see that there are a number of
instabilities which can be recognized by the formation of
horizontal gaps. This is, for example, the case of the gap
between +F and �b. This gap is denoted by 1 in Figure 2b
and corresponds to an essentially electromagnetic paramet-
ric instability [Forslund et al., 1972]. Note that the presence
of the beam can lead to new parametric instabilities [see,
e.g., Hollweg et al., 1993; Gomberoff et al., 1994]. More-
over, it has been shown recently that variations of the beam
velocity can trigger new instabilities and/or can stabilize
other previously existing ones [Gomberoff et al., 2002]. A
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full account of these instabilities including ion-acoustic
Landau damping effects will be given somewhere else.
[18] We now study the evolution of the gap shown in

Figure 2a as the pump wave amplitude increases. As it fol-
lows from Figure 2b, for A= 0.1 the gap has become smaller,
which means that the instability range has decreased. The
maximum growth rate has also decreased to gm/�p’ 0.01. In

Figure 2. Nonlinear dispersion relation, equation (5), x vs.
y, for x0 = 0.1, h = 0.2, be = bp = bb = 0.001, and several
values of A: (a) A = 0, (b) A = 0.1, and (c) A = 0.16.

Table 1. Characterization of the Various Modes Appearing in

Equation (5)a

Sideband Wave Polarization

+ (�) F lh (rh) forward propagating
+ (�) B rh (lh) backward propagating
+ (�) b lh (rh) forward propagating
+ (�) s ion-acoustic forward (backward) propagating
+ (�) sb beam-ion-acoustic forward (backward) propagating

aThe + (�) sign refers to the upper (lower) sideband waves, and lh (rh)
refers to left-hand (right-hand) polarization. F refers to the branch of the
pump wave (the branch that goes asymptotically to the proton
gyrofrequency), and b refers to the branch due to the beam (the branch
that satisfies x-yU � 1).

Figure 3. Same as Figure 2 but for bc = bb = 0.07, and be =
0.001, for (a) A = 0 and (b) A = 0.15.
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Figure 2c, A has been further increased to A = 0.16. The gap
has disappeared altogether implying that the linear stability
has been completely stabilized. This occurs for A � 0.16.
The value A’ 0.16 is the threshold for complete stabilization
of the linear right-hand polarized instability.
[19] As a possible application to the solar wind, in Figure 3

we use parameters compatible with the solar wind at 0.3 AU
[Leubner and Viñas, 1986;Marsch, 1991; Gary, 1991]. Thus
we take h = 0.2, bc= bb = 0.07, be = 0.01 and x0 = 0.1. In
Figure 3a we show the dispersion relation, equation (5), for
A = 0, and in Figure 3b for A = 0.15. In the last figure the
right-hand instability has been completely stabilized.

4. Discussion

[20] By using a graphical method [Longtin and Son-
nerup, 1986] we have shown that due to nonlinear effects,
a growing Alfvén or ion-cyclotron wave can stabilize linear
right-hand polarized instabilities triggered by an ion-beam.
In the examples used the pump wave frequency has been
chosen to be x0 = 0.1. However, similar results follow for a
large range of pump wave frequencies and temperatures,
although in some cases stabilization is not possible through
this mechanism. In Table 2 the threshold pump wave
amplitude, At, for complete stabilization of the right-hand
instability has been calculated for several pump wave
frequencies, x0, and several bi-values. As it follows from
Table 2, for Alfvén waves, i. e., for frequencies x0 � 0.1,

the threshold At-values range from 0.13 � At � 0.16 and
remain more or less constant for 0.001 � bi � 1.0.
However, for bi = 0.3, 2.20 � At � 2.30. These values
are very large compared to the other cases. In other words
there is a range of bi-values 0.3 � bi � 0.6, for which At has
to be unrealistically large in order to get full stabilization of
the right-hand polarized instability. As the pump wave
frequency increases to x0 = 0.2, the threshold At-values
remain almost the same for 0.001 � bi � 0.1, but it shows a
sharp increase for bi = 1. On the other hand, for x0 = 0.5 and
bi = 1, there is no stabilitzation at all, and again, for bi =
0.3, an unrealistic large At = 2.80-value is required for
complete stabilization. In contrast there is only a slight
decrease in At for 0.001 � bi � 0.1 compared with the case
when the pump wave frequency corresponds to Alfvén
waves. A similar behavior is observed for x0 = 0.7, where
again the system remains unstable for bi = 1 and bi = 0.3.
There is however, a sharp decrease of At for 0.001 � bi �
0.1. Finally, for x0 = 0.9 and bi = 0.3 and 1.0, there is no
stabilization of the linear instability. However, for 0.001 �
bi � 0.1, the threshold amplitude continues to decrease to
very small values, ranging from 0.01 to 0.04, even at this
very large pump wave frequency. The reason why in some
cases stabilization is either impossible or it requires unre-
alistically large At values is due to the fact that for large
temperatures, the slope of the ion-acoustic sound waves
supported mainly by the background protons decreases,
forcing the ion-acoustic waves propagating in the direction
of the beam to lie within the linear instability region of the
dispersion relation. As the pump wave amplitude increases,
the ion-acoustic sound waves trigger parametric decays of
the pump wave which interfere with the stabilization of the
linear instability. In these cases, pitch angle scattering of
the beam ions is probably responsible for the saturation of
the right-hand instability [see Daughton et al., 1999].
[21] The saturation mechanism discussed here has been

derived on the basis of fluid theory. However, as it is well
known, when Ti � Te, the ion-acoustic modes can be heavily
Landau damped. By simulating Landau damping assuming
a collisional-like dissipation term in the fluid equations, it
has been possible to shown that some parametric decays of
a left-hand polarized wave are stabilized, while other
frequency regions are actually destabilized [Gomberoff,
2000; Gomberoff et al., 2001]. These results have been
shown to be in very good agreement with drift kinetic
treatments [Inhester, 1990] and hybrid simulation results
[Vasquez, 1995]. The parametric decays that are affected by
Landau damping are those decays involving ion-acoustic
modes. Since the linear instability has nothing to do with
ion-acoustic waves, we do not expect ion Landau damping
effects to play a role on the stabilization process.
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FONDECYT grant 1020152.
[23] Shadia Rifai Habbal thanks Venku Jayanti and another referee for

their assistance in evaluating this paper.
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