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INTRODUCTION using transmembrane receptors that
transmit information into the cell interior.
Sensing chemicals in the environment an@ihey normally express thencp and che
responding to changes in theirgenes in order to regulate chemotaxis
concentrations is a fundamental propertpehavior. The methyl accepting chemotaxis
of a living cell. It is particularly important proteins (MCPs) interact with specific
for unicellular organisms that constantlyligands, while the Che proteins relay the
interact with the environment. Manyappropriate signals from the MCPs to the
bacterial pathogens colonize the hostBagellar motor. When attractants such as
assisted by the flagella, but little is knowmamino acids, sugars and dipeptides are
about how these microbes use the ability tpresent, bacteria sense the concentration
swim when they are inside of animal hostsgradient of attractants and swim towards
Motility is often driven by flagella, which them.
is a complex extracellular structure that Enteric pathogens must survive at the
requires energy for operation. Motileacid pH of the stomach in order to gain
flagellated bacteria swim towardentrance into the stomach or intestine to
chemical attractants and away frontause diseases. Pathogenic microorganisms
repellents by amechanism known as that prefer to grow at neutral pH exhibit
chemotaxis. Chemotaxis is a response twidely varying abilities to survive at
microenvironmental changes and isxtreme pH values. The enteric pathogens
controlled by probably the best-studiedcan protectthemselves from acid in several
signal transduction system (Liu et al., 1997basic ways. They can prevent protons from
Manson et al., 1998). Taxis responses allowntering the cell, pump protons out of the
motile microorganisms to rapidly movecell, oronceinternal pHreaches a dangerous
toward a microenvironment optimal foracid zone, they could protect or repair
their growth and survival. The mechanisndamage to macromolecules. Also, they
of flagellar motility and its control via could synthesize key enzymes that can
chemotaxis have been studied in great detdiinction when internal pH falls. Our
in Escherichia colandSalmonella enterica laboratory is currently investigating the
serovar Typhimurium (Bren and Eisenbachhasic response of acid tolerance in
2000; Stock and Levit, 2000; Stock et al.Helicobacter pylorithat protect the cell
2000). Enteric motile bacteria can measurfurther down to pH 6 and the chemotactic
concentrations of chemicals outside the cefiroperties of this microorganism.
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The microorganism Acid Resistance in H. pylori

Helicobacter pyloriis a neutralophilic, H. pylori is also unique in having a large
Gram-negative, ureolytic and motileamount of urease in the cytoplasm at neutral
bacterium unique in its ability to colonizepH but is greatest in the outer portion at
the normal human stomach. It isacidic pH in the wild-type strain (Mobley
microaerophilic, spiral-shaped bacillus, 3et al., 1995; Hong et g12003). Urease is
5 um long and about 0.fm in diameter, synthesized constitutively by the
with six flagella at one pole (Dunn et al.,microorganism accounting for about 10-
1997). Its genome has been sequenced ahf8% of the total protein synthesized by the
it has about 1500 open reading framebacterium (Bauerfeind et al1997). The
coding for a variety of proteins, and abouenzyme is a two-subunit Nicontaining
two-thirds of known function by homology protein, and it does not have a signal peptide
with other proteins (Tomb et al., 1997).at the N-terminal suggesting a cytoplasmic
The spiral body of this microorganism, withlocalization. However, a portion of the
its bundle of unipolar flagella, is well bacterial population releases the urease by
adapted for penetrating the gastric mucousellular autolysis allowing the anchorage
layer and for swimming rapidly in a viscousof the enzyme on the surface of intact cells
environment (Warren and Marshall, 1983(Phadnis et al., 1996). The main role of
Hazel et al., 1986; Jung et al., 1997urease isthoughtto be the neutralization of
Nakamura et al., 1998). It is also wellacidic microenvironments by producing
established thaH. pylori colonizes the NH_ and CQ. Thereby, urease is an obvious
mucous layer of gastric epithelium and is aandidate for the acid resistance mechanism
causative agent for peptic ulcer diseas®f H. pylori. The urease activity of intact
gastric adenocarcinoma, and gastricells increasedearly exponentially when
lymphoma (Warren and Marshall, 1983the external pH decreases. This activation
Parsonnet et al., 1994; Dunn et al., 1997)s not due to enhanced gene expression at
The bacterium resides mostly within thdow external pH valuedn cell extracts the
gastric mucus layer, but a fewpH optimum ofurease activity is dependent
microorganisms (20%) are associated witbn the buffer system and is about pH 5 in
the gastric epithelia, and the formersodium citrate bufferSince this is the
population is present to replenish the lattecytoplasmic pH of the cells at pH 1 to 2,
(Kirschner and Blaser, 1995; YoshiyamaStingl et al. (2002) propose that the
and Nakazawa, 2001 pylorihas adapted cytoplasmic pH is a key factor in tirevivo
remarkably well to variations of pH in theiractivationof the urease at low external pH
environment. Many neutralophilic values.
organisms, such a&ersinia enterocolitica With the activity of carbonic anhydrase
Vibrio cholera, Escherichia colior also encoded in the genome ldf pylori,
Salmonella typhimurium are adapted to the CQ generated will be able to increase
transit the acidity of the gastric juice (Younghe buffering capacity of the cytoplasm to
et al, 1996; Merrell and Camilli, 1998; resist internal alkalinization due to the
Chevelli et al, 1996). They do not colonize generation of NE The NH, produced can
the stomach but instead have developeaict as a buffer leaving the bacterial
acute acid resistance mechanisms. Onlyytoplasm and entering the bacterial
one organismH. pylori, has adapted itself periplasm, by the formation of NH It was
to allow not only survival in, but also previously believed that urease located on
habitation of the human stomach. the cell surface created a neutral
Several factors are thought to be involvednicroenvironment that was conducive to
in the colonization byH. pylori of the bacterial survival, however it has been
gastric mucosa, including urease activityshown that intracellular urease actually
and motility using flagella (Mobley et al., plays a key role in promoting acid resistance
1995; Eaton et al., 1996). (Scott et al., 2002). This role results from
the availability of urease.
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There are seven genes within the ureasg/toplasmic domain, and little in the
operon,ureABIEFGH ureA andureB are periplasmic domain. Although all are urea
the structural subunits of the ureasechannels, those &. salivariusare equally
whereasureE, F, GandH are thought to be active at neutral and acidic pH, whereas
accessory genes necessary for formation tiose oH. pyloriandH. hepaticusare acid
an active urease by insertion of*Ninto activated.
the UreA/UreB protein complex. Their In addition to this acid resistance
removal results in loss of urease activitymechanism it has been shown by 2-D
urel is not essential for the activity ofisoelectric focusing non-equilibrium pH gel
urease (Sachs et al., 2003). electrophoresis thad. pylori has a urease-

The dilemma about how intracellularindependent acid stress response system
urease gains access to its extracelluldifoledo et al., 2001; Toledo et al. 2002).
substrate was recently solved by th&his mechanism shows that about 49
identification of Urel as aninner membrangroteins change their levels of expression
proton-gated urea-specific channel (Weekdue to the acidic pH, operate at mild acidic
et al., 2000). This work demonstrated thapH and they are under Fur control
the Urel pore opens, as the pH of the mediufValenzuela and Toledo, personal
drops below pH 5.5 and cytoplasmaticommunication). In addition to these
urease is able to gain access to the urea. Aechanisms, other acid-inducible systems
the enzyme activity neutralizes the locahave been described: the acid tolerance
environment, the pore closes and the ureaasponse (Toledo et al., 2001, personal
transport stops, thus providing a regulatedommunication; Toledo et al., 2002; Karita
level of urease activity. Urea in the gastriand Blaser, 1998), the acid-induced
juice is able to access the intrabacteriadxpression of LPS (McGowan et al., 1998),
urease if periplasmatic pH falls below 6and the inducible hsp70 stress protein
owing to pH-gating of the urea channel{(Huesca et al., 1998). Also, by using the
Urel. As aresult of this, NHs formed and whole genome approaches, proteomic and
neutralizes the bacterial periplasm to a pidromoter analysis, itis known thidt pylori
6.2. Urease shifts from the cytoplasm to thearies its gene expression when the bacteria
outside of the cell as a result of aris grown under acidic conditions (Bijlsma
extracellular decrease in pH. Thisand Lie-A-Ling, 2000; Jungblunt et al.,
difference is independent of the presenc2000; Ang et al., 2001; Allan et.al2001;
of urea, butitis Urel-dependent, suggestinfong et al, 2001; Toledo et al 2002;
an additional role of Urel in urease-Merrelletal, 2003; McGowan et gl2003).
dependent acid resistance (Hong et, alHowever, there is a general lack of
2003). agreement between these studies

Site-directed mutagenesis and chimeriemphasizing the complexity ¢f. pylori's
analysis have identified several amino acidseesponse to acid and the difficulty in
involved in maintaining the closed state otomparing single time point experiments
channel Urel at neutral pH (Sachs et alfor the assessment of global transcription
2003). Also it was concluded that the firsor global translation.
periplasmatic loop of Urel is implicated in
channel opening/closing at acidic and
neutral pH, and the second periplasmic loo@hemotaxis in H. pylori
and the C terminus require protonatable
amino acid residues to allow the functiorH. pylori flagella contain two flagellin
of the channel (Weeks and Sachs, 2001)molecules, FlaA the major species, and

The Urel ofH. pyloriis homolog to Urel FlaB, which is expressed in minor amounts
of H. hepaticusandsS. salivariugBeckwith (Josenhans et al., 1995; O'Toole et al.,
et al, 2001; Chen et g1 1998). The Urel 2000). Flagellar motion appears to be
products from the three bacteria havessential for infection of animal models,
considerable homology in their predictecsince deletion mutants of the flagellar
membrane domains, and some in thesystem are also unable to colonize (Foynes
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et al., 1999). Both flagellin molecules arel994). In additionH. pylori might be able
necessary for full motility on soft agarto swim fast atlow pH because the flagellar
plates and for full colonization of motoris powered by a proton motive force
gnhotobiotic piglets, whereas an aflagellatedYoshiyama et al., 1999). Thus, orally
strain colonizes the stomach less frequentlyptakenH. pylori can promptly evade the
(Eaton et al., 1996H. pylori apparently acidic periphery of the mucous layer and
expresses six Che cytoplasmatic signahove towards the epithelial surface by
transduction proteins that regulate thehemoattraction of substances such as urea
swimming of the bacteria and are theand bicarbonate, which diffuse out from
products of the following ORFs: HP0019the gastric epithelial surface.
(che\), HP0393 ¢heV), HP0616 €¢he\), The chemotactic response to urea could
HP0391 ¢heW), HP1067 (cheY), and be crucial not only for acid resistance, but
HP0392 theA)(Tomb et al., 1997; Foynesalso for colonization in the hostile
etal., 2000; Pittman et al., 2001). In additionvironmentH. pylori in the mucus layer
to these components, there is a family ofhay sense urea and move toward the
transmembrane proteins, the methylepithelial cell surface, which must be
accepting chemotaxis proteins or MCPsimportant for persistent infection of this
with putative receptor functions, known agnicroorganism. Our results about urea
HP0082, HP0099, HP0103; these arehemotaxis with four different strains
orthologs totlpC, tlpA and tpIB from indicated thaH. pyloriis not attracted by
Bacillus subtilis respectively (Tomb et al., urea even if the assay is done at pH 7 or
1997). mild acid pH (Cerda and Toledo, personal
In the stomachs of infected patients, theommunication; Cerda et al 2003).
bacteria reside mainly in the mucous layeNevertheless, these results are in
(Yoshidaetal., 1993; Kirschner and Blaserdisagreement with the observation of Mizote
1995). Because the gel layer has a rapiet al. (1997) that reported chemotaxis to
turnover (Messier and Leblond, 1960), theirea inH. pylori CPY3401. This different
bacterium proliferating in the mucous layeresponse could be attributed to the presence
should have the ability to move toward thef the surface ureaselh pylori(Phadnis et
epithelial cell surface, against the mucoual., 1996), that may hydrolyze the urea
flow toward the duodenum. We hypothesizeapidly before becoming a signal to
that chemotaxis ifl. pylorimust be crucial chemotactic system or, eadHh. pylori
for bacteria colonization and persistentlinical isolate differs genetically from most
infection. other independent isolates based on DNA
Recently, it has been demonstrated thdingerprint and sequence analysis (Akopyanz
H. pylori has the ability to sense and movet al., 1992; Achtman et al., 1999).
towards urea, sodium bicarbonate, sodiurBuperimposed on this great general diversity,
ions (Mizote et al., 1997) and also toseveral sub-populations d¢f. pylori have
aspartate and serine (Toledo and Rivadeenidentified. Those are relatively distinct
1999, personal communication; Cerda egenetically, being each of them specific to a
al., 2003). Urea is synthesized in the liverdifferent geographic region or human ethnic
circulated by the blood stream, and secretegtoup (Achtman et al., 1999; Jeong et al.,
into the gastric juice through a capillary2000; Kersulyte et al., 2000).
network beneath the gastric epithelial
surface (Niethercut et al., 1993). Thus, a
concentration gradient of urea is formed iflPhysiological significance of chemotaxis
the gastric mucus layer, which should bén H. pylori
sensed byH. pylori. Bicarbonate is also
secreted into the gastric mucosa by chlorideNitric oxide (NO), the NO synthase product,
bicarbonate exchangers localized in parietas known to play an important role in host
cells and N&H* exchangers distributed in defense against a variety of microbes (Doi
the mucous neck, chief, and mucous surfaet al., 1993; Fang, 1997; Nathan, 1997)
cells, respectively (Stuart-Tilley et al.,although NO itself does not show sufficient
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antimicrobial activity (Yoshida etal., 1993;is essential foH. pylori growth (Marais et
Kaplan et al., 1996). Peroxynitrite (ONQQ al., 1999). This microorganism does not
a metabolite of NO, is considered to besynthesize L-arginine (Tomb et.all997;
responsible for the antimicrobial effect.Doig et al., 1999) and therefore it must
NO and superoxide (9 react forming obtain that amino acid from extracellular
ONOQO, a strong oxidant and nitrating agensources. In this way chemotaxis to arginine
(Beckman et al., 1990; Ischiropouloscould play a role allowing the bacteria to
1998). Inrecentyears, increased expressidmd the arginine source.
of inducible NO synthase (iINOS) has been It has been propose thatl. pylori
confirmed in H. pylori-infected gastric arginase inhibits nitric oxide production
tissues of patients and experimental animalsy activated macrophages at physiological
(Tatemichi et al., 1998; Fu et al., 1999concentrationsf L-arginine, the common
Goto et al., 1999). Furthermore, it hasubstrate for NO synthase and arginase. On
recently been reported that not onlyhe other hand, inactivatioof the gene
phagocytic inflammatory cells but al¢d. rocF, encoding constitutively expressed
pylori itself produce Q (Nagata et al., arginase irH. pylori, restored high-output
1998), which indicates that ONO@ay be NO production by macrophages, resulting
formed into and around the bacteimavivo. in marked NO-dependent killing olf.
Consequently, ONOOmay function as a pylori (Gobert et al., 2001). This
major bactericidal effector fad. pyloriin  observation indicates that the bacterial
the stomach. Recently, Kuwahara et alarginase has evolved as a survival
(2000) reported that COformed by mechanismthatmay contribute to the ability
bacterial urease inhibits the reactivity ofof H. pylori to successfully colonize the
ONOO with the bacterial components anchuman stomach. Also, arginine could
accelerates its decomposition outside thgrotect the microorganism from toxic
bacterial cells. Also, formation of effects of gastric acidity by raising the pH
nitrotyrosine inH. pylori was suppressed of its microenvironment. Being a substrate
by the addition of urea or sodiumof arginase, a highly active enzyme of the
bicarbonate. In this context, it is quiteurea cycle (Mendz and Hazell, 1996),
reasonable to think thad. pylori has arginine would be converted to urea, which
evolved with a system capable ofinturnisthe substrate of urease, an enzyme
detoxifying ONOO, and hence steady andthat has been accepted as an environmental
sustained colonization in the infectednodulator. In addition, the high-frequency
stomach is facilitated. usage of arginine, and also lysine, hh
Bicarbonate is also secreted into theylori proteins (Tomb et al., 1997) may be
gastric mucosa (Stuart-Tilley et al., 1994pne adaptation that favors survival in acidic
and chemotactic response to sodiurenvironments.
bicarbonate (Cerda and Toledo, personalArginine is not used as a nitrogen source.
communication; Cerda et.aR003; Mizote It has been postulated that ammonium can
et al, 1997) may contribute to thebe obtained by deamination of asparagine,
persistence ofH. pylori in the gastric aspartate and glutamine (Mendz and Hazell,
epithelia and in the gastric mucus layerl995). It has also been proposed that it
Gastric mucosa is markedly adverse toould be the major source of carbon,
bacterial colonization, as the physical andonverting it intoa-ketoglutarate, which
chemical barriers encountered (mucus;an be routed throughout the majority of
enzymes, and acid) inhibit colonization bycentral metabolism.
common bacteria. The scavenging of arginine, bicarbonate
Arginine has a guanidine chemical groumnd other substances like urea is an
that is close to the chemical structure ofmportant factor foH. pylori colonization
urea. Cerda demonstrated thidt pylori and persistence in the gastric mucus layer
also shows chemotaxis to arginine (Cerdand motility plays a key role. In this way
and Toledo., personal communicationgchemotaxis may play a fundamental role in
Cerdaetal 2003). Amino acid metabolismthese processes.
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