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ABSTRACT Animal and human studies have shown that
copper is involved in the function of several enzymes. Studies have
also shown that copper is required for infant growth, host defense
mechanisms, bone strength, red and white cell maturation, iron
transport, cholesterol and glucose metabolism, myocardial con
tractility, and brain development. Copper deficiency can result in
the expression of an inherited defect such as Menkes syndrome or
in an acquired condition. Acquired deficiency is mainly a pathol
ogy of infants; however, it has been diagnosed also in children and
adults. Most cases of copper deficiency have been described in
malnourished children. The most constant clinical manifestations
of acquired copper deficiency are anemia, neutropenia, and bone
abnonnalities. Other, less frequent manifestations are hypopig
mentation of the hair, hypotonia, impaired growth, increased inci
dence of infections, alterations of phagocytic capacity of the neu
trophils, abnonnalities of cholesterol and glucose metabolism, and
cardiovascular alterations. Measurements of serum copper and
ceruloplasmin concentrations are currently used to evaluate copper
status. These indexes are diminished in severe to moderate copper
deficiency; however, they are less sensitive to marginal copper
deficiency. Erythrocyte superoxide dismutase and platelet cyto
chrome c activities may be more promising indexes for evaluating
marginal copper deficiency. Am J Clin Nutr 1996;63:7918
6S.
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INTRODUCTION

Copper is essential for the survival of plants and animals.
Animal and human studies have shown that copper is involved
in the function of several enzymes (1-4). The essentiality of
copper for humans was first shown during the 1960s in mal
nourished children from Peru (5). These children had an ane
mia refractory to iron therapy, neutropenia, and bone abnor
malities that were responsive to copper supplementation.
Further studies confirmed these findings and established that
copper was required for infant growth, host defense mecha
nisms, bone strength, red and white cell maturation, iron trans
port, cholesterol metabolism, myocardial contractility, glucose
metabolism, and brain development (6). Major alterations in
mental development are also observed in Menkes syndrome,
which is a genetic syndrome in which alterations in copper
absorption and transport lead to early death (7).

DIETARY SOURCES

Concentrations of copper in food are higWy variable. Organ
meats, oysters, and chocolate are the richest sources of copper
in the diet (8-10). Human and cow milk are poor sources of
copper (11); however, breast milk has a higher copper content
than does cow milk. On the other hand, the copper concentra
tion in breast milk declines with the time of lactation: co
lostrum and transitory milk have the highest values (12, 13).

Most infant formulas are supplemented with copper. The
copper content in infant formulas varies depending on the need
of the infant (full-term or preterm) (14, 15). The US Food and
Drug Administration, the Codex Alimentarius (1976), and the
American Academy of Pediatrics (1985) recommend a mini
mum specification for infant formulas of 0.2 M-mol Cu/kJ (0.6
M-g Culkcal) (16-18). The current recommendation of the Eu
ropean Society of Paediatric Gastroenterology and Nutrition
Committee on Nutrition (1987) is 0.3 M-mol CulkJ (0.9 M-g
Culkcal) (19). Recommendations for premature formulas are
0.3-0.7 M-mol Cu/kJ (0.9-2 M-g Culkcal) (11, 18, 19).

The copper content of drinking water is also highly variable
and is influenced by the natural mineral content and pH of the
water and by the plumbing system (20). Soft, acidic water,
especially if it is conducted through a copper pipeline, has a
higher copper concentration (20). In addition, copper salts are
added in some countries to control the growth of algae. There
fore, the copper in drinking water may constitute an important
source of copper for the adult population (20, 21). Assuming
that the copper content of drinking water is between 1.6 and 7.9
fLmollL (0.1 and 0.5 mgIL), an adult who ingests 2 L water
daily will obtain 13-50% of the estimated safe and adequate
daily dietary intake (ESADDI) proposed by the US National
Academy of Sciences (22). This may explain why there is little
evidence of copper deficiency in adult populations even when
the consumption of foods rich in copper is low. In infants, the
contribution of water to copper intake may be higher because
infants consume proportionally more water than do adults.

DIETARY INTAKE

The Total Diet Study (1982-1986), in which the copper
content of US diets was measured by chemical analyses (23),
indicated that the daily mean intake of copper was below the
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ESADDI (22). The average copper intake of eight sex-and-age
groups is shown in Figure 1. Additional studies conducted in
the United States, the United Kingdom, France, Finland, Ger
many, Sweden, New Zealand, and Belgium showed daily cop
per intakes under or in the low range of the ESADDI (24-30).
Despite these inadequate copper intakes, there was a low
prevalence of copper deficiency in these countries. This dis
crepancy questions the validity of the ESADDI. The assess
ment of the adequacy of the diet to fulfill copper requirements
must take into account the issue of bioavailability. Depending
on the copper content of the diet and other diet-related factors,
only 25-60% of ingested copper is absorbed (31).

DEFICIENCY OF COPPER IN HUMANS

TABLE 1
Etiology of acquired copper deficiency

Decreased copper stores at birth
Low birth weight

Inadequate copper supply
Low dietary copper
Low bioavailability of dietary copper
Total parenteral nutrition with inadequate copper supplement

Inadequate copper absorption
Malabsorption syndrome

Increased requirements
High growth rate

Increased losses
Repeated or prolonged episodes of diarrhea
Abnormal bile loss
Intestinal loss from small intestinal ostomies

celiac disease, tropical and nontropical sprue, cystic fibrosis, or
short bowel syndrome (46, 47). Copper deficiency due to an
increase of nutrient losses could also occur in infants with
prolonged or recurrent diarrheal episodes, abnormal bile loss,
or intestinal loss from small intestinal ostomies (44, 46).

Most cases of copper deficiency have been described in
malnourished children (15). In these subjects, several factors
are frequently associated with deficiency, such as low birth
weight, short breast-feeding time, cow milk-based feeding, and
increased losses of nutrients as a result of diarrheal disease. An
increase in copper requirements, imposed by a high rate of
growth during the rehabilitation period, can be an additional
predisposing cause of copper deficiency in these subjects.

In a recent review, 51 copper-deficient children were ana
lyzed (15). Of the 51 subjects, 48 were < 19 mo of age at the
time of diagnosis. Forty percent of the patients had a birth
weight < 2.5 kg. Fifty-four percent of the infants were fed
exclusively or predominantly cow milk. Twenty-three percent
received total parenteral nutrition and 25% had an antecedent
of malnutrition. The average age of presentation of the copper
deficiency was 8.3 rna (range: 5-18 mo) for full-term infants
and 3.0 mo (range: 2.2-15 rna) for low-birth-weight infants.

The most constant clinical manifestations of acquired copper
deficiency are anemia, neutropenia, and bone abnormalities (2,
6, 15, 39, 46). The frequencies of anemia and neutropenia
observed in infants were 92% and 84%, respectively (15).
Hematologic changes are characterized by the existence of
hypochromic, normocytic, or macrocytic anemia, which is also
accompanied by a reduced reticulocyte count, hypoferremia,
neutropenia, and thrombocytopenia (2, 6, 15, 46-48). In a few
cases microcytic anemia is present (46). In bone marrow,
megaloblastic changes, vacuolization of the erythroid, and my
eloid progenitors may be found, in addition to a maturation
arrest of myeloid precursors and the existence of ringed sider
oblasts (15, 46, 48). AIl of these alterations are reversed
through copper supplementation and are unresponsive to iron
therapy (49, 50).

It has been hypothesized that the anemia associated with
copper deficiency is due to defective iron mobilization result
ing from reduced ceruloplasmin activity (6, 15, 51). This
enzyme, by its ferroxidase action, is fundamental for the trans
formation of Fe2+ to Fe3+ (52), a step indispensable for the
incorporation of iron into circulating transferrin. The reduction
of ceruloplasmin. may determine that the iron remains trapped
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FIGURE I. Average daily copper intakes in different sex-and-age
groups in the Total Diet Study (23).
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Acquired copper deficiency

An acquired deficiency of copper is mainly a pathology of
infants; however, cases have also been described in children
and adults. The liver stores copper prenatally, which provides
a sufficient amount of copper to sustain normal copper nutri
tion in the body during the first 2 and 5 mo of life in preterm
and full-term infants, respectively (15). A deficiency of this
mineral could be the result of decreased copper deposits at
birth, inadequate dietary copper intake, malabsorption, in
creased requirements, or enlargement of the copper loss (Table
1). Many of these etiologies are found together in copper
deficient subjects.

Premature infants are much more prone to develop copper
deficiency because of their reduced storage of liver copper at
birth and their higher requirements due to their high growth
rate (32-36). Inadequate copper intake could occur in infants
fed cow milk exclusively because of the minor content of
copper and low absorption of this mineral in cow milk com
pared with breast milk (37, 38). Other causes of insufficient
copper intake occur in subjects receiving total parenteral or
enteral nutrition when the nutritional formula is not supple
mented with copper (39--42). High oral intakes of zinc, iron, or
ascorbic acid decrease copper absorption and might predispose
to copper deficiency (43--46). Yet, copper deficiency has been
described in subjects who received penicillamine or high doses
of oral alkali therapy (46). Some cases of copper deficiency
occurred in subjects with malabsorption syndromes such as
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in the reticuloendothelial system and is therefore not available
for erythropoiesis. However, in Menkes syndrome and Wilson
disease there is a reduction in the concentration of ceruloplas
min that is not accompanied by anemia (7, 46). On the other
hand, there is some evidence of a reduction in the synthesis of
heme because of decreased ferrochelatase or cytochrome c
activity (53). These enzymes are fundamental for the reduction
of Fe3 + to Fe2+ in mitochondria and the subsequent incorpo
ration of iron into protoporphyrin IX (15). A reduction of
erythropoietin has been described in rats (54).

The presence of bone abnormalities is common with copper
deficiency in infants and young children (6, 15, 39). These
abnormalities include osteoporosis, fractures of the long bones
and ribs, epiphyseal separation, fraying and cupping of the
metaphyses with spur formation, and subperiostal new bone
formation (6, 15). Other less frequent manifestations of copper
deficiency are hypopigmentation of the hair, hypotonia, im
paired growth, increased incidence of infections, and alter
ations of phagocytic capacity of the neutrophils (6, 15,55-57).
In addition, less well-established manifestations of this defi
ciency are abnormalities of cholesterol and glucose metabolism
and cardiovascular alterations (58-61). The hypopigmentation
of the hair described in Peruvian children with copper defi
ciency is difficult to interpret because these children were also
severely malnourished (5). It is well known that hypopigmen
tation of the hair occurs frequently with protein malnutrition.

Castillo-Duran and Uauy (55) showed that copper deficiency
impaired weight gain of infants recovering from malnutrition.
Additionally, these infants had an increased frequency of lower
respiratory tract infections (56). In animals; a deficiency of
copper is associated with pronounced alterations of immunity
(62). However, there is little information concerning nutritional
copper deficiency in humans. Heresi et al (57) reported an
impaired phagocytic activity in copper-deficient infants. On the
other hand, Kelley et al (63) described a decrease in the
proliferation of peripheral blood mononuclear cells cultured
with different mitogens in II men consuming a low-copper
diet.

An increased concentration of total cholesterol and low
density-lipoprotein (LDL) cholesterol and a reduced concen
tration of high-density-lipoprotein (HDL) cholesterol have
been observed in subjects fed an experimental diet that was low
in copper (58, 59). Other observations are a diminished toler
ance to glucose (60), abnormal electrocardiograms, and a hy
pertensive response to a hand-grip test (61). Furthermore, these
changes can be reversed with copper supplementation (58-61).
All these alterations are well-known risk factors for the devel
opment of atherosclerosis (64). However, other experiments
have not reproduced these changes in cholesterol and glucose
metabolism (63).

Several effects of copper on atherogenesis can be postulated.
Although copper intake and a high ratio of copper to zinc have
been traditionally considered to be protective factors (65),
more recently the opposite has been proposed (66, 67). Some
epidemiologic studies showed an association between cardio
vascular mortality and copper intake or serum copper concen
trations. An increase in risk with both high and low copper
intakes has been described, as has an increase with high and
low serum copper concentrations (65-67). In U-shaped rela
tions, it is possible that the different mechanisms act in both
extremes. In copper deficiency, alterations of glucose and

cholesterol metabolism, increased blood pressure, endothelial
cell peroxidation due to a decrease in superoxide dismutase
(SOD) activity, and arterial prostacyclin production may con
tribute to atherogenesis (68). In copper overload the atherogen
esis can be attributed to a direct effect on LDL-cholesterol
oxidation by copper. This is clearly demonstrated in vitro yet it
has not been proven in vivo (69). Copper is a prooxidant; thus,
it will act on cysteine residues of the LDL apolipoprotein B
component, modifying the structure and binding properties of
LDL to cell receptors affecting cholesterol uptake by cells (70).
The atherogenicity of oxidized LDL particles has been evalu
ated and is considered to be greater than that of the nonoxidized
forms (70, 71). In addition, oxidation of LDL could be poten
tiated by a reduction of selenium, vitamin E, and ascorbic acid
concentrations (72).

Genetic copper deficiency

Menkes syndrome is an X-linked recessive disorder that is
characterized by an altered absorption and transport of copper,
which causes an abnormal distribution of the mineral between
organs as well as within cells (7). Symptoms of Menkes syn
drome appear before 3 mo of age and the illness usually ends
the life of the child before 5 or 6 y of age. The disease is
characterized by growth retardation, hypothermia, skin and hair
depigmentation and abnormal spiral twisting of the hair (pili
torti), lax skin and articulations, tOltuosity and dilatation of
major arteries, varicosities of veins, osteoporosis, flaring of
metaphyses, bone fractures, excessive wormian bone forma
tion, retinal dystrophy, and profound central nervous system
(CNS) damage (7). CNS alterations include severe mental
retardation, seizures, and ataxia. Pathologic studies show in
tense degenerative changes of the brain and the cerebellum,
with a pronounced alteration of the Purkinje cells (73). The
existence of a prenatal critical phase in CNS development has
been suggested, during which copper deficiency can cause
CNS damage (6). This explains why nutritional copper defi
ciency is not accompanied by neurologic abnormalities. Men
kes syndrome is not accompanied by anemia or neutropenia
(7).

ASSESSMENT OF COPPER STATUS

Measurements of serum copper and ceruloplasmin concen
trations are currently used to evaluate copper status (74, 75).
These indexes are less sensitive to marginal copper deficiency,
especially if the deficiency only recently appeared (76-78).
However, concentrations of these laboratory indexes are dimin
ished in severe to moderate copper deficiency. The normal
ranges for these indexes are 10.1-24.6 JoLmollL (64-156 JLg/dL)
for serum copper and 180-400 mglL for ceruloplasmin (3).
Serum concentrations of copper and ceruloplasmin change in
relation to age and sex (76). During the rust months of life,
concentrations of copper and ceruloplasmin are low; adult
values are attained at 4-6 mo of age (79). In low-birth-weight
infants these concentrations rise more slowly (80). On the other
hand, it is well known that adult women have higher concen
trations of serum copper than do men (76, 81). During preg
nancy there is a progressive rise in the concentrations of serum
copper and ceruloplasmin (76, 81).
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Other conditions also modify these laboratory indexes. The
concentration of copper has a diurnal variation: it is slightly
higher in the morning than at other times during the day (82).
In the inflammatory or infectious processes, with neoplasm,
and with therapy with anticonvulsants or estrogens, copper and
ceruloplasmin concentrations are increased (75, 76, 81,83-85).
The effect of estrogens can partly explain the increase in
copper and ceruloplasmin observed during pregnancy (86). On
the contrary, corticosteroids and adrenocorticotropic honnone
reduce copper concentrations (75). Copper or ceruloplasmin
concentrations, or both, are also decreased in other conditions
such as Menkes syndrome, Wilson disease, and nephrosis (87,
88).

Studies by one group in which the enzymatic activity and
concentration of ceruloplasmin were measured showed that in
copper deficiency enzymatic activity of ceruloplasmin is re
duced and the ceruloplasmin concentration is conserved (76,
89). Therefore, the ratio of enzymatic activity to concentration
of ceruloplasmin may be a better indicator of copper status,
with the additional advantage that such an index is not influ
enced by :factors such as hormones and sex (76).

Measurements of copper in hair have not proven to be very
useful because copper is reduced only in prolonged copper
deficiency and can vary as the result of the action of exterual
agents, including environmental contamination with copper (6,
75).

SOD is an enzyme found in the cytosol of many cells,
induding the erythrocyte. Reduced SOD activity has been
shown in animal models of copper deficiency; the decrease is
proportional to the magnitude of the deficiency (90). Studies in
humans have shown decreased activity of erythrocyte SOD in
copper-deficient patients or in subjects with low copper intakes
(91, 92). SOD activity was restored to nonnal when the sub
jects were supplemented with copper or when this mineral was
added to the diet (58, 76, 92). Erythrocytic SOD activity does
not seem to vary with age, sex, or honnonal therapy (74, 81,
93). However, a higher SOD activity can be found in demented
patients with Alzheimer disease and conditions that produce
oxidative stress (94-96).

Studies carried out in humans by one group have shown that
cytochrome c activity of leukocytes and platelets is reduced in
copper deficiency (89, 97). Furthermore, this decrease occurs
before the appearance of reduced SOD activity (89). These
findings suggest that the measurement of cytochrome c activity
in leukocytes or platelets is a sensitive indicator of copper
status (76). However, these results are not confinned by others
and therefore deserve further investigation.

Metallothionein is a protein that selectively binds heavy
metals and participates in the metabolism of zinc and copper
(98). The tissue metallothionein concentration is modified by
zinc and copper status (98). A reduction of erythrocyte metal
lothionein has been shown in moderate zinc deficiency (99).
Therefore, it is conceivable that erythrocyte metallothionein
measurement may be another useful laboratory indicator of
copper status. However, it has been shown that stress and
inflammatory processes increase tissue concentrations of me
tallothionein (l00, 101). Further investigations are needed to
develop simple laboratory indicators that are sensitive to mar
ginal copper deficiency and that are not influenced by factors
other than copper status. n
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