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SUPER-REPLICATION IN ECONOMIES WITH IMPERFECT FINANCIAL

MARKETS

DANIEL JAAR

Abstract. This article addresses equilibrium existence in an infinite horizon economy with in-

complete markets and endogenous credit segmentation. We do not restrict consumption allocation

to be bounded and we do not impose uniform impatience on preferences. Our equilibrium results

consider a general framework of positive net supply assets, and introduce short-lived securities

in zero net supply through a super-replication property proposed in the literature of two-period

economies with financial segmentation.
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1. Introduction

Several difficulties arise when analyzing equilibrium existence in infinite horizon economies with

incomplete markets. First, the open-ended nature of the consumers’ problem may lead to agents

postponing indefinitely the payment of their financial obligations, entering into Ponzi schemes.

Thus, arbitrary debt constraints or transversality conditions have been required to limit the growth

rate of agents’ indebtedness (Kehoe, 1989). On the other hand, available equilibrium results re-

quire assumptions on the structure of financial markets, with the aim of ensuring that finite asset

prices are compatible with non-arbitrage conditions. The latter does not hold whenever agents

may attain arbitrarily large utility levels through a particular security, as exemplified by Hernández

and Santos (1996, Example 3.9 p. 118). For this reason, the literature has systematically re-

stricted the nature of the financial securities available for trade, by limiting assets’ lifespan and/or

deliveries (Kehoe and Levine, 1993; Magill and Quinzii, 1994, 1996), assuming that financial mar-

kets are collateralized (Araujo, Páscoa, and Torres-Mart́ınez, 2002, 2011; Kubler and Schmedders,

2003; Iraola, Sepúlveda, and Torres-Mart́ınez, 2017), or imposing positive net supply assumptions

(Moreno-Garćıa and Torres-Mart́ınez, 2012).

This paper attempts to study equilibrium existence in economies with a more general financial

structure than those previously considered in the literature of non-collateralized financial markets.

In particular, it incorporates endogenous financial segmentation to infinite horizon economies (cf.,

Seghir and Torres-Mart́ınez, 2011, Cea-Echenique and Torres-Mart́ınez 2016; Faias and Torres-

Mart́ınez, 2017).1 Our equilibrium result also incorporates the presence of short-lived assets in

zero net supply. To do so, we adapt a super-replication property from the literature of financial

This thesis was funded by the Comisión Nacional de Investigación Cient́ıfica y Tecnológica through the grant

CONICYT-PFCHA/MaǵısterNacional/2017-22170387. Moreover, the author thanks the Departamento de Posgrado

y Post́ıtulo, Vicerrectoŕıa de Asuntos Académicos from the University of Chile for providing funding for research

activities abroad.
1See Iraola, Sepúlveda and Torres-Mart́ınez (2017) for the case of collateralized asset markets.



segmentation in two-period economies (Cea-Echenique and Torres-Mart́ınez, 2016). That is, when

the deliveries of assets in zero net supply may be fully hedged by those of portfolios of commodities

and assets in positive net supply, the former have finite prices in equilibrium.

Magill and Quinzii (1994) and Hernández and Santos (1996) proved that equilibrium exists for

economies with short-lived numeraire securities by requiring agents’ preferences to comply with

a uniform impatience property, and restricting allocations to the space of bounded sequences.

Hernández and Santos (1996) also obtained a competitive equilibrium in an economy where only one

real asset was available for trade. When assets are long-lived, endogenous bounds on short sales may

cease to exist, if debt constraints target portfolio value instead of the amount of borrowing.2 In this

context, Magill and Quinzii (1996) proved that equilibrium existence for dense subsets of economies

with long-lived real securities, by requiring uniform impatience and restricting consumption bundles

and assets’ deliveries to the space of bounded sequences.

Araujo, Páscoa, and Torres-Mart́ınez (2011) showed that when financial markets are collateralized

and the seizure of physical guarantees is the only enforcement in case of default, no additional

assumptions are required on the financial structure to ensure equilibrium existence. Moreover, their

model considers both finite and infinitely lived assets, and they neither need uniform impatience

properties nor require allocations/deliveries to be bounded. Collateralized markets with strategic

default are special in the sense that they provide natural solutions to several of the underlying

challenges of modeling financial trade economies with incomplete markets. First, short-sales are

limited by the availability of collateral goods. Thus, collateral rules out Ponzi schemes at the same

time it provides endogenous bounds on portfolios. Moreover, and due to strategic default, security

payments are endogenously bounded by the value of collateral bundles, which limits the utility

attainable through financial promises. Hence, finite prices are always compatible with non-arbitrage

conditions in equilibrium. Iraola, Sepúlveda and Torres-Mart́ınez (2017) presented equilibrium

results using a more general asset structure of collateralized assets. Indeed, and building from

Iraola and Torres-Mart́ınez (2014), they include financial segmentation and model credit contracts

as functions determining collateral requirements, coupon payments and prepayment rules, which

provide a context compatible with heterogeneous payment strategies from agents borrowing in a

particular contract.

Nevertheless, collateralized markets do not consider a broad range of promises that are widely

traded in financial markets, such as shares, insurance, or derivatives. Importantly, the different

assumptions we impose on financial structures are determinant on the behavior of asset prices in

equilibrium. In particular, available theoretical results assert that positive net supply securities

cannot give rise to rational price bubbles under uniform impatience and whenever endowments are

uniformly bounded away from zero (Magill and Quinzii, 1996). The latter is also true for collateral-

ized securities (Araujo, Pascoa and Torres-Mart́ınez, 2011), but does not holds for non-collateralized

2When assets are real, the rank of return matrices becomes price dependent, which threatens the existence of

endogenous bounds of short sales whenever agents may increase their access to credit by investing more in financial

securities.
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assets in zero net supply (Magill and Quinzii, 1996). Thus, attaining a greater generality in finan-

cial structures compatible with equilibrium existence is relevant for understanding the behavior of

financial markets.

Crucially, this is also true when considering the perspective of financial markets begin segmented.

Unequal access to financial markets may emerge as a consequence of informational frictions, or due

to regulatory considerations (Cea-Echenique and Torres-Mart́ınez, 2016). Nonetheless, a broad

range of restrictions are observed in financial markets, such as income-based access to funding,

differential investment opportunities, and collateral requirements. Moreover, financial segmentation

may be relevant to understand the prevalence of a wide range of phenomena in financial markets,

such as negative equity loans (Iraola and Torres-Mart́ınez, 2014), asset pricing puzzles (Guvenen,

2009; Gromb and Vayanos, 2017) and may even play an important role in determining the impact

of macroprudential policies (Vayanos and Vila, 2009; Chen, Cúrdia, and Ferrero, 2012; He and

Krishnamurthy, 2013).

This article proves equilibrium existence in an economy where agents are subject to price-

dependent credit constraints limiting attainable allocations. Importantly, we do not require any sort

of financial survival assumptions.3 Altough investment segmentation is not allowed, we show that

equilibrium existence is compatible with broad forms of credit segmentation. Following Moreno-

Garćıa and Torres-Mart́ınez (2012), we work with a general real asset structure and fairly weak

assumptions on preferences; we neither require uniform impatience, nor allocations are restricted to

bounded spaces. Precisely, competitive equilibrium is shown to exist in economies in which agents

made trade infinitely lived assets in positive net supply and short-lived zero net supply securities,

and where borrowing constraints prevent agents from engaging into Ponzi schemes.

The rest of the article is organized as follows. Sections 2 and 3 introduce our model, describe

our standard assumptions over agents’ preferences and the structure of the financial segmentation.

Section 4 presents the super-replication property and our equilibrium result. Section 5 concludes.

All proofs are relegated to the Appendix.

2. Model

Uncertainty. Let E represent a discrete time, infinite horizon economy. There is a set S of states

of nature characterizing uncertainty, which is homogeneous among agents and represented by a

finite partition Ft of S at each period t. There is no information available at t = 0, i.e., F0 = S.

Additionally, Ft is at least as fine as Ft−1 at every period t ≥ 0. Thus, there is no loss of information

throughout time.

A node ξ is characterized by a pair (t, σ), where t ∈ N and σ ∈ Ft. Accordingly, t(ξ) and σ(ξ)

denote the date and the information set associated to ξ. Let ξ−, and ξ+ be, respectively, node ξ’s

unique predecessor and the set of all immediate successors. We also say µ ≥ ξ whenever t(µ) ≥ t(ξ)
and σ(µ) ⊆ σ(ξ), so ξ+ = {µ ≥ ξ|t(µ) = t(ξ) + 1}. Analogously, µ > ξ indicates that µ ≥ ξ and

µ 6= ξ.

3For example, requiring there exists a ε > 0 such that all agents may obtain ε through borrowing.
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There is a unique initial node ξ0, marking the beginning of the event-tree D, formed by the set

of nodes in our economy. The subtree starting at node ξ is denoted by D(ξ) and corresponds to the

set {µ ∈ D : µ ≥ ξ}. Moreover, define Dt(ξ) = {µ ∈ D(ξ)|t(µ) ≤ t(ξ) + t} as the branch of D(ξ)

spanning until date t. Similarly, Dt(ξ) = {µ ∈ D(ξ) : t(µ) = t + t(ξ)} is the set of nodes in D(ξ)

whose dates coincide with t+ t(ξ) .

Markets. At every ξ ∈ D there is a finite and ordered set L of perfectly divisible commodities.

Commodities may experience transformations through nodes, which are modeled as L×L matrices

with non-negative entries. In particular, a commodity bundle x(ξ) ∈ RL+ is transformed into bundle

Yµx(ξ) ∈ RL+ at any successor µ ∈ ξ+. We denote as p(ξ) = (pl(ξ))l∈L the vector of commodity spot

prices at ξ, and p = (p(ξ))ξ∈D as the commodity price process along D.

There is an ordered set J := J+ ∪ J0 of financial securities. Every asset j ∈ J is characterized

by an issuing node ξj ∈ D, and a payment stream that depends on whether j belongs to J+ or J0.

Precisely, if j ∈ J+ its payment stream consists of the spot-market value of a non-trivial process of

commodity bundles (Aj(µ))µ>ξj ∈ RL×D(ξj)\ξj . Alternatively, if j ∈ J0 its payment stream is given

by {Rj(µ, .)| µ > ξj} ∈ RD(ξj)\ξj
+ , where Rj(ξ, .) : RL+ → R+ is a continuous function of commodity

spot prices at ξ. Additionally, for each j ∈ J0 there exists node µ such that Rj(µ, p(µ)) > 0 for any

p(µ)� 0.

Assets may be finite or infinitely lived. Precisely, asset j ∈ J+ is finitely lived if there exists

Tj ∈ N such that the set {ξ ∈ D|(t(ξ) > Tj) ∧ (Aj(ξ) > 0)} is empty. Respectively, security k ∈ J0

is finitely lived if the set {ξ ∈ D|(t(ξ) > Tk) ∧ (Rk(ξ, p(ξ)) > 0)} is empty for some Tk ∈ N and for

any price process p ∈ RD×L+ . A security j ∈ J is infinitely lived if one of the above does not hold

for any T ∈ N, and it is said to be short-lived whenever Tj = ξj + 1

There is a finite set J(ξ) := J+(ξ) ∪ J0(ξ) of assets available for trade at ξ ∈ D, where J+(ξ) :=

{j ∈ J+|∃µ > ξ : Aj(µ) 6= 0} and J0(ξ) := {k ∈ J0|∃(µ, p) ∈ D(ξ) × RL×D+ : Rk(µ, p) > 0}.4

Let q(ξ) = (qj(ξ))j∈J(ξ) and q = (q(ξ))ξ∈D be node ξ’s asset prices and the asset price process

respectively. Let D(J) = {(ξ, j) ∈ D × J : j ∈ J(ξ)}, and let the space of commodity and asset

prices be P := RD×L+ × RD(J)
+ . Define D(J+) and D(J0) analogously.

Agents. There is a finite set H of agents participating in the economy. Each agent h is char-

acterized by an utility function Uh : RD×L+ → R+ ∪ {+∞}, and endowments consisting in both

commodities and real assets (wh(ξ), eh(ξ))ξ∈D ∈ RD×L+ × RD(J+)
+ , which may be understood as

generated by the unmodeled productive processes of our abstract economy E . Let ēh(ξ) stand for

agent h’s cumulative financial endowments up to node ξ; accordingly, at ξ agent h receives aggregate

endowments Wh(ξ) = wh(ξ) +YξW
h(ξ−) +

∑
j∈J+(ξ−)Aj(ξ)ē

h
j (ξ−).5 Aggregate wealth at node ξ is

therefore W (ξ) =
∑
h∈HW

h(ξ). We assume that assets in J+(ξ) are in positive net supply. That is,

j ∈ J+(ξ) implies that
∑
h∈H ē

h
j (ξ) > 0. In turn, securities k ∈ J0(ξ) are always in zero net supply :∑

h∈H ē
h
k(ξ) = 0.

4Note that we are ruling out the existence of fiat money.
5A(ξ0, j) = 0 for every j ∈ J+(ξ0).

5



Each h ∈ H must choose an allocation (xh(ξ), θh(ξ), ϕh(ξ)) ∈ Eξ := RL × RJ(ξ)
+ × RJ(ξ)

+ for

every ξ ∈ D, composed by commodity bundles and long and short positions in financial securities.

Accordingly, (xh(ξ), θh(ξ), ϕh(ξ))ξ∈D ∈ E :=
∏
ξ∈D Eξ. Moreover, each agent h is subject to trading

constraints Φh : P � E, restricting her admissible allocations throughout event-tree D. Hence,

given prices (p, q) ∈ P, agent h’s choice set correspondence Ch(p, q) is defined as all allocations

complying with both budget feasibility and trading constraints. In particular, budget feasibility at

node ξ implies that:

p(ξ)
(
xh(ξ)− wh(ξ)− Yξxh(ξ−)

)
+ q(ξ)

(
θh(ξ)− ϕh(ξ)− eh(ξ)

)
≤

∑
j∈J+(ξ−)

(p(ξ)Aj(ξ) + qj(ξ))
(
θhj (ξ−)− ϕhj (ξ−)

)
+

∑
k∈J0(ξ−)

(Rk(ξ, p(ξ)) + qk(ξ))
(
θhk (ξ−)− ϕhk(ξ−)

)
.

In turn, compatibility with trading constraints is equivalent to:

(xh, θh, ϕh) ∈ Φh(p, q),

where (xh, θh, ϕh) = (xh(ξ), θh(ξ), ϕh(ξ))ξ∈D and (θh(ξ−0 ), ϕh(ξ−0 ) = (0, 0). We also use yh(ξ) =

(xh(ξ), θh(ξ), ϕh(ξ)), and yh = (y(ξ))ξ∈D, to shorten notation.

Definition 1. A competitive equilibrium for the economy E is composed by a pair of price processes

(p, q) ∈ P and a set of allocations (xh, θh, ϕh)h∈H ∈ EH such that

(1) For every h ∈ H, (xh, θh, ϕh) ∈ argmax(x,θ,ϕ)∈Ch(p,q) U
h(x).

(2) Commodity and financial markets clear, i.e.,

∑
h∈H

xh(ξ) = W (ξ),
∑
h∈H

θh(ξ) =
∑
h∈H

(ϕh(ξ) + ēh(ξ)), ∀ξ ∈ D.

3. Standard Economies

The following assumptions characterize the fundamentals of economy E . Any economy E satisfy-

ing them is called standard.

Assumption A1. For each agent h ∈ H, Uh(x) =
∑
ξ∈D u

h(ξ, x(ξ)), where uh(ξ, .) : RL+ → R+ is

continuous, concave, strictly increasing and unbounded.

Assumption A2. At every (ξ, h) ∈ D ×H,wh(ξ)� 0. Additionally, Uh(W ) < +∞.

Following Moreno-Garćıa and Torres-Mart́ınez (2012), we require node-by-node separable utility

functions in order to obtain equilibrium existence in the infinite horizon case through asymptotic

techniques reliant on equilibrium existence for finite-horizon truncated economies. Unboundedness

of (uh(ξ, .))(ξ,h)∈D×H allows us to determine upper bounds on prices of positive net supply securities

and, jointly with bounded utility on aggregate wealth, lower bounds on asset prices as well.

The following assumption characterizes the credit segmentation considered in our model.

Assumption A3. Trading constraints (Φh)h∈H comply with the following properties:

a. Every correspondence Φh is lower hemicontinuous in the product topology, has a closed

graph, convex values, and satisfies 0 ∈ Φh(p, q), ∀(p, q) ∈ P.
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b. For any (p, q) ∈ P, and for every pair y, y′ ∈ Φh(p, q),

λ � y + (1− λ) � y′ ∈ Φh(p, q), for any λ ∈
∏
ξ∈D

[0, 1],

where λ � y = (λξyξ)ξ∈D.

c. Agents may always sell their financial endowments (eh(ξ))ξ∈D. Also, for every h ∈ H,

Φh(p, q) +
(
RD×L+ × RD(J)

+ × {0}
)
⊆ Φh(p, q).

d. For any feasible allocation (x, θ, ϕ) ∈ Φh(p, q) we have that (x, θ, ϕ) − (0, θ̄, 0) ∈ Φh(p, q),

for any θ̄ ∈ RD(J)
+ such that θ̄j(ξ) ∈ [0, θj(ξ)] if j ∈ J0(ξ), and zero otherwise.

Closed graph of trading constraints implies that for every convergent sequence of prices and feasi-

ble allocations there is a feasible limit allocation. Convexity of Φhξ ensures that linear combinations

of feasible allocations are feasible as well.

Introducing financial market segmentation without incorporating any financial survival assump-

tions may lead to empty interiors of choice sets if there is no access to credit and no physical wealth or

agents are prevented from consuming their endowments due to binding portfolio constraints (Seghir

and Torres-Mart́ınez, 2011); Example 1 illustrates this point. An empty interior, in turn, menaces

the choice set’s continuity, a requisite for determining equilibrium existence. Hence, Assumption

A3.a, plus the interiority of commodity endowments, solve this issue.

Example 1. Suppose that agent h1 must choose allocations that comply with the following constraint:

(x, θ, ϕ) ∈ Φh1(p, q)⇒ q(ξ0)ϕ(ξ0) ≤ p(ξ0)wh1(ξ0).

If agent h1 has no physical wealth at ξ0 (i.e., p(ξ0)wh1(ξ0) = 0), the interior of her choice set is

empty. Also, assume that agent h2 is subject to the following constraints:

(x, θ, ϕ) ∈ Φh2(p, q)⇒

{
p(ξ0)x(ξ0) ≥M,

q(ξ0)ϕ(ξ0) ≤ q(ξ0)θ(ξ0),

for some M > 0. If agent h is not rich enough at ξ0 (i.e., M ≥ p(ξ0)wh(ξ0) + q(ξ0)eh(ξ0)), her

inability to obtain resources from financial markets to purchase commodities implies the interior of

her choice set is empty as well.

Assumption A3.b is a convexity requirement, stronger than convexity of Φh, as the values of

(λ(ξ))ξ∈D may vary across nodes. It is necessary in order to prove the individual optimality of the

allocation obtained as the limit of equilibrium allocations of finite horizon economies. Importantly,

it holds when imposing node-by-node separability of trading constraints.

Remark 1. Assumption A3 holds if we assume that trading constraints (Φh)h∈H are of the type

Φh =
∏
ξ∈D Φhξ , where each correspondence Φhξ : P � Eξ complies with A3.a, A3.c and A3.d.

Assumption A3.c simply states agents are not obliged to keep any financial endowments they

receive, and that both commodity consumption and investment may always increase independently

of the allocation. To determine upper and lower bounds on asset prices, we construct a series of

arguments based on the fact that agents should not be able to purchase arbitrarily large consumption

bundles/investment portfolios, as they may lead to utility levels greater than those provided by
7



aggregate wealth. These arguments require that agents may freely determine both their consumption

and investment portfolio processes, and hence, we need to rule out both commodity and investment

segmentation.

In order to assert that zero net supply assets have well behaved prices, we build a non-arbitrage

argument that relies on the capacity of agents of reducing their investments in a zero net supply

security, and purchasing its respective super-replicating portfolio. Importantly, these arguments are

not valid if agents are using investments in zero net supply assets to obtain access to credit, as

reducing their positions in those assets could compromise the feasibility of their chosen allocations.

Thus, and in a manner akin to Cea-Echenique and Torres-Mart́ınez (2016), we need to rule out

the possibility that zero net supply assets may be used as financial collateral. Assumption A3.d

simply states that long positions in assets in J0(ξ) may be always reduced without compromising

the feasibility of the allocation.

Although several requirements are needed as to make financial segmentation compatible with

equilibrium existence, our model still allows for broad forms of credit segmentation. Note that

we do not need to rule out margin calls, nor we require agents to maintain some level of liquidity

throughout the event tree D.

Example 2. The following constraints are examples of restrictions that are included in our frame-

work:

(x, θ, ϕ) ∈ Φh(p, q)⇒


ϕk(ξ) = 0, for any k ∈ J̄(ξ).

q(ξ)ϕj(ξ) ≥ αξq(µ), for some (µ, j) ∈ D × J(ξ) \ J̄(ξ).

ϕs(ξ) ≤ max{θ1(ξ), θ2(ξ)}, for s ∈ J(ξ) \ J̄(ξ).

Note that we do not require to impose any financial survival assumptions; that is, agents may

not have access to credit throughout event-tree D (Aouani and Cornet, 2009). Moreover, access to

credit may depend on past or future prices, as illustrated by the second restriction. Finally, the

third constraint represents a typical case of financial collateral.

Example 3. The following constraints are examples of restrictions that are ruled out in our frame-

work:

(x, θ, ϕ) ∈ Φh(p, q)⇒


p(ξ)x(ξ) + q(ξ)θ(ξ) ≤ A, for A > 0.

θj(ξ) ∈ [1, 3], for some j ∈ J(ξ).

ϕ(ξ) ≥ αϕ(ξ−), for α > 0.

The first restriction violates Assumptions A3.c, as it curtails hypothetical agents from freely con-

suming commodities and investing in financial securities. The second constraint obliges agents to

maintain a positive and bounded investment in security j; this scenario is explicitly ruled out by

Assumption A3.c as well. Lastly, the third restriction forces long positions in financial markets to

be dependent on those at the previous node, which may contravene Assumption A3.b.

We follow Moreno-Garćıa and Torres-Mart́ınez (2012) and assume that trading constraints (Φh(p, q))h∈H

incorporate a borrowing constraint preventing agents from engaging into Ponzi schemes.

Assumption A4. For every h ∈ H,

(xh, θh, ϕh) ∈ Φh(p, q)⇒ q(ξ)ϕh(ξ) ≤ κp(ξ)wh(ξ) ∀ξ ∈ D.
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The literature of two-period economies with incomplete and segmented financial markets has

required additional assumptions in order to ensure that equilibrium portfolios are bounded, such

as non-redundancy conditions (Siconolfi, 1989) or boundedness of the set of aggregated attainable

allocations (Cea-Echenique and Torres-Mart́ınez, 2016; Faias and Torres-Mart́ınez, 2017). In our

model, these bounds are ensured by both the presence of borrowing constraints and endogenously

determined lower bounds on asset prices.

It is important to highlight that our framework is compatible with a wide array of financial

promises. Indeed, it encompasses nominal securities, collateralized debt contracts and derivatives,

as illustrated by the following example.

Example 4. Nominal securities are all those r ∈ J0 whose payment streams may be characterized

by a process (Nr(µ))µ>ξr ∈ RD(ξr)
+ . A collateralized debt contract subject to strategic default may

be modeled by a security j ∈ J0 whose payment stream is (min{p(µ)C(µ), A(µ)})µ>ξj , where each

C(µ) ∈ RL+ corresponds to the transformed collateral bundle C(ξj) up to node µ, and that is subject

to a conventional collateral constraint (see Araujo, Páscoa and Torres-Mart́ınez, 2011):

C(µ)ϕhj (µ) ≤ xh(µ), ∀(h, µ) ∈ H ×D(ξj).

Note that any agent h obtaining credit through j doest not pay a coupon greater than the market

value of the collateral bundle. Derivatives may be also included in this framework. In particular,

let ds ∈ J0 be an asset that makes positive deliveries only if asset s ∈ J fails to deliver an amount

greater than certain threshold R̄ up to time T . That is, Rds(ξ, p) = αmax{R̄ − Rs(ξ, p), 0}, with

α > 0, for nodes ξ > ξs such that t(ξ) ≤ T . Analogously, we may model asset f ∈ J0 as a “forward”

issued at node ξf and that pays its owner the difference between the spot price of commodity l ∈ L
(i.e., copper) and a pre-established price p̄l at time Tf :

Rf (µ, p) = max{p̄l − pl(µ), 0} if t(µ) = Tf , and 0 otherwise.

4. Main Result

In this section, we present our equilibrium existence result. In particular, we prove that when

zero net supply securities are short-lived6 and when financial and commodity markets comply with

a super-replication property (detailed below), a competitive equilibrium always exists.

As noted by Hernández and Santos (1996), and Moreno-Garćıa and Torres-Mart́ınez (2012), the

inclusion of assets in zero net supply is problematic as non-arbitrage conditions may be incompatible

with finite prices in equilibrium (see Hernández and Santos 1996, example 3.9, p.118). Thus, we

require an additional mechanism to ensure that prices of asset in zero net supply have endogenous

upper bounds.

The following super-replication property was first introduced by Cea-Echenique and Torres-

Mart́ınez (2016), in the context of a two-period economy with incomplete markets and credit

segmentation. Super-replication of an asset’s payment stream demands the existence of portfolio

of commodities and/or financial securities whose deliveries are greater than those of the super-

replicated asset at every successor. Cea-Echenique and Torres-Mart́ınez (2016) used it to determine

6A security j ∈ J is short-lived if Tj = t(ξj) + 1.
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equilibrium existence in an economy where segmented assets could be super-replicated by commodi-

ties and assets that every agent could short-sale7. We formulate the hypothesis as to allow zero net

supply assets to be super-replicated by commodities and/or assets in positive net supply.

Definition 2. At node ξ ∈ D, the payments of asset j ∈ J0(ξ) may be super-replicated by com-

modities and assets in positive net supply if for every (p, q) in a compact set P̂ ⊂ P there exists a

pair (x̂(ξ, j), θ̂(ξ, j)) ∈ RL+ × RJ+(ξ)
+ such that:

Rj(µ, p(µ)) ≤ p(µ)Yµx̂(ξ, j) +
∑

k∈J+(ξ)

p(µ)Ak(µ)θ̂(ξ, j), at every µ ∈ ξ+.

Intuitively, and without additional frictions, the equilibrium price of an asset should be smaller

than the price of a portfolio that yields greater returns at every state of nature. Therefore, if the

price of the super-replicating portfolio is correctly defined, this property allows to assert that the

prices of the super-replicated securities are bounded in equilibrium. Thus, we are now ready to

present our first equilibrium result.

Theorem 1. Equilibrium exists for any standard economy E in which:

(1) Zero net supplies assets are short-lived: Tj = t(ξj) + 1.

(2) Agent h ∈ H may super-replicate the payments of zero net supply securities with commodities

and assets in positive net supply.

It is relevant to remark that the super-replication property is ex-ante verifiable for any economy

E by observing both transformation matrices and assets’ deliveries.

Remark 2. Assume a context of real assets in which deliveries are of the sort Rj(ξ, p(ξ)) = p(ξ)Aj(ξ),

with Aj(ξ) ∈ RL+, for all (ξ, j) in D × J0(ξ). Then, super-replication of zero net supply securities

holds if, at every ξ there is a portfolio of positive net supply securities θ̃(ξ) such that:∑
j∈J+(ξ)

Aj(µ)θ̄j(ξ) ∈ RL++, ∀µ ∈ ξ+.

Equivalently, the super-replication property holds in any economy in which zero net supply securities

deliveries consist of durable commodities (see Cea-Echenique and Torres-Mart́ınez, 2016).

Moreover, as noted by Iraola, Sepúlveda and Torres-Mart́ınez (2017), the super-replication prop-

erty trivially holds in a context of collateralized assets with strategic default, as asset deliveries are

systematically bounded from above by the market value of collateral bundles.

Super-replication does not allow to incorporate zero net supply assets with a longer lifespan,

as agents may resell them in posterior nodes. Hence, although super-replicating portfolios may

completely hedge deliveries, they do not necessarily do the same with the reselling prices. This issue

remains a pending challenge for future research.

7In particular, as in their model the prices of unsegmented assets may be incorporated in the unitary simplex,

there is no uncertainty with respect to the boundedness of those prices in equilibrium.
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5. Conclusion

This article introduced endogenous financial segmentation to an infinite horizon model with

financial markets that include real assets in positive net supply and short-lived zero net supply se-

curities. We show that equilibrium existence is compatible with broad forms of credit segmentation,

without any financial survival or uniform impatience requirements on preferences. We rely on a

super-replication property proposed by Cea-Echenique and Torres-Mart́ınez (2016) to incorporate

short-lived assets in zero net supply. More research has to be done as to determine both the impli-

cations of financial segmentation for equilibrium existence and additional conditions under which

finitely and infinitely lived zero net supply assets may be incorporated to financial trade economies.
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6. Appendix

The proof of our theorem is analogous to the one developed by Moreno-Garćıa and Torres-

Mart́ınez (2012), where the main innovations appear when determining upper bounds for prices

in zero net supply. Nevertheless, the presence of durable commodities and financial segmentation

introduces slight variations that justify the repetition of the whole proof. The following outline

sketches the proof, explaining the main ideas and highlighting the relevance of our Assumptions.

(1) We prove equilibrium existence in E by using asymptotic arguments that derive from the exis-

tence of equilibrium for finite horizon economies. In particular, truncated economy ET circumscribes

agents’ original problem into a finite horizon economy with T ∈ N periods. The structure of uncer-

tainty is given by sub-tree DT (ξ0), and endowments, preferences, trading constraints and financial

assets available for trade are redefined in order to fit this particular setting.

(2) Equilibrium in each truncated economy ET is determined in four steps:

(a) We prove the existence of a non-empty set of fixed points in a generalized game resembling

economy ET . Here, players representing agents h ∈ H choose allocations in compact and

convex strategy sets given by correspondences which, thanks to Assumptions A3, are continuous

functions of prices. Moreover, fictitious auctioneers choose commodity prices (normalized into

the unitary simplex) and asset prices belonging to arbitrarily bounded spaces (see Lemma 6.1).

(b) We rely on Assumptions A1 and A2 to assert that bounds imposed on prices of positive net

supply securities, when large enough, are not binding (see Lemma 2). This results is analogous

to Lemma 6.2 of Moreno-Garćıa and Torres-Mart́ınez (2012).

(c) We establish conditions under which the prices of zero net supply securities are endogenously

bounded in equilibrium, by means of both the super-replicaton property and the limited lifespan

of assets in zero net supply; Assumption 3.c plays a key role (see Lemma 6.3).

(d) We then rely on Assumptions A1-A4 to show that bounds imposed on allocations are not bind-

ing as well, as long as they are large enough. Therefore, Lemma 4 proves that the fixed points

found in Lemma 1 are effectively competitive equilibria of economy ET ; it is also equivalent

to its counterpart in Moreno-Garćıa and Torres-Mart́ınez (2012). The presence of borrowing

constraints (due to Assumption A4) is key to the result (see Lemma 6.4).

(3) As we have equilibrium existence for every truncated economy {ET }T∈N, Assumption A2 allows

us to assert that the series formed by equilibrium prices, allocations and the Lagrange multipliers

associated to agents’ problem are bounded, for every {ET }T∈N. Thus, we use Tychonoff’s Theorem

to ensure the existence of a limit of a sub-sequence of equilibria for truncated economies {ETk}k≥0,

whose allocations comply with market clearing. We treat this limit’s prices and allocation as our

equilibrium candidate.

(4) Lastly, we prove that the former limit allocations are optimal given the limit’s prices, and

thus, a competitive equilibrium exists for E ; here, the convexity requirement on trading constraints

(Assumption A3.b) is crucial (see Lemma 6.5).
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Proof of Theorem 1

6.1. Finite horizon economies. Let ET be the truncated version of standard economy E up

to time T ∈ N. That is, ET is a finite horizon economy starting at node ξ0 and circumscribed

to event-tree DT (ξ0). Now, at every node ξ ∈ DT−1(ξ0) there is a set JT (ξ) := JT+(ξ) ∩ JT0 (ξ)

of assets available for trade, where JT+(ξ) = {j ∈ J+(ξ)|∃µ > ξ : t(µ) < T,Aj(µ) 6= 0} and

JT0 (ξ) = {j ∈ J0(ξ)|∃µ > ξ : t(µ) < T,Rj(µ, p(µ)) > 0 for p(µ)� 0}. By assumption, JT (ξ) = ∅ for

all ξ ∈ DT (ξ). Importantly, given ξ ∈ DT−1(ξ0), JT (ξ) = J(ξ) for T large enough. Let DT (J) =

{(ξ, j) ∈ DT (ξ0)× JT (ξ) : j ∈ JT (ξ)}; the sets DT (J+) and DT (J0) are defined analogously.

We consider prices (p, q) belonging to space

PT =
∏

ξ∈DT−1(ξ0)

(
∆L+ × RJ

T (ξ)
+

)
×

∏
ξ∈DT (ξ0)

∆L+,

where ∆L+ := {p ∈ RL+ : ‖p‖Σ = 1}.
Agents’ problem is reformulated to fit event-tree DT (ξ0). In particular, agent h ∈ H is charac-

terized by endowments (wh(ξ), eh(ξ))ξ∈DT (ξ0), and a modified utility functional over consumption

streams, Uh,T =
∑
ξ∈DT (ξ0) u

h(ξ, x(ξ)). Accordingly, she must choose an allocation (yh(ξ))ξ∈DT (ξ0) =

(xh(ξ), θh(ξ), ϕh(ξ))ξ∈DT (ξ0) belonging to space ET := RD
T (ξ0)×L

+ × RD
T (J)

+ × RD
T (J)

+ . We denote

yh = (yh(ξ))ξ∈DT (ξ0).

Every agent h ∈ H is also subject to trading constraints Φh,T (p, q) : PT � ET , where Φh,T is

defined as the projection of Φh onto subtree DT (ξ0). That is, for prices (p, q) ∈ PT , Φh,T is defined

as all allocations y ∈ ET for which we may find a pair (ỹ, (p̃, q̃)) ∈ E such that:(
ỹ ∈ Φh(p̃, q̃)

)
∧
(

(y(ξ), (p(ξ), q(ξ)))ξ∈DT−1(ξ0) = (ỹ(ξ), (p̃(ξ), q̃(ξ)))ξ∈DT−1(ξ0)

)
.

Thus, for prices (p, q) ∈ PT , agent h’s truncated choice set correspondence Ch,T (p, q) considers

allocations yh ∈ ET complying with constraints:

gh,T (ξ, yh(ξ), yh(ξ−); p, q) ≤ 0, ∀ξ ∈ DT (ξ0)

(yh(ξ))ξ∈DT (ξ0) ∈ Φh,T (p, q),

where (θh(ξ−0 ), ϕh(ξ−0 ) = (0, 0) and for every ξ ∈ DT (ξ0) the function gh,T (ξ, .) is given by:

gh,T (ξ, y(ξ), y(ξ−); p, q) := p(ξ)
(
xh(ξ)− wh(ξ)− Yξxh(ξ−)

)
+ q(ξ)(θh(ξ)− ϕh(ξ)− eh(ξ))

−
∑

j∈J+(ξ−)

(p(ξ)Aj(ξ) + qj(ξ))(θ
h
j (ξ−)− ϕhj (ξ−))

−
∑

k∈J0(ξ−)

(Rk(ξ, p(ξ)) + qk(ξ))(θhj (ξ−)− ϕhj (ξ−)).

Definition 3. A competitive equilibrium for economy ET is composed by a price process (p, q) ∈ PT

and allocations (yh)h∈H ∈ (ET )H such that

(1) For every h ∈ H, yh ∈ argmaxy∈Ch,T (p,q) U
h,T (x).

(2) Physical and financial markets clear, i.e.,∑
h∈H

xh(ξ) = W (ξ) ∀ξ ∈ DT (ξ0), and
∑
h∈H

θh(ξ) =
∑
h∈H

(ϕh(ξ) + ēh(ξ)) ∀ξ ∈ DT−1(ξ0).
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6.2. Equilibrium in finite horizon economies. Let GT (X ,Θ,Ψ,M) be a generalized game in

which fictitious players representing agents h ∈ H and auctioneers at every node ξ ∈ DT (ξ0),

seek to maximize objective functions by choosing strategy profiles in truncated strategy sets. More

precisely, for (X ,Θ,Ψ,M) ∈ ET × RD(J)
++ given, define the truncated allocation and price spaces as

K(X ,Θ,Ψ) := [0,X ]× [0,Θ]× [0,Ψ],

and PTM :=
∏

ξ∈DT−1(ξ0)

(
∆L+ × [0,Mξ]

)
×

∏
ξ∈DT (ξ0)

∆L+

respectively. Consequently, and given prices (p, q) ∈ PTM , fictitious player h ∈ H (representing

agent h ∈ H) chooses an allocation lying within the truncated choice set Ch,T (p, q) ∩ K(X ,Θ,Ψ)

as to maximize Uh,T . Additionally, at every node ξ ∈ DT−1(ξ0) (resp. ξ ∈ DT (ξ0)) there is

an auctioneer maximizing
∑
h∈H g

h,T (ξ, yh(ξ), yh(ξ−); p, q) by choosing both asset and commodity

prices (p(ξ), q(ξ)) ∈ ∆L+ × [0,Mξ] (resp. commodity prices only, p(ξ) ∈ ∆L+).

Definition 4. A Nash equilibrium of game GT (X ,Θ,Ψ,M) consists of a strategy profile

[(p(ξ), q(ξ)); (yh(ξ))h∈H ]ξ∈DT (ξ0) ∈ PTM × (K(X ,Θ,Ψ))H

such that each player maximizes her utility given the strategies chosen by the rest of the players

(i.e. no one has incentives to deviate).

Lemma 6.1. The set of Cournot Nash equilibria of the game GT (X ,Θ,Ψ,M) is non-empty.

Proof. Note that, at every node ξ ∈ DT (ξ0), the corresponding auctioneer maximizes an objective

function that is continuous and quasi-concave in his own strategy, whereas his strategy space is a

non-empty, compact, and convex set. Assumption A1 implies players h ∈ H are also endowed with

continuous utility functions, which are quasi-concave in their own strategy. Moreover, we assure that

their strategy spaces, (Ch,T (p, q)∩K(X ,Θ,Ψ))h∈H are determined by continuous correspondences.

Berge’s Maximum theorem allows us to assert that the maximizing arguments of the correspondence

formed by the best-response functions of players of game GT (X ,Θ,Ψ,M) is non-empty, compact-

valued and upper-hemicontinuous. Consequently, Kakutani’s Fixed Point Theorem ensures game

GT (X ,Θ,Ψ,M) has a non-empty set of fixed points. Hence, to prove Lemma 1 we need to show

that the correspondence Ĉh,T := Ch,T ∩ K(X ,Θ,Ψ) is continuous.

Lower hemicontinuity. We prove first the lower hemicontinuity of the trading constraints cor-

respondence Φh,T . Fix (yT , (pT , qT )) ∈ ET × PT such that yT ∈ Φh,T (pT , qT ) and let there be

a sequence {(pTn , qTn )}n∈N ⊂ PT whose limit is (pT , qT ). The definition of Φh,T implies there exist

(y, (p, q)) ∈ E×P complying with both y ∈ Φh(p, q) and (yT , (pT , qT )) = (y(ξ), (p(ξ), q(ξ)))ξ∈DT−1(ξ0).

Consider the following sequence {(pn, qn)}n∈N ⊂ P:

(pn(ξ), qn(ξ)) =

{
(pTn (ξ), qTn (ξ)) if ξ ∈ DT−1(ξ0)

(p(ξ), q(ξ)) if ξ /∈ DT−1(ξ0)
,

Clearly, (pn(ξ), qn(ξ))→ (p, q). Therefore, Assumption A3.a and the sequential characterization

of lower hemicontinuity ensure there exists {yn}n∈N ⊂ E :
(
yn ∈ Φh(pn, qn) ∀n ∈ N

)
∧ (yn → y).
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Moreover, the construction of {yn}n∈N allows us to assert that the sequence {yTn }n∈N ⊂ ET defined

as

yTn (ξ) =

{
yn(ξ) for ξ ∈ DT−1(ξ0)

yT (ξ) for ξ ∈ DT (ξ0)
for every n ∈ N,

complies with both yTn ∈ Φh,T (pTn , q
T
n ) ∀n ∈ N and yTn → yT , which implies that Φh,T is lower

hemicontinuous.

Now, consider the correspondence defined as Ċh,T (p, q) ∩ K(X ,Θ,Ψ), where Ċh,T (p, q) corre-

sponds to all allocations y ∈ Ch,T (p, q) complying with budget constraints with strict inequalities.

Assumptions A2 and A3 ensure that Ċh,T (p, q) ∩ K(X ,Θ,Ψ) has non-empty values, as commod-

ity endowments are strictly positive, commodity spot prices always belong to the unitary simplex

and there are no trading constraints curtailing h from consuming a fraction of her endowments.

Moreover, given a pair (y, (p, q)) ∈ ET × PT such that y ∈ Ċh,T (p, q) ∩ K(X ,Θ,Ψ) and a sequence

{(pn, qn)}n∈N converging to (p, q), the lower hemicontinuity of Φh,T allows us to assert that there

exists {yn}n∈N complying with yn ∈ Φh,T (pn, qn) ∀n ∈ N and converging to y. Thus, and for n ∈ N
sufficiently large, yn ∈ Ċh,T (pn, qn)∩K(X ,Θ,Ψ) as well; Ċh,T ∩K(X ,Θ,Ψ) is lower hemicontinuous.

Since Ċh,T has non-empty and convex values, its closure coincides with Ch,T , and so we learn

that Ch,T ∩ K(X ,Θ,Ψ) is lower hemicontinuous.

Upper hemicontinuity. As K(X ,Θ,Ψ) is a closed, convex and compact set containing 0, it follows

from Assumptions A2 and A3.a that Ch,T (p, q) ∩ K(X ,Θ,Ψ) has non-empty, convex and compact

values and a closed graph, which are sufficient conditions for upper hemicontinuity. �

Consider a Nash equilibrium
[
(p̄(ξ), q̄(ξ)); (ȳh(ξ))h∈H

]
ξ∈DT (ξ0)

of game GT (X ,Θ,Ψ,M), with

allocations ȳh(ξ) = (x̄h(ξ), θ̄h(ξ), ϕ̄h(ξ)). By aggregating agents’ budget set constraints at any node

in DT (ξ0) retrieves the auctioneer’s objective function at that node.8 As equilibrium allocations

comply with budget feasibility, we learn the latter is non-positive at every ξ. This implies, jointly

with the construction of strategy sets in game GT (X ,Θ,Ψ,M), and the optimality of the auctioneer’s

behavior, that there exists a bound on aggregate consumption at node ξ in equilibrium, defined

recursively by

∑
h∈H

x̄h(ξ) ≤ YT (Θ, ξ) := YξYT (Θ, ξ−) +
∑
h∈H

wh(ξ) +
∑

j∈JT
+ (ξ−)

Aj(ξ)Θ(ξ−, j)

 ,

where YT (Θ, ξ0) = W (ξ0).

Indeed, if it were not the case, the auctioneer could choose prices as to make her objective function

positive at ξ. Define YT (Θ) = (YT (Θ, ξ))ξ∈DT (ξ0), and fix an agent h ∈ H. Assumption A1 ensures

that at every ξ ∈ DT (ξ0) there exists a consumption bundle ah,TΘ (ξ) ∈ RL++, that allows h to obtain

greater utility than the one attainable through aggregate feasible consumption in any equilibrium

of game GT (X ,Θ,Ψ,M):

uh(ξ, ah,TΘ (ξ)) > Uh,T (YT (Θ)).

8Note that the auctioneer’s objective function used here differs from the ones traditionally used in the literature,

but it allows us to assert that this particular argument holds.
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Due to A1, it is straightforward that bundle aTΘ(ξ) =
∑
h∈H a

h
Θ(ξ) also complies with the condition

stated above. Let aTΘ = (aTΘ(ξ))ξ∈DT (ξ0), and define XΘ := aTΘ.

Lemma 6.2. Fix ξ ∈ DT (ξ0). Given X > XΘ, there exists MΘ(ξ) such that q̄j(ξ) ≤ MΘ(ξ) for

every j ∈ JT+(ξ).

Proof. Assumption A3.b ensures that agents may sell without restrictions their financial endow-

ments, and choose consumption bundles regardless of their portfolio choices. From the individual

optimality of allocation ȳh, it follows that the liquidation value of h’s accumulated financial en-

dowments at ξ is not enough to purchase bundle aTΘ(ξ), so p̄(ξ)wh(ξ) + q̄(ξ)ēh(ξ) < p̄(ξ)aTΘ(ξ). In

particular, for asset j ∈ JT+(ξ) we have that q̄(ξ)ēhj (ξ) < p̄(ξ)aTΘ(ξ), which, by aggregating in H and

due to the fact that ‖p̄(ξ)‖Σ = 1, allows us to obtain the following upper bounds for prices of assets

in J+(ξ):

q̄j(ξ) < MΘ(ξ, j) :=
#HaTΘ(ξ)∑
h∈H ē

h
j (ξ)

.

As the election of j ∈ JT+(ξ) was arbitrary, we learn that at node ξ the prices of assets in positive

net supply are bounded by MΘ(ξ) := maxj∈JT
+ (ξ){MΘ(ξ, j)} in equilibrium. �

Define MΘ = (MΘ(ξ))ξ∈DT (ξ0). As implied by Lemma 2, and as the election of ξ was arbitrary, if

(M,X ) ≥ (MΘ,XΘ), bounds imposed on positive net supply securities are not binding in equilibrium.

We assume the former holds from now on.

Lemma 6.3. Fix ξ ∈ DT (ξ0). If j ∈ J0(ξ) is in excess demand, there exists M̂(ξ) such that

q̄j(ξ) ≤ M̂(ξ), in any equilibrium where
∑
k∈JT

+ (ξ)

∑
h∈H(θ̄hk (ξ) − ēhk(ξ) − ϕ̄hk(ξ)) ≤ 0, whenever

Θ� Θ̄ := #HΨ.

Proof. Fix j ∈ JT0 (ξ). We assert that

∑
k∈JT

+ (ξ)

∑
h∈H

(θ̄hk (ξ)− ēhk(ξ)− ϕ̄hk(ξ)) ≤ 0⇒ q̄j(ξ) ≤ M̂(ξ, j),

for some M̂(ξ, j) ∈ R++. The property of super-replication ensures there exist a portfolio

(x̂(ξ, j), θ̂(ξ, j)) ∈ RL+ × RJ
T
+ (ξ)

+ such that

Rj(µ, p̄) ≤ p̄(µ)Yµx̂(ξ, j) +
∑

k∈J+(ξ)

p(µ)Ak(µ)θ̂k(ξ, j), at every µ ∈ ξ+.

Now, suppose that the following inequality holds:

q̄j(ξ) > M̂(ξ, j) := p̄(ξ)x̂(ξ, j) +
∑

k∈JT
+ (ξ)

q̄k(ξ)θ̂k(ξ, j).

Assumption A3.d ensures that for agent h(j) ∈ H investing in j there exists ε > 0 such that

h(j) may reduce her position in j by ε. Because there is no excess demand for assets in JT+(ξ),

plus the fact that Θ � Θ̄ we know that h(j) may invest those resources into purchasing ε units

of (x̂(ξ, j), θ̂(ξ, j)) and additionally increasing her consumption at ξ by an amount equivalent to
16



[
q̄j(ξ)− M̂(ξ, j)

]
ε > 0. By doing so, player h(j) would be increasing her consumption at ξ, whilst

leaving the rest of her consumption stream unaltered. This would contradict the optimality of ȳh(j).

Therefore, it must be that q̄j(ξ) ≤ M̂(ξ, j) in equilibrium.

As the election of j ∈ JT0 (ξ) was arbitrary, we learn that there exists M̂(ξ) := maxj∈JT
0 (ξ)

{
M̂(ξ, j)

}
such that q̄j(ξ) ≤ M̂(ξ) for every j ∈ JT0 (ξ) in excess demand, which ends the proof. �

As the election of ξ was arbitrary as well, we know that this result holds throughout all event-

tree DT (ξ0). That is, there exist (M̂(ξ))ξ∈DT (ξ0) bounding the prices of zero net supply securities

whenever the requirements of Lemma 6.3 hold. Now, define

M̂Θ(ξ) = max
{
M̂(ξ),MΘ(ξ)

}
for every ξ ∈ DT (ξ0),

and M̂Θ = (M̂Θ(ξ))ξ∈DT (ξ0). We assume that M � M̂Θ from now on.

Lemma 6.4. There exist (Θ∗,Ψ∗) ∈ RD
T (J)

+ × RD
T (J)

+ such that, for (Θ,Ψ) ≥ (Θ∗,Ψ∗) the fixed

points in GT (X ,Θ,Ψ,M) are competitive equilibria of economy ET .

Proof. Step 1: Commodity markets clear.

Choose any equilibrium
[
(p̄(ξ), q̄(ξ)); (ȳh(ξ))h∈H

]
ξ∈DT (ξ0)

of game GT (X ,Θ,Ψ,M). Aggregating

agents’ budget constraints at node ξ0 retrieves the auctioneer’s objective function at ξ0, which we

learn is non-positive. This implies
∑
h∈H(x̄h(ξ0)−wh(ξ0)) ≤ 0; indeed, if

∑
h∈H(x̄hl (ξ0)−whl (ξ0)) > 0

for some l ∈ L, the auctioneer could choose q̃(ξ0) = 0 and p̃l(ξ0) = 1 and obtain positive values in

his objective function at ξ0.

As M ≥ M̂Θ, Lemma 6.2 ensures bounds imposed on asset prices are non-binding for securities in

JT+(ξ0). This implies that
∑
h∈H

∑
j∈JT

+ (ξ0)(θ̄
h
j (ξ0)− ēhj (ξ0)− ϕ̄hj (ξ0)) ≤ 0; otherwise, the auctioneer

at ξ0 would have incentives to deviate by raising the price of some asset in positive net supply to

Mj(ξ), contradicting Lemma 2. Thus, and due to the optimal behavior of the auctioneer, we learn

that there cannot be excess demand for assets in JT0 (ξ0) either, or it would contradict Lemma 6.3.

Moreover, we learn that the value of excess demand in financial markets is zero as well:

q̄(ξ0)
∑

j∈JT (ξ0)

(θ̄h(ξ0)− ϕ̄h(ξ0)− eh(ξ0)) = 0.

Otherwise, the auctioneer would trivially improve by setting the price of assets in excess supply to

zero. As X > XΘ, bounds imposed on consumption at ξ0 are not binding. Because there is no

excess demand in financial markets at ξ0, the monotonicity of preferences implies both p̄(ξ0) � 0

(or agents would optimally set x̄hl (ξ0) = Xl(ξ0)) and that commodity markets clear at ξ0 (or some

h would increase her utility by spending her non-spent resources at ξ0).

Now, fix any node ξ ∈ ξ+
0 . The aggregation of individual budget constraints again retrieves the

auctioneer’s objective function, and because there is no excess demand in financial markets at ξ0 we

learn that its value is non-positive. Therefore, because X (ξ) ≥ aTΘ(ξ), and by repeating the exact

same arguments exposed above, we learn that the value of excess demand in financial markets is

zero, and that commodity markets clear at ξ.

The consecutive iteration of these arguments ensures these results holds for every ξ ∈ DT (ξ0).

That is, commodity markets clear at every ξ ∈ DT (ξ0), p(ξ) � 0, there is no excess demand
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in financial markets, and the value of excess demand in financial markets is zero at any node in

DT−1(ξ0).

Step 2: Lower bounds for asset prices. As commodity markets clear throughout sub-tree

DT (ξ0), we know that equilibrium allocations never exceed aggregate wealth. Hence, we know that

Uh,T (W ) is an upper bound for consumer h’s utility in any equilibrium of GT (X ,Θ,Ψ,M).

Now, fix a pair (ξ, j) ∈ DT−1(ξ0) × JT0 (ξ) and consider any successor µ ∈ DT (ξ) such that

Rj(µ, p̄) > 0. The definition of JT0 (ξ), plus the fact that p̄ � 0, implies µ exists. Assumptions A1

and A2 ensure there exists number b(ξ, j) ∈ (0, 1), independent of T > t(µ) + 1, such that for every

h ∈ H,

Rj(µ, p̄) minl∈L w
h
l (ξ)

b(ξ, j)
> ‖aTΘ(µ)‖.

Also, assume Θ(ξ, j) > Θ̂(ξ, j) := maxh∈H
minl∈L w

h(ξ)
b(ξ,j) . We claim that q̄j(ξ) > b(ξ, j). If it were not

true, Assumptions A1 and A2 imply any player could obtain an utility greater than the one attainable

through aggregate wealth, by purchasing portfolio θj(ξ) =
(

minl∈L w
h
l (ξ)

b(ξ,j)

)
at ξ and consuming bundle

aTΘ(µ) at µ. Moreover, this allocation is compatible with the structure given to trading constraints

by Assumption A3. Hence, it follows from each player’s optimal behavior that q̄j(ξ) > b(ξ, j), for

each (j, ξ) ∈ JT0 (ξ)×DT (ξ0) such that Θ(ξ, j) > Θ̂(ξ, j) for all j ∈ JT0 (ξ).

Importantly, note that the same argument holds for any tuple (ξ, k) ∈ DT−1(ξ0)× JT+(ξ), where

the asset’s payment at some node µ is given by p̄(µ)Ak(µ) > 0.

Step 3: Non-binding short-sale constraints.

Define Θ̂ = (Θ̂(η, j))(η,j)∈DT (J). Then, whenever Θ � Θ̂, asset prices are bounded from below

and away from zero. This implies borrowing constraints induce upper bounds on short-sales, for

every h ∈ H:

ϕhj (ξ) < Ψ∗j (ξ) := κ
max(h,l)∈H×L w

h
l (ξ)

b(ξ, j)
, ∀(ξ, j) ∈ DT (J).

Define Ψ∗ = (Ψ∗j (ξ))(ξ,j)∈DT (J). Then, whenever Ψ� Ψ∗, short-sale constraints are non-binding in

equilibrium.

Step 4: Financial markets clear and non-binding constraints on long positions

Assume (Θ,Ψ)� (Θ̂,Ψ∗) and that X � XΘ. From Step 1, there is no excess demand in financial

markets, and the value of excess demand in financial markets is zero at each ξ ∈ DT−1(ξ0). If there

were excess supply for any asset j ∈ JT (ξ), the optimal behavior of the auctioneer at ξ would imply

that qj(ξ) = 0, which would contradict the lower bound on that asset’s price at ξ, b(ξ, j). Therefore,

financial markets clear in equilibrium.

Additionally, at every ξ ∈ DT−1(ξ0),
∑
h∈H ϕ̄

h(ξ) is bounded. Hence, no excess demand in

financial markets implies that
∑
h∈H θ̄

h(ξ) is bounded as well. Thus, there exists Θ∗ ≥ Θ̂ such that,

whenever Θ� Θ∗, bounds imposed on long positions are non-binding.

Step 5: Individual optimality.

Whenever (Θ,Ψ)� (Θ∗,Ψ∗), equilibrium allocations (ŷh)h∈H belong to the interior of (Ch,T (p̂, q̂)∩
K(X ,Θ,Ψ,M) (relative to ET) for every h ∈ H. Hence, Assumption A1 ensures (ŷh)h∈H are optimal

relative to the original truncated choice sets. Therefore, any equilibrium
[
(p̄(ξ), q̄(ξ)); (ȳh(ξ))h∈H

]
ξ∈DT (ξ0)

of game GT (X ,Θ,Ψ,M) is a competitive equilibrium of economy ET . �
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6.3. Asymptotic equilibrium. We know that competitive equilibrium exists for any finite-horizon

economy ET starting at ξ0. Furthermore, equilibrium allocations are bounded, node by node, by

a set of bounds which are independent of the truncation horizon T (provided T is large enough).

Indeed, as equilibrium commodity allocations are bounded by aggregate wealth, prices of assets in

positive net supply at node ξ are bounded due to similar arguments than those exposed in Lemma

6.2, by bundle a(ξ) ∈ RL+ complying with:

min
h∈H

{
uh(ξ, a(ξ))

}
> max

h∈H

{
Uh,T (W )

}
,

which is independent of T > t(ξ). In turn, this implies that the prices of the super-replicating

portfolios used to determine upper bounds of prices of assets in J0(ξ) are also independent of the

truncation horizon, provided it is large enough. Therefore, and although we are not able to ensure

that the prices of zero net supply securities are bounded by those of their super-replicating portfolios,

the bounds on asset prices imposed on the generalized game become independent of T .

To prove equilibrium existence for the infinite horizon economy, we will use a series of sequential

arguments which rely on the existence of an equilibrium for any economy ET with T ∈ N. It

is particularly important for this objective that we bound the Lagrange multipliers characterizing

each agent’s problem, which is what we do now.

Let [pT , qT ; (yh,T )h∈H ] be a competitive equilibrium of economy ET , with T ∈ N. Then, for

every h ∈ H there exist Lagrange multipliers (γh,Tξ )ξ∈DT (ξ0 such that

γh,Tξ gh,Tξ (yh,T (ξ), yh,T (ξ−); pT , qT ) = 0, ∀ξ ∈ DT (ξ0).

Also, for every allocation y′ ∈ ET ∩ Φh,T (pT , qT ), the following saddle point property holds

(Rockafellar, 1997):

Uh,T (x′)−
∑

ξ∈DT (ξ0)

γh,Tξ gh,Tξ (y′(ξ), y′(ξ−); pT , qT ) ≤ Uh,T (xh,T ).(1)

In particular, for allocation y′ = (0, 0, 0) inequality (1) states that∑
ξ∈DT (ξ0)

γh,Tξ pT (ξ)wh(ξ) ≤ Uh(W ) < +∞,(2)

which in turn implies that the multipliers (γh,Tξ )ξ∈DT (ξ0 are bounded:

γh,Tξ ≤ Uh(W )

wh(ξ)
, ∀ξ ∈ D,

with wh(ξ) = minl∈L w
h
l (ξ) > 0. Recall that Assumption A2 ensures the former expression is

correctly defined throughout the event tree D. Therefore, for every economy ET , equilibrium allo-

cations, Lagrange multipliers and asset prices are, node by node, uniformly bounded from above,

whereas commodity prices belong to the unitary simplex. Thus, Tychonoff’s Theorem ensures there

exists a common subsequence (Tk)k∈N such that, for each ξ ∈ D,

lim
k→+∞

[pTk(ξ), qTk(ξ); (yh,Tk(ξ), γh,Tk(ξ))h∈H ] = [p̄(ξ), q̄(ξ), (ȳh(ξ), γ̄h(ξ))h∈H ].
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From the definition of Φh and Φh,T , for every h ∈ H we have that (ȳh(ξ))ξ∈D ∈ Ch(p̄, q̄). Addition-

ally, as limit allocations are cluster points, node by node, of equilibria in finite-horizon economies,

market clearing follows. Thus, to prove that [p̄(ξ), q̄(ξ), (ȳh(ξ)h∈H ]ξ∈D is a competitive equilibrium

of economy E , we must show solely that for every agent h ∈ H the allocation ȳh = (ȳh(ξ))ξ∈D is

optimal with respect to Ch(p̄, q̄).

Lemma 6.5. For every h ∈ H, Uh(x̄) ≥ Uh(x̃) for every ỹ ∈ Ch(p̄, q̄).

Proof. Consider the allocation ŷ defined as

ŷ(µ) =

{
ȳh(µ) if µ 6= ξ

ỹ(ξ) if µ = ξ
.

Assumption A3.b allows us to assert that ŷ ∈ Ch(p̄, q̄). Moreover, and due to very similar arguments

to those exposed in the proof of Lemma 1, given the sequence {(pTk , qTk)} → (p̄, q̄) and for k∗ ∈ N
sufficiently large, there exists a sequence {ŷTk}k≥k∗ complying with ŷTk ∈ Ch,Tk(pTk , qTk) and

ŷTk → ŷ.

Thus, for a node ξ ∈ D and T ∈ N large enough as to ensure that JT (µ) = J(µ) at every µ ≤ ξ,
inequality (1) allows us to assert that

uh(ξ, x̂T (ξ))−uh(ξ, xh,T (ξ)) ≤ γh,Tξ ghξ (ŷT (ξ), yh,T (ξ−); pT , qT )+
∑
µ∈ξ+

γh,Tµ ghµ(yh,T (µ), ŷT (ξ); pT , qT )

Taking the limit as T = Tk goes to infinity retrieves the following expression:

uh(ξ, x̃(ξ))− uh(ξ, x̄h(ξ)) ≤ γ̄hξ ghξ (ỹ(ξ), ȳh(ξ−); p̄, q̄) +
∑
µ∈ξ+

γ̄hµg
h
µ(ȳh(µ), ỹ(ξ); p̄, q̄).

As both ȳh and ŷ are budget feasible, adding up this inequality over sub-tree DN (ξ0) for N ∈ N
leads to:

Uh,N (x̃)− Uh,N (x̄h) ≤
∑

µ∈DN+1(ξ0)

γ̄hµg
h
µ(ȳh(µ), ỹ(µ−); p̄, q̄).

From the fact that ỹ complies with the short sales constraint at every ξ ∈ D it follows that

Uh,N (x̃)− Uh,N (x̄h) ≤
∑

µ∈DN+1(ξ0)

γ̄hµ
(
p̄(µ)x̄h(µ) + q̄(µ)

(
θ̄(µ)− ϕ̄(µ)

)
+ κp̄(µ)wh(µ)

)
.(3)

Now, for node ξ ∈ DT (ξ0) consider allocation ŷT ∈ Φh,T (pT , qT ) defined as

ŷT (µ) =

{
yh,T (µ) if µ 6= ξ

(0, 0, 0) if µ = ξ
.

Assumption A3.b ensures ŷT ∈ Φh,T (pT , qT ), whereas inequality (1) implies both

γh,Tξ
(
pT (ξ)xh,T (ξ) + qT (ξ)

(
θh,T (ξ)− ϕh,T (ξ)

))
≤

uh(ξ, xh,T (ξ)) +
∑

µ∈DT−1(ξ0)

γh,Tµ
(
pT (µ)xh,T (µ) + qT (µ)

(
θh,T (µ)− ϕh,T (µ)

))
and

γh,Tξ
(
pT (ξ)xh,T (ξ) + qT (ξ)

(
θh,T (ξ)− ϕh,T (ξ)

))
≤ uh(ξ, xh,T (ξ))
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for nodes ξ ∈ DT−1(ξ0) and ξ ∈ DT (ξ0) respectively. Thus, Assumption A1 lets us assert that:∑
ξ∈DN+1(ξ0)

γh,Tξ
(
pT (ξ)xh,T (µ) + qT (ξ)

(
θh,T (ξ)− ϕh,T (ξ)

))
≤

∑
µ∈DT (ξ0)\DN (ξ0)

uh(µ,W (µ)), ∀T > N+1

Taking the limit for T = Tk leads to∑
µ∈DN+1(ξ0)

γ̄hµ
(
p̄(µ)x̄h(µ) + q̄(µ)

(
θ̄(µ)− ϕ̄(µ)

))
≤

∑
µ∈D\DN (ξ0)

uh(µ,W (µ)),

which in turn implies that

Uh,N (x̃)− Uh,N (x̄h) ≤
∑

µ∈D\DN (ξ0)

uh(µ,W (µ)) + κ
∑

µ∈DN+1(ξ0)

γ̄hµ p̄(µ)wh(µ).(4)

Assumption A1 implies that the first term on the right hand side of inequality (4) tends to zero as

N goes to infinity, whereas we claim equation (2) ensures that the second term tends to zero with

N as well. Indeed, for any T ∈ N the following holds:

lim
Tk→+∞

 ∑
ξ∈DT (ξ0)

γh,Tξ pT (ξ)wh(ξ)

 =
∑

ξ∈DT (ξ0)

γ̄hξ p̄(ξ)w
h(ξ) ≤ Uh(W ).

As this inequality holds for any T ∈ N, it must also holds in the limit, and thus, we learn that∑
ξ∈D(ξ0) γ̄

h
ξ p̄(ξ)w

h(ξ) ≤ Uh(W ). This implies our assertion (otherwise, the previous sum would

not converge). Therefore, the sequence {Uh,N (x̃)}N∈N converges, as it is both non-decreasing and

bounded by Uh(x̄h) + 1, for all N > N∗ and N∗ ∈ N large enough.

Hence, for any ε > 0 there exists Nε ∈ N such that Uh,N (x̃) ≤ Uh,N (x̄h) + ε, ∀N ≥ Nε. In turn,

this implies that

Uh(x̃) ≤ Uh(x̄h) + ε, ∀ε > 0,

which ends the proof. �
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Araujo, A., M. Páscoa, and J. P. Torres-Mart́ınez (2011). “Long-lived collateralized assets and

bubbles”. Journal of Mathematical Economics 47.3, pp. 260–271.

Cea-Echenique, S. and J. P. Torres-Mart́ınez (2016). “Credit segmentation in general equilibrium”.

Journal of Mathematical Economics 62, pp. 19–27.
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