
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FíSICAS Y MATEMÁTICAS
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

MULTI-AGENT BASED DECENTRALIZED REINFORCEMENT LEARNING OF
INDIVIDUAL BEHAVIORS

TESIS PARA OPTAR AL GRADO DE
DOCTOR EN INGENIERÍA ELÉCTRICA

DAVID LEONARDO LEOTTAU FORERO

PROFESOR GUÍA:
JAVIER RUIZ DEL SOLAR SAN MARTÍN

MIEMBROS DE LA COMISIÓN:
JORGE SILVA SÁNCHEZ

EDUARDO MORALES MANZANARES
REINALDO DA COSTA BIANCHI

SANTIAGO DE CHILE
2018

RESUMEN DE LA MEMORIA PARA OPTAR
AL TÍTULO DE DOCTOR EN INGENIERÍA ELÉCTRICA
POR: DAVID LEONARDO LEOTTAU FORERO
FECHA: 2018
PROF. GUÍA: JAVIER RUIZ DEL SOLAR SAN MARTÍN

MULTI-AGENT BASED DECENTRALIZED REINFORCEMENT LEARNING OF
INDIVIDUAL BEHAVIORS

El paradigma del aprendizaje reforzado (RL 1) está siendo recurrentemente utilizado para
aprender tareas complejas en contextos aplicativos como la robótica. No obstante, muchas
aplicaciones en el mundo real manejan un espacio de acciones multi-dimensional, en donde las
acciones individuales trabajan juntas para que el agente ejecute un comportamiento deseado.
En tales aplicaciones, el RL presenta de una explosión en la complejidad computacional, que
ocurre cuando se usan esquemas con RL Centralizado (CRL). Esto genera problemas como
el consumo excesivo de memoria o de tiempo de entrenamiento, sin embargo, el uso del RL
Descentralizado (DRL) ayuda a solucionar tales problemas. En esta tesis, se usará el termino
DRL para referirse a aquellos métodos descentralizados usados para el aprendizaje de tareas
ejecutadas por una entidad individual, por ejemplo, un robot.

En esta tesis, se propone una metodología para modelar el DRL de comportamientos
individuales en problemas con espacios de acciones multi-dimensionales. Cada sub-problema
(ej., las acciones de un efector o actuador) es aprendido por agentes independientes que
trabajan en paralelo.

Dado que la mayoría de los estudios reportados sobre Sistemas Multi-Agente (MAS) no
validan los métodos propuestos en problemas estocásticos-multiestado y del mundo real, uno
de los objetivos de la presente tesis es demostrar empíricamente que los beneficios de los MAS
son extensibles a problemas complejos como son las plataformas robóticas, si estos son mod-
elados e implementados con sistemas DRL. Para ello, varios esquemas de DRL basados en
algoritmos multi-agente y métodos de transferencia de conocimiento son presentados, valida-
dos y analizados, a través de un extenso estudio experimental, en donde diferentes problemas
son modelados e implementados, siguiendo la metodología propuesta. Los resultados de la
validación empírica muestran que las implementaciones con DRL mejoran el desempeño de su
análogo CRL, usando además menos recursos computacionales. Además, aquellos esquemas
de DRL implementados con mecanismos de coordinación, muestran mejores desempeños y/o
tiempos de entrenamiento que los esquemas de DRL que no usan coordinación directa.

1Por sus siglas en inglés: Reinforcement Learning

i

ii

Abstract

Reinforcement Learning (RL) is commonly used to learn complex behaviors. However, many
real-world applications feature multi-dimensional action spaces, through which the individual
actions work together to make the learning agent perform a desired task. In such applications,
RL suffers from the combinatorial explosion of complexity, which occurs when a Centralized
RL (CRL) scheme is used. This leads to problems in terms of memory requirements or
learning time and the use of Decentralized Reinforcement Learning (DRL) helps to alleviate
these problems. In this dissertation, it will be used the term DRL for decentralized approaches
to the learning of a task which is performed by a single entity, e.g., a robot.

In this thesis, a Multi-Agent (MA) methodology is proposed for modeling the DRL of
individual behaviors in problems where multi-dimensional action spaces are involved. Each
sub-task (e.g., actions of one effector or actuator) is learned by a separate agent and the
agents work in parallel on the task.

Since most of the MAS reported studies do not validate the proposed approaches with
multi-state, stochastic, and real world problems, one of the goals is to show empirically that
the benefits of MAS are also applicable to complex problems like robotic platforms, by using
DRL systems. In order to address this, several MA and Knowledge Transfer (KT) based DRL
schemes are introduced, validated and analyzed through an extensive experimental study, in
which different problems are modeled and implemented following the proposed methodology.
Results from the empirical validation provides evidence that DRL implementations outper-
form their CRL counterparts, while using less computational resources. Also, that DRL
schemes implemented with coordination mechanisms show better performance and/or faster
learning times than DRL schemes with non direct coordination.

iii

iv

Agradecimientos

Gracias infinitas a todas mis madres: Susy, Mami Ceci, Rois y Stella. Su apoyo siempre me
ha dado la fortaleza, confianza y entereza para emprender cada idea que se me cruza por la
cabeza. A mi familia... con su afecto todo es más fácil.

Mis agradecimientos al Profesor Javier Ruiz del Solar que supo guiarme dándome la me-
dida justa de libertad, apoyo, crítica y dirección. A Carlos Celemin, Patrick MacAlpine,
Kenzo Lobos, Francisco Jaramillo, Pablo Guerrero, Peter Stone y Robert Babuska por
haberme colaborado con el desarrollo de mi trabajo. A los integrantes del UChile Robotics
Team, y a los compañeros del AMTC.

Gracias a Rous, Vane, Ros, Pancho y a todo el grupo por ser soporte cuando la familia
está lejos. Gracias a todos esos amigos que han estado ahí en la música, el fútbol y las rutash.
Ellos saben quiénes son. Sin deportes, risas y rock & roll todo esto hubiera sido aún más
difícil.

Gracias al Advanced Mining Technology Center (AMTC) y a la Comisión Nacional de
Investigación Científica y Tecnológica (CONICYT), por su auspicio por medio del Proyecto
FONDECYT 1161500 y la beca CONICYT-PCHA/Doctorado Nacional/2013-63130183. Fi-
nalmente gracias Chile por acogerme todos estos años.

v

Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Definition of the Problem . 1
1.2 Objectives . 2

1.2.1 General Objective . 2
1.2.2 Specific Objectives . 2

1.3 Hypothesis . 2
1.4 Contributions . 2

1.4.1 Bibliographic and technical production 4
1.5 Structure of this Document . 4

2 Background 5
2.1 Single-Agent Reinforcement Learning . 5
2.2 Multi-Agent Reinforcement Learning . 7
2.3 Independent Learners . 7

3 Decentralized Reinforcement Learning 9
3.1 An Introduction to DRL . 9
3.2 Potential Advantages of DRL . 10
3.3 Challenges in DRL . 11
3.4 DRL Algorithms . 11

3.4.1 Independent DRL (DRL-Ind) . 12
3.4.2 Lenient DRL (DRL-Lenient) . 13
3.4.3 Cooperative Adaptive DRL (DRL-CA) 17

3.5 Related Work . 20
3.6 Summary . 21

4 Proposed Methodology for Modeling Decentralized Reinforcement Learn-
ing Systems 22
4.1 Determining if the Problem is Decentralizable 22
4.2 Identifying Common and Individual Goals 23
4.3 Defining the Reward Functions . 24
4.4 Determining if the Problem is Fully Decentralizable 25
4.5 Completing RL Single Modelings . 25

vi

4.6 Summary . 26

5 Experimental Validation of Decentralized Reinforcement Learning of Robot
Behavios 28
5.1 Experimental Validation . 28
5.2 Three-Dimensional Mountain Car . 29

5.2.1 Centralized Modelings . 30
5.2.2 Proposed Decentralized Modelings . 31
5.2.3 Performance Index . 32
5.2.4 RL Algorithm and Optimized Parameters 32
5.2.5 Results and Analysis . 33

5.3 Ball-pushing . 35
5.3.1 Centralized Modeling . 36
5.3.2 Decentralized Modeling . 37
5.3.3 Performance index . 38
5.3.4 RL algorithm and optimized parameters 38
5.3.5 Physical setup . 39
5.3.6 Results and analysis . 39

5.4 Ball-Dribbling . 41
5.4.1 Proposed Decentralized Modeling . 42
5.4.2 Centralized Modeling . 42
5.4.3 Performance Indices . 44
5.4.4 RL Algorithm and Optimized Parameters 44
5.4.5 Results and Analysis . 45

5.5 SCARA Real-Time Trajectory Generation 47
5.5.1 Decentralized Modeling . 47
5.5.2 Performance Index . 49
5.5.3 RL Algorithm and Optimized Parameters 49
5.5.4 Results and Analysis . 49

5.6 Discussion . 50
5.7 Summary . 53

6 Accelerating Decentralized Reinforcement Learning 54
6.1 DRL and Transfer Knowledge Overview . 54
6.2 Literature Review . 55
6.3 Proposed KT-based DRL . 56

6.3.1 Control Sharing (CoSh) . 57
6.3.2 Nearby Action Sharing (NeASh) . 57

6.4 Experimental Validation . 58
6.4.1 Inwalk Kicking . 61
6.4.2 Ball-Dribbling . 65

6.5 Discussion . 67
6.6 Summary . 69

7 Conclusions and Future Direction 70

8 Bibliography 72

vii

A Optimization Procedure 78

viii

List of Tables

5.1 Experiment’s acronyms and their optimized parameters 30
5.2 DRL vs. CRL computational consumption for 3DMC 33
5.3 3DMC performances (these improve toward zero) 35
5.4 Description of state and action spaces for the DRL modeling of the Ball-

Pushing problem . 37
5.5 Ball-pushing best policy final performances for simulation and physical robot

experiments (in which 100% is the optimal case) 41
5.6 Description of state and action spaces for the DRL modeling of the Ball-

Dribbling problem . 43
5.7 Ball-Dribbling performances (in which lower %s are better performances) . . 47
5.8 SCARA-RTG performances (these improve toward zero) 50
5.9 Summary of the best methods implemented 52

6.1 Experiment’s acronyms and their optimized parameters 60
6.2 Description of state and action spaces for the DRL modeling of the inwalk-

kicking problem. 61
6.3 inwalk-kicking performances (in which 100% is the optimal policy). 65
6.4 Ball-Dribbling performances (in which lower %s are better). 68

ix

List of Figures

3.1 The basic DRL architecture. 10

4.1 3D mountain car surface. Figure adopted from Taylor and Stone [59]. 23
4.2 Proposed procedure for modeling a DRL problem. 27

5.1 3DMC learning evolution plots: centralized vs. decentralized approaches (top);
centralized vs. decentralized approaches with full observability of the joint
state space (middle); centralized vs. decentralized approaches with limited
observability (bottom). 34

5.2 Definition of variables for the Ball-Pushing problem (left), and, a picture of the
experimental setup implemented for testing the Ball-Pushing behavior (right). 36

5.3 Ball-pushing learning evolution plots. Results are averaged across 25 learning
runs and error bars show the standard error. 40

5.4 A picture of the NAO robot dribbling during a RoboCup SPL game (left), and
definition of variables for dribbling modeling (right). 41

5.5 Ball-dribbling learning evolution plots. 46
5.6 The SCARA robotic manipulator (Figure adopted from Martin and De Lope

[40]). 48
5.7 SCARA-RTG learning evolution plots. 50

6.1 Normal random function proposed to NeASh approach. 58
6.2 Geometric state variables and control actions for the ball-pushing based behav-

iors, performed by the NAO robot using a magenta jersey in a real RoboCup
game. 60

6.3 The learning setup environment of the inwalk-kicking problem (left), and the
ball-dribbling problem (right). 62

6.4 inwalk-kicking learning evolution plots with two different sources of knowledge.
Results are averaged across 25 learning runs and error bars show the standard
errors. 64

6.5 inwalk-kicking learning evolution plots for the 3D realistic simulator. Results
are averaged across 10 learning runs and error bars show the standard errors. 66

6.6 Ball-dribbling learning evolution plots for the 3D realistic simulator. Results
are averaged across 10 learning runs and error bars show the standard errors. 68

x

List of Algorithms

3.1 DRL-Independent: MA-SARSA with RBF approximation and ε-greedy explo-
ration . 14

3.2 DRL-Lenient: SARSA(λ) with softmax action selection 16
3.3 DRL-CA: MA-SARSA(λ) with RBF approximation and Softmax action selection 19
6.1 DRL+NeASh: KT and action selection mechanism 59
A.1 Customized Hill Climbing Algorithm . 79

xi

xii

Chapter 1

Introduction

1.1 Definition of the Problem

Reinforcement Learning is commonly used in robotics to learn complex behaviors. Two of
the main challenges to be solved for modeling RL systems acting in the real-world are: (i)
the high dimensionality of the state and action spaces, and (ii) the large number of training
trials required to learn most of complex tasks. Many real-world applications feature multi-
dimensional action spaces, i.e. multiple actuators or effectors, through which the individual
actions work together to make the robot perform a desired task. Examples are multi-link
robotic manipulators [9, 40], mobile robots [13, 34], aerial vehicles [3, 19], multi-legged robots
[61], and snake robots [56]. In such applications, RL suffers from the combinatorial explosion
of complexity, which occurs when a single-agent or Centralized RL (CRL) scheme is used
[40]. It may turn infeasible to implement CRL systems in terms of computational resources
or learning time due to the exponential increasing of dimensionality in both, the state space
and the action space [40, 31]. Unlike, the use of Decentralized Reinforcement Learning (DRL)
helps to alleviate this problem as it has been empirically evidenced [9, 32, 31].

In DRL, the learning problem is decomposed into several sub-problems, whose resources
are managed separately, while working toward a common goal. However, the coordination
problem must be solved, in order to extend and take advantage of some potential benefits
of Multi-Agent Systems (MAS) [52]. In addition, most of the stochastic DRL systems im-
plemented with independent learners also present two main drawbacks: non-stationary and
non-Markovian issues.

1

1.2 Objectives

1.2.1 General Objective

The general objective of this thesis is to address the Multi-Agent Based Decentralized Re-
inforcement Learning of individual behaviors of those problems in which multi-dimensional
action spaces are involved.

1.2.2 Specific Objectives

- To demonstrate empirically that an independent DRL system is able to achieve faster
learning times and comparable performances regarding to its CRL counterpart.

- To generate a methodology for modeling and implementing DRL Systems to perform
individual robot behaviors.

- To propose solutions to coordinate the individual learning agents and reduce the train-
ing time in DRL systems.

1.3 Hypothesis

When using DRL of individual behaviors, sub-problems are learned in parallel by individ-
ual agents working together. In the case of multidimensional action spaces, a sub-problem
corresponds to controlling one particular variable. For instance, in mobile robotics, a com-
mon high-level motion command is the desired velocity vector (e.g., [vx, vy, vθ]), and in the
case of a robotic arm, it can be the joint angle setpoint (e.g., [θshoulder, θelbow, θwrist]). If
each component of this vector is controlled individually, a distributed control scheme can be
applied. Through coordination of the individual learning agents, it is possible to use decen-
tralized methods, taking advantage of parallel computation and other benefits of Multi-Agent
Systems (MAS).

Most of the MAS reported studies do not validate the proposed approaches with multi-
state, stochastic, and real-world problems, which limits the applicative field of MAS [7].
However, since a DRL system has several individual agents as part of the same entity, real-
time communication and observation among those agents is not an issue unlike many of
the MAS. Thus, DRL systems would be able to extend benefits and properties of MAS to
challenging and real-world applications like complex robotic platforms.

1.4 Contributions

This thesis work presents several original contributions directly related of DRL of individual
behaviors:

2

- A five stages methodology for modeling and implementing a DRL system is promoted
and proposed, in which aspects such as what kind of problem is a candidate for being
decentralized, which subproblems, actions, or states should or could be decomposed,
what kind of reward functions and RL algorithms should be used, among other modeling
issues, are addressed.

- The Cooperative Adaptive Learning Rate DRL (DRL-CA) algorithm is proposed, de-
scribed and implemented. The main principle of DRL-CA is supported on a cooperative
factor that adapts the learning rate on-line based on a simple estimation of the partial
quality of the policy performed by the “weakest” agent.

- The Lenient Multi-Agent Reinforcement Learning algorithm has been implemented to
multi-state, stochastic, and continuous state-action DRL problems, and it is described
as DRL-Lenient.

- DRL-CA and DRL-Lenient algorithms, as well as DRL schemes with independent learn-
ers and no prior coordination (DRL-Ind), and their CRL counterparts are validated and
evaluated through an extensive empirical study. For that purpose, the proposed five
stages methodology for modeling and implementing DRL systems is applied and de-
scribed in four different problems; two of them are well-known problems: an extended
version of the Three-Dimensional Mountain Car (3DMC), and a SCARA Real-Time
Trajectory Generation (SCARA-RTG); and two correspond to noisy and stochastic
real-world mobile robot problems: the Ball-Dribbling in soccer performed with an hu-
manoid biped robot, and the Ball-Pushing behavior performed with a differential drive
robot. A deep analysis about their strengths and weaknesses are drawn according to
each validation problem and their characteristics. To the best of our knowledge, this
work is the first one that applies a decentralized modeling to the learning of individual
behaviors on mobile robot platforms, and compares it with their centralized RL scheme
counterparts.

- The Control Sharing (CoSh) knowledge transfer approach has been extended from the
single-agent case to the DRL proposed architecture. Hence, the DRL+CoSh scheme is
described and implemented.

- The Nearby Action Sharing method (DRL+NeASh) for continuous action spaces is
proposed, described and implemented. DRL+NeASh is a variant of DRL+CoSh which
is able to include a measure of uncertainty to the transferred action for noisy sources
of knowledge.

- DRL+CoSh and DRL+NeASh algorithms are validated and analyzed through an ex-
tensive empirical study carried out in a 3D realistic simulator and demonstrated with
physical robots. To the best of our knowledge, this work is the the first applying an ef-
fective strategy for transferring knowledge and coordinating-accelerating DRL systems.

- All the source codes are shared online, including the algorithms: DRL-Ind, DRL-CA,
DRL-Lenient, DRL+CoSh, and DRL+NeASh; as well as the 3DMC, ball-pushing,
ball-dribbling, and SCARA-RTG environments. A custom hill-climbing algorithm for
optimizing RL parameters is also available.

- I expect that the proposed decentralized extension of the 3DMC can be used in future
work as a test-bed for DRL and multi-state MAL problems.

3

1.4.1 Bibliographic and technical production

Journal papers

1. Decentralized Reinforcement Learning of Robot Behaviors [31].
2. Accelerating Decentralized Reinforcement Learning of Complex Individual Behaviors

[30].

Proceedings papers

1. Toward Real-Time Decentralized Reinforcement Learning using Finite Support Basis
Functions [38].

2. Decentralized Reinforcement Learning Applied to Mobile Robots [32].
3. A Study of Layered Learning Strategies Applied to Individual Behaviors in Robot

Soccer [35].
4. An Accelerated Approach to Decentralized Reinforcement Learning of the Ball-Dribbling

Behavior [34].
5. Ball Dribbling for Humanoid Biped Robots: A Reinforcement Learning and Fuzzy

Control Approach [29].
6. Integration of the ROS Framework in Soccer Robotics: the NAO Case [33].

1.5 Structure of this Document

This thesis document is organized as follows: the present Chapter introduces the reader to
the topic being addressed and to the dissertation work itself. Chapter 2 provides background
information on single-agent RL, MARL, and independent learning, useful for understanding
further chapters. Chapter 3 provides an introduction to DRL, some DRL algorithms are
described, and an overview on related work is provided. Chapter 4 proposes a methodology
to model and implement DRL systems. In Chapter 5, the DRL methodology introduced in
Chapter 4, as well as the DRL algorithms described in Chapter 3 are validated through an
experimental study on four different problems. Chapter 6 introduces two KT based DRL
schemes, validating and discussing them by implementing two real-world problems. Finally,
conclusions based on the methodologies developed and results obtained are drawn, as well
as some ideas for future work. Additionally, Appendix A describes the custom hill-climbing
algorithm used for optimizing RL parameters.

4

Chapter 2

Background

This chapter provides some concepts and background information useful for understanding
further chapters. Section 2.1 presents information on single-agent RL based on Sutton and
Barto [53], and Busnoniu, Babuska, De Schutter, and Ernst’s [8] books. Section 2.2 provides
background on multi-agent RL, based on Busnoniu et al. [7], and Vlassis’s [66] articles. And,
Section 2.3 gives a brief overview on independent learning, based on Laurent, Matignon, and
Fort-Piat’s [26] article.

2.1 Single-Agent Reinforcement Learning

RL is a family of machine learning techniques in which an agent learns a task by directly
interacting with the environment. In the single-agent RL, studied in the remainder of this
document, the environment of the agent is described by a Markov Decision Process (MDP),
which considers stochastic state transitions, discrete time steps k ∈ N and a finite sampling
period.
Definition 1. A finite Markov decision process is a 4-tuple 〈S,A, T,R〉 where: S is a finite
set of environment states, A is a finite set of agent actions, T : S × A × S → [0, 1] is the
state transition probability function, and R : S × A× S → R is the reward function [7].

The stochastic state transition function T models the environment. The state of the
environment at discrete time-step k is denoted by sk ∈ S. At each time step, the agent can
take an action ak ∈ A. As a result of that action, the environment changes its state from
sk to sk+1, according T (sk, ak, sk+1), which is the probability of ending up in sk+1 given that
action ak is applied in sk. As an immediate feedback on its performance, the agent receives
a scalar reward rk+1 ∈ R, according to the reward function: rk+1 = R(sk, ak, sk+1). The
behavior of the agent is described by its policy π, which specifies how the agent chooses its
actions given the state.

5

The agent’s goal is to maximize, at each time-step k, the expected discounted return:

Rk =
∞∑
j=0

γjrk+j+1 (2.1)

in this infinite-horizon reward case, γ ∈ (0, 1) is the discount factor. The task of the agent
is, therefore, to maximize its long-term performance, while only receiving feedback about its
immediate, one-step performance. One way it can achieve this is by computing an optimal
action-value function (Q-function), in which Qπ : S × A → R, is the expected return of a
state-action pair given the policy π : Qπ(s, a) = E{

∑∞
j=0 γ

jrk+j+1|sk = s, ak = a, π}.

The agent can maximize its return and achieve the learning goal by first computing the
optimal Q-function, which is defined as Q∗(s, a) = maxπQ

π(s, a), and then choosing actions
by the greedy policy π∗(s) = argmaxaQ

∗(s, a), which is optimal (i.e. maximizes the expected
return) when applied to Q∗. It satisfies the Bellman optimality recursion:

Q∗(s, a) = R(s, a, s′) + γmax
a′∈A

Q∗〈f(s, a, s′), a′〉 ∀ s, a. (2.2)

There are a wide variety of single-agent RL algorithms reported in the literature. Two
classes of RL approaches can be pointed: value iteration, an offline, model-based algorithm
that learns the optimal value function when the transition model is available; and policy
iteration algorithms in which an optimal policy is directly built by interacting with the
environment [53].

This work is about tasks that require several simultaneous actions (e.g., a robot with
multiple actuators), where such tasks are learned by using separate agents, one for each
action. In this setting, the state transition probability depends on the actions taken by
all the individual agents. On-line and model-free algorithms are considered, as they are
convenient for practical implementations.

Q-Learning [68] is one of the most popular model-free, on-line learning algorithms. It turns
Bellman equation into an iterative approximation procedure which updates the Q-function
by the following rule:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′∈A
Q(s′, a′)−Q(s, a)

]
(2.3)

with α ∈ (0, 1] the learning rate, and γ ∈ (0, 1) the discount factor. The sequence of Q-
functions provably converges to Q∗ under certain conditions, including that the agent keeps
trying all actions in all states with non-zero probability. This means that the agent must
sometimes explore, i.e. perform other actions than those dictated by the current greedy
policy.

A common exploration policy is the so-called ε-greedy policy by which in state s the agent
selects a random action with probability ε, and action a = argmaxa′ Q(s, a′) with probability
1− ε, where ε ∈ [0, 1]. One drawback of ε-greedy is that when it explores, it chooses equally
among all actions. A solution is to vary the action probabilities as a graded function of
estimated value. The greedy action is still given the highest selection probability, but all the

6

others are ranked and weighted according to their value estimates. These are called Softmax
action selection rules. The most common softmax method uses a Gibbs, or Boltzmann,
distribution. It chooses action a on the kth play with probability:

p(a|s) =
exp(Q(s, a)/τ)∑
a′ exp(Q(s, a′)/τ)

(2.4)

where τ > 0 is a parameter called the temperature. High temperatures cause the actions
to be all (nearly) equiprobable. Low temperatures cause a greater difference in selection
probability for actions that differ in their value estimates. In the limit as τ ← 0, softmax
action selection becomes the same as greedy action selection. When τ ←∞, action selection
is purely random. τ can be decreased with time.

2.2 Multi-Agent Reinforcement Learning

The generalization of the MDP to the multi-agent case is the stochastic game.
Definition 2. A stochastic game is the tuple 〈S,A1, · · · , AM , T, R1 . . . RM〉 with M the
number of agents; S the discrete set of environment states; Am,m = 1, · · · ,M the discrete
sets of actions available to the agents, yielding the joint action set A = A1 × · · · × AM ;
T : S × A × S → [0, 1] the state transition probability function, such that, ∀s ∈ S,∀a ∈
A,
∑

s′∈S T (s, a, s′) = 1; and Rm : S ×A × S → R,m = 1, · · · ,M the reward functions of
the agents [7, 26].

In the multi-agent case, the state transitions depend on the joint action of all the agents,
ak = [a1

k, · · · , aMk], ak ∈ A, amk ∈ Am. Each agent may receive a different reward rmk+1. The
policies πm : S ×Am → [0, 1] form together the joint policy π. The Q-function of each agent
depends on the joint action and is conditioned on the joint policy, Qπ

m : S ×A → R.

If R1 = · · · = RM , all the agents have the same goal, and the stochastic game is fully
cooperative. If M = 2, R1 = −R2, and they sum-up to zero, the two agents have opposite
goals, and the game is fully competitive. Mixed games are stochastic games that are neither
fully cooperative nor fully competitive [66]. In the general case, the reward functions of the
agents may differ. Formulating a good learning goal in situations where the agents’ immediate
interests are in conflict is a difficult open problem [9].

2.3 Independent Learners

Claus and Boutilier [10] define two fundamental classes of agents: joint-action learners and
Independent Learners (ILs). Joint-action learners are able to observe the other agents actions
and rewards; those learners are easily generalized from standard single-agent RL algorithms
as the process stays Markovian. On the contrary, ILs do not observe the rewards and actions
of the other learners, they interact with the environment as if no other agents exist [26].

Most MA problems violate the Markov property and are non-stationary. A process is said

7

non-stationary if its transition probabilities change with the time. A non-stationary process
can be Markovian if the evolution of their transition and reward functions depends only on
the time step and not on the history of actions and states [26].

For ILs, which is the focus of the present document, the individual policies change as
the learning progresses. Therefore, the environment is non-stationary and non-Markovian.
Laurent, Matignon and Fort-Piat [26] give an overview of strategies for mitigating convergence
issues in such a case. The effects of agents’ non-stationarity are less observable in weakly
coupled distributed systems, which makes ILs more likely to converge. The observability of
the actions’ effects may influence the convergence of the algorithms. To ensure convergence,
these approaches require the exploration rate to decay as the learning progresses, in order to
avoid too much concurrent exploration. In this way, each agent learns the best response to the
behavior of the others. Another alternative is to use coordinated exploration techniques that
exclude one or more actions from the agent’s action space, to efficiently search in a shrinking
joint action space. Both approaches reduce the exploration, the agents evolve slower and the
non-Markovian effects are reduced [26].

8

Chapter 3

Decentralized Reinforcement Learning

This chapter introduces the DRL and some practical algorithms, which is the core of this
dissertation. In this book, the term DRL will be used for decentralized approaches to the
learning of a task which is performed by a single entity, e.g., a robot. The remainder of this
chapter is organized as follows: Section 3.1 provides an introduction to DRL, its potential
advantages are pointed in Section 3.2, and some challenges are specified in Section 3.3.
Three DRL algorithms are described in Section 3.4. Finally, some related work is discussed
in Section 3.5.

This chapter is fully based on our paper [31]: Decentralized Reinforcement Learning of
Robot Behaviors, which is in press by the Artificial Intelligence Journal.

3.1 An Introduction to DRL

From a Distributed Artificial Intelligence perspective, the Distributed Problem Solving sub-
field focuses on the information management aspects of systems with several branches working
together toward a common goal; for example, problems such as task decomposition and so-
lution synthesis can often be decomposed into several not entirely independent sub-problems
that can be solved on different processors. On the other hand, MAS deal with behavior
management in collections of several independent entities, or agents [52].

DRL is concerned with MAS and Distributed Problem Solving. In DRL, a problem is
decomposed into several subproblems, managing their individual information and resources
in parallel and separately, by a collection of several agents which are part of a single entity.
In the case of multidimensional action spaces, a subproblem corresponds to controlling one
particular variable. If each variable is controlled individually, a distributed control scheme
can be applied. Through coordination of the individual learning agents, it is possible to use
decentralized methods [9], taking advantage of parallel computation and other benefits of
Multi-Agent Systems (MAS) [52, 7].

For instance, consider a quadcopter learning to perform a maneuver: each rotor can be

9

Agent1

Agentm

AgentM

M M

action at
m

state stm

reward rt
m M

rt+1m

st+1m ENVIRONMENT

Figure 3.1: The basic DRL architecture.

considered as a subproblem rather than an entirely independent problem; each subproblem’s
information and resources (sensors, actuators, effectors, etc) can be managed separately
by four agents; so, four individual policies will be learned to perform the maneuver in a
collaborative way.

One of the first mentions of DRL is by Busoniu, De-Schutter, and Babuska [9], where it
was used to differentiate a decentralized system from a MAL system composed of individual
agents [44]. The basic DRL architecture is shown in Figure 3.1 where M individual agents
are interacting within an environment. According to Tuyls, Hoen, and Vanschoenwinkel [63],
single-agents working on a multi-agent task are able to converge to a coordinate equilibrium
under certain parameters and for some particular behaviors. In this dissertation that assump-
tion is empirically validated with several problems in which multi-dimensional action spaces
are present. Thus, a methodology for modeling those problems by using a DRL system is a
primary contribution of this work.

3.2 Potential Advantages of DRL

One of the main drawbacks of classical RL is the exponential increase of complexity with
the number of state variables. Moreover, problems with multi-dimensional action spaces
suffer from the same drawback in the action space, too. This makes the learning process
highly complex, or even intractable, in terms of memory requirements or learning time [40].
This problem can be overcome by addressing it from a DLR perspective. For instance, by
considering a system with M actuators (an M -dimensional action space) and N discrete
actions in each one, a DRL modeling leads to evaluating and storing NM values per state
instead of NM as a centralized RL does. This result in a linear increase with the number of
actuators instead of an exponential one. A generalized expression for memory requirements
and a computation time reduction factor during action selection can be determined [49], this

10

is one of the main benefits of using DRL over CRL schemes, expressed by the following ratio:∏M
m=1 |Nm|∑M
m=1 |Nm|

, (3.1)

where actuator m has |Nm| discrete actions.

The MAS perspective grants several potential advantages if the problem is approached
with decentralized learners:

- Since from a computational point of view, all the individual agents in a DRL system
can operate in parallel acting upon their individual and reduced action spaces, the
learning speed is typically higher compared to a centralized agent which searches an
exponentially larger action space N = N1 × · · · ×NM , as expressed in (3.1) [49].

- The state space can be reduced for an individual agent, if not all the state information
is relevant to that agent.

- Different algorithms, models or configurations could be used by each individual agent.
- Parallel or distributed computing implementations are suitable.

There are various alternatives to decentralize a system performed with a single robot, for
example, task decomposition [69], behavior fusion [20], and layered learning [55]. However, in
this work is proposed the multi-dimensional action space decomposition, where each action
dimension is learned-controlled by one agent. In this way, the aforementioned potential
advantages can be exploited.

3.3 Challenges in DRL

DRL also has several challenges which must be resolved efficiently in order to take advantage
of the benefits already mentioned. Agents have to coordinate their individual behaviors
toward a desired joint behavior. This is not a trivial goal since the individual behaviors are
correlated and each individual decision influences the environment. Furthermore, as pointed
out in Section 2.3, an important aspect to deal with is the Markov property violation. The
presence of multiple concurrent learners, makes the environment non-stationary from a single
agent’s perspective [7]. The evolution of its transition probabilities do not only depend on
time, the process evolution is led by the agents’ actions and their own history. Therefore, from
a single agent’s perspective, the environment no longer appears Markovian [26]. In Section
3.4, two MAL algorithms for addressing some of these open issues in DRL implementations,
are presented: the Cooperative Adaptive Learning Rate, and an extension of the Lenient RL
algorithm applied to multi-state DRL problems.

3.4 DRL Algorithms

Some relevant MAL algorithms from state-of-the-art have been implemented and tested.
These algorithms accomplish the three basic requirements of our interest: (i) no prior co-

11

ordination, (ii) no teammates models estimation, and (iii) non-exponential increasing of
computational resources when more agents are added. Based on several initial experiments,
a brief note on the preliminary results from the selected methods is provided below:

(a) Distributed Q-Learning [25]: asymptotic convergence was not observed for all the trials,
which can be explained by the stochasticity of the studied scenarios.

(b) Frequency Adjusted Multi-Agent Q-Learning [43]: it was observed poor performance
since parameter β is too sensitive and thus it was difficult to adjust; however, the idea
of an adjustable learning rate from the Boltzmann probability distribution is of relevant
interest.

(c) Adaptations of the Infinitesimal Gradient Ascent algorithm (IGA) [51] and the Win or
Learn Fast (WoLF) principle [5]: not a trivial implementation in the case of more than
two agents and non competitives environments; however, a cooperative and variable
learning rate is a promising approach.

(d) Lenient Frequency Adjusted Q-learning (LFAQ) [2]: it exposed poor performance due to
both the tabular nature to handle lenience, and the high complexity to adjust individual
FA parameters.

(e) Independent Multi-Agent SARSA without sharing information (e.g., the one reported
by Sen, Sekaran, and Hale [50]): it mostly showed asymptotic convergence.

(f) Lenient Multi-Agent Reinforcement Learning [45]: it showed asymptotic convergence
when applied to multi-state DRL problems.

From the above, in the present study, the following three algorithms are chosen: (i) Inde-
pendent DRL (DRL-Independent), similar to (e) but implemented with decayed exploration
and replacing traces; (ii) Lenient Multi-Agent Reinforcement Learning (DRL-Lenient),
as in (f) but extended to multi-state DRL problems; and (iii) Cooperative Adaptive Learn-
ing Rate (DRL-CA) algorithm, the author’s proposed approach, inspired by (b) and (c).
These approaches will be addressed in detail in the following subsections, and the correspond-
ing performance will be discussed in Section 5.1.

3.4.1 Independent DRL (DRL-Ind)

DRL-Ind aims to apply single-agent RL methods to the MARL task, and does not consider
any kind of cooperation or coordination among agents; there is neither adaptation to the
other agents nor estimated models of their policies, nor special action-selection mechanisms
(e.g., communication among agents, prior knowledge). The computational complexity of this
DRL scheme is the same as that for a single-agent RL (e.g., a Q-Learner).

Although the non-stationarity of the MARL problem invalidates most of the single-agent
RL theoretical guarantees, this approach has been implemented in several multi-robot sys-
tems. An empirical study about DRL-Ind effectiveness can be found in [31].

Algorithm 3.1 depicts an episodic multi-agent SARSA algorithm [53] for continuous states
with RBF approximation [47], built following the DRL-Ind scheme. There, a learning system
with an M -dimensional action space is modeled with M single SARSA learners acting in

12

parallel. Every IL has individual Q-functions, action spaces, action selection mechanisms,
and state vectors. Taking advantage of parallel computation of MAS, it is possible to update
every Q-table by using M independent threads (Lines 3.1.18 to 3.1.35). A decayed and
synchronized exploration rate is proposed, in order to avoid too much concurrent exploration
and reduce the non-Markovian effects as was suggested in Section 3.3. In this way, each
agent should find the best response to the behavior of the others. Thus, an ε-greedy action
selection mechanism is implemented, which is exponentially decayed by using the dec factor
as seen in Line 3.1.29; episode is the current episode index and maxEpisodes is the total
number of trained episodes per run.

Synchronizing the exploration-exploitation mechanism among all the agents is a variant
that Algorithm 3.1 offers. It is possible just by declaring a unique random number for
all the agents as in Line 3.1.14, instead of an individual random scalar per agent as in Line
3.1.16. Also note that the RL parameters could be defined separately per agent (e.g., αm, γm,
εm), which is one of the DRL properties pointed out in Section 3. In Algorithm 3.1, those
parameters are unified just for the sake of simplicity.

3.4.2 Lenient DRL (DRL-Lenient)

Originally proposed by Panait et al. [45], the argument of lenient learning is that each agent
should be lenient with its teammates at early stages of the concurrent learning processes.
Later, Panait, Tuyls, and Luke [46] suggested that the agents should ignore lower rewards
(observed upon performing their actions), and only update the utilities of actions based on
the higher rewards. This can be achieved in a simple manner if the learners compare the
observed reward with the estimated utility of an action and update the utility only if it is
lower than the reward, namely, by making use of the rule

if (Ua∗ ≤ r) or urnd < 10−2 + κ−βτa∗ then Ua∗ ← αUa∗ + (1− α)r, (3.2)

where urnd ∈ [0, 1] is a random variable, κ is the lenience exponent coefficient, and τ(a∗)
is the lenience temperature of the selected action. Lenience may be reduced as learning
progresses and agents start focusing on a solution that becomes more critical with respect
to joint rewards (ignoring fewer of them) during advanced stages of the learning process,
which can be incorporated in Eq. (3.2) by using a discount factor β each time that action is
performed.

Lenient learning was initially proposed in state-less MA problems. According to Troost
et al. [62] and Schuitema [49], a multi-state implementation of Lenient Q-learning can be
accomplished by combining the Q-Learning update rule (i.e. Eq. (2.3)) with the optimistic
assumption proposed by Lauer and Riedmiller [25]. Accordingly, the action-value function
is updated optimistically at the beginning of the learning trial, taking into account the
maximum utility previously received along with each state-action pair visited. Then, lenience
toward other agents is refined smoothly, returning to the original update function (this is,
Eq. (2.3)):

Q(st, at)←
{
Q(st, at) + αδ, if δ > 0 or urnd > `(st, at),
Q(st, at), otherwise, (3.3)

13

Algorithm 3.1 DRL-Independent: MA-SARSA with RBF approximation and ε-greedy ex-
ploration

Parameters:
1: M . Number of decentralized agents
2: α . Learning rate ∈ (0, 1]
3: γ . Discount factor ∈ (0, 1]
4: Φm . Size of the feature vector φm of agentm, where m = 1, · · · ,M

Inputs:
5: S1, · · · , SM . State space of each agent
6: A1, · · · , AM . Action space of each agent
7: Initialize ~θm arbitrarily for each agent m = 1, · · · ,M
8: procedure for each episode:
9: for all agent m ∈M do
10: am, sm ← Initialize state and action
11: end for
12: repeat for each step of episode:
13: if Synchronized exploration then
14: urnd← a uniform random variable ∈ [0, 1]
15: else
16: [urnd1, · · · , urndM]← a uniform random vector ∈ [0, 1]
17: end if
18: for all agent m ∈M do
19: Take action a = am from current state s = sm

20: Observe reward rm, and next state s′ = s′m

21: if urndm > ε then
22: for all action i ∈ Am(s′) do
23: Qi ←

∑Φm

j=1 θ
m
i (j)φms′ (j)

24: end for
25: a′ ← argmaxiQi

26: else
27: a′ ← a random action ∈ Am(s′)
28: end if
29: ε = ε0 exp(−dec · episode/maxEpisodes)

30: Qas =
∑Φm

j=1 θ
m
a (j)φms (j)

31: Qas′ =
∑Φm

j=1 θ
m
a′ (j)φ

m
s′ (j)

32: δ ← rm + γQas′ −Qas
33: θma ← θma + αδφms
34: sm ← s′, am ← a′

35: end for
36: until Terminal condition
37: end procedure

14

with δ ← r + γQ′ −Q, and the state-action pair dependent lenience `(st, at) defined as

`(s, a) = 1− exp(−κτ(s, a)),

τ(s, a)← βτ(s, a),

where κ is the lenience coefficient, and τ(s, a) is the lenience temperature of the state action
pair (s, a), which decreases with a discount factor β each time the state-action pair is visited.

In this study, lenient learning is implemented by adapting the update rule (3.3) to multi-
state, stochastic, continuous state-action DRL problems, as reported by Troost et al. [62]
and Schuitema [49] . The DRL-Lenient algorithm presented in Algorithm 3.2, which is
implemented by replacing traces, incorporates a tabular MA-SARSA(λ) method, and uses
softmax action selection from Sutton and Barto [53].

In Algorithm 3.2, individual temperatures are managed separately by each state-action
pair. These temperatures (line 20) are used to later compute the Boltzmann probability
distribution Pa (line 26), which is the basis for the softmax action selection mechanism.
Note that only the corresponding temperature τ(st, ai) is decayed in line 29 after the state-
action pair (st, ai) is visited. This is a difference with respect to the usual softmax exploration
which uses a single temperature for the entire learning process. Value function is updated
only if the learning procedure is either optimistic or lenient, otherwise it is not updated.
It is either optimistically updated whenever the last performed action increases the current
utility function, or leniently updated if the agent has explored that action sufficiently. Since
lenience (line 30) is also computed from temperature, every state-action pair has an individual
lenience degree as well. The agent is more lenient (and it thus ignores low rewards) if the
temperature associated with the current state-action pair is high. Such a leniency is reduced
as long as its respective state-action pair is visited; in that case, the agent will tend to be
progressively more critical in refining the policy.

In order to extend DRL-Lenient to continuous states, it is necessary to implement a
function approximation strategy for the lenient temperature τ(s, a), the eligibility traces
e(s, a), and the action-value functions. Following a linear gradient-descent strategy with
RBF-features, similar to that presented in Algorithm 3.1, function approximations can be
expressed as:

ea ← ea + φs, (3.4a)

τ(s, a) =
Φ∑
j=1

τa(j)φs(j), (3.4b)

τa ← τa − (1− β)τ(s, a)φs, (3.4c)

δ ← r + γ
Φ∑
j=1

θa′(j)φs′(j)−
Φ∑
j=1

θa(j)φs(j), (3.4d)

~θ ← ~θ + αδ~e, (3.4e)
~e← γλ~e, (3.4f)

where Φ is the size of the feature vector φs. Equations (3.4a), (3.4c), (3.4d), (3.4e) and (3.4f)
would approximate lines 19, 29, 28, 33 and 36, respectively. For practical implementations,
τa must be set between (0, 1).

15

Algorithm 3.2 DRL-Lenient: SARSA(λ) with softmax action selection
Parameters:

1: M . Number of decentralized agents
2: Nm . Number of actions of agentm, where m = 1, · · · ,M
3: λ . Eligibility trace decay factor ∈ [0, 1)
4: κ . Lenience coefficient
5: β . Lenience discount factor ∈ [0, 1)

Inputs:
6: S1, · · · , SM . State space of each agent
7: A1, · · · , AM . Action space of each agent
8: for all agent m ∈M do
9: for all (sm, am) do
10: Initialize:
11: Qm(sm, am) = 0, em(sm, am) = 0, and τm(sm, am) = 1
12: end for
13: Initialize state and action sm, am
14: end for
15: repeat
16: for all agent m ∈M do
17: Take action a = am from current state s = sm

18: Observe reward rm, and next state s′ = s′m

19: em(s, a)← 1

20: minτ ← κ(1−
Nm

min
action i=1

(τm(s, ai)))

21: maxQv ← Nm

max
action i=1

(Qm(s, ai))

22: for all action i ∈ Am(s′) do
23: V qai ← exp(minτ(Qm(s, ai)−maxQv))
24: end for
25: Pa = [Pa1, · · · , PaNm] . Define probability distribution per-action at state s

26: Pa← V qa∑Nm

i=1 V qai

27: Choose action a′ = ai∗ ∈ {1, · · · , Nm} . at random using probability distribution
[Pa1, · · · , PaNm]

28: δ ← rm + γQm(s′, a′)−Qm(s, a)
29: τm(s, a)← βτm(s, a)
30: `(s, a) = 1− exp(−κτm(s, a))
31: if δ > 0 || urnd > `(s, a) then
32: for all (s, a) do
33: Qm(s, a)← Qm(s, a) + αδem(s, a)
34: end for
35: end if
36: em ← γλem

37: sm ← s′; am ← a′

38: end for
39: until Terminal condition

16

3.4.3 Cooperative Adaptive DRL (DRL-CA)

This section introduces the DRL Cooperative Adaptive Learning Rate algorithm (DRL-CA),
which mainly takes inspiration from the MARL approaches with a variable learning rate [5],
and Frequency Adjusted Q-Learning (FAQL) [43]. The idea of a variable learning rate is
used from the WoLF principle [5] and the IGA algorithm [51], in which agents learn quickly
when losing, and cautiously when winning. The WoLF-IGA algorithm requires knowing the
actual distribution of the actions the other agents are playing, in order to determine if an
agent is winning. This requirement is hard to accomplish for some MA applications in which
real-time communication is a limitation (e.g., decentralized multi-robot systems), but it is not
a major problem for DRL systems performing single robot behaviors. Thus, DRL-CA uses
a cooperative approach to adapt the learning rate, sharing the actual distribution of actions
per-each agent. Unlike the original WoLF-IGA, where gradient ascent is derived from the
expected pay-off, or unlike the current utility function from the update rule [5], DRL-CA
directly uses the probability of the selected actions, having a common normalized measure of
partial quality of the policy performed per agent. This idea is similar to FAQ-Learning [43],
in which the Q update rule

Qi(t+ 1)← Qi(t) + min

(
β

Pai

, 1

)
α[r + γmax

j
Qj(t)−Qi(t)] (3.5)

is modified by the adjusted frequency parameter (min(β/xi, 1)). In the DRL-CA approach,
such term is replaced by a cooperative adaptive factor ς defined as

ς = 1−
M

min
agent m=1

Pa∗,m (3.6)

The main principle of DRL-CA is supported on this cooperative factor that adapts a
global learning rate on-line, which is based on a simple estimation of the partial quality of
the joint policy performed. So, ς is computed from the probability of selected action (Pa∗),
according to the “weakest” among the M agents.

A variable learning rate based on the gradient ascent approach presents the same prop-
erties as an algorithm with an appropriately decreasing step size [51]. In this way, DRL-CA
shows a decreasing step size if a cooperative adaptive factor ς such as (3.6) is used. This
decremental variation is referred as DRL-CAdec. So, an agent should adapt quickly during
the early learning process, trying to collect experience and learn fast while there is a mis-
coordinated joint policy. In this case, ς → 1 and the learning rate tends to α. Once the
agents progressively obtain better rewards, they should be cautious since the other players
are refining their policies and, eventually, they will explore unknown actions which can pro-
duce temporal mis-coordination. In this case, ς → 0 and a decreasing learning rate, while
better decisions are being made. Note that DRL-CAdec acts contrarily to the DRL-Lenient
principle.

The DRL-CAinc is also introduced: a variation in which a cooperative adaptive fac-
tor increases during the learning process if a coordinated policy is learned gradually. This
variation uses

ς =
M

min
agent m=1

Pa∗,m (3.7)

17

instead of (3.6). Here, a similar lenient effect occurs, and the agents update their utilities
cautiously during the early learning process, being lenient with weaker agents while they
learn better policies. In this case, ς starts from the lowest probability among all the agents,
making the learning rate tend to a small but non-zero value. Once the agents are progressively
obtaining better rewards, they learn and update from their coordinated joint policy. Then,
in this case, ς → 1 and the learning rate tends toward a high value.

DRL-CAdec and DRL-CAinc show opposite principles. A detailed analysis of their proper-
ties is presented in Section 5.1. The common principle behind both variants is the cooperative
adaptation based on the current weakest learner’s performance. I also have empirically tested
other cooperative adaptive factors, but they resulted in no success: (i) based on individual
factors, ςm = Pa∗,m for each agentm; (ii) based on the best agent, ς = maxm Pa

∗,m; and (iii)
based on the mean of their qualities, ς = meanmPa

∗,m.

The chosen approach (based on the weakest agent) coordinates the learning evolution
awaiting similar skills among the agents. This is possible since ς comes from a Boltzmann
distribution, which is a probability always bounded between [0, 1], and thus it is possible to
consider ς as a measure of the current learned skill by an agent. This is desirable for the
cooperation among the agents, and is an advantage over methods based on the Temporal
Difference (TD) or instant reward, in which their gradients are not normalized and extra
parameters must be adjusted. Concerning DRL-CAinc, the most skilled agents wait for the
less skilled one, showing leniency by adapting the learning rate according to the current
utility function of the weakest learner. This makes sense because the policy of the most
skilled agents could change when the less skilled one improves its policy, so the agents should
be cautious. Once all the agents have similar skills, the learning rate is gradually increased for
faster learning while the joint policy is improved. In the case of DRL-CAdec, the less-skilled
agents motivate their teammates to extract more information from the joint-environment
and joint-actions, in order to find a better common decision which can quickly improve such
a weak policy.

Algorithm 3.3 presents the DRL-CA implementation for multi-state, stochastic, contin-
uous state-action DRL problems. It is an episodic MA-SARSA(λ) algorithm with RBF
approximation and softmax action selection. The incremental cooperative adaptive factor
(Eq. (3.7)) is calculated in line 32, and the decremental cooperative adaptive factor (Eq.
(3.6)) is calculated in line 34.

Note that, for practical implementations in which agents have different numbers of discrete
actions, each Pa∗,m must be biased to Pa∗

′,m in order to have equal initial probabilities
among the individual agents, i.e. Pa∗

′,1
s=0 = · · · = Pa∗

′,M
s=0 , and then Pa∗

′,m = Fbias(Pa∗,m),
where ∀ Pa∗′,m ∈ [0, 1]. A simple alternative to calculate this is by computing Pa∗′,m =
max(1/Nm, Pa∗,m), or

Pa∗
′,m = Pa∗,m −

[
(NmPa∗,m − 1)

(Nm(1−Nm))
+

1

Nm

]
(3.8)

which is a more accurate approach. This bias must be computed after line 28, and then σ in
line 32 must be computed by using Pa∗′,m instead of the non-biased Pa∗,m.

Note that both Algorithms 3.2 and 3.3 have been described with a softmax action selection

18

Algorithm 3.3 DRL-CA: MA-SARSA(λ) with RBF approximation and Softmax action
selection

Parameters:
1: M . Decentralized agents
2: Nm . Number of actions of agentm, where m = 1, · · · ,M
3: τ0 . Temperature
4: dec . Temperature decay factor
5: Φm . Size of the feature vector φm of agentm, where m = 1, · · · ,M

Inputs:
6: S1, · · · , SM . State space of each agent
7: A1, · · · , AM . Action space of each agent
8: for each agent m = 1, · · · ,M do
9: Initialize: ~θm = 0,~em = 0, τ = τ0, and ς = 1
10: end for
11: for episode = 1, · · · ,maxEpisodes do
12: Initialize state and action sm, am for all agent m ∈M
13: repeat for each step of episode:
14: for all agent m ∈M do
15: Take action a = am from current state s = sm

16: Observe reward rm, and next state s′ = s′m

17: ea ← ea + φs
18: δ ← rm −

∑Φm

j=1 θ
m
a (j)φms (j)

19: Qi ←
∑Φm

j=1 θ
m
i (j)φms′ (j) for all action i ∈ Am(s′)

20: maxQv ← Nm

max
action i=1

Qi

21: V qai ← exp

(
(Qi −maxQv)

(1 + τ)

)
for all action i ∈ Nm

22: Pa = [Pa1, · · · , PaNm] . probability distribution per-action at state s
23: Pa← V qa/

∑Nm

i=1 V qai

24: Choose action a′ = ai∗ ∈ {1, · · · , Nm} . at random using probability distribution
[Pa1, · · · , PaNm]

25: δ ← δ + γQi∗

26: ~θm ← ~θm + ςαδ~e m

27: ~e← γλ~e
28: Pa∗,m ← Paa′ . Boltzmann probability of the selected action
29: sm ← s′; am ← a′

30: end for
31: τ = τ0 exp(−decepisode/maxEpisodes)

32: ς =
M

min
agent m=1

(Pa∗,m) . CAinc variation

33: if CAdec variation then
34: ς = 1− ς
35: end if
36: until Terminal condition
37: end for

19

mechanism. Other exploration methods such as ε-greedy can be easily implemented, but it
must be taken into account that both methods DRL-Lenient and DRL-CA are based on the
Boltzmann probability distribution, Pa, which must bee calculated as well. However, this
only requires on-line and temporary computations, and no extra memory consumption.

3.5 Related Work

Busoniu et al. [9] present centralized and multi-agent learning approaches for RL, tested on
a two-link manipulator, and compared them in terms of performance, convergence time, and
computational resources. Martin and De Lope [40] present a distributed RL modeling for
generating a real-time trajectory of both a three-link planar robot and the SCARA robot;
experimental results showed that it is not necessary for decentralized agents to perceive the
whole state space in order to learn a good global policy. Probably, the most similar work to
ours is reported by Troost, Schuitema, and Jonker [62], this paper uses an approach in which
each output is controlled by an independent Q(λ) agent. Both simulated robotic systems
tested showed and almost identical performance and learning time between the single-agent
and MA approaches, while this last one requires less memory and computation time. A Le-
nient RL implementation was also tested showing a significant performance improvement for
one of the case studied. Some of these experiments and results were extended and presented
by Schuitema [49]. Moreover, the DRL of the soccer ball-dribbling behavior is accelerated by
using knowledge transfer [34], where, each component of the humanoid biped walk (vx, vy, vθ)
is learned by separate agents working in parallel on a multi-agent task. This learning ap-
proach for the omnidirectional velocity vector is also reported by Leottau, Ruiz-del-Solar,
MacAlpine, and Stone [35], in which some layered learning strategies are studied for de-
veloping individual behaviors, and one of these strategies, the concurrent layered learning
involves the DRL. Similarly, a MARL application for the multi-wheel control of a mobile
robot is presented by Dziomin, Kabysh, Golovko, and Stetter [13]. The robotic platform
is separated into driving module agents that are trained independently, in order to pro-
vide energy consumption optimization. A multi-agent RL approach is presented by Kabysh,
Golovko, and Lipnickas [21], which uses agents’ influences to estimate learning error among
all the agents; it has been validated with a multi-joint robotic arm. On the other hand,
Kimura [22] presents a coarse coding technique and an action selection scheme for RL in
multi-dimensional and continuous state-action spaces following conventional and sound RL
manners; and Pazis and Lagoudakis [48] present an approach for efficiently learning and
acting in domains with continuous and/or multidimensional control variables, in which the
problem of generalizing among actions is transformed to a problem of generalizing among
states in an equivalent MDP, where action selection is trivial. A different application is
reported by Matignon, Laurent, and Fort-Piat [42], where a semi-decentralized RL control
approach for controlling a distributed-air-jet micro-manipulator is proposed. This showed a
successful application of decentralized Q-learning variant algorithms for independent agents.
Finally, a well-known related work was reported by Crites and Barto [11], an application of
RL to the real world problem of elevator dispatching, its states are not fully observable and
they are non-stationary due to changing passenger arrival rates. So, a team of RL agents is
used, each of which is responsible for controlling one elevator car. Results showed that in
simulation surpass the best of the heuristic elevator control tested algorithms.

20

3.6 Summary

This chapter provided an introduction to DRL, its potential advantages and challenges.
Three DRL algorithms were described: independent DRL scheme (DRL-Ind), which does
not consider any kind of cooperation or coordination among the agents, applying single-agent
RL methods to the multi-agent task; the Cooperative Adaptive Learning Rate (DRL-CA)
approach, an original contribution which adapts the global learning rate on-line based on
a simple estimation of the partial quality of the policy performed by the “weakest” agent;
and DRL-Lenient, in which the value function is optimistically updated whenever the last
performed action increases the current utility function, or it is leniently updated if the agent
has explored that action sufficiently.

21

Chapter 4

Proposed Methodology for Modeling
Decentralized Reinforcement Learning
Systems

In this chapter is proposed a five stages methodology for modeling and implementing a DRL
system. Aspects such as what kind of problem is a candidate for being decentralized, which
subproblems, actions, or states should or could be decomposed, what kind of reward functions
and RL algorithms should be used, among other modeling issues, are addressed. The 3DMC
is used as a case study to draw an applicable example in this section.

This chapter is fully based on our paper [31]: Decentralized Reinforcement Learning of
Robot Behaviors, which is in press by the Artificial Intelligence Journal.

4.1 Determining if the Problem is Decentralizable

First of all, it is necessary to determine if the problem addressed is decentralizable via action
space decomposition, and, if it is, to determine into how many subproblems the system can be
separated. In robotics, a multi-dimensional action space usually implies multiple controllable
inputs, i.e, multiple actuators or effectors. For instance, an M -joint robotic arm or an M -
copter usually has at least one actuator (e.g., a motor) per joint or rotor, respectively, while
a differential drive robot has two end-effectors (right and left wheels), and an omnidirectional
biped gait has a three-dimensional commanded velocity vector ([vx, vy, vθ]). Thus, for the
remainder of this approach, we are going to assume as a first step that:
Proposition 1. A system with an M-dimensional action space is decentralizable if each of
these action dimensions are able to operate in parallel and their individual information and
resources can be managed separately. In this way, it is possible to decentralize the problem by
using M individual agents, which will learn together toward a common goal.

This concept will be illustrated with the 3DMC problem. A basic description of this
problem is given below, and it will be detailed in depth in Section 5.2.

22

Figure 4.1: 3D mountain car surface. Figure adopted from Taylor and Stone [59].

3-Dimensional mountain car: mountain car is one of the canonical RL tasks where an
agent must drive an under-powered car up a mountain to reach a goal state. In the 3D
modification originally proposed by Taylor and Stone [59], the mountain’s curve is extended
to a 3D surface as is shown in Figure 4.1. The state has four continuous state variables:
[x, ẋ, y, ẏ]. The agent selects from five actions: {Neutral,W est, East, South,North}, where
the x axis of the car points toward the north. The reward is −1 for each time step until the
goal is reached, at which point the episode ends and the reward is 0.

The 1D mountain car is an example of a non-decentralizable problem. This has a one-
dimensional action space: {W est,Neutral, East}, which is not splittable in parallel actions.
It means, only one action can be executed per step. Unlike, the 3DMC problem can also
be described by a decentralized RL modeling. It has a bi-dimensional action space, where
{W est, East} actions modify speed ẋ onto the x axis (dimension 1), and {South,North}
actions modify speed ẏ onto the y axis (dimension 2). These two action dimensions can act
in parallel, and they can be controlled separately. So, Proposition 1 is fulfilled, and 3DMC
is a decentralizable problem by using two RL separate agents: Agentx and Agenty.

4.2 Identifying Common and Individual Goals

In a DRL system, a collection of separate agents learn, individual policies in parallel, in order
to perform a desired behavior together to reach a common goal.

A common goal is always present in a DRL problem, and for some cases it is the same for
all the individual agents, especially when they share identical state spaces, similar actions,
and common reward functions. But, there are problems in which a particular sub-problem
can be assigned to a determined agent in order to reach that common goal. To identify each
agent’s individual goal is a non-trivial design step, that requires knowledge of the problem.

23

This is not an issue for centralized schemes, but it is an advantage of a decentralized modeling
because it allows addressing the problem more deeply.

There are two types of individual goals for DRL agents: those which are intrinsically
generated by the learning system when an agent has different state or action spaces with
respect to the others, and those individual goals which are assigned by the designer to every
agent, defining individual reward functions for that purpose. For the remainder of this
manuscript, the concept of individual goals and individual reward functions will refer to
those kinds of goals assigned by the designer.

At this time, there is no general rule for modeling the goals’ system of a DRL problem,
and still it is necessary spending time in designing it for each individual problem. Since
individual goals imply individual rewards, it is a decision which depends on how specific the
sub-task performed by each individual agent is, and to what extent the designer is familiar
with the problem and each decentralized sub-problem. If there is only a common goal, this is
directly related with the global task or desired behavior and guided by the common reward
function. Otherwise, if individual goals are considered, their combination must guarantee to
achieve the common goal.

For instance, the common goal for the 3DMC problem is reaching the goal state at the
north-east corner in the Figure 4.1. Individual goals can be identified, Agentx should reach
the east top, and Agenty should reach the north top.

4.3 Defining the Reward Functions

If no individual goals have been assigned in the former stage, this step just consists of defining
a global reward function according to the common goal and the desired behavior which the
DRL system is designed for. If this is not the case, individual reward functions must be
designed according to each individual goal.

Design considerations for defining the global or each individual reward function are the
same for classical RL systems [53]. This is the most important design step requiring expe-
rience, knowledge, and creativity. A well-known rule is that the RL agent must be able to
observe or control every variable involved in the reward function R(S,A). Then, the next
stage of this methodology consists of determining the state spaces.

In the centralized modeling for the 3DMC problem, a global reward function is proposed
as: r = 0 if the common goal is reached, r = −1 otherwise. In the DRL scheme, individual
reward functions can be defined as: rx = 0 if East top is reached, rx = −1 otherwise, for the
Agentx, and ry = 0 if north top is reached ; ry = −1 otherwise, for the Agenty. In this way,
each single sub-task is more specific.

24

4.4 Determining if the Problem is Fully Decentralizable

The next stage in this methodology consists of determining if it is necessary and/or possible
to decentralize the state space too. In Section 4.1 it was determined that at least the action
space will be split according to its number of dimensions. Now we are going to determine if it
is also possible to simplify the state space using one separate state vector per each individual
agent. This is the particular situation in which a DRL architecture offers the maximum
benefit.
Proposition 2. A DRL problem is fully decentralizable if not all the state information is
relevant to all the agents, thus, individual state vectors can be defined for each agent.

If a system is not fully decentralizable, and it is necessary that all the agents observe the
whole state information, the same state vector must be used for all the individual agents,
and will be called a joint state vector. However, if a system is fully decentralizable, the
next stage is to determine which state variables are relevant to each individual agent. This
decision depends on the transition function Tm of each individual goal defined as in Section
4.2, as well as on each individual reward function designed as in Section 4.3. For example,
for a classical RL system, the definition of the state space must include every state variable
involved in the reward function, as well as other states relevant to accomplishing the assigned
goal.

Note that individual reward functions do not imply individual state spaces per agent. For
instance, the 3DMC example can be designed with those two individual rewards (rx and ry)
defined as in Section 4.3, observing the full joint state space [x, ẋ, y, ẏ]. Also, note that state
space could be reduced for practical effects, Agentx could eventually work without observing ẏ
speed, as well as Agenty without observing ẋ speed. So, a simplified 3DMC could be modeled
as a fully decentralized problem with two individual agents with their own independent state
vectors, Sx = [x, ẋ, y], Sy = [x, y, ẏ]. Furthermore, it has been implemented an extreme case
with incomplete observations in which Sx = [x, ẋ], Sy = [y, ẏ]. Implementation details as well
as experimental results can be seen in Section 5.2.

4.5 Completing RL Single Modelings

Once the global DRL modeling has been defined and the tuples state, action, and reward
[Sm, Am, Rm] are well identified per every agent m = 1, · · · ,M , it is necessary to complete
each single RL modeling. Implementation and environmental details such as ranges and
boundaries of features, terminal states, and reset conditions must be defined, as well as RL
algorithms and parameters selected. If individual sub-tasks and their goals are well identified,
modeling each individual agent implies the same procedure as in a classical RL system. Some
problems can share some of these design details among all or some of their DRL agents.
This is one of the most interesting aspects of using a DRL system: flexibility to implement
completely different modelings, RL algorithms, and parameters per each individual agent; or
the simplicity of just using the same scheme for all the agents.

25

An important design issue at this stage, is choosing the RL algorithm to be implemented
per each agent properly. Considerations for modeling a classical RL single agent are also
applicable here. For instance, for a discrete state-action space problem it could be more
useful to use algorithms like tabular Q-Learning [68] or R-MAX [6]; for a continuous state
and discrete action space problem, a SARSA with function approximation [53] might be more
useful; for a continuous state-action space problem, a Fuzzy Q-Learning [16] or an actor
critic scheme [18] could be more convenient. These cases are only examples to give an idea
about the close relationship between modeling and designing classical RL agents versus each
individual DRL agent. As already mentioned, differences are based on determining terminal
states separately, resetting conditions, and establishing environment limitations, among other
design settings, which can be different among agents and must be well set to coordinate the
parallel learning procedure under the joint environmental conditions. Of course, depending
on the particular problem, the designer has to model and define the most convenient scheme.
Also note that if well-known RL algorithms are used, no extra considerations must be taken
into account in designing and modeling a DRL system. Thereby, a strong background in
MAS and/or MAL is not necessary.

4.6 Summary

A methodology for modeling and implementing a DRL system has been presented in this
chapter by following a five stage design procedure. It is important to mention that some of
these stages must not necessarily be applied in the same order in which they were presented.
That depends on the particular problem and its properties. For instance, for some problems
it could be necessary or more expeditious to define the state spaces in advance in Stage
4.4 rather than to determine individual goals in Stage 4.2. However, this is a methodology
which guides the design of DRL systems in a general way. A block diagram of the proposed
procedure is shown in Figure 4.2.

26

M: Number of dimensions of the action space

NO END

Problem is decentralizable
Set: Agent1, ... , AgentM

Determine the common goal

YES

Set: S(joint state)
State space is
decentralizable

Set: S1, ..., SM

YESNO

Set environment details and choose a RL algorithm for:
Agent1, ..., AgentM

YESNO

Define Individual goals
and rewardsDefine Global reward

Set: R (S) Set: R1(S1), ..., RM(SM)

M>1

Fully Decentralizable

Individual goals
are identified

Figure 4.2: Proposed procedure for modeling a DRL problem.

27

Chapter 5

Experimental Validation of Decentralized
Reinforcement Learning of Robot
Behavios

This chapter examines some practical DRL algorithms applied to different multidimensional
action space problems. For this, the three DRL algorithms described in Section 3.4 are
considered: DRL-Independent, DRL-Lenient, and DRL-CA. These approaches are evaluated
and analyzed through an empirical study using four different problems: 3D Mountain Car
(Section 5.2), Ball-Pushing (Section 5.3), Ball-Dribbling (Section 5.4), and SCARA-RTG
(Section 5.5). Finally, Section 5.6 discusses results.

This chapter is fully based on our paper [31]: Decentralized Reinforcement Learning of
Robot Behaviors, which is in press by the Artificial Intelligence Journal.

5.1 Experimental Validation

In order to validate MAS benefits and properties of the DRL systems, four different problems
have been carefully selected: the 3DMC, a three-Dimensional extension of the mountain
car problem [59]; the SCARA-RTG, a SCARA robot generating a real-time trajectory for
navigating towards a 3D goal position [40]; the Ball-Pushing performed with a differential
drive robot [32]; and the soccer Ball-Dribbling task [29]. The 3DMC and SCARA-RTG
are well known and are already proposed test-beds. The Ball-Dribbling and Ball-Pushing
problems are noisy and stochastic real-world applications that have been tested already with
physical robots.

The problem descriptions and results are presented in a manner of increasing complexity.
3DMC is a canonical RL test-bed; it allows splitting the action space, as well as the state
space for evaluating from a centralized system, up to a fully decentralized system with limited
observability of the state space. The Ball-Pushing problem also allows carrying out a per-
formance comparison between a centralized and a decentralized scheme. The best CRL and

28

DRL learned policies are transferred and tested with a physical robot. The Ball-Dribbling
and SCARA-RTG problems are more complex systems (implemented with 3 and 4 individual
agents respectively). Ball-dribbling is a very complex behavior which involves three parallel
sub-tasks in a highly dynamic and non-linear environment. The SCARA-RTG has four joints
acting simultaneously in a 3-Dimensional space, in which the observed state for the whole
system is only the error between the current end-effector position, [x, y, z], and a random
target position.

Some relevant parameters of the RL algorithms implemented are optimized by using a
customized version of the hill-climbing method. It is carried out independently for each
approach and problem tested. Details about the optimization procedure and the pseudo-code
of the implemented algorithm can be found in Appendix A. Finally, 25 runs are performed by
using the best parameter settings obtained in the optimization procedure. Learning evolution
results are plotted by averaging those 25 runs, and error bars show the standard error. In
addition, the averaged final performance is also measured: it considers the last 10% of the
total learning episodes.

A description of each problem tested and some implementation and modeling details are
presented in the next sub-sections, following the methodology described in Section 4. The
experimental results and analysis are then discussed. All the acronyms of the implemented
methods and problems are listed in Table 5.1. The following terminology is used: CRL means
a Centralized RL scheme; DRL-Ind is an independent learners scheme implemented without
any kind of MA coordination; DRL-CAdec, DRL-CAinc, and DRL-Lenient are respectively
a DRL system coordinated with Decremental Cooperative Adaptation, Incremental Cooper-
ative Adaptation, and a Lenient approach. In the case of the 3DMC, CRL-5a and CRL-9a
are Centralized RL schemes implemented with 5 actions (the original 3DMC modeling [59])
and 9 actions respectively. ObsF and ObsL are Full Observability and Limited observability
of the joint state space respectively. In the case of the Ball-Pushing problem, DRL-Hybrid is
a hybrid DRL-Ind scheme implemented with a SARSA(λ) + a Fuzzy Q-Learning RL algo-
rithm without any kind of MAS coordination (please see a detailed description in subsection
5.3). In the case of the Ball-Dribbling problem, DRL-Transfer is a DRL system accelerated
by using the NASh transfer knowledge learning approach [34]; RL-FLC is an implementa-
tion reported by Leottau, Celemin, and Ruiz del Solar [29], which combines a Fuzzy Logic
Controller (FLC) and an RL single agent; and eRL-FLC is an enhanced version of RL-FLC
(please see their detailed descriptions in Subsection 5.4).

5.2 Three-Dimensional Mountain Car

Mountain car is one of the canonical RL tasks in which an agent must drive an under-powered
car up a mountain to reach a goal state. In the 3D modification originally proposed by Taylor
and Stone [59], the mountain’s curve is extended to a 3D surface as is shown in Figure 4.1.

29

Table 5.1: Experiment’s acronyms and their optimized parameters
Acronym Optimized Parameters

3DMC
CRL-5a α = 0.25, λ = 0.95, ε = 0.06

CRL-9a α = 0.20, λ = 0.95, ε = 0.06

DRL-ObsF-Ind α = 0.25, λ = 0.80, ε = 0.06

DRL-ObsF-CAdec α = 0.15, λ = 0.90, ε = 0.05

DRL-ObsF-CAinc α = 0.20, λ = 0.80, ε = 0.06

DRL-ObsF-Lenient α = 0.10, λ = 0.95, ε = 0.04, κ = 3.5, β = 0.8

DRL-ObsL-Ind α = 0.20, λ = 0.95, ε = 0.06

DRL-ObsL-CAdec α = 0.15, λ = 0.95, ε = 0.05

DRL-ObsL-CAinc α = 0.30, λ = 0.95, ε = 0.02

DRL-ObsL-Lenient α = 0.15, λ = 0.95, ε = 0.10, κ = 3, β = 0.75

Ball-Pushing
CRL α = 0.50, λ = 0.90, τ0 = 2, dec = 7

DRL-Ind α = 0.30, λ = 0.90, τ0 = 1, dec = 10

DRL-CAdec α = 0.40, λ = 0.95, τ0 = 1, dec = 10

DRL-CAinc α = 0.30, λ = 0.95, τ0 = 5, dec = 13

DRL-Lenient α = 0.30, λ = 0.95, κ = 1, β = 0.7

DRL-Hybrid α = 0.30, λ = 0.95, greedy
Ball-Dribbling

CRL α = 0.50, λ = 0.90, ε = 0.3, dec = 10

DRL-Ind α = 0.50, λ = 0.90, τ0 = 70, dec = 6

DRL-CAdec α = 0.10, λ = 0.90, τ0 = 20, dec = 8

DRL-CAinc α = 0.30, λ = 0.90, τ0 = 70, dec = 11

DRL-Lenient α = 0.10, λ = 0.90, κ = 1.5, β = 0.9

DRL+Transfer Final performance taken from Leottau et al. [34]
RL-FLC Final performance taken from Leottau et al. [29]
eRL-FLC Final performance taken from Leottau et al. [35]

SCARA-RTG
DRL-Ind α = 0.3, ε = 0.01

DRL-CAdec α = 0.3, ε = 0.01

DRL-CAinc α = 0.3, ε = 0.01

DRL-Lenient α = 0.3, ε = 0.01, κ = 2.0, β = 0.8

5.2.1 Centralized Modelings

CRL-5a: The state has four continuous state variables: [x, ẋ, y, ẏ]. The positions (x, y) have
the range of [−1.2, 0.6] and the speeds (ẋ, ẏ) are constrained to [−0.07, 0.07]. The agent
selects from five actions: {Neutral, West, East, South, North}. West and East on ẋ are
modified by -0.001 and +0.001 respectively, while South and North on ẏ are modified by
−0.001 and +0.001 respectively. An each time step ẋ is updated by −0.025(cos(3x)) and ẏ
is updated by −0.025(cos(3y)) due to gravity. The goal state is x ≥ 0.5 and y ≥ 0.5. The

30

agent begins at rest at the bottom of the hill. The reward is −1 for each time step until the
goal is reached, at which point the episode ends and the reward is 0. The episode also ends,
and the agent is reset to the start state, if the agent fails to find the goal within 5, 000 time
steps.

CRL-9a: The original centralized modeling (CRL-5a) [59] limits the agent’s vehicle moves.
It does not allow acting onto both action dimensions at the same time step. In order to
make this problem fully decentralizable, more realistic, and challenging, the problem is ex-
tended, augmenting the action space to nine actions (CRL-9a), adding {NorthWest, North-
East, SouthWest, SouthEast} to the original CRL-5a. Since the car is now able to move on
x and y axes at the same time, ẋ, and ẏ updates must be multiplied by 1/

√
2 for the new

four actions because of the diagonal moves.

5.2.2 Proposed Decentralized Modelings

The methodology proposed in Section 4 is followed, resuming and extending the 3DMC DRL
modeling:

Stage 4.1 Determining if the problem is decentralizable: CRL-5a is an example of a non-
decentralizable modeling, however, due to the bidimentional action space of the 3DMC prob-
lem (ẋ, ẏ), the CRL-9a modeling is decentralizable by selecting two independent agents:
Agentx which action space is {Neutral,W est, East}, and Agenty which action space is
{Neutral, South,North}.

Stages 4.2 and 4.3 Identifying individual goals and defining reward functions: individual
goals are considered, reaching east top for Agentx and reaching north top for Agenty. In
this way, individual reward functions are defined as: rx = 0 if east top is reached, rx = −1
otherwise; and ry = 0 if north top is reached, ry = −1 otherwise.

Stage 4.4 Determining if the problem is fully decentralizable: one of the goals of this
work is evaluating and comparing the response of an RL system under different centralized-
decentralized schemes. Thus, splitting the state vector is also proposed in order to have a
fully decentralized system, and a very limited state observability for validating the usefulness
of coordination of the presented MA DRL algorithms (Lenient and CA). In this case, agentx
only state variables [x, ẋ] can be observed, as well as agenty only [y, ẏ]. This corresponds
to a very complex scenario because both agents have incomplete observations, and do not
even have free or indirect coordination due to different state spaces, decentralized action
spaces, and individual reward functions. Moreover, the actions of each agent directly affect
the joint environment, and both of the agents’ next state observations. So, DRL-ObsL’s
implementations correspond to fully decentralizable modelings, while DRL-ObsF’s are not,
because DRL-ObsF’s use a joint state vector.

A description of the implemented modelings is shown below, in which X can be CAdec,
CAinc, or Lenient, and RBF cores are the number of Radial Basis Function centers used
per state variable to approximate action value functions as continuous functions. Please see
Table 5.1 for the full list of acronyms.

31

- CRL Original Modeling (CRL-5a):
Actions: {Neutral,W est, East, South,North};
Global reward function: r = 0 if goal, r = −1 otherwise. Joint state vector: [x, ẋ, y, ẏ],
with [9, 6, 9, 6] RBF cores per state variable respectively;

- CRL Extended Modeling (CRL-9a):
Actions: {Neutral,W est,NorthW est,North,
NorthEast, East, SouthEast, South, SouthW est};
Global reward function: r = 0 if goal, r = −1 otherwise. Joint state vector: [x, ẋ, y, ẏ],
with [9, 6, 9, 6] RBF cores;

- DRL Full Observability (DRL-ObsF-X):
Actions agentx: {Neutral,W est, East},
Actions agenty: {Neutral, South,North};
Individual reward functions: rx = 0 if x ≥ 0.5, rx = −1 otherwise, and ry = 0 if
y ≥ 0.5, ry = −1 otherwise.
Joint state vector: [x, ẋ, y, ẏ], with [9, 6, 9, 6] RBF cores;

- DRL Limited Observability (DRL-ObsL-X):
Actions agentx: {Neutral,W est, East},
Actions agenty: {Neutral, South,North};
Individual reward functions: rx = 0 if x ≥ 0.5, rx = −1 otherwise, and ry = 0 if
y ≥ 0.5, ry = −1 otherwise.
Individual state vectors (Fully decentralized): agentx = [x, ẋ], with [9, 6] RBF cores;
agenty = [y, ẏ], with [9, 6] RBF cores.

Stage 4.5 Completing RL single modelings: this is detailed in the following two subsections.
Implementation and environmental details have been already mentioned in the centralized
modeling description, because most of them are in common with the decentralized modeling.

5.2.3 Performance Index

The evolution of the learning process is evaluated by measuring and averaging 25 runs. The
performance index is the cumulative reward per episode, where −5, 000 is the worst case and
zero, though unreachable, is the best case.

5.2.4 RL Algorithm and Optimized Parameters

SARSA(λ) with Radial Basis Function (RBF) approximation with ε-greedy exploration [53]
was implemented for these experiments. The exploration rate ε is decayed by 0.99 at the
end of each learning episode. The following parameters are obtained after the hill-climbing
optimization procedure: learning rate (α), eligibility traces decay factor (λ), and exploration
probability (ε). These parameters are detailed in Table 5.1 for each experiment. The number
of Gaussian RBF cores per state variable were also optimized: 9 cores to x and y, 6 cores to
ẋ and ẏ, and a standard deviation per core of 1

2
|featuremax−featuremin|

nCores
. For all the experiments

γ = 0.99.

32

5.2.5 Results and Analysis

Figure 5.1 (top) shows a performance comparison between: the original implementation of
3DMC, CRL-5a; the extension of that original problem in which 9 actions are considered,
CRL-9a; a decentralized scheme with full observability of the joint space state, DRL-ObsF-
Ind; and a decentralized scheme with limited observability, DRL-ObsL-Ind. Please remember
that the performance index starts from −5, 000 and it improves toward zero. Table 5.3
shows averaged final performances. Results presented here for CRL-5a converge considerably
faster than the results presented by Taylor and Stone [59], which could be due to parameter
optimization, and because an RBF approach was used instead of CMAC for continuous
state generalization. CRL-9a converges more slowly than the original one, as is expected
because of the augmented action space. Note that DRL-ObsF-Ind speeds-up convergence and
outperforms both centralized schemes. On the other hand, DRL-ObsL-Ind achieves a good
performance quickly but is not stable during the whole learning process due to ambiguity
between observed states and lack of coordination among the agents. However, it opens a
question about potential benefits of DRL implementations with limited or incomplete state
spaces which is discussed below.

Regarding computational resources, from the optimized parameters definition presented
above, the DRL-ObsF-Ind scheme uses two Q functions which consume 2× 9× 6× 9× 6× 3
memory cells, versus 9×6×9×6×9 of its CRL-9a counterpart; and DRL-ObsF-Ind consumes
1/3 less memory. Moreover, the elapsed time was measured of both learning process along
the 25 performed runs, and founds that the DRL was 1.56 times faster than CRL. It was also
measured only the action-selection+Q-function-update averaged elapsed time, obtaining that
DRL process is 1.43 times faster than the CRL scheme. Those measures are compiled in Table
5.2 These times are referential; experiments with an Intel(R)Core(TM)i7-4774CPU@3.40Ghz
with 4GB in RAM were performed. Note than even for this simple problem with only two
agents, there are considerable memory consumption and processing time savings.

Approach Memory cells Elapsed time Action-Selection time

DRL-ObsF-Ind 17,496 0.62 hrs 306.81 sec

CRL-9a 26,244 0.97 hrs 439.59 sec

Table 5.2: DRL vs. CRL computational consumption for 3DMC

Figure 5.1 (middle) shows a performance comparison between schemes implemented con-
sidering full observability (ObsF) of the joint space state, these schemes are: the same re-
sponse of CRL-5a and CRL-9a presented in Figure 5.1 (top); once again the DRL-ObsF-Ind;
a Decremental Cooperative Adaptive DRL-ObsF-CAdec scheme; an Incremental Cooperative
Adaptive DRL-ObsF-CAinc scheme; and, a DRL-ObsF-Lenient implementation. As noticed
in Figure 5.1, all the DRL systems accelerate the asymptotic convergence considerably and
outperform the CRL ones. Note also that all the DRL systems show similar learning times,
while in Table 5.3, DRL-ObsF-CAdec shows the best performance, overcoming the −200
performance threshold with DRL-ObsF-Lenient.

Figure 5.1 (bottom) shows a performance comparison between schemes implemented con-
sidering limited observability (ObsL) of the joint space state, these schemes are: CRL-5a;

33

Figure 5.1: 3DMC learning evolution plots: centralized vs. decentralized approaches (top);
centralized vs. decentralized approaches with full observability of the joint state space (mid-
dle); centralized vs. decentralized approaches with limited observability (bottom).

34

CRL-9a; DRL-ObsL-Ind; a Decremental Cooperative Adaptive DRL-ObsL-CAdec scheme;
an Incremental Cooperative Adaptive DRL-ObsL-CAinc scheme; and a DRL-ObsL-Lenient
implementation. Benefits of proposed Lenient and CA algorithms are more noticeable in
these experiments, in which the DRL-ObsL-Ind scheme without coordination did not achieve
a stable final performance. With the exception of DRL implementation (green line), all the
DRL systems have dramatically accelerated convergence times regarding the CRL schemes.
This is empirical evidence of proposed MAS based algorithm benefits (CAdec, CAinc, and
Lenient), even if incomplete observations are used. These benefits are not evident for those
experiments with full observation, in which convergence time and performance are similar to
the DRL-Ind scheme. DRL-ObsL-Lenient indirectly achieves a coordinated policy. Although
for this particular case leniency is not directly involved in the ε-greedy action-selection mech-
anism, it is involved during the action-value function updating, which of course, affects the
action-selection mechanism afterwards. On the other hand, DRL-ObsL-CAdec collects ex-
perience and, while a coordinated policy is gradually reached, the learning rate is decreased
and the action-value function updates have progressively less weight. It just avoids the poor
final performance of the DRL-ObsL-Ind scheme. Also DRL-ObsL-CAinc achieves a good
performance; it has a similar effect to that of the Lenient algorithm. Also, note in Table 5.3
that DRL-ObsL-CAinc and DRL-ObsL-Lenient outperform the −200 threshold, even beating
its DRL-ObsF counterparts, and beating the DRL-ObsF-Ind as well. This is an interesting
result, taking into account DRL-ObsL schemes are able to reach similar performance as the
DRL-ObsF-CAdec and DRL-ObsF-Lenient, the best schemes implemented with full observ-
ability.

Approach Performance

DRL-ObsF-CAdec -190.19

DRL-ObsF-Lenient -196.00

DRL-ObsF-Ind -207.35

DRL-ObsF-CAinc -216.64

DRL-ObsL-CAinc -186.59

DRL-ObsL-Lenient -197.12

DRL-ObsL-CAdec -231.30

DRL-ObsL-Ind -856.60

CRL-9a -219.72

CRL-5a -217.58

Table 5.3: 3DMC performances (these improve toward zero)

5.3 Ball-pushing

The Ball-Pushing behavior is considered, a basic robot soccer skill similar to that studied by
Takahashi and Asada [55] and Emery and Balch [14]. A differential robot player attempts

35

Figure 5.2: Definition of variables for the Ball-Pushing problem (left), and, a picture of the
experimental setup implemented for testing the Ball-Pushing behavior (right).

to push the ball and score a goal. The MiaRobot Pro is used for this implementation (See
Figure 5.2). In the case of a differential robot, the complexity of this task comes from its
non-holonomic nature, limited motion and accuracy, and especially the highly dynamic and
non-linear physical interaction between the ball and the robot’s irregular front shape. The
description of the desired behavior will use the following variables: [vl, vw], the velocity vector
composite by linear and angular speeds; aw, the angular acceleration; γ, the robot-ball angle;
ρ, the robot-ball distance; and, φ, the robot-ball-target complementary angle. These variables
are shown in Figure 5.2 at the left, where the center of the goal is located in ⊕, and a robot’s
egocentric reference system is considered with the x axis pointing forwards.

The RL procedure is carried out episodically. After a reset, the ball is placed in a fixed
position 20cm in front of the goal, and the robot is set at a random position behind the ball
and the goal. The successful terminal state is reached if the ball crosses the goal line. If the
robot leaves the field, it is also considered a terminal state. The RL procedure is carried out
in a simulator, and the best learned policy obtained between the 25 runs for the CRL and
DRL-Ind implementations is directly transferred and tested on the MiaBot Pro robot in the
experimental setup.

5.3.1 Centralized Modeling

For this implementation, proposed control actions are twofold [vl, aw], the requested linear
speed and the angular acceleration, where Aaw = [positive, neutral, negative]. The expected

36

policy is to move fast and push the ball toward the goal; that is, to minimize ρ, γ, φ, and
to maximize vl. Thus, this centralized approach considers all possible action combinations
A = AvlAaw and the robot learns [vl, aw] actions from the observed joint state [ρ, γ, φ, vw],
where [vw = vw(k−1) + aw]. States and actions are detailed in Table 5.4.

Joint state space: S = [ρ, γ, φ, vw]T

State Variable Min. Max. N.Cores

ρ 0 mm 1000 mm 5

γ -45deg 45deg 5

φ -45deg 45deg 5

vw -10deg/s 10deg/s 5

Decentralized action space: A = [vl, aw]

agent Min. Max. N.Actions

vl 0 mm/s 100 mm/s 7

aw -2 deg /s2 2 deg /s2 3

Centralized action space: A = [vl · aw]

NT = N vlNaw = 5× 3 = 15 actions

Table 5.4: Description of state and action spaces for the DRL modeling of the Ball-Pushing
problem

5.3.2 Decentralized Modeling

Stage 4.1 Determining if the problem is decentralizable: the differential robot velocity vector
can be split into two independent actuators: right and left wheel speeds [vr, vl], or linear
and angular speeds [vl, vw]. To keep parity with the centralized model, this decentralized
modeling considers two individual agents for learning vl and aw in parallel as is shown in
Table 5.4.

Stage 4.2 Identifying common and individual goals: the Ball-Pushing behavior can be
separated into two sub-tasks, ball-shooting and ball-goal-aligning, which are performed re-
spectively by agentvl and agentaw .

Stage 4.3 Defining the reward functions: a common reward function is considered for both
CRL and DRL implementations, as is shown in Expression (5.1), where max features are
normalization values taken from Table 5.4.

R(s) =

{
+1 if goal

−(ρ/ρmax + γ/γmax + φ/φmax) otherwise (5.1)

Stage 4.4 Determining if the problem is fully decentralizable: the joint state vector [ρ, γ, φ, vw]

37

is identical to the one proposed for the centralized case. This particular modeling is not fully
decentralized, however, it would be possible if agentvl ignores vw in its state vector.

Stage 4.5 Completing RL single modelings: one of the main goals of this work is also
validating DRL system benefits. And an interesting property of those kinds of systems is the
flexibility to implement various algorithms or modelings independently by each individual
agent. In this way, a hybrid DRL scheme (DRL-Hybrid) with a Fuzzy Q-Learning (FQL)
to learn vl is implemented, in parallel with a SARSA(λ) algorithm to learn aw. This is a
good example for depicting Stage 4.5 of the proposed methodology. The continuous state but
discrete actions RBF SARSA(λ) is adequate for learning the discrete angular acceleration.
Meanwhile, the continuous state-action FQL algorithm is adequate for learning the contin-
uous linear speed control action of the agent vl. For simplicity, the DRL-Hybrid scheme is
implemented with a greedy exploration policy, the same previously mentioned joint state
vector, and 3 bins in the action space. It is also important to mention that any kind of MA
coordination or algorithm (e.g., DRL-Lenient or DRL-CA) is implemented for this scheme.

In summary, the following schemes for the Ball-Pushing problem are implemented: CRL,
DRL-Ind, DRL-CAdec/CAinc/Lenient, and DRL-Hybrid. Please see Table 5.1 for the full
list of acronyms. Other details about Stage 4.5 are detailed in the next two subsections.
Implementation and environmental details have been already mentioned in the centralized
modeling description, because most of them are common with the decentralized modeling.

5.3.3 Performance index

The evolution of the learning process is also evaluated by measuring and averaging 25 runs.
The percentage of scored goals across the trained episodes is considered as the performance
index: %ofScoredGoals = scoredGoals/Episode, where scoredGoals are the number of
scored goals until the current training Episode. Final performance is also measured by
running a thousand episodes again with the best policy (among 25) obtained per each scheme
tested.

5.3.4 RL algorithm and optimized parameters

An RBF SARSA(λ) algorithm with softmax action selection is implemented for these ex-
periments. The Boltzmann exploration temperature is decayed as: τ = τ0 exp(−dec ·
episode/maxEpisodes), where episode is the current episode index and maxEpisodes =
1, 000 trained episodes per run. Thus, the following parameters are optimized: the learning
rate (α), the eligibility traces decay factor (λ), the Boltzmann exploration initial temperature
(τ0), and the exploration decay factor (dec). For the particular case of Lenient RL, the gain
(κ) and decay factor (β) are optimized instead of τ0 and dec respectively. Obtained values
after optimizations are listed in Table 5.1. Additionally, the number of discrete actions for
the linear velocity are optimized obtaining N vl = 5 for the CRL scheme, and N vl = 7 for the
DRL-Ind. For all the experiments γ = 0.99.

38

5.3.5 Physical setup

An experimental setup is implemented in order to test learned policies onto a physical setup,
which is shown in Figure 5.2 (right). The Miabot Pro is connected wirelessly to a central
computer close to the robot soccer platform which measures 1.5m×1m. A web camera above
the platform provides the positions and orientations of the robot, ball, and goal. The state
observation is processed from the vision system, while the speed of the wheels is transmitted
through Bluetooth from the computer. These speeds are computed from the Q tables by
using a greedy search policy.

5.3.6 Results and analysis

Figure 5.3 presents learning evolution plots and Table 5.5 shows the best policy final perfor-
mances. All the DRL systems implemented improved the %ofScoredGoals of the centralized
one as in the learning evolution traces (Figure 5.3), as well as in the final performance test (Ta-
ble 5.5). Except from the Incremental Cooperative Adaptive implementation, DRL-CAinc,
the DRL implementations accelerated the learning time of the CRL scheme. Although DRL-
CAinc achieves better performances than CRL after episode 500, the slower learning of the
DRL-CAinc can be explained by taking the incremental cooperative adaptation effect into ac-
count, which updates the Q function conservatively during early episodes in which the agents
do not have good policies, and their heterogeneous action spaces make cooperation more dif-
ficult. The hybrid SARSA+Fuzzy-Q-Learning decentralized implementation, DRL-Hybrid,
shows the fastest asymptotic convergence, evidencing the feasibility of using decentralized
systems with various algorithms and/or modelings for each individual agent, which means
flexibility, property indicated in Section 3 and described in Stage 4.5. The Decremental
Cooperative Adaptive implementation, DRL-CAdec, obtains the best final performance and
the second fastest asymptotic convergence, followed closely by the DRL-Lenient scheme, and
the independent and no coordinated DRL-Ind implementation. Note that coordinated DRL
schemes (CA and Lenient) do not show considerable outperforming or accelerating with re-
spect to the DRL-Ind implementation. This is an interesting point to analyze and discuss in
the following sections, taking the previous results of the 3DMC problem into account, and
the fact that this particular problem also uses two agents with full observability of the joint
state space.

As was mentioned in Section 5.3, the number of discretized actions for the linear velocity
was optimized, obtaining N vl = 5 for the CRL scheme, and N vl = 7 for the DRL-Ind. So,
total discrete actions are: NT = N vlNaw = 15 for the CRL scheme, and NT = 7 + 3 for
the DRL-Ind. Note that the DRL-Ind implementation allows a finer discretization than the
CRL. For the CRL, increasing the number of actions of vl from 5 to 7 implies increasing the
joint action space from 15 to 21 actions, taking into account Naw = 3 (please check Table
5.4), which implies an exponential increase in the search space that could increase learning
time, thus affecting the final performance since only 1, 000 episodes were trained. Although
the DRL-Ind scheme uses more discrete actions for vl, its search space is still smaller than
the CRL combined one. This is one of the interesting properties of decentralized systems,
which is validated by these optimization results. Since the agents are independent, separate

39

Figure 5.3: Ball-pushing learning evolution plots. Results are averaged across 25 learning
runs and error bars show the standard error.

modelings or configurations can be implemented per agent. Additionally, in order to perform
a fair comparison of computing time, it is also carried out a second evaluation, implementing
and testing a DRL system with N vl = 5 actions. Once again, simulation times are measured
and action-selection+Q-function-update times, obtaining 59.63s for the CRL (12.47% of the
global time), and 59.67 for the DRL scheme (15.11% of the global time). However the DRL
five actions final performance was 68.97%, still higher than the 57.14% of its CRL counterpart,
although lower than the 75.28% of the DRL with N vl = 7 actions.

The best CRL and DRL-Ind learned policies are transferred and tested in the experimental
setup. The results from experiments with the physical robot are also presented in Table 5.5,
in which performance is presented in percentages of success at scoring a goal within the
seventy attempts. Cases where the mark of the robot was lost in the vision system were
disregarded.

In Table 5.5 it is observed that DRL-Ind performs on average 11.43% better than CRL.
Simulation and physical setup performances are similar, which validates the simulation ex-
periments and results. Some experiments for centralized and decentralized RL were recorded
and can be seen online at Leottau’s video repository [64]. In this video actions are a bit abrupt
as it can be seen, due to no smoothing or extrapolation of the discrete actions where carried
out, policies were transferred directly from Q functions to the physical robot. Also, cases
where the mark of the robot or some tracker was lost in the vision system were disregarded.
These aspects should be improved for future implementations, however, the purpose of this
experiments is more focused on comparing CRL and DRL approaches, than on achieving an
optimal performance.

40

Approach Performance(%)

DRL-CAdec 76.69

DRL-Lenient 75.76

DRL-Ind 75.28

DRL-Hybrid 73.97

DRL-CAinc 71.24

CRL 62.15

DRL-Ind (physical robot) 68.57

CRL (physical robot) 57.14

Table 5.5: Ball-pushing best policy final performances for simulation and physical robot
experiments (in which 100% is the optimal case)

ϕ

ρ γ γ

ϕ
ρ

C
on

tro
lle

r vx

vy

vθ

xr

xG

yG

oG

yr

Figure 5.4: A picture of the NAO robot dribbling during a RoboCup SPL game (left), and
definition of variables for dribbling modeling (right).

5.4 Ball-Dribbling

Ball-dribbling is a complex behavior during which a robot player attempts to maneuver
the ball in a very controlled way, while moving toward a desired target. In the case of biped
robots the complexity of this task is very high, because it must take into account the physical
interaction between the ball, the robot’s feet, and the ground. Thus, the action is highly
dynamic, non-linear, and influenced by several sources of uncertainty. Figure 5.4 (left) shows
the RoboCup SPL soccer environment where the NAO humanoid robot [17] is used. As
proposed by Leottau et al. [29], the description of this dribbling behavior uses the following
variables: [vx, vy, vθ], the velocity vector; γ, the robot-ball angle; ρ, the robot-ball distance;
and, φ, the robot-ball-target complementary angle. These variables are shown in Figure 5.4
(right), where the global coordinate system is OG, the desired target (⊕) is located in the
middle of the opponent’s goal, and a robot’s egocentric reference system is indicated with
the xr axis pointing forwards.

41

5.4.1 Proposed Decentralized Modeling

Stage 4.1 Determining if the problem is decentralizable: since the requested velocity vector
of the biped walk engine is [vx, vy, vθ], it is possible to decentralize this 3-Dimensional action
space by using three individual agents, Agentx, Agenty, and Agentθ.

Stage 4.2 Identifying common and individual goals: the expected common goal is to walk
fast toward the desired target while keeping possession of the ball. That means: to maintain
ρ < ρth ; to minimize γ, φ, vy, vθ; and to maximize vx. In this way, this Ball-Dribbling
behavior can be separated into three sub-tasks or individual goals, which have to be executed
in parallel: ball-turning, which keeps the robot tracking the ball-angle (γ = 0); alignment,
which keeps the robot aligned to the ball-target line (φ = 0); and ball-pushing, whose objective
is for the robot to walk as fast as possible and hit the ball in order to change its speed, but
without losing possession of it. So, the proposed control actions are [vx, vy, vθ] respectively
involved with ball-pushing, alignment, and ball-turning.

Stage 4.3 Defining the reward functions: the proposed dribbling modeling has three well-
defined individual goals, ball-pushing, alignment, and ball-turning. Thus, individual rewards
are proposed for each agent as:

rx =

{
1 if ρ < ρth ∧ γ < γth ∧ φ < φth ∧ vx ≥ vx.max′
−1 otherwise

ry =

{
1 if γ < γth/3 ∧ φ < φth/3
−1 otherwise (5.2)

rθ =

{
1 if γ < γth/3 ∧ φ < φth/3
−1 otherwise

where [ρth, γth, φth] are desired thresholds at which the ball is considered to be controlled,
while vx.max′ reinforces walking forward at maximum speed. Fault-state constraints are set
as: [ρth, γth, φth] = [250mm, 15◦, 15◦], and vx.max′ = 0.9vx.max. This is a good example for
depicting how and why to define individual rewards; for instance, since only Agentx involves
vx for the ball-pushing sub-task, Agenty, and Agentθ reward functions do not include this
variable. Since alignment, and ball-turning strongly involve γ and φ, Agenty and Agentθ
rewards consider more accurate thresholds for these angles, γth/3, φth/3 and ρ is also not
considered.

Stage 4.4 Determining if the problem is fully decentralizable: since the three state variables,
[ρ, γ, φ] of the joint vector state are required, this problem is not considered to be fully
decentralizable. So, the proposed modeling for learning the 3-Dimensional velocity vector
from the joint observed state is detailed in Table 5.6.

5.4.2 Centralized Modeling

Since 17 discrete actions per agent are implemented for the DRL system, if an equivalent
CRL system were implemented, that centralized agent would search in an action space of
173 = 4913 possible actions, which would be enormous for most of the RL algorithms. Even

42

Joint state space: S = [ρ, γ, φ]T

State Variable Min. Max. N.Cores

ρ 0 mm 800 mm 13

γ -60◦ 60◦ 11

φ -60◦ 60◦ 11

Action space: A = [vx, vy, vθ]

Agent Min. Max. N.Actions

vx 0 mm/s 100 mm/s 17

vy -50 mm/s 50 mm/s 17

vθ -45 ◦/s2 45 ◦/s2 17

Table 5.6: Description of state and action spaces for the DRL modeling of the Ball-Dribbling
problem

though I tried to reduce the number of discrete actions, the performance decreased dramati-
cally. Finally, the only way to achieve asymptotic convergence was using a noiseless model in
which observations were taken from the ground truth system. Thus, this CRL implementa-
tion is only for academic and comparison purposes. Discrete actions must have been reduced
up to five per action dimension, i.e. a 53 = 125 combined action space. The same joint state
vector was used and the global reward function is similar to rx in (5.2), but using γth/3 and
φth/3.

Stage 4.5 Completing RL single modelings: the Ball-Dribbling DRL procedure is carried
out episodically. After a reset, the robot is set in the center of its own goal (black right arrow
in Figure 5.4 (right)), the ball is placed ρth mm in front of the robot, and the desired target
is defined in the center of the opponent’s goal. The terminal state is reached if the robot
loses the ball, if the robot leaves the field, or if the robot crosses the goal line and reaches
the target, which is the expected terminal state. The training field is 6x4 meters. In order to
compare the proposed methods with similar state-of-the-art works, three additional schemes,
previously reported in the literature, are included:

- DRL+Transfer, a DRL system accelerated by using the Nearby Action-State Sharing
(NASh) knowledge transfer approach proposed by Leottau and Ruiz-del-Solar [34].
NASh is introduced for transferring knowledge from continuous action spaces, when
no information different from the suggested action in an observed state is available
from the source of knowledge. In the early training episodes, NASh transfers actions
suggested by the source of knowledge but progressively explores its surroundings looking
for better nearby actions for the next layer.

- RL-FLC method introduced by Leottau et al. [29], which proposes a methodology for
modeling dribbling behavior by splitting it in two sub problems: alignment, which is
achieved by using an off-line tuned fuzzy controller, and ball-pushing, which is learned
by using an RL based controller reducing the state vector only to ρ. These strategies
reduce the complexity of the problem making it more tractable and achievable for

43

learning with physical robots. The RL-FLC approach was the former dribbling engine
used by the UChile Robotics Team [71] in the RoboCup [65] Standard Platform League
(SPL) soccer competition.

- eRL-FLC proposed by Leottau et al. [35], is an enhanced version of the RL-FLC which
learns the ball-pushing sub-task mapping the whole state space [ρ, γ, φ] by using a
Layered RL approach. It is designed to improve ball control because the former RL-
FLC approach assumes the ideal case in which the target, ball, and robot are always
aligned, ignoring [γ, φ] angles, which is not the case during a real game situation.
However, as in RL-FLC, the alignment sub-task must still be learned off-line, resigning
optimal performances instead of reducing modeling complexity.

In summary, the following schemes for the Ball-Dribbling problem are implemented: DRL-
Ind, DRL-CAdec/CAinc/Lenient, DRL+Transfer, CRL, RL-FLC, and eRL-FLC. Please see
Table 5.1 for the full list of acronyms. Other details about Stage 4.5 are detailed in the next
two subsections.

5.4.3 Performance Indices

The evolution of the learning process is evaluated by measuring and averaging 25 runs.
The following performance indices are considered to measure dribbling-speed and ball-control
respectively:

- % of maximum forward speed (%SFmax): given SFavg, the average dribbling forward
speed of the robot, and SFmax, the maximum forward speed: %SFmax = SFavg/SFmax.
%SFmax = 100% is the best performance.

- % of time in fault-state (%TFS): the accumulated time in fault-state tFS during the
whole episode time tDP . The fault-state is defined as the state when the robot loses
possession of the ball, i.e. ρ > ρth ∨ |γ| > γth ∨ |φ| > φth, then: %TFS = tFS/tDP .
%TFS = 0 is the best performance.

- Global Fitness (F): this index is introduced for the sole purpose of evaluating and
comparing both performance indices together. The global fitness is computed as follows:
F = 1/2[(100−%SFmax)+%TFS], where F = 0 is the optimal but non-reachable policy.

5.4.4 RL Algorithm and Optimized Parameters

A SARSA(λ) algorithm with softmax action selection is implemented for these experiments.
The Boltzmann exploration temperature is decayed as: τ = τ0 exp(−dec·episode/maxEpisodes),
where episode is the current episode index and maxEpisodes = 2, 000 trained episodes per
run. As a result, the following parameters are optimized: learning rate (α), Boltzmann ex-
ploration initial temperature (τ0), and exploration decay factor (dec). For the particular case
of Lenient RL, gain (κ) and decay factor (β) are optimized instead of τ0 and dec respectively.
This can be considered as the last stage of the methodology, Stage 4.5 Completing RL single
modelings. For all the experiments γ = 0.99.

44

5.4.5 Results and Analysis

Figure 5.5 shows learning evolution plots for: an independent decentralized learners scheme,
DRL-Ind; a Decremental Cooperative Adaptive scheme, DRL-CAdec; DRL-CAinc; a lenient
DRL implementation; and, a DRL system accelerated with transfer knowledge, DRL+Transfer,
and a centralized scheme, CRL. The DRL-CAinc implementation was not able to achieve
asymptotic convergence before the trained episodes. The % of maximum forward speed is
zero during all the episodes because the robot was not able to finish successfully any episode.
It is an issue about the weakness of this approach with heterogeneous actions spaces, which
will be discussed at the end of this chapter.

Table 5.7 shows averaged final performances. Although CRL implementation was modeled
with only 5 actions per dimension, the DRL-ind scheme which uses 17 actions per dimension
has been more than 22% faster. Besides, the CRL has used a noiseless model with ground
truth observations, even so DRL outperforms it by almost 12% using a more realistic model.
The DRL+Transfer implementation uses a source of knowledge with an initial performance at
about 25% (see [34]), achieving a final performance near 16% after the RL transfer procedure.
DRL-Lenient and DRL-CAdec approaches are able to reach a similar final performance,
approximately 18% and 20% learning from scratch without any kind of previous knowledge.
The Lenient approach presents the best results, the best final performance, and the fastest
asymptotic convergence among the implemented methods with no transfer knowledge. The
DRL-CAdec outperforms the DRL-Ind scheme, and also takes 201 less episodes to reach the
defined time to threshold (35%). Plots for forward speed and fault performance indexes are
also included in order to follow the same results format as Leottau and Ruiz-del-Solar [34], in
which this dribbling problem was originally proposed based on a DRL modeling. Note that
the main benefit of MAS based algorithms (Lenient and CAdec) versus the DRL-Ind scheme
is to achieve a higher forward speed, keeping a low rate of faults.

The effectiveness and benefits of the RL-FLC and eRL-FLC approaches have been pointed
out by Leottau et al. [35]. However, significant human effort and knowledge from the
controller designer are required for implementing all the proposed stages. DRL approaches
are able to learn the whole Ball-Dribbling behavior almost autonomously, achieving best
performances compared to those of the RL-FLC and eRL-FLC which require more human
effort and previous knowledge. An advantage of the RL-FLC and eRL-FLC methods is the
considerably lower RL training time, with regard to all the DRL systems (Please see time
to thresholds in Table 5.7). The DRL-Lenient and DRL-CA schemes proposed in this work
are able to reduce the learning time down to 585 and 771 episodes respectively, opening the
door to making future implementations for learning similar behaviors achievable by physical
robots.

Some videos showing the learned policies for dribbling can be seen online at Leottau’s
video repository [28]. Currently the learned policy is transferred directly to the physical
robots, thus, the final performance is dependent on how realistic the simulation platform is.

45

200 400 600 800 1000 1200 1400 1600 1800 2000

%
 o

f m
ax

. f
or

w
ar

d
sp

ee
d

0

20

40

60

80

100

200 400 600 800 1000 1200 1400 1600 1800 2000

%
 o

f t
im

e
in

 fa
ul

t-s
ta

te

0

20

40

60

80

100

Episodes
200 400 600 800 1000 1200 1400 1600 1800 2000

G
lo

ba
l F

itn
es

s

0

20

40

60

80

100

DRL-Ind
DRL-CAdec

DRL-CAinc

DRL-Lenient
DRL+Transfer
CRL

Figure 5.5: Ball-dribbling learning evolution plots.

46

Approach Performance(%) Episodes to Time to Th. (35%)

DRL+Transfer 16.36 356

DRL-Lenient 17.78 585

DRL-CAdec 20.44 771

DRL-Ind 23.29 972

eRL-FLC 27.67 61

RL-FLC 34.40 47

DRL-CAinc 61.34 †

CRL 34.93 1419
† It did not achieve asymptotic convergence before the 2,000 trained episodes, because of
that its learning evolution plot is neither included in Fig. 5.5

Table 5.7: Ball-Dribbling performances (in which lower %s are better performances)

5.5 SCARA Real-Time Trajectory Generation

The Selective Compliance Articulated Robot Arm (SCARA) is used extensively in the in-
dustry for assembly tasks and small parts insertion, among the other uses. It has well-known
properties and there is sufficient literature [36, 12]. This problem has been selected because
it is one of the first DRL applications reported by Martin and De Lope [40]. Its simulation
implementation is available online at Martin’s repository [39] and it can be used as a test-bed
for DRL systems.

A simulated three dimensional robotic manipulator with four joints, in which the system
tried to reach an objective configuration in a 3D space, was used, while being able to generate
an approaching real-time trajectory when the system was completely trained. A diagram of
the physical model of the SCARA-RTG problem is shown in Figure 5.6. The Denavit-
Hartenberg parameters, the direct kinematic matrix, and more implementation details can
be checked in the paper of Martin and De Lope [40], and the source files can be downloaded
from Martin’s repository [39].

5.5.1 Decentralized Modeling

Stage 4.1 Determining if the problem is decentralizable: since the SCARA arm has four joints,
we can identify a 4-dimensional action space, and separate the problem into four individual
agents: Agent1, · · · , Agent4, or Agentm, with m = 1, .., 4. Five actions are implemented per
agent, among which the four action spaces are identical, but act independently:
A1 = A2 = A3 = A4 = [−0.02;−0.01; 0.0; 0.01; 0.02]. Selected action [a1, · · · , a4] modifies
the current angle in radians of each joint of the arm [θ1, · · · , θ4]. Thus, θ(t+ 1)m = θm + am.

Since this problem is modeled with four agents and five discrete actions per agent, a
centralized scheme is not implemented for this experiment because an action-space of 54 = 625

47

Figure 5.6: The SCARA robotic manipulator (Figure adopted from Martin and De Lope
[40]).

discrete actions is computationally expensive to our current resources and purposes.

Stages 4.2 and 4.3 Identifying individual goals and defining reward functions: the common
goal consists of reaching a continuously changing goal position of the robot end-effector
by means of a random procedure. That way, a global reward function is implemented as
Expression (5.3), where eDist is the Euclidean distance between the current end-effector
position and the goal position, and θ2 is the joint angle m = 2 in degrees. In Martin’s
repository [39], this Euclidean distance based and continuous reward function is detailed and
its effectively is validated.

R(s) =

{
108/(1 + eDist2) if eDist ≤ 1 & penal = 1
−penal · eDist5/104 otherwise

penal =

{
10 + 0.1θ2 if θ2 < 0

1 otherwise (5.3)

Stage 4.4 Determining if the problem is fully decentralizable: three state variables compose
the joint state vector S = [ex, ey, ez], the error between the current end-effector position with
respect to the 3-Dimensional goal position point [xg, yg, zg], so this modelling is not fully-
decentralized. Each state variable considers three values [−1, 0, 1], depending if the error is
negative, near to zero, or positive.

Stage 4.5 Completing RL single modelings the learning procedure is defined as follows:
goal positions are defined in such a way that they are always reachable for the robot; thus,
the learning process needs to develop an internal model of the inverse kinematics of the robot
which is not directly injected by the designer; through the different trials, a model of the
robot inverse kinematics is learned by the system; when a goal position is generated, the
robot tries to reach it; each trial can finish as a success episode, i.e. the robot reaches the

48

target at a previously determined time, or as a failed episode, i.e. the robot is not able to
adopt a configuration to reach the goal position before 400 time steps; in both cases the
system parameters are updated using the previously defined method and a new goal position
is generated randomly.

In summary, the following schemes for the SCARA-RTG problem are implemented: DRL-
Ind, DRL-CAdec/CAinc/Lenient. Please see Table 5.1 for the full list of acronyms. Other
details about Stage 4.5 are detailed in the next two subsections.

5.5.2 Performance Index

Time steps are considered as the performance index, where 400 is the maximum and worst
case, and zero is the best but non-reachable performance.

5.5.3 RL Algorithm and Optimized Parameters

As Martin and De Lope [40] report, a SARSA tabular algorithm with ε-greedy is imple-
mented for these experiments. The following parameters are optimized: learning rate (α)
and exploration (ε), which is multiplied by 0.99 at the end of each learning episode. For the
particular case of Lenient RL, gain (κ) and decay factor (β) are also optimized. For all the
experiments γ = 1.

5.5.4 Results and Analysis

Figure 5.7 shows learning evolution plots and Table 5.8 shows averaged final performances.
The DRL-Lenient scheme shows the fastest asymptotic convergence and the best perfor-
mance, followed closely by the Incremental Cooperative Adaptive DRL-CAinc implemen-
tation. Those schemes respectively outperform about 25 and 14 steps with respect to the
original implementation presented by Martin and De Lope [40]. Note that DRL-Lenient
reaches a performance of ≈ 230 in about 10 episodes, and the independent and non coor-
dinated scheme, DRL-Ind in 16 episodes. Further, due to the leniency effect during early
episodes, which tries to avoid uncoordinated and ambiguous information among the interac-
tion of the four agents, DRL-Lenient keeps improving its performance until the final episode.
There is a similar lenient effect in the case of DRL-CAinc; reaches the 230 performance
threshold in about 25 episodes, on average 15 and 9 episodes slower than DRL-Lenient and
DRL-Ind respectively. However, DRL-CAinc shows a comparable performance with respect
to the Lenient after that and also shows the tendency to keep improving its performance
during the learning procedure.

49

Figure 5.7: SCARA-RTG learning evolution plots.

Approach Performance(Steps) Standard Error

DRL-Lenient 159.05 18.63

DRL-CAinc 170.70 18.82

DRL-Ind 184.77 23.66

DRL-CAdec 209.57 23.06

Table 5.8: SCARA-RTG performances (these improve toward zero)

5.6 Discussion

One of the specific goals of this thesis was to demonstrate empirically that an independent
DRL system is able to achieve faster learning times (because of the split action spaces) and
comparable or slightly lower performances (because of lack of coordination) compared to
CRL schemes. Thus, a trade-off between DRL benefits indicated in Section 3 and perfor-
mance may be expected. Experiments of 3DMC and Ball-Pushing were the first presented.
Results for those two problems have evidenced surprisingly that DRL-Ind implementations
show better performances and faster learning times than their CRL counterparts. Only in
the case of 3DMC, the DRL-ObsL-Ind approach shows a lower final performance, which was
expected when taking into account that complex scenario with lack of coordination and lim-
ited observability. Nevertheless, the DRL-ObsL-Ind approach should be compared with a
CRL-ObsL implementation for an equitable comparison; however, this CRL implementation
with limited observability is simply non-feasible because the CRL scheme does not support
incomplete observations. All the same, as is demonstrated in Subsection 5.2.5, the proposed
MAL algorithms (Lenient and CA) are able to resolve that issue. Furthermore, implementa-
tions with these MAL algorithms also showed better or comparable averaged performances
and faster learning times compared with CRL implementations. Only in the ball-pushing
case, DRL-CAinc shows slower convergence than CRL. This result, however, is because of
the nature of CA: DRL-CAinc and DRL-CAdec can be mutually exclusive in certain cases,
as was introduced in Section 3.4.3 and discussed below. In short, thirteen different DRL im-

50

plementations have been implemented and compared with their CRL counterparts for these
two initially discussed problems: eight for the 3DMC and five for the Ball-Pushing. Eleven of
those thirteen DRL implementations have evidenced better or comparable averaged perfor-
mances as well as faster asymptotic convergences when compared to their CRL counterparts,
one has shown faster convergence but lower final performance, and one has shown better
performance but slightly slower asymptotic convergence.

Most of the convergence proofs of single-agent RL algorithms assume a learning time
tending to infinite, while the whole state-action space is explored. Thus, it is expected that
CRL systems be able to converge under the same assumptions, achieving similar or even
higher performances regarding their DRL counterparts. However, for real world problems
and practical implementations with limited training, logistic and computational resources,
this empirical study has evidenced that DRL systems are a feasible and effective solution to
achieve asymptotic convergence faster than CRL systems.

Two more MA algorithms have been presented, Lenient and Cooperative Adaptive Learn-
ing Rate, which have been considered in order to include a coordination mechanism among
decentralized agents learning in parallel. The effects of these algorithms are mentioned briefly
below in general terms:

- For DRL-Lenient, leniency helps the agents to explore and find a partially coordinated
joint policy before starting to update the action-value function. Since no communica-
tion among the agents is performed, and they modify their action-selection mechanisms,
a coordinated policy is achieved indirectly. The agents visit relevant states repetitively,
searching for the best individual actions, which accomplishes a desired joint behavior;
meanwhile, action-value functions are updated gradually once the agents’ visit states
are known.

- For DRL-CAinc/dec, a measure of the current quality of each individually performed
action is communicated among the agents; then, a joint adaptive learning rate is com-
puted according to the “worst” agent. If the CAinc approach is performed, a similar
lenient effect occurs, and each individual action-value function is updated with that
cooperative adaptive learning rate, thereby increasing the learning rate while a joint
policy is improved during the learning process. Otherwise, if CAdec is used, the agents
try to collect information during the early learning process, thereby decreasing the
learning rate while a joint policy is learned.

The benefits of the Lenient and CA algorithms are more noticeable in those implementa-
tions of the 3DMC with limited observability, in which the DRL-ObsL-Ind scheme without
coordination did not achieve a stable final performance. This particular case is highly com-
plex because the actions of each agent affect the joint environment and next state observation
for both agents directly, and not even free or indirect coordination occurs. However, Lenient
and CA schemes were able to resolve that issue. As was mentioned in Section 5.2, this
3DMC problem with ObsL presents different state spaces, decentralized action spaces, and
individual reward functions. So, by using the proposed MA algorithms, with their indirect
coordination and communication among agents of the CA approaches, an equilibria can be
found for every state which is visited along a successful path enough times to achieve the
mountaintop.

51

Table 5.9: Summary of the best methods implemented
Problem Best methods

3DMC Full obs. DRL-CAdec & DRL-Lenient

3DMC Limited obs. DRL-CAinc & DRL-Lenient

Ball-pushing DRL-CAdec & DRL-Lenient

Ball-dribbling DRL-Lenient & DRL-CAdec

SCARA-RTG DRL-Lenient & DRL-CAinc

The CAinc approach was one of the algorithms with best results for the 3DMC and
SCARA-RTG problems. However CAinc was not able to converge for the ball-dribbling
either the ball-pushing problems, both of them implemented with heterogeneous and non-
symmetrical sized action spaces, contrary to the modelings of 3DMC and SCARA-RTG
cases. Thus, according the obtained experimental results, it can be preliminary said that
this algorithm is only effective for DRL problems modelled with homogeneous or symmetrical
sized action spaces. Of course, this is an empirical hypothesis which must be validated more
rigorously. This is a non-trivial limitation which will be a focus for future research.

Lenient and CA algorithms have evidenced the best averaged final performances for the
four tested problems. At least one of these methods outperformed their DRL-Ind counter-
parts implemented without coordination in all the problems tested. The two best averaged
performances per problem are listed in Table 5.9. DRL-Lenient is the most recurrent winning
approach, appearing in all five cases. Lenient benefits are particularly remarkable in the Ball-
Dribbling and SCARA-RTG problems, where it achieves both the best performance and the
fastest asymptotic convergence. According to the results, the benefits of the proposed MAS
methods are more noticeable as the problem complexity increases — such as occurs in the
3DMC ObsL and Ball-Dribbling cases — in which a CRL scheme was intractable according
to our available computational resources.

Note in Table 5.9 that DRL-CAdec and DRL-CAinc never appear together as the best
approaches. This verifies that DRL-CAinc and DRL-CAdec can be mutually exclusive for
certain cases due to their inverse variable learning rates policy. For instance, DRL-ObsF-
CAdec is the best, and DRL-ObsF-CAinc is the worst, in the 3DMC with full observability
and Ball-Dribbling cases; and DRL-CAinc is the second best, and DRL-CAdec is the worst,
in the SCARA-RTG case. As a preliminary and empirical hypothesis about DRL-CAxxx
methods, it can be said that the DRL-CAinc method potentiates its benefits on learning
problems implemented with the ε-greedy action-selection mechanism, but shows poor per-
formances on problems implemented with softmax action selection. On the other hand, the
DRL-CAdec method potentiates its benefits on learning systems implemented with a soft-
max action-selection strategy. Of course this is just an empirical conclusion which must be
validated with more problems in future studies. Also, note in Figures 5.1-5.7 that DRL-
CAxxx approaches do not usually obtain the fastest asymptotic convergences, and as such it
is possible to conclude that accelerating learning is not a strength of those methods.

For the sake of simplicity, a unique set of RL parameters for each of the DRL imple-

52

mented problems is used. If individual sets of parameters per each individual agent were
optimized, results may have been outperformed for those DRL schemes in which the agents
are heterogeneous such as ball-pushing and dribbling.

5.7 Summary

This chapter addressed the DRL of individual behaviors of those problems in which multi-
dimensional action spaces are involved. The DRL methodology introduced in Chapter 4, as
well as the DRL-Ind, DRL-Lenient, and DRL-CA algorithms were validated with an exten-
sive empirical study on four different problems: two of them are well-known problems: the
Three-Dimensional Mountain Car (3DMC), and a SCARA Real-Time Trajectory Generation
(SCARA-RTG); and two correspond to noisy and stochastic real-world mobile robot prob-
lems: Ball-Dribbling in soccer performed with an omnidirectional biped robot, and the Ball-
Pushing behavior performed with a differential robot. Results for 3DMC and Ball-Pushing
problems evidenced that DRL implementations show better performances and faster learning
times than their CRL (centralized RL) counterparts, even with less computational resources,
and non direct coordination mechanisms. On the other hand, DRL-Lenient or DRL-CA MAL
algorithms showed the best final performances for the four tested problems.

53

Chapter 6

Accelerating Decentralized
Reinforcement Learning

This chapter proposes the use of Knowledge Transfer (KT) to coordinate and accelerate the
DRL of complex individual robot behaviors. Relevant background and related work are pre-
sented in Section 6.1. Section 6.2 provides a literature review. Two KT based DRL schemes
are described and implemented in Section 6.3: DRL+CoSh, a DRL scheme accelerated-
coordinated by using the Control Sharing KT approach; and DRL+NeASh, the Nearby
Action Sharing approach proposed for including a measure of uncertainty to the CoSh proce-
dure. These proposed schemes are validated through two complex real-world problems: the
inwalk-kicking and the ball-dribbling behaviors, which are described and analyzed in Section
6.4. Finally, results obtained are discussed in Section 6.5.

This chapter is fully based on our paper [30]: Accelerating Decentralized Reinforcement
Learning of Complex Individual Behaviors, which has been submitted to the journal: Engi-
neering Applications of Artificial Intelligence.

6.1 DRL and Transfer Knowledge Overview

KT is used to accelerate the rate at which one or more target tasks are learned from one
or more sources of knowledge. Two reasonable goals of KT are: (i) to effectively reuse past
knowledge in a novel task, and (ii) to reduce the overall time required to learn a complex
task. In the context of DRL-Ind, a third goal will be considered: to address the coordination
problem.

Most of the stochastic DRL systems implemented with independent learners present two
main drawbacks: non-stationary and non-Markovian issues. Laurent et al. [26] indicate that
these drawbacks could be mitigated by: (i) decaying the exploration rate, and (ii) using
coordinated exploration techniques for shrinking the action space. Both mechanisms can
be accomplished by using KT approaches [23, 1]. In fact, decayed exploration and transfer
rates are commonly considered parameters in some KT approaches like [23, 1]. KT also

54

allows shrinking the action space by exploring in a subset of actions limited by a source of
knowledge (SoK), which has been previously learned or designed. A SoK for a DRL system
should contain at least one branch per decentralized learning agent. If those branches are
pre-coordinated, the SoK relieves at the same time the coordination problem.

Different cases of KT applied to DRL tasks can be identified: same tasks (source and
target) and same problem-spaces; same tasks and different problem-spaces; different tasks
and same problem-spaces; and different tasks and different problem-spaces. The problem-
spaces refer to the source and target state variables and actions. In addition, DRL systems
consider the case of homogeneous and heterogeneous agents, in which homogeneous agents
have identical problem-spaces and goals.

For this work, the following cases are considered:

- Heterogeneous agents, in order to allow designing an individual goal for each indepen-
dent learner.

- Different source and target tasks, in order to allow the use of layered learning [32] and
easy mission approaches [55].

- The same source and target problem-space, in order to avoid source-task-selection or
task-mapping [58], which may slow-down and complicate the procedure.

6.2 Literature Review

KT has been widely studied and applied to accelerate single-agent RL [58]. To a lesser
extent, KT has been used for MARL systems as well, and not only to accelerate but also
to outperform and address large-scale problems [67, 1]. Since to the best of our knowledge,
this is the first work reporting a DRL implementation accelerated-coordinated by using KT.
Thus, this section overview relevant and similar works but in the context of KT applied to
MARL.

Yujing Hu et al. [72] present the idea of equilibrium transfer based MARL, which out-
performs and accelerates considerably its non-transfer counterpart, and scales significantly
better than algorithms without equilibrium transfer when the state/action space grow and
the number of agents increases. Compared to the KT methods used in this work, this method
only has been validated on discrete domains, and several non-trivial considerations must be
taken into account for implementing effectively the transfer approach. However this method
seems an interesting alternative for future DRL implementations. Bianchi et al. [1] present
the heuristically accelerated MARL (HAMRL) algorithms, as a general framework for includ-
ing heuristic functions to influence the action choice of the agents. This family of algorithms
must be modified and adapted depending on the source and target MARL algorithm to be
used; however, it is also an interesting approach for future implementations, since CoSh can
be seen as a simplified version of HAMRL. Vrancx et al. [67] apply transfer learning to the
Coordinating Q-learning framework, which uses a statistical test to sample the immediate
rewards received by the agent. This approach shows interesting results and it is worth con-
sidering it for future and more sophisticated DRL implementations. By contrast to the KT

55

methods used in this work, this algorithm uses previously identified problem states as samples
to train a rule based classifier, which makes somehow complex a fast implementation. Taylor
et al. [57] propose a parallel transfer learning for MAS which, unlike to the approach here-
proposed, is able to learn simultaneously the source and target tasks, and share their current
experience based on a set of rules and considerations somehow focused on the particular
case studied, a smart grid. Boutsioukis et al. [4] apply transfer learning in MARL domains,
showing that the transfer method reduces the learning time and increases the asymptotic
performance. Similar to the KT-DRL approaches used in this work, this method biases the
initial action value function, but it is only validated in a discrete, deterministic and 2-agents
competitive domain.

6.3 Proposed KT-based DRL

This chapter proposes to use KT to help DRL-Ind in coordinating the exploration during the
early episodes. Under this approach, a subset of actions taken from a prior-coordinated SoK
is used for guiding the agents to avoid unknown actions, while they evolve leniently and the
non-Markovian effects are reduced. The SoK acts as an initial value function, and thereby
endows the agent with an initial policy [24]. If both decayed exploration rate and decayed
probability of KT are used, the subset of actions from the SoK is progressively increased or
modified over time, while concurrent exploration is reduced. In this way, each agent finds
easily the best response to the behavior of the others.

Several requirements are taking into account in order to choose the KT strategy used in
this work. In general, this work considers methods that are able to:

1. Transfer toward any RL algorithm that uses an action value function, such as the works
reported in [60, 23, 41, 4, 1].

2. Transfer from different SoK types such as standard controllers (e.g. linear or fuzzy
controllers), hand-craft behaviors, and RL policies such as the works reported in [15,
23, 1].

3. Scale-up when the state/action space grow and the number of agents increases, but
without extra memory consumption, such as [67, 23, 1]

4. Avoid to build empirical or on-line models of the other agents strategies such as [23, 1].

5. Avoid to consider other agents’ actions nor action choice negotiation mechanisms such
as [23, 72].

Note that the CoSh approach [23] accomplishes all the listed considerations. In addition,
CoSh also supports the KT case already indicated in Section 6.1: heterogeneous agents,
different source and target tasks, and the same source and target problem-space.

56

6.3.1 Control Sharing (CoSh)

Introduced by Knox and Stone [23], CoSh acts only during action-selection, without affecting
the updates of the Action-Value functions. This method effectively either lets the RL agent
to choose its action or takes asrc, the action shared from the SoK. If an action is shared, the
RL agent observes and updates it as if it were making the choice. The action a is chosen by
SoK or source-policy (πsrc(s) = asrc) with probability β as

P (a = asrc) = min(β, 1), (6.1)

otherwise action a is chosen using a base RL agent’s action-selection mechanism. β is decayed
periodically by a predefined factor.

CoSh was originally proposed for the single-agent RL case, but it can be easily extended
to the DRL case if a SoK is available to each separate agent and if decayed and synchronized
exploration rates are implemented as in Algorithm 3.1, as well as with the transfer proba-
bilities are described as below. Note that CoSh is able to accomplish all the requirements
previously mentioned precisely because its extreme simplicity. This is an advantage in order
to quick implementations because only the decayed probability β must be set. However, in
the next subsection, I am proposing the Nearby Action Sharing variant for continuous action
spaces, which also fulfills those requirements and additionally is able to include a measure of
uncertainty to the transferred action for noisy SoKs.

6.3.2 Nearby Action Sharing (NeASh)

Same as CoSh, NeASh also acts only during action-selection, transferring knowledge from
continuous action spaces, when no information different to the suggested action in an ob-
served state is available from the SoK. NeASh has applicability in cases where the sources
of knowledge are standard controllers, hand-coded behaviors, rule inference systems, among
other similar sources. NeASh is based on CoSh, but it takes advantage of continuous action
spaces to compensate the lack of information or uncertainty about the quality of the source
actions. It assumes that a measure of the quality of a state-action pair is related to its distance
to the action asrc suggested by the SoK (e.g., a source policy πsrc(s)). In this way, a normal
distribution along the universe of discourse centered in asrc is considered (see Figure 6.1),
and the resulting nearby action to share is a′src = N (µ, σ), in which N (µ, σ) is a normally
distributed random generator with mean µ = asrc and standard deviation σ = %(1−β). Algo-
rithm 6.1 depicts the procedure for a DRL system accelerated-coordinated by using NeASh,
which has M single-agents.

As in the CoSh case, the action is chosen by source-policy with probability β. Typically,
the initial value of β is 1. β is decayed periodically as well as the standard deviation of
N , which means that, at the beginning of the learning process, NeASh works similarly to
CoSh in Equation (6.1). However, while the learning process goes along, the probability of
choosing an action a′src increasingly goes away from the action asrc as %(1 − β). Actually,
NeASh turns into CoSh for the particular case of % = 0.

57

Action Spacea´src asrc

ϱa´src asrc= ((1 –)), βN

Figure 6.1: Normal random function proposed to NeASh approach.

If no KT is selected during a step, as in the case of line 6.1.22, then NeASh offers the
option of using its own action-selection mechanism or just using a regular approach (e.g.,
ε-greedy) as depicted in line 6.1.28. The NeASh action-selection mechanism works similar
to Softmax [53], but taking advantage of the continuous action spaces, and uses a normal
distribution instead of a Boltzmann one. In a very similar way to obtaining a′src, the chosen
action from the target policy a′tgt is obtained by using the best action from the current target
policy (e.g., maxQm(sm)), but with σ = %β, and taking a nearby target action as in line
6.1.26.

A synchronized transfer/exploration version of NeASh can be implemented by using a
unique random number as in Lines 6.1.8-6.1.9, instead of M different random numbers for
synchronizing transfer/exploration such as in Lines 6.1.11-6.1.13. Note that if normal distri-
butions are used, it is necessary to bound a′src and a′tgt into the action space with module
or clip functions. This issue can be solved by using other finite support kernels such as
triangular, cosine or Epanechnikov [38].

6.4 Experimental Validation

In order to validate MAS benefits and properties of the DRL systems coordinated-accelerated
by using KT, three different schemes are implemented in this experimental validation:DRL+CoSh,
DRL+NeASh, and the DRL-Ind with a decayed exploration rate, which has been introduced
in Section 3.4.1. These three schemes are validated through two complex and real-world
problems from soccer robotics: the inwalk-kicking and the ball-dribbling. Both behaviors are
performed with humanoid biped robots, which results very challenging because their model-
ing must take into account the physical interaction between the ball, the ground, the robot’s
feet, and the robot’s gait inertia. Thus, the action is highly dynamic, non-linear, and influ-
enced by several sources of uncertainty. Moreover, these two behaviors are actually used by
the UChile Robotics Team [70] in the RoboCup [65] Standard Platform League (SPL) soccer
competition, in which the team has been regular semifinalist in the recent world competitions.

The inwalk-kicking and ball-dribbling are part of the inwalk-ball-pushing based behaviors
proposed in [34]. Similar to [29], the description of both problems use the following variables:
[vx, vy, vθ], the velocity vector; γ, the robot-ball angle; ρ, the robot-ball distance; ψ, the ball-
target distance; and φ, the robot-ball-target complementary angle. These variables are shown
in Figure 6.2, where the desired target ⊕ is the opponent’s goal, and a robot’s egocentric
reference system is indicated with the x axis pointing forwards. Figure 6.2 also shows the

58

Algorithm 6.1 DRL+NeASh: KT and action selection mechanism
Parameters:

1: M . Number of decentralized learning agents
2: %m . Scale factor for the continuous action space of agentm, where m = 1, · · · ,M , % ≥ 0
3: β . Probability of choosing the action from πsrc. β is periodically decayed ∈ [0, 1]

Inputs:
4: S1, · · · , SM . State space of each agent
5: A1, · · · , AM . Action space of each agent
6: repeat for each step:
7: if Synchronized exploration and transfer then
8: urnd← a uniform random variable ∈ [0, 1]
9: NT ,NE ← normal random variables (µ = 0, σ = 1) for transferring and exploration procedures

respectively
10: else
11: [nrnd1, · · · , urndM]← a uniform random vector ∈ [0, 1]
12: [N 1

T , · · · ,NM
T]← a normal random vector (µ = 0, σ = 1)

13: [N 1
E , · · · ,NM

E]← a normal random vector (µ = 0, σ = 1)
14: end if
15: for all agent m ∈M do
16: sm ← Get state of agentm
17: if urndm < β then
18: amsrc ← πsrc(s

m) Get the action from the source-policy for agentm
19: µ += amsrc
20: σ ∗= %m(1− β)
21: am ← a

′m
src = Nm

T (µ, σ)
22: else if NeASh action-selection mechanism is used then
23: amtgt ← Get the best action from the current target policy of RL agentm
24: µ += amtgt
25: σ ∗= %mβ
26: am ← a

′m
tgt = Nm

E (µ, σ)
27: else
28: am ← Set action from the current RL action selection mechanism of agentm
29: end if
30: end for
31: until Terminal condition

59

Figure 6.2: Geometric state variables and control actions for the ball-pushing based behaviors,
performed by the NAO robot using a magenta jersey in a real RoboCup game.

RoboCup SPL soccer environment where the NAO humanoid robot [17] is used.

A description of each problem as well as the implementation and modeling details are
presented in the next sub-sections. The experimental results are then discussed, for which
we use the following terminology: DRL-Ind is an independent learners scheme implemented
without any kind of MA coordination; DRL+CoSh and DRL+NeASh are DRL schemes
accelerated using CoSh and NeASh transfer knowledge approaches, respectively; RL-FLC is
an implementation reported in [29, 35], which combines a Fuzzy Logic Controller (FLC) and
an RL single agent. For the kicking problem, some extra experiment are carried out by using
different sources of knowledge for CoSh and NeASh transfer methods, namely SrcHQ and
SrcLQ, a high and a low quality sources, respectively. This is explained in Section 6.4.1. All
the acronyms of the implemented methods and problems are listed in Table 6.1.

Acronym Algorithm’s parameters
inwalk-Kicking
2D Simulator

DRL-Ind ε0 = 1, dec = 30, α = 0.2, λ = 0.9, γ = 0.99

DRL+NeASh-SrcHQ % = 25, β = 1, dec = 29, α = 0.2, λ = 0.9, γ = 0.99

DRL+NeASh-SrcLQ % = 16, β = 1, dec = 12, α = 0.2, λ = 0.9, γ = 0.99

DRL+CoSh-SrcHQ ε0 = 1, β = 1, dec = 19, α = 0.2, λ = 0.9, γ = 0.99

DRL+CoSh-SrcLQ ε0 = 1, β = 1, dec = 13, α = 0.2, λ = 0.9, γ = 0.99

3D Realistic Simulator
DRL-Ind ε0 = 1, dec = 30, α = 0.2, λ = 0.9, γ = 0.99

DRL+NeASh % = 10, β = 1, dec = 15, α = 0.2, λ = 0.9, γ = 0.99

DRL+CoSh ε0 = 1, β = 1, dec = 15, α = 0.2, λ = 0.9, γ = 0.99

Ball-Dribbling
3D Realistic Simulator

DRL-Ind ε0 = 1, dec = 20, α = 0.2, λ = 0.9, γ = 0.99

DRL+NeASh % = 5, β = 0.5, dec = 10, α = 0.2, λ = 0.9, γ = 0.99

DRL+CoSh ε0 = 1, β = 1, dec = 30, α = 0.2, λ = 0.9, γ = 0.99

RL-FLC Final performance taken from [35]

Table 6.1: Experiment’s acronyms and their optimized parameters

60

6.4.1 Inwalk Kicking

In the inwalk-kicking behavior, a robot attempts to shoot and score a goal by performing
an inwalk-ball-pushing [38]. A general version of this behavior was originally introduced and
implemented in [54], in which the gait phases are modified to create kick motions. The
proposed implementation consists of inwalk kicks using only the inertia of the gait, without
any specially designed kick motion. The robot just push the ball as hard as possible while it
is walking toward the ball, as proposed in [38].

Decentralized Modeling

Since the velocity vector of the biped-robot walking-engine is [vx, vy, vθ], it is possible to
decentralize this 3-Dimensional action space by using three separate agents, namely Agentx,
Agenty, and Agentθ. The expected common goal is to walk fast toward the ball, and pushing
it aligned and hard enough for scoring a goal. That means: to maximize vx and minimize
ρ, γ, φ, vy, vθ before pushing the ball; and to minimize φ, ψ once the ball is shoot. So, the
proposed control signals are [vx, vy, vθ], and the proposed common reward is:

r =

{
K exp (−ψerror/ψ0) exp (−αerror/α0) , if ball is pushed,

− (ρ/ρmax + |φ| /φmax + |γ| /γmax) , otherwise,
(6.2)

where [ρmax, γmax, φmax] = [2000mm, 90◦, 90◦], ψerror is the distance that the ball still needs
to travel to reach the target in its current trajectory, αerror is the angle deviation of the ball’s
trajectory from a straight line to the target, and the parametersK,ψ0 and α0 allow the design
of rewards with more focus on kick strength or precision. The complete proposed modeling
for learning the 3-Dimensional velocity vector from the joint observed state is detailed in
Table 6.2.

Joint state space: S = [ρ, γ, φ, ψ]T

State Variable Min. Max. N.Cores
ρ 0 mm 800 mm 15
γ -70◦ 70◦ 11
φ -90◦ 90◦ 13

Action space: A = [vx, vy, vθ]
Agent Min. Max. N.Actions
vx 0 mm/s 120 mm/s 16
vy -70 mm/s 70 mm/s 15
vθ -30 ◦/s 30 ◦/s 17

Table 6.2: Description of state and action spaces for the DRL modeling of the inwalk-kicking
problem.

61

Figure 6.3: The learning setup environment of the inwalk-kicking problem (left), and the
ball-dribbling problem (right).

Experimental Setup

The inwalk-kicking RL procedure is carried out episodically. After a reset, the ball is set
on a fixed position, 1.5m in front of the opposite goal as shown in Figure 6.3 (left). The
robot is set on a random position, 1m around the ball and always facing it. This random
initialization is designed so the learning agent can successfully learn many operation points,
and thus achieve a general kick behavior. The episode’s termination criterion is given by the
following conditions: episode timeout of 200 seconds, the robot or the ball leaves the field,
or the ball is pushed by the robot.

A SARSA(λ) RL algorithm with RBF approximation is implemented for these experi-
ments. DRL-Ind and DRL+CoSh use ε-greedy decayed as

ε = ε0 exp(−dec · episode/maxEpisodes) (6.3)

where dec is a decayed factor, episode is the current episode index, and
maxEpisodes = 2, 000 trained episodes per run. DRL+CoSh also decay β in the same
way. DRL+NeASh uses the same decay function, but applied for annealing β and managing
the knowledge transfer and the NeASh action-selection mechanism depicted in Algorithm
6.1.

The percentage of scored goals across the trained episodes is considered as the performance
index

ScoredGoalRate(%) = scoredGoals/EpisodeW indow (6.4)

where scoredGoals are the number of scored goals during EpisodeW indow = 200 episodes,
a window of 10% of the 2, 000 total trained episodes.

Two kinds of experiments are carried out: (i) an extensive experimental procedure car-
ried out on a 2D simulator in which basic kinematics models are computed faster, allowing
parameter optimizations and running several trials for more statistical significance; and (ii)
experiments carried out in the SimRobot 3D simulator released in [54], which is very realistic
but computationally expensive for the Intel(R)Core(TM)i7-4774CPU@3.40Ghz available on

62

our lab (a run of 2, 000 episodes may take up to 12 hours). The experimental procedure for
both experiments is described below:

2D Simulator Experiments:

- Five different schemes are tested: DRL-Ind, DRL+CoSh-SrcHQ, DRL+CoSh-SrcLQ,
DRL+NeASh-SrcHQ, and DRL+NeASh-SrcLQ. Since NeASh and CoSh approaches
require a source for transferring knowledge, a linear controller of the form:

 vx
vy
vθ

 = KX =

kxρ · · · kxφ
...
· · · · kθφ

ργ
φ

 (6.5)

with two configurations: SrcHQ, a high quality source in which matrix K in Eq. 6.5
was tuned for the best performance achievable by these linear controllers (around 20%
on average); SrcLQ, a low quality source in which K was tuned only for achieving the
ball without kicking it. These two different sources of knowledge are tested in order to
analyze their impact in the final performance and learning time.

- The decay factor (dec) and the action space scale factor (%) parameters were optimized
for each of these five implementations by using the custom hill-climbing algorithm
presented in [31]. This is an important step in order to guarantee that every scheme
tested uses the best parameter settings. In this way, comparisons and evaluations
are carried out based on the best performance potentially achievable by each method,
according to the optimization results. All the parameters are detailed in Table 6.1.

- The best set of parameters of each implemented scheme is evaluated 25 times and
learning evolution plots are averaged. Final performances are measured as well as the
number of episodes required to achieve a given performance, which is called time to
threshold.

3D Realistic Simulator Experiments:

- In order to validate the 2D simulator experiments, three implementations are tested:
DRL-Ind, DRL+CoSh-SrcHQ, and DRL+NeASh-SrcHQ. The averaged performance of
SrcHQ for this case is around 15%.

- The decay factor (dec) and the action space scale factor (%) parameters were also
optimized for each of these five implementations. Since computing time limitations, in
this case a manual search exploring of the whole parameter space was used for finding
the best sets of parameters.

- The best set of parameters of each implemented scheme is evaluated 10 times and
learning evolution plots are averaged.

63

Episodes
200 400 600 800 1000 1200 1400 1600 1800 2000

S
co

re
d

G
oa

l R
at

e
(%

)

0

20

40

60

80

100
DRL-Ind
DRL+CoSh-SrcHQ
DRL+NeASh-SrcHQ
DRL+CoSh-SrcLQ
DRL+NeASh-SrcLQ

Figure 6.4: inwalk-kicking learning evolution plots with two different sources of knowledge.
Results are averaged across 25 learning runs and error bars show the standard errors.

Results and Analysis

Figure 6.4 shows learning plots for 2D simulator experiments. Table 6.3 presents their final
performances and learning times for achieving a time to threshold of 40%. DRL+NeASh
schemes show the best final performance and learning times (around 14% better and 43%
faster than DRL-Ind) followed by DRL+CoSh schemes (around 10% better and 36% faster
than DRL-Ind). DRL-Ind shows the lowest performance and slower learning times, which
is expected taking into account the lack of prior-coordination, unlike NeASh and CoSh ap-
proaches which use linear controllers as SoK.

Two different qualities of the SoK were tested for comparing NeASh and CoSh perfor-
mances. Both transfer methods outperform the DRL-Ind even when a low quality source is
used. However, note from Figure 6.4 that the DRL+CoSh-SrcLQ learning plot shows lower
performance during most of the learning procedure, evidencing that the quality of the SoK
affects CoSh more than NeASh. From Table 6.3, DRL+NeASh-SrcHQ is about 21% faster
than DRL+CoSh-SrcLQ, and 23% faster than DRL-Ind. This can be explained taking into
account the nearby action effect, because while CoSh always shares the same action for a de-
termined state, NeASh explores the neighborhood according % and 1−β for sharing a nearby
action, which eventually can have a better performance, but surely gives more experience

64

Approach Final performance(%) Time to Th. (40%)[Scored Goal Rate]
2D Simulator

DRL+NeASh-SrcHQ 54.55 775
DRL+CoSh-SrcHQ 50.28 915
DRL+NeASh-SrcLQ 49.63 1165
DRL+CoSh-SrcLQ 45.22 1592
DRL-Ind 40.16 1631

3D Simulator
DRL+NeASh 58.53 531
DRL+CoSh 57.02 688
DRL-Ind 48.16 1064

Table 6.3: inwalk-kicking performances (in which 100% is the optimal policy).

and information to the target DRL agents. As a disadvantage, NeASh requires tuning the
extra parameter %.

It is interesting analyzing the effect of those parameters on the knowledge transfer. From
Table 6.1, note that CoSh uses a smaller decay factor to deal with the lower quality in the
source (dec : 19 → 13), which implies a slower learning. NeASh reacts similarly: it reduces
dec from 29 to 12, but increases the nearby action deviation by reducing the scale factor %
from 25 to 16. This means, if the source is good, that NeASh trusts more in the SoK, but if
the source is weak, that NeASh should explore more around the suggested action from the
source.

Figure 6.5 presents learning evolution plots for the 3D simulator experiments, in which
the high quality sources were used. These plots validate results from previous experiments:
DRL-NeASh is again the best and fastest scheme (around 10% better and 27% faster than
DRL-Ind) followed by DRL+CoSh schemes (around 9% better and 19% faster than DRL-
Ind). From Table 6.1, note that % and dec differ from 2D experiments due to the more
challenging and realistic environment. For instance, DRL-NeASh now uses % = 10, which is
a reduced value compared to the 2D experiment, in order to increase the exploration zone
from the source actions.

6.4.2 Ball-Dribbling

The Ball-dribbling behavior has been introduced in Section 6.4.2. The same decentralized
modeling and implementation details are considered in the following experiments.

Experimental Setup

A SARSA(λ) RL algorithm with RBF approximation is also implemented for these experi-
ments. Parameters and decayed functions are set and configured in the same way as for the

65

Episodes
0 500 1000 1500 2000

0

10

20

30

40

50

60

70

80

90

100

DRL+CoSh
DRL-Ind
DRL+NeASh

Figure 6.5: inwalk-kicking learning evolution plots for the 3D realistic simulator. Results are
averaged across 10 learning runs and error bars show the standard errors.

66

kicking problem. All the parameter are detailed in Table 6.1 for each scheme implemented.

The ball-dribbling RL procedure is carried out episodically and 1, 000 episodes are trained
in the SimRobot 3D simulator. After a reset, the robot is set near to its own goal (Figure
6.3, right), in a random position over the red arc around the ball, and the desired target is
defined by ⊕. The terminal state is reached if the robot loses the ball, if the robot leaves the
field, or if the robot reaches the target (which is the expected terminal state). The training
field is 9× 6 meters.

The evolution of the learning process is evaluated by measuring and averaging 10 runs.
The Global Fitness proposed in Section 5.4.3 is considered here as performance index.

Results and Analysis

Figure 6.6 shows the learning evolution plots and Table 6.4 shows the averaged final per-
formances and learning times for achieving a performance of 30%. DRL+NeASh scheme
shows the best final performance and learning times, around 7% better and 62% faster than
DRL-Ind, followed by DRL+CoSh scheme which is around 6% better and 58% faster than
DRL-Ind. DRL-Ind shows the lowest performance, slower learning times, and larger error
bars with respect to the TK approaches. Same as in the inwalk-kicking problem, it is expected
due to the lack of prior-coordination in the DRL-Ind scheme, contrary to the DRL+CoSh
and DRL+NeASh schemes, which for this experiments used a SoK with a prior performance
of around 45%. Note from Table 6.1, that after DRL+NeASh’s parameter optimization,
β = 0.5. It is expected because the controlled exploration of the NeASh approach, which
needs less KT from the SoK. Because of that, its initialization showed in Figure 6.6, differs
from DRL+CoSh.

Since a previous implementation for the ball-dribbling problem has been already reported
in the literature as RL-FLC [29], its performance indices are included in Table 6.4. The
effectiveness and benefits of this hybrid RL and fuzzy approach have been pointed out in [29].
However, a significant human effort and knowledge of the controller designer are required for
implementing all the proposed stages. In that sense, the independent DRL approach is able
to learn the whole ball-dribbling behavior autonomously, achieving best performances with
respect to the RL-FLC with less human effort and less previous knowledge. An advantage that
still remains from the RL-FLC method is the considerably lower RL training time, regarding
the DRL scheme (51 episodes vs. 845 episodes approximately for achieving a performance of
30%). In that sense, the transfer knowledge strategies for DRL agents proposed in this work
are able to reduce that learning time down up to 225 episodes, opening the door to make
achievable future implementations for learning similar behaviors with physical robots.

6.5 Discussion

DRL+NeASh schemes showed either better performances and learning times for the inwalk-
kicking problem. By contrast, DRL+NeASh and DRL+CoSh approaches showed similar

67

Episodes
100 200 300 400 500 600 700 800 900 1000

G
lo

ba
l F

itn
es

s
(%

)

0

10

20

30

40

50

60

70

80

90

100
DRL+CoSh
DRL-Ind
DRL+NeASh

Figure 6.6: Ball-dribbling learning evolution plots for the 3D realistic simulator. Results are
averaged across 10 learning runs and error bars show the standard errors.

Approach Final performance(%) Time to Th. (30.0%)[Scored Goal Rate]
DRL+NeASh 22.04 225
DRL-CoSh 22.40 267
DRL-Ind 29.19 845
RL-FLC 34.40 51

Table 6.4: Ball-Dribbling performances (in which lower %s are better).

performances for the dribbling problem. This is an interesting point to be discussed taking
into account the quality of the sources of knowledge used by each problem: the inwalk-
kicking behavior used a source of knowledge with a performance of around 15% (being 100%
the optimal), while the ball-dribbling used a source of knowledge of around 45% (being 0%
the optimal). The DRL+NeASh scheme showed the best averaged performance for both
problems: 58.53% for the inwalk-kicking, and 22.04% for the ball-dribbling. Note that the
source performance for the dribbling case was closer to the optimal policy. Thus, it is possible
empirically conclude that benefits of NeASh approach are more noticeable when the source of
knowledge has poor performances or more uncertainty; otherwise, the CoSh approach could
be more convenient due to its simplicity and easy parameter tuning, and also because of
CoSh is able to deal with both, discrete and continuous action spaces.

Video demonstrating the inwalk-kick and ball-dribbling learned policies performed with
a real NAO robot can be found online at [37]. The policies are transferred directly to the
physical robot, thus, the final performance is dependent on how realistic the simulation
platform is.

68

CoSh and NeASh were able to fulfill all the requirements indicated in Section 6.3: trans-
ferring on any RL algorithm that uses an action value function; transferring from different
SoK types; including prior-coordination without more complexity than a single-agent RL
method; and allowing heterogeneous agents with different source and target tasks but same
source and target problem-space. Those considerations were accomplished precisely because
of the NeASh and CoSh simplicity. However, since this work is one of the first approaches
that address coordination or acceleration of DRL systems, my intention was to introduce
basic and simple concepts and methods as a starting point, and as motivation for future
researches on this field, in which more sophisticated methods can be used.

6.6 Summary

This chapter presented a DRL architecture to alleviate the effects of the curse of dimensional-
ity and the large number of training trials required to learn tasks in which multi-dimensional
action spaces are involved. Three DRL schemes are considered and tested: DRL-Ind, im-
plemented with independent learners and no prior-coordination; DRL+CoSh, accelerated-
coordinated by using the Control Sharing (CoSh) knowledge transfer approach, which is
extended from the single-agent case to the DRL proposed architecture; and DRL+NeASh,
the Nearby Action Sharing (NeASh) KT approach proposed for including a measure of un-
certainty to the CoSh procedure.

The presented methods have been validated by implementing two real-world problems,
the inwalk-kicking and the ball-dribbling behaviors, both performed with humanoid biped
robots, where each component of the requested velocity vector [vx, vy, vθ] is learned in par-
allel with independent agents working in a multi-agent task. Results have also shown that
even without prior-coordination, both asymptotic convergence and indirect coordination are
achieved among DRL-Ind agents. They have shown that it is possible to reduce the training
episodes and coordinate the DRL by using knowledge transfer from simple linear controllers,
obtaining better performances and learning times with respect to the DRL-Ind scheme.

69

Chapter 7

Conclusions and Future Direction

This dissertation addressed the Multi-Agent based Decentralized Reinforcement Learning
(DRL) of individual behaviors. DRL is proposed as an alternative to alleviate the effects of the
curse of dimensionality and the large number of training trials required to learn tasks in which
multi-dimensional action spaces are involved. In order to address this, several DRL schemes
have been introduced and tested in order to coordinate and accelerate the learning procedure
as well as to achieve asymptotic converge. These schemes have been validated through
an extensive experimental study in which different problems were successfully described,
modeled, and implemented. Results have shown empirically that benefits of MAS are also
applicable to complex problems like robotic platforms, by using DRL systems.

Chapter 3 provided an introduction to DRL, its potential advantages and challenges.
Then, three DRL algorithms were described: independent DRL scheme (DRL-Ind); DRL-
Lenient; and the Cooperative Adaptive Learning Rate (DRL-CA), an author’s original con-
tribution. Finally, an overview on related work was provided.

Chapter 4 promoted and proposed a five-stages methodology to model and implement
DRL systems in which basic concepts, definitions, and practical implementation issues were
presented.

In Chapter 5, the DRL methodology introduced in Chapter 4, as well as the DRL-Ind,
DRL-Lenient, and DRL-CA algorithms were validated with an extensive empirical study on
four different problems. The experimental results evidenced that DRL implementations show
better performances and faster learning times than their CRL (centralized RL) counterparts.
On the other hand, DRL-Lenient and DRL-CA MAL algorithms showed the best final per-
formances for the four tested problems, outperforming their DRL-Ind counterparts in all the
problems. The benefits of the proposed MA based methods were more remarkable as the
problem complexity increased, in which a CRL scheme is infeasible. Furthermore, the results
show DRL as a promising approach to develop applications with higher dimensional action
spaces where a CRL scheme could not be easily implementable.

Chapter 6 introduced two Knowledge-Transfer (KT) based DRL schemes: DRL+CoSh,
accelerated-coordinated by using Control Sharing; and DRL+NeASh, with Nearby Action

70

Sharing, which includes a measure of uncertainty to the DRL-CoSh procedure. These two
schemes, in addition to DRL-Ind have been validated by implementing two real-world prob-
lems: the inwalk-kicking and the ball-dribbling behaviors; both performed with humanoid
biped robots. Results have also shown that even without prior-coordination, both asymp-
totic convergence and indirect coordination are achieved among DRL-Ind agents. They have
shown that it is possible to reduce the training episodes and coordinate the DRL by using
KT, obtaining faster learning times with respect to the DRL-Ind scheme.

As part of our ongoing research agenda, we plan to combine the benefits of both DRL-
CAdec and DRL-CAinc, in order to develop a unique and improved cooperative adaptive
method. As a related idea, we are interested in developing a DRL-CA version in which
individual adaptive learning rates per action-state pair are available, as well as a full adaptive
DRL-CA version where exploration is also dependent on that adaptive parameter.

There are a number of possible directions for future work. Until now, DRL-Lenient and
DRL-CA have been implemented based on temporal-difference and discrete action RL meth-
ods, and so extending these two methods to model-based and actor-critic algorithms remains
an area for future work. Another topic for future work is comparing partial observable MDP
MAL algorithms to our DRL-CAdec and DRL-CAinc methods which have shown good results
under limited observation conditions.

Finally, an interesting research direction is that of exploring possibilities for automated
sub-task detection and decomposition. Additionally, since in DRL an agent can be decom-
posed into several separate agents, real-time communication and observation among those
individual agents is not an issue unlike many of the MAS. Thus, sharing information can
be the basis for a research line in the field of distributed artificial intelligence, that has not
been sufficiently explored yet, in which increasingly sophisticated DRL algorithms can be
developed, taking advantage of DRL systems’ properties.

71

Chapter 8

Bibliography

[1] R. A. C. Bianchi, M. F. Martins, C. H. C. Ribeiro, A. H. R. Costa, Heuristically-
accelerated multiagent reinforcement learning., IEEE Trans. Cybern. 44 (2) (2014) 252–
65.

[2] D. Bloembergen, M. Kaisers, K. Tuyls, Lenient Frequency Adjusted Q-learning, in: 22nd
Belgium-Netherlands Conf. Artif. Intel., 2010, pp. 19–26.

[3] H. Bou-Ammar, H. Voos, W. Ertel, Controller design for quadrotor UAVs using rein-
forcement learning, in: 2010 IEEE Int. Conf. Control Appl., 2010, pp. 2130–2135.

[4] G. Boutsioukis, I. Partalas, I. Vlahavas, Transfer Learning in Multi-Agent Reinforcement
Learning Domains, in: H. M. Sanner S. (ed.), Recent Adv. Reinf. Learn. Lect. Notes
Comput. Sci. vol 7188., Springer, Berlin, Heidelberg, 2012, pp. 249–260.

[5] M. Bowling, M. Veloso, Multiagent learning using a variable learning rate, Artif. Intell.
136 (2) (2002) 215–250.

[6] M. Brafman, Ronen I. and Tennenholtz, R-max - a general polynomial time algorithm
for near-optimal reinforcement learning, J. Mach. Learn. Res. 3 (1) (2003) 213–231.

[7] L. Busoniu, R. Babuska, B. De-Schutter, A comprehensive survey of multiagent rein-
forcement learning, Syst. Man, Cybern. Part C Appl. Rev. 38 (2) (2008) 156–172.

[8] L. Busoniu, R. Babuska, B. De-Schutter, D. Ernst, Reinforcement learning and dynamic
programming using function approximators, CRC Press, Boca Raton, Florida, 2010.

[9] L. Busoniu, B. De-Schutter, R. Babuska, Decentralized Reinforcement Learning Control
of a Robotic Manipulator, in: Ninth Int. Conf. Control. Autom. Robot. Vision, ICARCV,
Singapore, 2006, pp. 1–6.

[10] C. Claus, C. Boutilier, The dynamics of reinforcement learning in cooperative multiagent
systems, in: Proc. fifteenth Natl. Conf. Artif. Intell. Appl. Artif. Intell. ’98/IAAI ’98,
Madison, Wisconsin, USA, 1998, pp. 746–752.

72

[11] R. H. Crites, A. G. Barto, Improving Elevator Performance Using Reinforcement Learn-
ing, in: Adv. neural Inf. Process. Syst. (NIPS), vol.8, Denver, USA., 1995, pp. 1017–1023.

[12] M. T. Das, L. Canan Dülger, Mathematical modelling, simulation and experimental
verification of a scara robot, Simul. Model. Pract. Theory 13 (3) (2005) 257–271.

[13] U. Dziomin, A. Kabysh, V. Golovko, R. Stetter, A multi-agent reinforcement learning
approach for the efficient control of mobile robot, in: IEEE Conf. Intell. Data Acquis.
Adv. Comput. Syst., Berlin, Germany, 2013, pp. 867–873.

[14] R. Emery, T. Balch, Behavior-based control of a non-holonomic robot in pushing tasks,
in: Proc. 2001 ICRA. IEEE Int. Conf. Robot. Autom. (Cat. No.01CH37164), vol. 3,
2001, pp. 2381–2388.

[15] F. Fernández, J. García, M. Veloso, Probabilistic policy reuse for inter-task transfer
learning, Rob. Auton. Syst. 58 (July 2009) (2010) 866–871.

[16] P. Glorennec, L. Jouffe, Fuzzy Q-learning, in: Proc. 6th Int. Fuzzy Syst. Conf., vol. 2,
Barcelona, 1997, pp. 659–662.

[17] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafourcade, B. Marnier,
J. Serre, B. Maisonnier, Mechatronic design of NAO humanoid, in: 2009 IEEE Int. Conf.
Robot. Autom., Kobe, Japan, 2009, pp. 769–774.

[18] I. Grondman, L. Busoniu, G. A. D. Lopes, R. Babuska, A Survey of Actor-Critic Re-
inforcement Learning: Standard and Natural Policy Gradients, IEEE Trans. Syst. Man
Cybern. Part C 42 (6) (2012) 1–17.

[19] G. C. How, T. Wu, M. Cutler, J. P., Rapid transfer of controllers between UAVs using
learning-based adaptive control, in: Proc. - IEEE Int. Conf. Robot. Autom., Karlsruhe,
Germany, 2013, pp. 5409–5416.

[20] K. Hwang, Y. Chen, C. Wu, Fusion of Multiple Behaviors Using Layered Reinforcement
Learning, Syst. Man Cybern. - Part A 42 (4) (2012) 999–1004.

[21] A. Kabysh, V. Golovko, A. Lipnickas, Influence Learning for Multi-Agent System Based
on Reinforcement Learning, Int. J. Comput. 11 (1) (2012) 39–44.

[22] H. Kimura, Reinforcement learning in multi-dimensional state-action space using ran-
dom rectangular coarse coding and Gibbs sampling, in: IEEE/RSJ Int. Conf. Intell.
Robot. Syst., 2007, pp. 88–95.

[23] W. B. Knox, P. Stone, Combining Manual Feedback with Subsequent MDP Reward
Signals for Reinforcement Learning, in: Proc. 9th Int. Conf. Auton. Agents Multi-agent
Syst. (AAMAS 2010), International Foundation for Autonomous Agents and Multiagent
Systems, Toronto, Canada, 2010, pp. 5–12.

[24] G. Konidaris, I. Scheidwasser, A. Barto, Transfer in reinforcement learning via shared
features, J. Mach. Learn. Res. 13 (1) (2012) 1333–1371.

73

[25] M. Lauer, M. Riedmiller, An algorithm for distributed reinforcement learning in coop-
erative multi-agent systems, in: Int. Conf. Mach. Learn., Stanford, CA, USA, 2000, pp.
535–542.

[26] G. J. Laurent, L. Matignon, N. L. Fort-Piat, The world of independent learners is not
markovian, Int. J. Knowledge-based Intell. Eng. Syst. 15 (1) (2011) 55–64.

[27] D. L. Leottau, Decentralized Reinforcement Learning (source code) (2017).
URL https://github.com/dleottau/Thesis-DRL

[28] D. L. Leottau, C. Celemin, UCh-Dribbling-Videos (2015).
URL https://www.youtube.com/watch?v=HP8pRh4ic8w

[29] D. L. Leottau, C. Celemin, J. Ruiz-del solar, Ball Dribbling for Humanoid Biped Robots:
A Reinforcement Learning and Fuzzy Control Approach, in: K. S. Reinaldo A. C.
Bianchi, H. Levent Akin, Subramanian Ramamoorthy (ed.), Rob. 2014 Robot World
Cup XVIII - Lect. Notes Comput. Sci. 8992, Springer Verlag, Berlin, 2015, pp. 549–561.

[30] D. L. Leottau, K. Lobos-Tsunekawa, F. Jaramillo, J. Ruiz-del Solar, Accelerating De-
centralized Reinforcement Learning of Complex Individual Behaviors, Eng. Appl. Artif.
Intell. Submitted.

[31] D. L. Leottau, J. Ruiz-del Solar, R. Babuska, Decentralized Reinforcement Learning of
Robot Behaviors, Artif. Intell. In Press.

[32] D. L. Leottau, A. Vatsyayan, J. Ruiz-del Solar, R. Babuska, Decentralized Reinforcement
Learning Applied to Mobile Robots, in: D. Behnke, S., Sheh, R., Sariel, S., Lee (ed.),
Rob. 2016 Robot World Cup XX, Lect. Notes Artif. Intell. 9776, vol. 9776 LNAI, Springer
Verlag, Berlin, 2017.

[33] D. L. Leottau, J. M. Yañez, J. Ruiz-del solar, L. L. Forero, J. Ruiz-del solar, Integration
of the ROS Framework in Soccer Robotics: the NAO Case, in: V. Behnke, M. Veloso,
A. Visser, R. Xiong (eds.), Rob. 2013 Robot World Cup XVII, Lect. Notes Comput. Sci.
Vol. 8371, Springer, 2014, pp. 664–671.

[34] D. L. D. Leottau, J. Ruiz-Del-solar, An Accelerated Approach to Decentralized Rein-
forcement Learning of the Ball-Dribbling Behavior, in: AAAI Work., vol. WS-15-09,
Austin, Texas USA, 2015, pp. 23–29.

[35] D. L. D. Leottau, J. Ruiz-del Solar, P. MacAlpine, P. Stone, A Study of Layered Learn-
ing Strategies Applied to Individual Behaviors in Robot Soccer, in: L. Almeida, J. Ji,
G. Steinbauer, S. Luke (eds.), Rob. Robot Soccer World Cup XIX, Lect. Notes Artif.
Intell., vol. 9513, Springer Verlag, Berlin, 2016, pp. 290–302.

[36] C.-K. Lin, A reinforcement learning adaptive fuzzy controller for robots, Fuzzy Sets
Syst. 137 (3) (2003) 339–352.

[37] K. Lobos-Tsunekawa, Inwalk-kicking and ball-dribbling videos (2017).
URL https://www.youtube.com/watch?v=HP8pRh4ic8w

74

https://github.com/dleottau/Thesis-DRL
https://www.youtube.com/watch?v=HP8pRh4ic8w
https://www.youtube.com/watch?v=HP8pRh4ic8w

[38] K. Lobos-Tsunekawa, D. L. Leottau, J. Ruiz-del Solar, Toward Real-Time Decentralized
Reinforcement Learning using Finite Support Basis Functions, in: Rob. Symp. 2017,
Nagoya, Japan, 2017.

[39] J. Martin, A Reinforcement Learning Environment in Matlab (source code).
URL https://jamh-web.appspot.com/download.htm

[40] J. Martin, H. D. Lope, A distributed reinforcement learning architecture for multi-link
robots, in: 4th Int. Conf. Informatics Control. Autom. Robot. ICINCO 2007, Angers,
Francia, 2007, pp. 192–197.

[41] M. J. Mataric, Reward Functions for Accelerated Learning, in: Proc. Elev. Int. Conf.
Mach. Learn., Morgan Kaufmann, Boca Raton, Florida, USA, 1994, pp. 181–189.

[42] L. Matignon, G. J. Laurent, N. Le Fort-Piat, Design of semi-decentralized control laws
for distributed-air-jet micromanipulators by reinforcement learning, 2009 IEEE/RSJ Int.
Conf. Intell. Robot. Syst. (2009) 3277–3283.

[43] K. T. Michael Kaisers, Frequency Adjusted Multi-agent Q-learning, in: 9th Int. Conf.
Auton. Agents Multiagent Syst., Toronto, Canada, 2010, pp. 309–315.

[44] L. Panait, S. Luke, Cooperative Multi-Agent Learning: The State of the Art, Auton.
Agent. Multi. Agent. Syst. 11 (3) (2005) 387–434.

[45] L. Panait, K. Sullivan, S. Luke, Lenience towards teammates helps in cooperative multi-
agent learning, in: Proc. Fifth Int. Jt. Conf. Auton. Agents Multi Agent Syst., Hakodate,
Japan, 2006.

[46] L. Panait, K. Tuyls, S. Luke, Theoretical Advantages of Lenient Learners: An Evolu-
tionary Game Theoretic Perspective, J. Mach. Learn. Res. 9 (2008) 423–457.

[47] S. Papierok, A. Noglik, J. Pauli, Application of Reinforcement Learning in a Real Envi-
ronment Using an RBF Network, in: 1st Int. Work. Evol. Reinf. Learn. Auton. Robot
Syst. (ERLARS 2008), Patras, Greece, 2008, pp. 17–22.

[48] J. Pazis, M. G. Lagoudakis, Reinforcement learning in multidimensional continuous
action spaces, in: IEEE Symp. Adapt. Dyn. Program. Reinf. Learn., Paris, France,
2011, pp. 97–104.

[49] E. Schuitema, Reinforcement Learning on autonomous humanoid robots, Ph.D. thesis,
Delft University of Technology (2012).

[50] S. Sen, M. Sekaran, J. Hale, Learning to coordinate without sharing information, in:
Proc. Natl. Conf. Artif. Intell., American Association for Artificial Intelligence, Seattle,
Washington, 1994, pp. 426–431.

[51] S. P. Singh, M. J. Kearns, Y. Mansour, Nash Convergence of Gradient Dynamics in
General-Sum Games, in: UAI ’00 Proc. 16th Conf. Uncertain. Artif. Intell., Stanford,
CA, 2000, pp. 541–548.

75

https://jamh-web.appspot.com/download.htm

[52] P. Stone, M. Veloso, Multiagent Systems: A Survey from a Machine Learning Perspec-
tive, Auton. Robot. 8 (3) (2000) 1–57.

[53] R. Sutton, A. Barto, Reinforcement Learning: An Introduction, MIT Press, Cambridge,
MA, 1998.

[54] F. W. T. Röfer, T. Laue, J. Müller, A. Fabisch, F. Feldpausch, K. Gillmann, C. Graf, T.
J. de Haas, A. Härtl, A. Humann, D. Honsel, P. Kastner, T. Kastner, C. Könemann, B.
Markowsky, O. J. L. Riemann, B-human team report and code release 2011, Tech. rep.,
Department of Computer Science, University of Bremen, Bremen, Germany (2011).

[55] Y. Takahashi, M. Asada, Multi-layered learning system for real robot behavior acquisi-
tion, in: V. Kordic, A. Lazinica, M. Merdan (eds.), Cut. Edge Robot., Intech, Germany,
2005, pp. 357–375.

[56] I. Tanev, T. Ray, A. Buller, Automated evolutionary design, robustness, and adaptation
of sidewinding locomotion of a simulated snake-like robot, IEEE Trans. Robot. 21 (4)
(2005) 632–645.

[57] A. Taylor, I. Dusparic, V. Cahill, Transfer Learning in Multi-Agent Systems Through
Parallel Transfer, in: 30TH Int. Conf. Mach. Learn., Atlanta, USA, 2013, p. 28.

[58] M. Taylor, P. Stone, Transfer learning for reinforcement learning domains: A survey, J.
Mach. Learn. Res. 10 (2009) 1633–1685.

[59] M. E. Taylor, G. Kuhlmann, P. Stone, Autonomous Transfer for Reinforcement Learning,
in: Auton. Agents Multi-Agent Syst. Conf., Estoril, Portugal, 2008, pp. 283–290.

[60] M. E. Taylor, P. Stone, Cross-domain transfer for reinforcement learning, in: Proc. 24th
Int. Conf. Mach. Learn. - ICML ’07, ACM Press, New York, New York, USA, 2007, pp.
879–886.

[61] E. Theodorou, J. Buchli, S. Schaal, Reinforcement learning of motor skills in high di-
mensions: A path integral approach, in: 2010 IEEE Int. Conf. Robot. Autom., vol. 1,
2010, pp. 2397–2403.

[62] S. Troost, E. Schuitema, P. Jonker, Using cooperative multi-agent Q-learning to achieve
action space decomposition within single robots, in: 1st Int. Work. Evol. Reinf. Learn.
Auton. Robot Syst. (ERLARS 2008), Patras, Greece, 2008, pp. 23–32.

[63] K. Tuyls, P. J. T. Hoen, B. Vanschoenwinkel, An Evolutionary Dynamical Analysis
of Multi-Agent Learning in Iterated Games, Auton. Agent. Multi. Agent. Syst. 12 (1)
(2005) 115–153.

[64] A. Vatsyayan, Video: centralized and decentralized reinforcement learning of the ball-
pushing behavior (2016).
URL https://youtu.be/pajMkrf7ldY

[65] M. Veloso, P. Stone, Video: RoboCup robot soccer history 1997-2011, in: 2012

76

https://youtu.be/pajMkrf7ldY

IEEE/RSJ Int. Conf. Intell. Robot. Syst., Vilamoura-Algarve, Portugal, 2012, pp. 5452–
5453.

[66] N. Vlassis, A Concise Introduction to Multiagent Systems and Distributed Artificial
Intelligence, in: R. J. Brachman, T. Dietterich (eds.), Synth. Lect. Artif. Intell. Mach.
Learn., No. 2, 1st ed., chap. 2, Morgan and Claypool Publishers, 2007, pp. 1–71.

[67] P. Vrancx, Y. De Hauwere, A. Nowé, Transfer Learning for Multi-agent Coordination,
in: 3th Int. Conf. Agents Artif. Intell., Rome, Italy, 2011, pp. 263–272.

[68] C. J. C. H. Watkins, P. Dayan, Q-learning, Mach. Learn. 8 (3-4) (1992) 279–292.

[69] S. Whiteson, N. Kohl, R. Miikkulainen, P. Stone, Evolving Keepaway Soccer Players
through Task Decomposition, in: E. Cantú-Paz, J. Foster, K. Deb, L. Davis, R. Roy, U.-
M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener,
D. Dasgupta, M. Potter, A. Schultz, K. Dowsland, N. Jonoska, J. Miller (eds.), Genet.
Evol. Comput. — GECCO 2003 SE - 41, vol. 2723 of Lecture Notes in Computer Science,
Springer Heidelberg, Berlin, 2003, pp. 356–368.

[70] J. M. Yáñez, P. Cano, M. Mattamala, D. L. Leottau, C. Celemín, P. Saavedra, C. Vil-
legas, K. Lobos, G. Azócar, N. Cruz, R. Pérez, P. Miranda, C. Verdugo, F. Herrera,
L. Cossio, J. Ruiz-del-Solar, UChile Robotics Team Team Description for RoboCup
2016, in: Rob. 2016 Robot Soccer World Cup XX Preproceedings, July 2016, Leipzig,
Germany, 2016.

[71] J. M. Yanez, P. Cano, M. Mattamala, P. Saavedra, D. L. Leottau, C. Celemin, Y. Tsut-
sumi, P. Miranda, J. Ruiz-del solar, UChile Robotics Team Team Description for
RoboCup 2014, in: Rob. 2014 Robot Soccer World Cup XVIII Preproceedings, Joao
Pessoa, Brazil, 2014.

[72] Y. Yujing Hu, Y. Yang Gao, B. Bo An, Accelerating Multiagent Reinforcement Learning
by Equilibrium Transfer, IEEE Trans. Cybern. 45 (7) (2015) 1289–1302.

77

Appendix A

Optimization Procedure

As it was mentioned, RL parameters like learning rate, eligibility traces, exploration factor,
number of discrete actions, number of cores, are optimized by using a customized version
of the hill-climbing method. This is a very important step in order to guarantee that every
scheme tested uses the best parameter settings. In this way comparisons and evaluations are
carried out based on the best performance potentially achievable by each method, according
to the optimization results. Before each set of optimizations, I try to achieve a good set of
parameters by hand-tuning, such as seed, and then it is determined the quantity of learning
episodes empirically procuring asymptotic convergence for 2/3 of the total trained episodes.

The relative simplicity and fast convergence of hill climbing algorithm make it one of the
most popular algorithms for finding the best set of parameters in RL [5, 7, 44, 59]. However,
since only local optima are guaranteed, I have implemented some variants to cure that without
evaluating too much extra trials. In this way three ideas are included: to evaluate more than
one neighbor per parameter dimension; the option of evaluating one neighbor per dimension
or exploring the same dimension until finding the best evaluation; and to store every evaluated
set of parameters in order to avoid repeated trials. The pseudo-code is detailed in Algorithm
A.1, where paramListV is an structure which stores every parameter combination and its
respective evaluation value. It is used neighbours = 4 and oneDimP erTry enabled for all the
experiments in this work. The source code is also shared on-line at Leottau’s code repository
[27].

78

Algorithm A.1 Customized Hill Climbing Algorithm
Parameters:

1: x0 . Initial parameter
2: D . Number of dimensions of the parameters space
3: neighbors . Number of neighbors to explore
4: timeLimit . Maximum time available
5: maxIter . Maximum number of iterations desired
6: [paramM in1, · · · , paramM inD] . Lower boundary of the parameter space
7: [paramStep1, · · · , paramStepD] . Step size of the parameter space
8: [paramMax1, · · · , paramMaxD] . Upper boundary of the parameter space
9: goal . Desired value after optimization
10: oneDimP erTry . Enables exploration in one dimension until find the best evaluation
11: paramListV ← BuildParamList(paramM in, paramStep, paramMax)
12: Initialize:
13: iter ← 1, fval←∞, paramListV ←∞ · paramListV
14: p0 ← GetParamIndex(x0)
15: paramListV (p0)← GetEval(x0)
16: p← p0

17: procedure until (fval ≤ goal or iteration ≥ maxIter or
18: elapsedT ime ≥ timeLimit or ∀ParamListV <∞)
19: for all Parameter Dimension d ∈ D do
20: ymin← −∞
21: while ParamListV (p0) > ymin do
22: p0 ← p
23: x0 ← GetParam(p0)
24: x← x0

25: for neighbor n = 1, · · · , neigbours do
26: xd ← max(xd

0 − n · paramStepd, paramM ind)
27: p← GetParamIndex(x)
28: if ParamListV (p) ==∞ then
29: ParamListV (p)← GetEval(x)
30: end if
31: end for
32: for neighbor n = 1, · · · , neigbours do
33: xd ← min(xd

0 + n · paramStepd, paramMaxd)
34: p← GetParamIndex(x)
35: if ParamListV (p) ==∞ then
36: ParamListV (p)← GetEval(x)
37: end if
38: end for
39: if NOToneDomentionP erTry then
40: p0 ← p
41: end if
42: end while
43: end for
44: if fval ≤ ymin then
45: BREAK
46: end if

fval← ymin
47: end procedure return(fval, x = GetParam(p))

79

	List of Tables
	List of Figures
	Introduction
	Definition of the Problem
	Objectives
	General Objective
	Specific Objectives

	Hypothesis
	Contributions
	Bibliographic and technical production

	Structure of this Document

	Background
	Single-Agent Reinforcement Learning
	Multi-Agent Reinforcement Learning
	Independent Learners

	Decentralized Reinforcement Learning
	An Introduction to DRL
	Potential Advantages of DRL
	Challenges in DRL
	DRL Algorithms
	Independent DRL (DRL-Ind)
	Lenient DRL (DRL-Lenient)
	Cooperative Adaptive DRL (DRL-CA)

	Related Work
	Summary

	Proposed Methodology for Modeling Decentralized Reinforcement Learning Systems
	Determining if the Problem is Decentralizable
	Identifying Common and Individual Goals
	Defining the Reward Functions
	Determining if the Problem is Fully Decentralizable
	Completing RL Single Modelings
	Summary

	Experimental Validation of Decentralized Reinforcement Learning of Robot Behavios
	Experimental Validation
	Three-Dimensional Mountain Car
	Centralized Modelings
	Proposed Decentralized Modelings
	Performance Index
	RL Algorithm and Optimized Parameters
	Results and Analysis

	Ball-pushing
	Centralized Modeling
	Decentralized Modeling
	Performance index
	RL algorithm and optimized parameters
	Physical setup
	Results and analysis

	Ball-Dribbling
	Proposed Decentralized Modeling
	Centralized Modeling
	Performance Indices
	RL Algorithm and Optimized Parameters
	Results and Analysis

	SCARA Real-Time Trajectory Generation
	Decentralized Modeling
	Performance Index
	RL Algorithm and Optimized Parameters
	Results and Analysis

	Discussion
	Summary

	Accelerating Decentralized Reinforcement Learning
	DRL and Transfer Knowledge Overview
	Literature Review
	Proposed KT-based DRL
	Control Sharing (CoSh)
	Nearby Action Sharing (NeASh)

	Experimental Validation
	Inwalk Kicking
	Ball-Dribbling

	Discussion
	Summary

	Conclusions and Future Direction
	Bibliography
	Optimization Procedure

