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briefly summarize the molecular networks that allow dam-
aged cells either to adapt to stress or to engage in pro-
grammed-cell-death pathways. 
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 Introduction 

 Unicellular and multicellular organisms live in a con-
stant struggle to cope with extrinsic and intrinsic dam-
aging agents. The inevitable accumulation of damage 
leads to the deterioration of cell components, impair-
ment of cellular functions and alterations in tissue ho-
meostasis that finally compromise the whole organism. 
Thus, aging is currently viewed as the natural decline in 
an organism’s fitness over time  [1] , presumably as the re-
sult of accumulative and unrepaired damage. Many age-
related pathologies originate from limitations in the 
maintenance and repair mechanisms of DNA, or by 
anomalies in the antioxidant mechanisms that contrib-
ute to the detoxification of reactive oxygen species  [2] . 
Oxidative damage plays a major role in oncogenesis and 
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 Abstract 

 Many features of aging result from the incapacity of cells to 
adapt to stress conditions. When damage accumulates irre-
versibly, mitotic cells from renewable tissues rely on either 
of two mechanisms to avoid replication. They can perma-
nently arrest the cell cycle (cellular senescence) or trigger cell 
death programs. Apoptosis (self-killing) is the best-described 
form of programmed cell death, but autophagy (self-eating), 
which is a lysosomal degradation pathway essential for ho-
meostasis, reportedly contributes to cell death as well. Un-
like mitotic cells, postmitotic cells like neurons or cardiomyo-
cytes cannot become senescent since they are already 
terminally differentiated. The fate of these cells entirely
depends on their ability to cope with stress. Autophagy then 
operates as a major homeostatic mechanism to eliminate 
damaged organelles, long-lived or aberrant proteins and su-
perfluous portions of the cytoplasm. In this mini-review, we 
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brain function decline, which is explained by age-associ-
ated increases in lipid peroxidation  [3] , protein oxidation 
 [4]  and oxidative modifications of genomic and mito-
chondrial DNA  [5] . Despite the common origin of these 
illnesses, there are differences in the age at which they 
begin. The incidence of cancer increases dramatically af-
ter the age of 50, while the incidence of neurodegenera-
tive disorders rises after the age of 70. One important 
distinction between these two classes of pathologies is 
the type of cells that they affect. Cancer affects mitotic 
cells, while neurodegenerative disorders affect mainly 
postmitotic cells. So, the question arises of whether these 
cells are fundamentally distinct in their response to 
damaging agents.

  According to the proliferative pattern of tissues, mul-
ticellular organisms can be divided into simple and 
complex  [1] . After development and differentiation, 
simple organisms (e.g.  Caenorhabditis elegans  and  Dro-
sophila melanogaster ) are composed solely of postmi-
totic cells, which are terminally differentiated and can-
not replicate. Conversely, complex organisms (e.g. mam-
mals) are composed of both postmitotic and mitotic 
cells, which are present in renewable tissues and main-
tain their potential to proliferate. One important differ-
ence between simple and complex organisms is the life 
span they achieve: the nematode  C. elegans  lives only a 
few weeks and the fruit fly  D. melanogaster  lives a few 
months, while mice can live a few years and humans 
many decades  [2] . It is likely that the presence of renew-
able tissues gives organisms the ability to replace dam-
aged cells, thereby increasing longevity. Nonetheless, 
the capacity of renewable tissues to regenerate them-
selves is associated with a deadly risk, i.e. cancer. Dam-
age accumulation increases the risk of mitotic cells to 
acquire genomic DNA modifications and hence to be-
come tumorigenic. In order to preserve the organism, 
damaged cells rely on two different mechanisms to halt 
their progression: they can either enter into permanent 
cell cycle arrest (a process known as cellular senescence) 
or trigger genetic cell death programmes to die silently, 
without affecting neighbour cells (by apoptosis and per-
haps by autophagy).

  For postmitotic cells however, the cell damage sce-
nario is radically different. As their cell cycle is already 
arrested in phase G 0 , they cannot become senescent. 
Without the advantage given by proliferative renewal, 
postmitotic cells such as neurons or cardiomyocytes are 
obliged to adapt to stress in order to ensure vital func-
tions for the whole organism. In neurodegenerative pa-
thologies such as Parkinson’s, Alzheimer’s or Hunting-

ton’s disease, protein aggregation is the consequence of 
an insufficient removal of oxidized, misfolded or aber-
rant proteins in the brain  [3, 4, 6, 7] . In this context, au-
tophagy operates as the major pathway for the normal 
turnover of damaged elements  [8] . In the next sections, 
we will summarize the molecular mechanisms that are 
involved in the processes of cellular senescence, apopto-
sis and autophagy.

  Cellular Senescence 

 Cellular senescence refers to the arrest in the G 1  phase 
of the cell cycle of continuously proliferating cells, in re-
sponse to stress that puts them at risk of malignant trans-
formation  [1] . Senescent cells adopt a flattened, enlarged 
morphology and exhibit specific molecular markers like 
senescence-associated  � -galactosidase, senescence-asso-
ciated heterochromatin foci and the accumulation of li-
pofuscin granules  [9, 10] . There are many stimuli condu-
cive to cellular senescence. Among them, telomere short-
ening, DNA damage and oxidative stress are the best 
described  [1, 2] . In spite of the diversity of these stimula-
tory signals, they only converge onto two major effector 
pathways: the p53 pathway and the pRB pathway ( fig. 1 ). 
In normal conditions, the tumour suppressor protein p53 
is constitutively targeted to proteasome-mediated degra-
dation by MDM2 (mouse double minute 2), but upon mi-
togenic stress or DNA damage, MDM2 activity is sup-
pressed and functional p53 is able to activate the cyclin-
dependent kinase inhibitor p21 which stops the cell cycle. 
In the second pathway, the retinoblastoma protein pRB is 
activated by p16 after cellular stress or DNA damage and 
then binds to members of the E2F family of transcription 
factors, known to regulate cell cycle progression  [11, 12] . 
The two pathways manifest ample crosstalk in the con-
trol of cellular senescence, and can also overlap with 
death pathways  [13, 14] . One example is the observation 
that ventricular cardiomyocytes activate mitochondrial 
apoptosis when they are subjected to E2F to overexpres-
sion  [15] .

  Even though cellular senescence is an adaptative re-
sponse to stress that contributes to extending the life span 
of an organism, this phenomenon can have a negative 
impact on the organism’s survival. With age, senescent 
cells accumulate in proliferative tissues and release vari-
ous degradative proteases, growth factors and inflamma-
tory cytokines that compromise the function of non-se-
nescent neighbouring cells. After a massive accumula-
tion of senescent cells, the proliferative capacity of 
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renewable tissues diminishes because of a decrease in 
progenitor stem cells. Altogether, these effects may create 
a permissive environment that allows for the develop-
ment of preneoplastic cells into tumours, counterbalanc-
ing longevity with the risk of old-age cancer  [1, 2] .

  Apoptosis 

 Apoptosis is the best-described form of programmed 
cell death, and plays a major role in both embryonic de-
velopment and organismal aging  [16, 17] . It involves the 
controlled activation of proteases and other hydrolases 
that rapidly degrade all cellular structures. Unlike ne-
crotic cell death, in which the cell membrane is disrupted 
and an inflammatory response is produced, apoptosis 
takes place within the borders of the intact plasma mem-

brane, without affecting neighbouring cells. At the mor-
phological level, the classic hallmarks of apoptosis are the 
condensation of chromatin (pyknosis), nuclear fragmen-
tation (karyorrhexis), shrinkage of the cell and plasma 
membrane blebbing  [18] . Two major pathways initiate 
apoptosis: the intrinsic (or mitochondrial) and the ex-
trinsic pathways ( fig. 2 ).

  In the intrinsic pathway  [19] , multiple sensors, includ-
ing the BH3-only proteins and p53, react in response to 
different stress conditions or to DNA damage and acti-
vate a signaling cascade conducive to mitochondrial
outer-membrane permeabilization (MOMP)  [20] . The
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  Fig. 1.  p53 and pRB are the main tumour suppressor pathways. A 
simplified version of the complex molecular network involved in 
tumour suppression is shown for each pathway. p53 activates p21 
which inhibits a series of cyclin-dependent kinases that control 
cell cycle progression. pRB inhibits E2F, a transcription factor re-
quired for the G 1  phase/S phase transition to cell cycle progres-
sion. After transient arrest in the G 1  phase, unknown mecha-
nisms result in either permanent cell cycle arrest (cellular senes-
cence) or programmed cell death (apoptosis or autophagy). 
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  Fig. 2.  Two major pathways lead to the execution of apoptosis. The 
extrinsic pathway is activated by the ligation of death receptors 
present in the plasma membrane. It propagates death signals in 3 
directions: to lysosome membrane permeabilization (LMP), to 
caspase-8-dependent activation of effector caspases, or to BH3-
only-dependent mitochondrial outer-membrane permeabiliza-
tion (MOMP). The intrinsic pathway is stimulated by multiple 
signal transducers and noxious agents that frequently result in the 
activation of pro-apoptotic BH3-only proteins from the Bcl-2 
family. The rate-limiting step of the intrinsic pathway is mito-
chondrial membrane permeabilization resulting in the release of 
caspase activators and caspase-independent death effectors from 
mitochondria. AIF = Apoptosis-inducing factor; APAF-1 = apop-
totic protease-activating factor 1; Bak = Bcl-2 antagonist killer; 
Bax = Bcl-2-associated X protein; DISC = death-inducing signal-
ing complex; EndoG = endonuclease G; JNK = c-Jun N-terminal 
kinase; RIP = receptor-interacting protein 1; ROS = reactive oxy-
gen species; tBid = truncated BH3-interacting domain death ago-
nist; TNF = tumour necrosis factor. 
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release of intermembrane space proteins from perme-
abilized mitochondria allows for the assembly of the 
apoptosome, a caspase-activating complex formed by 
APAF-1 (apoptotic protease activating factor 1), caspase-
9 and cytochrome  c , resulting in the activation of effector 
caspases that are responsible for dismantling the cell’s 
structures  [21] . Apoptosis initiated at the mitochondrial 
level is tightly regulated by the Bcl-2 family of proteins, 
which is subclassified into 3 groups: (1) anti-apoptotic 
multidomain members (Bcl-2, Bcl-X L  and Mcl-1), which 
contain four Bcl-2 homology domains (BH1, BH2, BH3 
and BH4), (2) pro-apoptotic multidomain members (such 
as Bax and Bak), lacking the BH4 domain and (3) pro-
apoptotic BH3-only proteins (such as Bid, Bim and Bad) 
 [20] . Intrinsic and extrinsic stimuli can induce the pro-
teolytic cleavage of Bid and translocation of truncated 
Bid (tBid) to the mitochondrial membranes where it
stimulates MOMP, presumably through the activation
of Bax/Bak channels and other mechanisms  [22] . The 
multiple internal interactions among the Bcl-2 protein 
family members, summed to the many pathways that 
modulate the levels and activity of these proteins, induce 
or avoid the execution of mitochondrial apoptosis  [23] .

  The extrinsic pathway is initiated at the plasma mem-
brane level by activation of death receptors from the 
TNFR (tumour necrosis factor receptor) family that in-
clude Fas/CD95 and the TRAIL (TNF-related apoptosis-
inducing ligand) receptors  [24] . Ligand-induced death 
 receptor trimerization results in the recruitment and ac-
tivation of caspase-8 via adaptor proteins such as FADD/
TRADD (Fas-associated death domain/TNFR1-associ-

ated death domain) to form a death-inducing signalling 
complex, which further propagates death signals in at 
least 3 ways: (1) by direct proteolysis and activation of the 
effector caspases, (2) by proteolysis of the BH3-only pro-
tein Bid, translocation of tBid to mitochondria and con-
sequent MOMP or (3) by activation of the kinases RIP1 
(receptor-interacting protein 1) and JNK (c-Jun N-termi-
nal kinase), that mediate the translocation of tBid to the 
lysosome and Bax-dependent lysosomal membrane per-
meabilization, resulting in cathepsin B/D-mediated gen-
eral proteolysis and MOMP  [25, 26] .

  Apoptosis and Cellular Senescence 

 Like cellular senescence, apoptosis is an extreme re-
sponse to cellular stress and represents an important tu-
mour-suppressive mechanism. It is still not clear what de-
termines if a cell undergoes senescence or apoptosis. Al-
though most cells are capable of both, these processes 
seem to be exclusive  [1] . Cell type appears to be a deter-
minant as damaged epithelial cells and fibroblasts tend 
to undergo senescence, while damaged lymphocytes tend 
to undergo apoptosis. Moreover, it has been reported that 
manipulations of the expression levels of Bcl-2 or caspase 
inhibition may cause cells that normally would have died 
by apoptosis to enter senescence  [27, 28] . Similarly, at-
tempts to inhibit senescence by telomerase overexpres-
sion, do not prevent cellular senescence but rather protect 
cells from apoptosis  [29, 30] . These studies clearly point 
to a crosstalk between the processes of apoptosis and cel-
lular senescence, for instance at the level of the tumour 
suppressor protein p53  [31] . In colon carcinoma cell lines, 
the activity of p53 has been shown to be balanced to the 
initiation of apoptosis rather than to the initiation of cel-
lular senescence after oncogenic stress given by  c-myc  
overexpression  [32] . However, the cross-regulation be-
tween apoptosis and cellular senescence is far from un-
derstood and further studies are needed to clarify their 
relationship.

  Autophagy 

 Autophagy (from the Greek words: ‘auto’ meaning self  
and ‘phagein’ meaning eating) is the process by which the 
cell’s own components are delivered to lysosomes for bulk 
degradation ( fig. 3 ). This ubiquitous process serves as the 
major turnover mechanism to eliminate damaged organ-
elles, intracellular pathogens and superfluous portions of 
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cytoplasm, as well as long-lived, aberrant or aggregated 
proteins. As a note, short-lived proteins are preferentially 
eliminated by the proteasome pathway. At least three dif-
ferent types of autophagy have been described, which dif-
fer in the mode of cargo delivery to lysosomes  [33, 34] . 
The most extensively described type is macroautophagy, 
in which portions of the cytosol and complete organelles 
are engulfed by double-membrane structures called au-
tophagosomes or early autophagic vacuoles (AV-I). Upon 
fusion with the lysosome, autophagosomes form single-
membrane structures called autolysosomes or late au-
tophagic vacuoles (AV-II) in which luminal content is de-
graded and resulting elements are returned into the
cytosol for metabolic reactions. The regulation of auto-
phagosome formation is complex (for an extensive re-
view, see  [35] ). The major negative regulator of macroau-
tophagy is the kinase mammalian target of rapamycin 
(mTOR), which normally allows baseline autophagosome 
formation, but its inhibition (i.e. by rapamycin or the ab-
sence of nutrients) triggers macroautophagy. mTOR in-
hibition is conducive to the enzymatic activation of a 
multiprotein complex formed by the class III phospha-
tidylinositol 3-kinase (PI3K) vacuolar protein sorting
factor protein 34 (Vps34), Beclin 1, vacuolar protein sort-
ing factor protein 15  (Vps15), UV radiation resistance-
associated gene (UVRAG), endophilin B1 (Bif-1), activat-
ing molecule in Beclin-1-regulated autophagy (Ambra 1) 
and perhaps other proteins. This complex is negatively 
regulated also by Bcl-2/X L   [36, 37] . Vps34 produces phos-
phatidylinositol-3-phosphate [PtdIns(3)P], a molecular 
signal for the recruitment of the autophagic effector ma-
chinery that  allows vesicle elongation and closing  [38] . 
Upstream of mTOR, macroautophagy can be inhibited
by the insulin/IGF-1 (insulin-like growth factor 1) recep-
tor pathway, where the class I PI3K product phosphati-
dylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P 3 ] stimu-
lates mTOR function  [39] .

  Although it is not as well understood as macroautoph-
agy, a second type of self-eating is microautophagy, in 
which the engulfment is made directly by the lysosomal 
membrane. This mechanism is also a degradation path-
way for organelles and long-lived proteins, but, unlike 
macroautophagy, it is not responsible for the adaptation 
to nutrient deprivation. One particular form of microau-
tophagy is the highly selective degradation of peroxi-
somes (micropexophagy), described in yeast as crucial for 
adapting to oxidative stress  [40] .

  A third type of self-eating is chaperone-mediated au-
tophagy (CMA). Although responsive to nutrient depri-
vation, this pathway exhibits no bulk engulfment by 

membranes and a selective recognition of substrates. In 
CMA, cytosolic proteins that contain a specific penta-
peptide lysosome-targeting motif (consensus sequence 
KFERQ) are recognized by a complex of chaperone pro-
teins (including heat shock 73-kDa protein, hsc73) and 
targeted to the lysosomal membrane where they bind to 
the lysosome-associated membrane protein (LAMP) 2a. 
Substrate protein is then unfolded and transported into 
the lysosomal lumen for degradation  [33] . A KFERQ-re-
lated motif is present in about 30% of cytosolic proteins, 
including RNase A and the amyloid  �  precursor protein 
(APP)  [41] . Interestingly, APP can be bound by hsc73 
(and hence feed into CMA) when the default pathway for 
its degradation is inhibited, yet this interaction does not 
involve the APP KFFEQ sequence  [42] . It is still not clear 
how the KFERQ-related motif is recognized by the chap-
erone complex. Some posttranscriptional modifications 
(e.g. oxidation, denaturation) of the substrates may ren-
der the motif more accessible to chaperones, increasing 
their lysosomal uptake by CMA.

  Autophagy and Apoptosis in Senescence 

 In most circumstances, autophagy promotes cell sur-
vival by adapting cells to stress conditions. In this context 
it appears paradoxical that autophagy has also been con-
sidered as a non-apoptotic programme of cell death that 
is referred to as ‘autophagic’ or ‘type-II’ cell death. This is 
based on the finding that some cases of cell death are pre-
ceded or accompanied by massive autophagic vacuoliza-
tion. However, these morphological observations cannot 
distinguish whether cell death is simply accompanied by 
the formation of autophagic vacuoles or whether cell 
death is truly executed by autophagy. In fact, the relation-
ship between autophagy and apoptosis is complex, and 
exactly what determines if a cell dies by apoptosis or by 
other mechanisms is still elusive. In some cellular set-
tings, autophagy is reportedly conducive to cell death 
when apoptosis is inhibited, acting as a backup mecha-
nism to execute the death process  [43] . In contrast, if dur-
ing nutrient starvation the adaptative functions of au-
tophagy are blocked, the result is accelerated death by 
apoptosis, which can be retarded by depleting Bax/Bak or 
inhibiting caspases  [44] . In tumour cell lines exposed to 
cytotoxic drugs, autophagic cell death reportedly avoids 
apoptosis as well as cellular senescence  [45, 46] . Again, 
the tumour suppressor protein p53 has been identified as 
a master regulator that guides the ‘decisions’ between 
these processes  [11–13, 47–49] .
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  In senescent and postmitotic cells, autophagy serves as 
a mechanism of adaptation to stress. In fact, autophago-
somes have been shown to accumulate in senescent fibro-
blasts to facilitate the renewal of cytosolic compounds 
and organelles  [50, 51] . Similarly in cardiomyocytes, op-
timal turnover of mitochondria depends on macroau-
tophagy  [52, 53] . One type of autophagy – CMA – has 
been shown to decline with age, augmenting the risk of 
neurodegeneration associated with the accumulation of 
aggregate-prone mutant proteins  [54–56] . It should be 
noted that age-associated neurodegenerative diseases 
share some characteristics with the pathology induced by 
knockout of autophagy-related  (atg)  genes in the brain, 
e.g. the accumulation of ubiquitinated proteins and in-
clusion bodies in the cytoplasm, an increase in apoptosis 
of neuronal cells and progressive neuronal cell loss  [57–
59] . Whether this parallelism is mere conjecture or 
whether declining or insufficient autophagy truly con-
tributes to the aging process awaits urgent clarification.

  Nutrient starvation is the best-described inductor of 
autophagy in cultured cells, and autophagy is indeed the 
mechanism through which unicellular organisms (such 
as yeast cells) as well as mammalian cells can adapt to 
dwindling resources  [60] . By degrading macromolecules, 
autophagy allows cells that lack an external nutrient sup-
ply to generate ATP and to survive. Importantly, this 
function of autophagy may also participate in the prolon-
gation of the organism’s life by caloric restriction. Fasting 
or dietary restriction is one of the strongest stimuli of au-
tophagy in whole organisms including mice and the nem-
atode  C. elegans   [61] . In a fascinating study, it has been 
shown that the deletion of  atg  genes abolished the anti-
aging effects of caloric restriction in  C. elegans   [62, 63] . 
The exact mechanism through which autophagy reduces 
aging is elusive. However, it may be speculated that an 
enhanced turnover of cytoplasmic structures and mole-
cules may ‘clean’ and hence rejuvenate cells. In addition, 
autophagy has a major role in maintaining genomic sta-
bility, through mechanisms that are not yet understood. 
Hence, an overall increase in autophagy might help to 
avoid the long-term effects of DNA damage  [64] , a hy-
pothesis that requires further exploration.

  Summary and Concluding Remarks 

 Embryogenesis and the development of multicellular 
organisms are the result of a balance between cell prolif-
eration and cell death. After differentiation, tissues with 
proliferative cells and tissues with non-proliferative cells 

accumulate damage inherent to life and aging. In prolif-
erative tissues, two different mechanisms have evolved to 
avoid the progression of damaged cells to cancer: prolif-
eration arrest (a process known as cellular senescence) or 
programmed cell death (apoptosis and perhaps also mas-
sive autophagy). In addition, aging is associated with an 
ever-increasing risk of developing a different set of pa-
thologies associated with cellular damage. In particular, 
neurodegeneration can develop because of a decline in 
the cellular mechanisms that operate to remove damaged 
elements. The major pathway for the degradation of cy-
toplasmic elements is autophagy, which reportedly de-
clines with age. Inducing autophagy by caloric restriction 
may serve as a strategy to avoid the development of age-
related diseases, as this has been shown for  C. elegans . 
However, it remains an open question whether the induc-
tion of autophagy (periodic or continuous) by caloric re-
striction (intermittent or constant) or pharmacological 
stimuli may have a beneficial effect on age-associated de-
generative processes in humans.
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