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Tropomyosin-related kinase (TRK) receptor B (TRKB) mediates the supportive actions of neurotro-
phin 4/5 and brain-derived neurotrophic factor on early ovarian follicle development. Absence of
TRKB receptors reduces granulosa cell (GC) proliferation and delays follicle growth. In the present
study, we offer mechanistic insights into this phenomenon. DNA array and quantitative PCR anal-
ysis of ovaries from TrkB-null mice revealed that by the end of the first week of postnatal life,
Jagged1, Hes1, and Hey2 mRNA abundance is reduced in the absence of TRKB receptors. Although
Jagged1 encodes a NOTCH receptor ligand, Hes1 and Hey2 are downstream targets of the JAGGED1-
NOTCH2 signaling system. Jagged1 is predominantly expressed in oocytes, and the abundance of
JAGGED1 is decreased in TrkB�/� oocytes. Lack of TRKB receptors also resulted in reduced expres-
sion of c-Myc, a NOTCH target gene that promotes entry into the cell cycle, but did not alter the
expression of genes encoding core regulators of cell-cycle progression. Selective restoration of
JAGGED1 synthesis in oocytes of TrkB�/� ovaries via lentiviral-mediated transfer of the Jagged1
gene under the control of the growth differentiation factor 9 (Gdf9) promoter rescued c-Myc
expression, GC proliferation, and follicle growth. These results suggest that neurotrophins acting
via TRKB receptors facilitate early follicle growth by supporting a JAGGED1-NOTCH2 oocyte-to-GC
communication pathway, which promotes GC proliferation via a c-MYC-dependent mechanism.
(Endocrinology 152: 5005–5016, 2011)

Ovarian follicle development is tightly controlled by
various endocrine, paracrine, and autocrine factors

that act in a coordinated manner to regulate growth of the
oocyte and its surrounding granulosa and theca cell layers
(1–4). In rodents, initial follicle recruitment and the tran-
sition from primary to secondary follicles are mainly reg-
ulated by intraovarian factors, several of which have been
identified (2). One of these regulatory systems uses neu-
rotrophins (NT) as ligands and tropomyosin-related ki-
nase (TRK) receptors, in addition to a common p75NTR

receptor, for signaling (5–7). The NT were originally de-
scribed as a family of polypeptide growth factors essential
for the survival and differentiation of various neuronal

populations in the central and peripheral nervous system
(8, 9). It is now clear that they are also required for the
development and function of organs as diverse as those
comprising the cardiovascular, immune, endocrine, and
reproductive systems (reviewed in Ref. 10). The four
known mammalian NT include nerve growth factor,
brain-derived neurotrophic factor (BDNF), NT3, and
NT4/5. They are recognized by different TRK receptors:
TRKA binds nerve growth factor, TRKB recognizes
BDNF and NT4/5, and TRKC binds NT3 (6). The four NT
are recognized by the pan-p75NTR (5). All of these mole-
cules are expressed in feto-neonatal rodent ovaries and
fetal human ovaries before the initiation of follicle assem-
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bly (11–18). BDNF and NT4/5 have been shown to pro-
mote oocyte maturation (19) and in vitro follicular assem-
bly (20), strongly suggesting a role for TRKB signaling in
these processes.

Using TrkB-null mice, we (21) and others (12) demon-
strated that TRKB signaling is required for oocyte survival
and preantral follicular development. Because the ovary
expresses both full-length, kinase domain-containing
TRKB receptors and a truncated TRKB isoform lacking
the tyrosine kinase domain of the receptor, we studied
mice lacking both TRKB isoforms. Follicle assembly is
reduced in these mutants (22), which in addition suffer a
stage-selective deficiency in early follicular development
that compromises the ability of follicles to grow beyond
the primary stage. Proliferation of granulosa cells (GC),
required for this transition, and expression of FSH recep-
tors, which reflects the degree of biochemical differentia-
tion of growing follicles, are also reduced. Although these
observations and those of Spears et al. (12) demonstrate
the importance of TRKB receptors in early ovarian devel-
opment, they also raise the question as to the downstream
molecules and cellular mechanisms underlying these novel
functions of TRKB signaling in the ovary.

Earlier studies demonstrated that the JAGGED1-
NOTCH2 complex contributes to maintaining oocyte-GC
communication (23–27), with oocytes expressing JAGGED1
(the ligand) and GC expressing NOTCH2 (the receptor)
(28). More recent studies have shown that NOTCH2 sig-
naling is required for both follicle formation (29) and GC
cell proliferation during early follicle development (27).
Using DNA arrays as a high throughput strategy for gene
discovery and a combination of molecular, morphologic,
and gene transfer approaches, we now report that deficits
in follicle development and GC proliferation observed in
TrkB-null mice are due, to a significant extent, to pertur-
bation of the JAGGED1-NOTCH2 cell-cell communica-
tion pathway. Our results also indicate that this pertur-
bation results in reduced expression of c-Myc, a direct
target of NOTCH signaling (30, 31) that drives cell cycle
progression by promoting entry into the S (DNA synthe-
sis) phase of the cell cycle (32, 33). Finally, our study in-
dicates thatoocytesplayacritical role in sustainingTRKB-
dependent early follicle growth, as evidenced by the
effectiveness of oocyte-specific restoration of JAGGED1
synthesis to rescue the defects in c-Myc expression, follicle
growth, and GC proliferation caused by the absence of
TRKB receptors. A preliminary report of these findings
has been presented (34).

Materials and Methods

TrkB-null mice
The TrkB-null mice used in this study, as well as additional

details concerning their postnatal phenotype, were previously

described (21, 35). TrkB�/� mice were bred to wild-type (WT)
animals of the same genetic background, and the F1 progeny was
used to produce TrkB-null and WT controls. The animals were
maintained on a 12-h light, 12-h dark cycle (lights off at 1900 h),
with food and water available ad libitum.

The breeders were fed with LabDiet 5001 (PMI Nutrition
International Brentwood, St. Louis, MO). Animal usage was
duly approved by the Institutional Animal Care and Use Com-
mittee of the Oregon National Primate Research Center, in ac-
cordance to the guidelines provided by the National Institutes of
Health Guide and Use of Laboratory Animals.

Collection of ovarian tissue and genotyping
Ovaries from entire litters were collected at 0 (day of birth),

2, 3, 4, 6, 7, and 12 d after birth and used for different procedures
(organ and cell culture, RNA extraction, immunohistochemis-
try, in vitro hybridization, and morphometric analysis) before
establishing each genotype. Once the genotype was known, the
ovaries were assigned to either a WT (TrkB�/�) or a knockout
(KO) (TrkB�/�) group. No heterozygotes were included in the
analyses. For identification of TrkB alleles, we used DNA iso-
lated from 2-mm tail biopsies. Tail samples were lysed in a Di-
rectPCR buffer containing proteinase K (Viagen Biotech, Inc.,
Los Angeles, CA), and 1 �l of the crude lysates was used for PCR.
The TrkB WT allele and a DNA segment comprising both the
targeting vector and a gene-specific sequence were detected using
a set of three primers: TrkB-C8 (5�-ACTGACATCCGTAAGC-
CAGT-3�), TrkB-N2 (5�-ATGTCGCCCTGGCTGAAGTG-3�),
and PGK-3.1 (5�-GGTTCTAAGTACTGTGGTTTCC-3�). The
size of the PCR product was 400 bp for the WT allele and 200 bp
for the deleted allele (21, 22).

DNA microarrays
To identify mRNA that are differentially expressed in ovaries

from TrkB�/� mice as compared with WT animals during the
initiation of early follicular growth, we employed 7-d-old mice
and a two-dye spotted cDNA microarray containing 8400 gene
probes generated from a mouse NIA 15K gene set, printed in
duplicate on glass slides by the Gene Microarray Shared Re-
source Facility of the Oregon Health and Science University
(http://www.ohsu.edu/xd/research/research-cores/gmsr/). The proce-
dure employed for RNA extraction, synthesis of cDNA from
total RNA, cDNA labeling, and hybridization to DNA microar-
rays has been previously described (36). The signal intensities
were analyzed using print tip group lowess, as recommended by
Yang et al. (37), and implemented by Sandrine Dutoit in Bio-
Conductor (http://www.bioconductor.org/). The array results
have been deposited in the National Center for Biotechnology
Information Gene Expression Omnibus (http://www.ncbi.nlm.
nih.gov/geo/) and are accessible through Gene Expression Om-
nibus Series accession no. GSE8528.

Culture of ovaries with BDNF
To determine the effect of TRKB activation on Jagged1, c-

Myc, and ornithine decarboxylase 1 (Odc1) mRNA levels, ova-
ries from 4-d-old WT mice were dissected under a stereomicro-
scope using aseptic conditions, placed on sterile lens paper, and
cultured on metal grids in a 24-well plate at the interface of
air/culture medium, under an atmosphere of 60% O2-35%
N2-5% CO2, as described (21, 38). One ovary from each animal
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was cultured in the presence of BDNF (100 ng/ml); the contralat-
eral ovary served as an untreated control. After 8 h of incubation,
the tissues were frozen in dry ice and stored at �85 C until RNA
extraction.

Culture of ovaries for lentivirus (LV)-mediated
gene transfer

To increase Jagged1 expression in oocytes of TrkB�/� mice,
a cDNA containing the rat Jagged1-coding region fused to a
sequence encoding a human influenza hemagglutinin (HA)
epitope (kindly provided by Gerry Weinmaster; Department of
Biological Chemistry, University of California, Los Angeles, CA)
was inserted into the multiple cloning site of a LV vector (39). To
restrict Jagged1 expression to oocytes, the cytomegalovirus pro-
moter of this vector was replaced by the Gdf9 promoter (kindly
provided by Austin Cooney; Baylor College of Medicine, Hous-
ton, TX). Infectious viral particles were produced and quantified
as reported (40). The ovaries from 3-d-old TrkB�/� mice were
dissected and incubated as described above. One ovary from
each animal was treated for 4 d with this LV construct (termed
LV-Jagged1-HA) and the contralateral ovary with a vector lack-
ing Jagged1 (LV-no Jagged1), each at 7 � 106 transducer units
per milliliter per well. At the end of the culture period, the ovaries
were either fixed for immunohistochemistry and morphometric
analysis or frozen on dry ice and stored at �85 C until RNA
extraction (see below).

RNA extraction, semiquantitative PCR (qPCR), and
real-time PCR

A Micro RNeasy kit (QIAGEN, Germantown, MD) was used
to isolate total RNA, and 250 ng of total RNA were reverse
transcribed using Omniscript reverse transcriptase, as previously
described (36, 40). In one set of experiments, in which we treated
ovaries in culture with BDNF or NT4, we used the semi-qPCR
procedure of Ambion (Austin, TX) to detect Jagged1, c-Myc, and
Odc1 mRNA. Before carrying out the amplification procedure,
the optimal gene-specific primer concentrations, linear range of

the PCR, and optimal primer concentration for the amplification
of Ppia mRNA (used as an internal standard) were determined.
Ppia mRNA encodes peptidylprolyl isomerase A, also known as
cyclophilin A. The PCR were carried out in a 25-�l volume con-
taining 0.5 �l of RT reaction and 25 pmol (Jagged1, c-Myc, or
Odc) and 25 pmol (Ppia) of primers at a primer/competimer ratio
of 1:1. The PCR amplification protocol consisted of 30 cycles of
denaturing at 94 C (30 sec), annealing at 55 C (30 sec), and
extension at 72 C (1 min). Equal volumes of the PCR were elec-
trophoresed on 2% agarose gels stained with ethidium bromide,
the gels were imaged in a Gel Doc 2000 (Bio-Rad Laboratories,
Hercules, CA), and the images were quantitated using the image
analysis Quantity One software (Bio-Rad Laboratories).

For all other studies, we measured mRNA levels by real-time
PCR using SYBR Green PCR technology and reagents purchased
from Applied Biosystems (Foster City, CA). Standard curves
(threshold cycle number vs. log [RNA]) were constructed by
using serial dilutions (1:10) of cDNA, assuming that the amount
of cDNA is equal to the initial amount of mRNA. The threshold
cycle number from each sample was referred to this curve to
estimate the corresponding mRNA content, and each mRNA
value was then normalized for procedural losses using the 18s
rRNA values estimated from the relative standard curve.

All PCR primers were designed using the software Primer
Select 6.0 (DNASTAR, Inc., Madison, WI) (Table 1).

In situ hybridization
The cellular localization of Jagged1 mRNA was assessed us-

ing the in situ hybridization procedure described by Simmons et
al. (41) with minor modifications (42). A 445-bp mouse Jagged1
cDNA complementary to nucleotides 3226–3670 in mouse Jag-
ged1 mRNA (NM_013822.4) was generated by PCR amplifi-
cation of mouse ovary total RNA and cloned into the pGEM-T
vector (Promega, Madison, WI). After linearization with NcoI,
500 ng of Jagged1 cDNA template were transcribed with 250
�Ci of 35S-uridine triphosphate (PerkinElmer, Boston, MA). Hy-
bridization reactions using this cRNA were performed on 14-�m

TABLE 1. RT-PCR primer list

Gene Forward primer Reverse primer GenBank

Jagged1a GCACGCCGACAAAACACCCGAACT ATTAGGACCGCTGGCAGATGTGGA NM_013822
Jagged1 CCGAGGACTATGAGGGCAAGAA GGGGACCACAGACGTTAGAAGAG NM_013822
Notch2 GTGGACGGCATCAATCGCTACA GGGGCATATACACCGGAAACCAT NM_010928
Hes1 GCCGCCGCCGCTTGTGC GGGATGACCGGGCCGCTGTGAG NM_008235
Hey2 ATTTTGAAGATGCTCCAGGCTACAG CACTCTCGGAATCCAATGCTCA NM_013904
Ppiaa GGCAAATGCTGGACCAAACACAA GGTAAAATGCCCGCAAGTCAAAAG NM_008907
Cdk2 GGGGGATGACCGCAGTGT GGGTCCCCAGAGTCCGAAAGAT NM_183417
Cdk4 TGTACGGCTGATGGATGTCTGTGC GCCCGGTGGAGGTGCTTTGTC NM_009870
CyclinD2 GCCGCAGTCACCCCTCACGA TGCTCCCACGCTTCCAGTTGC NM_009829
CyclinE1 TGTCCTCGCTGCTTCTGCTTTGTA CGGATAACCATGGCGAACGGAACC NM_007633
p15INK4b AGGGGCGCGGCTGGATGT CCTAGATGGGGCTGGGGAGAAAGA NM_007670
p16INK4a CAAGAGCGGGGACATCAAGACATC ACGTTCCCAGCGGTACACAAAGAC NM_009877
p18INK4c GGGGCATCGGAACCATAAG AACCCCATTTGCCTCCATCA NM_007671
p19INK4d GAAGAAGGGAGTGGGAGGAGCAGT CCAAAAGGGGTGAGAAAAACAAAT NM_009878
p21Cip1 TGGGCCCGGAACATCTCAGG CGTGGGCACTTCAGGGTTTTCTCT NM_007669
p27Kip1 GGTGGACCAAATGCCTGACTCGT TCTGTTCTGTTGGCCCTTTTGTTT NM_009875
p57Kip2 GGGTGCTGAGCCGGGTGATGA CTCCGGCTCCTCGTCCTTCTCCTC NM_009876
c-Myc GCCCACCACCAGCAGCGACTCT GGGGTTTGCCTCTTCTCCACAG NM_001177352
Odc1a GCCCGGCTCTGACGATGAA CCGCTCTCCTGGGCACAAG NM_013614

a Semiquantitative RT-PCR.
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cryostat sections derived from ovaries collected at postnatal d 4,
6, and 12 and fixed by immersion in 4% paraformaldehyde and
0.1 M sodium borate buffer (pH 9.5) (overnight at 4 C). After an
overnight hybridization at 55 C, the sections were washed (36,
42) and exposed to an autoradiography nuclear emulsion
(Kodak, Rochester, NY) for 3 wk. After developing the reaction,
the sections were counterstained with hematoxylin (Sigma, St.
Louis, MO), dehydrated in ascending alcohols, and coverslipped
for microscopic examination. Control sections were incubated
with a 35S-labeled sense Jagged1 RNA probe transcribed from
the same cDNA template used to prepare the antisense probe but
in the opposite direction.

Immunohistochemistry
After collection, the ovaries were immersed in Zamboni’s

fixative overnight at 4 C and processed as described (21, 40),
before preparing 14-�m cryostat sections. JAGGED1 was de-
tected with a rabbit polyclonal antibody (SC-6011, diluted
1:400; Santa Cruz Biotechnology, Inc., Santa Cruz, CA). The
HA.11 epitope tag used in the LV-Jagged1 construct was de-
tected with a mouse monoclonal antibody (MMS-101R, diluted
1:1000; Covance, Berkeley, CA). After an overnight incubation
at 4 C, the immunoreactions were developed by incubating the
sections for 1 h at room temperature with Alexa Fluor 488
donkey antirabbit (1:500) and Alexa Fluor 568 donkey anti-

mouse (1:500), respectively. Cell nuclei
were stained with the vital dye Hoechst
(Molecular Probes, Eugene, OR) as re-
ported (21, 40).

Assessment of cell proliferation
The ovaries from 3-d-old TrkB�/� mice,

incubated with LV-Jagged1 or LV-no Jag-
ged1 for 4 d, were fixed in Zamboni’s fix-
ative, embedded in paraffin, sectioned at 14
�m, and subjected to immunohistochemis-
try for proliferating cell nuclear antigen
(PCNA), as reported (21, 43), using a
monoclonal antibody to PCNA (Mab PC-
10, 1:100; Santa Cruz Biotechnology, Inc.)
and developing the immunoreaction with
a diaminobenzidine, H2O2, and nickel
chloride solution, followed by counter-
staining with Nuclear Fast Red (undi-
luted, 10 min at room temperature;
Vector Laboratories, Burlingame, CA).
Positive cells were counted using the pub-
lic domain software ImageJ 1.42q (Na-
tional Institutes of Health, Bethesda, MD;
http://rsbweb.nih.gov/ij/index.html).

Morphometric analysis
Ovaries from 3-d-old mice, main-

tained for 4 d in organ culture, were fixed
in Kahle’s fixative, embedded in paraffin,
serially sectioned at 6 �m, stained with
Weigert’s iron hematoxylin, and counter-
stained with picric acid-methyl blue, as
reported (21, 38, 43). Every section was
imaged as described (21), and the degree
of follicle development was subjected to

morphometric analysis counting only follicles in which the
nucleus of the oocyte was visible (21, 43). Follicles were clas-
sified according to well-established criteria (44) that we have
previously used (21, 38, 43).

Statistical analysis
Quantitative data were analyzed using SigmaStat 3.1 soft-

ware (Systat Software, Inc., San Jose, CA). The data were first
subjected to a normality test and an equal variance test. Data that
passed these two tests were then analyzed as follows: comparison
of two groups was performed with the Student’s t test, data sets
containing more than two groups were analyzed with one-way
ANOVA followed by Student-Newman-Keuls multiple test for
individual means.

Results

Absence of TRKB receptors results in reduced
expression of JAGGED1 and NOTCH2 target genes
in postnatal mouse ovaries

To identify genes that may be controlled by TRKB re-
ceptor-dependent signaling in the infantile mouse ovary,

FIG. 1. Absence of TRKB receptors result in reduced expression of Jagged1 and NOTCH
target genes in the mouse ovary. Panel A, Decrease in Jagged1 mRNA content in the ovary of
7-d-old TrkB�/� mice detected using cDNA microarrays. Changes in mRNA content are
expressed as fold-decrease with respect to mRNA values in TrkB�/� mice of the same age.
Filled squares represent the values detected in independent microarray determinations. Panel
B, Jagged1 mRNA content was reduced in the ovary of 7-d-old TrkB�/� mice, as assessed by
real-time PCR. Inset, Jagged1 mRNA content increased in 7-d-old WT ovaries treated in vitro
with BDNF (100 ng/ml, 8 h) compared to control (C) ovaries incubated with vehicle. Relative
mRNA values are expressed as arbitrary units (AU), normalized using 18s RNA or Ppia mRNA
values as the normalizing unit. Panel C, Hes1 and Hey2, but not Notch, mRNA abundance,
was also reduced in TrkB-null ovaries. Panel D, JAGGED1 immunoreactive material (green
color) mostly localizes to oocytes in the ovary from 7-d-old TrkB�/� mice. Panel E, JAGGED1
immunoreactivity was noticeably decreased in oocytes of TrkB�/� mice. Panel F, Section
incubated without JAGGED1 antibodies. Cell nuclei stained with the DNA-binding dye
Hoechst are shown in blue. White arrows point to examples of oocytes showing JAGGED1
staining. Columns in B and C represent means from four to five animals per group, and
vertical lines are SEM. *, P � 0.05; **, P � 0.01 vs. WT controls. Scale bars, 50 �m.
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we interrogated ovaries from 7-d-old TrkB�/� and
TrkB�/� mice employing DNA microarrays and real-time
PCR. Among the genes whose expression decreased in the
absence of TRKB signaling, we identified Jagged1 (Fig.
1A), one of the Notch ligands. Using real-time PCR, we
confirmed the array result (Fig. 1B) and found that the
expression of Hes1 and Hey2, two of the well-character-
ized NOTCH target genes (45, 46), was also decreased
(Fig. 1C). In contrast, there were no differences in Notch2
mRNA expression between WT and KO ovaries (Fig. 1C).
Incubation of WT ovaries from 7-d-old mice with the
TRKB ligand BDNF (100 ng/ml, 8 h) resulted in a 3-fold
increase in Jagged1 mRNA content (Fig. 1B, inset), sug-
gesting that Jagged1 expression decreases in TrkB�/� ova-
ries due to the absence of TRKB-mediated signaling. Next,
we performed immunohistochemical experiments to ver-
ify the cellular sites of JAGGED1 expression and to de-
termine whether the content of JAGGED1 protein is also

decreased in TrkB�/� ovaries. JAG-
GED1 was seen exclusively in oocytes,
and the intensity of the fluorescence sig-
nal was distinctly lower in TrkB-null
than in WT ovaries (Fig. 1, D and E).
No specific staining was observed in
sections incubated without the primary
antibody (Fig. 1F).

Ontogeny of Jagged1, Notch2,
Hes1, and Hey2 mRNA expression
in the postnatal mouse ovary

We next performed real-time PCR
measurements to determine whether
the expression of Jagged1, Notch2, and
Notch2 target genes changes during the
first 7 d of life, i.e. the period of time
when the primordial, primary, and sec-
ondary follicles form. In agreement
with an earlier report (29), we observed
that Jagged1 and Hey2 mRNA abun-
dance increase about 3-fold between
the day of birth and the end of the first
postnatal week of life (Fig. 2, A and D).
In contrast, there were no significant
changes in Notch2 and Hes1 mRNA
expression (Fig. 2, B and C). Hybrid-
ization histochemistry demonstrated
negligible Jagged1 expression on the
day of birth (data not shown), before
follicular assembly, and a gradual in-
crease in Jagged1 mRNA abundance
restricted to oocytes between 4 and 12 d
of age (Fig. 2, E–G, bright field images,
and H–J, dark field images), a time dur-

ing which primary follicles (Fig. 2, E and H) reach the large
preantral stage (Fig. 2, G and J).

Oocyte-specific increase in JAGGED1 expression
rescues deficits in secondary follicle development
and GC proliferation in TrkB-null mice

A previous study showed that 7-d-old ovaries lacking
all isoforms of the TRKB receptor have a deficiency in
secondary follicle development and GC proliferation (21).
To determine whether this deficit is related to decreased
Jagged1 expression, we exposed ovaries from 3-d-old
TrkB�/� mice for 4 d to a lentiviral construct expressing
Jagged1, tagged with the human influenza HA epitope tag,
under the control of the Gdf9 promoter (Fig. 3A). Immu-
nohistofluorescence analysis of the ovaries 4 d later using
antibodies to HA revealed that the JAGGED1-HA protein
was exclusively expressed in oocytes, where it was cor-

FIG. 2. Changes in ovarian content of Jagged1, Notch2, Hes1, and Hey2 mRNA during the
first postnatal week of life of the mouse, as assessed by real-time PCR. A, Jagged1 mRNA. B,
Notch2 mRNA. C, Hes1 mRNA. D, Hey2 mRNA. Relative mRNA values are expressed as
arbitrary units (AU), normalized using 18s RNA values as the normalizing unit. E–J, In situ
hybridization, using a mouse-specific 35S-uridine triphosphate-labeled Jagged1 cRNA probe,
shows that Jagged1 mRNA is exclusively expressed in oocytes and that the abundance of
Jagged1 mRNA increases during the first 12 d of postnatal life. Bright field images are shown
in E–G and dark field images in H–J. Black and white arrows point to examples of Jagged1
mRNA-containing oocytes. Bars represent the mean of four to five mice per group, and
vertical lines are SEM. *, P � 0.05; **, P � 0.01; ***, P � 0.001 vs. 0-d-old group. Scale bar,
50 �m.
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rectly targeted to the cell membrane (Fig. 3, B–D). We
verified the specificity of this localization using three dif-
ferent negative controls: 1) ovaries incubated without LV
(Fig. 3E), 2) ovaries incubated in presence of LV-
Jagged1-HA but without adding the first antibody to the
immunohistochemical reaction (Fig. 3F), and 3) ovaries
incubated with the LV vector alone (Fig. 3G). In no case
was HA oocyte staining observed.

Next, we performed a morphometric analysis of cul-
tured TrkB�/� ovaries to compare the degree of follicular
growth achieved after infection with LV-Jagged1 in com-
parison with ovaries infected with LV-no Jagged1. We
observed that the number of secondary follicles per ovary
was significantly (P � 0.05) increased in the mutant ova-
ries infected with LV-Jagged1 as compared with ovaries
infected with LV-no Jagged1 (Fig. 4A). Representative im-
ages showing this difference are shown in Fig. 4, B and C.
No overt changes in other ovarian structures were ob-
served between the two groups.

To determine whether this increase
in follicle number is accompanied by
changes in GC proliferation, we esti-
mated the number of GC immunoposi-
tive for the proliferation marker PCNA
4 d after infecting TrkB�/� ovaries with
LV-Jagged1 or LV-no Jagged1. We
found a 2.5-fold increase in the number
of follicles containing PCNA-positive
cells in TrkB�/� ovaries infected with
LV-Jagged1 compared with controls
(Fig. 5A) and a similar increase in the
number of PCNA-immunopositive
cells per follicle (Fig. 5B). The micro-
photographs depicted in Fig. 5, C–E,
illustrate these changes (examples de-
noted by arrows).

Loss of TRKB signaling results in
decreased expression of c-Myc

Follicular growth requires prolifer-
ation of GC (47–49), a process that in-
volves the coordinated participation of
cyclins, cyclin-dependent kinases (CDK),
and CDK inhibitors (CKI) (50, 51). In
addition, early follicular growth ap-
pears to involve the participation of the
oncoprotein c-MYC (27, 52, 53). It
was, therefore, important to determine
whether the reduction in GC prolifera-
tion observed in TrkB�/� ovaries (21) is
related to changes in expression of these
genes. In the absence of TRKB recep-
tors, c-Myc mRNA abundance was

significantly reduced, as assessed by qPCR on postnatal
d 7 (Fig. 6A). This decrease is, to a significant extent,
due to the absence of TRKB-mediated signaling, because
WT ovaries responded to NT4/5, a TRKB ligand, with
increased c-Myc expression after 8 h in organ culture (Fig.
6A, inset).

A well-established target of c-MYC is Odc1 (54, 55),
which encodes ODC, the rate-limiting step in polyamine
biosynthesis. ODC plays an essential role in cell prolifer-
ation (56). DNA microarrays revealed that Odc1 expres-
sion was reduced (2-fold decrease) in the ovaries from
7-d-old TrkB�/� mice compared with WT ovaries (data
not shown). Using real-time PCR, we confirmed the array
result (Fig. 6B). WT ovaries treated in vitro with NT4/5
(100 ng/ml, 8 h) showed an increase in Odc1 mRNA abun-
dance (Fig. 6B, inset), suggesting that, as is the case of
c-Myc, Odc1 expression is also enhanced by TRKB-
mediated signaling. In contrast, no changes were observed

FIG. 3. Lentiviral-mediated delivery of Jagged1, using the Gdf9 promoter to target expression
of a JAGGED1-HA fusion protein to oocytes, correctly targets JAGGED1 to the cell membrane
of oocytes. A, Map of the lentiviral delivery construct (LV-Jagged1) used in this study. The
lentiviral vector employed has been previously described (79). The 3�LTR of this vector
contains a 400-bp deletion that results in the self-inactivation (SIN) of the vector. The other
components include the packaging signal (�), the Rev response element binding site (RRE),
the central polypurine tract (cPPT), and the woodchuck-hepatitis-virus posttranslational
regulatory element (wPRE). The LV-Jagged1 construct contains a bicistronic transgene cassette
in which expression of a Jagged1-HA cDNA is driven by the rat Gdf9 promoter (Gdf9p). The
Jagged1-HA cDNA is linked to an enhanced green fluorescent protein (eGFP) cDNA via an
internal ribosome entry site (IRES). A construct lacking Jagged1-HA (LV-no Jagged1) was used
as a negative control. B–D, Immunohistofluorescent images of sections from 3-d-old mouse
ovaries cultured for 4 d in the presence of LV-Jagged1 and stained with monoclonal
antibodies against the HA epitope. E, Section from an ovary not infected with LV. F,
Section from an ovary infected with LV-Jagged1 and incubated without HA antibodies. G,
Section from an ovary infected with LV-no Jagged1. JAGGED1 immunoreactive cells are
seen in red, and cell nuclei stained with the DNA-binding dye Hoechst are shown in blue.
Scale bar, 50 �m.
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in the gene expression of several core regulators of the cell
cycle, including two mRNA encoding cyclins (CycD2 and
CycE1), two mRNA encoding CDK (Cdk2 and Cdk4),
and mRNA encoding CKI of either the inhibitors of CDK4
(INK4) gene family (p15INK4B, p16INK4A, p18INK4C, and
p19INK4D) or the cyclin and CDK inhibitors (CIP/KIP)
family (p21Cip1, p27Kip1, and p57Kip2) (Fig. 6, C and D).

Restoring JAGGED1 expression in oocytes of
TrkB-null ovaries rescues c-Myc expression

TrkB�/� ovaries infected with LV-Jagged1-HA showed
increased levels of c-Myc mRNA after 4 d of treatment in
organ culture (Fig. 6E). This change is not due to a general
effect of JAGGED1 on cell cycle regulators, because nei-
ther p19INK4D nor p27Kip1 mRNA levels, selected as ex-
amples of each class of genes, changed in LV-Jagged1-
HA-infected ovaries (Fig. 6F). These results suggest that
NOTCH signaling supports GC proliferation by acti-
vating a c-MYC-dependent pathway and not by affect-
ing the expression of core regulators of cell-cycle
progression.

Discussion

Studies in several species, including rodents, humans, cat-
tle, and pigs, have established the concept that NT are
physiological components of the intraovarian machinery
controlling both the assembly of primordial follicles and
the growth of newly formed follicles (reviewed in Ref. 57).
The mechanisms underlying the supportive actions of NT

on these two developmental events
have not been yet elucidated. The pres-
ent results identify the NOTCH signal-
ing pathway as a mediator of the pro-
cess by which NT acting via TRKB
receptors facilitate early follicle devel-
opment and stimulate GC proliferation
in primary follicles. Our results indicate
that activation of this pathway involves
a NOTCH ligand (JAGGED1) pro-
duced in oocytes and NOTCH recep-
tors, presumably located in GC. Al-
though Jagged1 expression is reduced
in the absence of TRKB receptors,
oocyte-specific restoration of JAGGED1
synthesis in TrkB-null ovaries reinvig-
orates follicle growth and GC prolifer-
ation, suggesting that JAGGED1 pro-
duced in oocytes is crucial for NT4/5-
BDNF (the TRKB ligands) to promote
early follicle development. We also ob-
served loss of c-Myc expression in the

ovaries of TrkB-null mice and rescue of this deficit by the
oocyte-specific restoration of JAGGED1 synthesis. Con-
sidering that c-MYC, which drives cell proliferation by
promoting entry into the cell cycle (32), is a direct target
of the NOTCH signaling system (30, 31), our results im-
plicate c-MYC as a downstream mediator of TRKB-de-
pendent stimulation of GC proliferation. None of the
aforementioned deficits can be attributed to a general ef-
fect related to the absence of TRKB receptors, because all
of these deficits were rescued by specifically recovering
JAGGED1 synthesis in oocytes of the mutant mice.

NOTCH signaling is an evolutionarily conserved
mechanism that regulates cell fate, differentiation, and
growth in a vast array of tissues (45, 58, 59). There are at
least four NOTCH receptors (NOTCH1–NOTCH4) and
at least five ligands, including JAGGED1, JAGGED2,
�-like 1, �-like 2, and �-like 3 (59, 60). A major feature of
NOTCH signaling is that it mediates communication be-
tween adjacent cells. Upon ligand binding, the intracellu-
lar domain of NOTCH receptors (NICD) is released by
proteolytic cleavage (61) and translocates to the nucleus,
where it binds to a repressor of the C-promoter binding
factor 1/suppressor of hairless/Lag-1 family to convert it
into a trans-activating complex, which then promotes the
transcription of target genes, including Hes1, Hey2, c-
Myc, and others (45, 46, 59).

Several components of the NOTCH signaling pathway
have been previously described in the ovary. Although
JAGGED1 is expressed exclusively in germ cells, and
oocytes of primordial, primary, and secondary follicles,

FIG. 4. Oocyte-specific restoration of JAGGED1 expression, via lentiviral-mediated gene
transfer, rescues the deficit in follicle growth of TrkB�/� ovaries. A, Increased number of
secondary follicles in TrkB�/� ovaries incubated for 4 d with LV-Jagged1 in comparison with
TrkB�/� ovaries infected with LV-no Jagged1. B, Section from a TrkB�/� ovary infected with
LV-no Jagged1. C, Section from a TrkB�/� ovary infected with LV-Jagged1. Arrows point to
secondary follicles, which contain an oocyte surrounded by two layers of GC. Scale bar, 50
�m. Columns represent the mean of four mice per group, and vertical lines are SEM. One
ovary from each animal was infected with LV-Jagged1 and the contralateral ovary from the
same animal with LV-no Jagged1. *, P � 0.05.
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NOTCH2, HES1, and HEY2 are expressed mainly in GC
(27–29). Although it has been known for some time that
the NOTCH system plays a crucial role in the control of
follicle cell and oocyte development in Drosophila (23–
25), it is only recently that the importance of NOTCH
signaling in primordial follicle formation and GC prolif-
eration during early follicle development in mammals has
been documented (27, 29). An essential requirement for
NOTCH activity is the addition of N-acetylglucosamine
to its extracellular domain by Fringe proteins (62). Lunatic
Fringe (Lfng), one of these proteins, specifically facilitates
JAGGED1/NOTCH2 signaling (63). The finding that
mice lacking lunatic fringe are infertile and that the infer-
tility is due to an ovarian defect (26) adds further credence
to the notion that NOTCH signaling is required for nor-
mal ovarian development.

It is surprising that the ability of NT
to activate Hes1 transcription has been
known for more than 15 yr (64), but
only recently evidence has been pro-
vided demonstrating the existence of a
functional relationship between NT
and the NOTCH signaling pathway
(65). Our results suggest that a mech-
anism by which activation of TRKB
receptors enhances NOTCH signal-
ing in the ovary is by stimulating the
synthesis of JAGGED1 in oocytes.
Whether this is a direct effect or in-
volves the production of an intermedi-
ate molecule produced in GC is unclear.
Because expression of full-length TRKB
receptors is minimal in oocytes of neo-
natal-infantile animals (12, 21), a direct
effect would imply a role for truncated
TRKB receptors in inducing Jagged1
expression. These receptors are the
most abundant TRKB isoform ex-
pressed in infantile mouse ovaries (12,
21), but they lack canonical signaling
motifs. They may, however, be able to
initiate intracellular signaling via path-
ways other than those activated by full-
length TrkB receptors (66, 67). A more
detailed examination of this issue is
warranted.

An involvement of the NOTCH sys-
tem in stimulating GC proliferation of
primary follicles was recently demon-
strated by Zhang et al. (27), who ex-
posed mouse primary ovarian follicles
cultured in vitro to �-secretase inhibi-

tors to block the proteolytic release of NICD and observed
arrest of follicle growth and inhibition of GC prolifera-
tion. These authors also showed that overexpression of
NICD promotes GC proliferation (27). By showing that
GC proliferation is diminished in the absence of TRKB-
mediated signaling (21) and that selective restoration of
JAGGED1 production in oocytes rescues the defect in fol-
licle growth and GC proliferation seen in TrkB-null mu-
tants, our results provide a functional link between the NT
and NOTCH signaling systems.

NOTCH signaling promotes progression of the cell cy-
cle in all species thus far examined (25, 68–71), suggesting
that the loss of GC proliferation observed in TrkB-null
ovaries may be related to loss-of-function of one or more
regulatory components of the cell cycle. Cell-cycle pro-
gression is promoted by phase-specific kinase complexes

FIG. 5. Oocyte-specific restoration of JAGGED1 expression, via lentiviral-mediated gene
transfer, rescues the deficit in GC proliferation of TrkB�/� ovaries. A, Percent of follicles
showing at least one PCNA-positive GC. B, Number of PCNA-positive GC per follicle (primary
and secondary). C, Image of a section from a TrkB�/� ovary incubated for 4 d with LV-no
Jagged1. D, A section from a TrkB�/� ovary incubated for 4 d with a LV-Jagged1. E, Ovarian
section immunostained in absence of primary antibodies. Columns represent the mean of four
mice per group, and vertical lines are SEM. In each group, four sections per ovary were used
for quantification. One ovary from each animal was infected with LV-Jagged1 and the
contralateral ovary from the same animal with LV-no Jagged1. Scale bar, 50 �m. ***, P �
0.001 vs. LV-no Jagged1.
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composed of cyclin and CDK. Although cyclin D-CDK4/6
complexes promote G1 progression, cyclin E-CDK2 com-
plexes facilitate completion of the G1 phase (72–74). CDK
activity is, in turn, regulated by CKI, which induce cell-
cycle arrest by blocking the activity of cyclin-CDK com-
plexes (75–78). Two CKI families have been described:
members of the INK4 family (p16INK4a, p15INK4b,
p18INK4c, and p19INK4d) bind to and inhibit cyclin
D-CDK4/6 complexes; members of the CIP/KIP family
(p21Cip1, p27Kip1, and p57Kip2) bind to and inhibit the
cyclin E-CDK2 complex, as well as other cyclin-CDK
complexes operating throughout the cell cycle (77, 78).

We measured two mRNA encoding cyclins (CycD2 and
CycE1), two encoding CDK (Cdk2 and Cdk4), four en-

coding CKI of the INK4 family (p16INK4a, p15INK4b,
p18INK4c, and p19INK4d), and three encoding members of
the CIP/KIP family (p21Cip1, p27Kip1, and p57Kip2) in ova-
ries from TrkB-null mice and found that their abundance
was similar to that of WT ovaries. In addition, we mea-
sured two mRNA encoding CKI (p19INK4d and p27Kip1)
after restoring Jagged1 expression in oocytes and again
found the abundance of these mRNA to be unaltered.
These results suggest that the deficit in GC proliferation
seen in TrkB-null ovaries is not due to decreased expres-
sion of core regulatory components of the cell cycle.

In contrast to these results, expression of the proto-
oncogene c-Myc, a bona fide NOTCH target (30, 31),
decreased in the absence of TRKB signaling and increased

FIG. 6. TrkB signaling sustains c-Myc and Odc1 expression but not the expression of core regulatory components of the cell cycle. Panel A, c-Myc
mRNA content was reduced in 7-d-old TrkB�/� ovaries as compared with WT animals. Inset, In vitro exposure of WT ovaries to NT4/5 (100 ng/ml,
8 h) increased c-Myc mRNA abundance as compared to control (C) ovaries incubated with vehicle. Panel B, Odc1 mRNA abundance was also
decreased in TrkB�/� ovaries. Inset, NT4/5 increased Odc1 mRNA abundance in WT ovaries. Panels C and D, The content of mRNA encoding
cyclins (CycD2 and CycE1), CDK (Cdk2 and Cdk4), and the CKI of the INK4 family (p15INK4b, p16INK4a, p18INK4c, and p19INK4d) and CIP/KIP family
(p21Cip1, p27Kip1, and p57Kip2) remain unaltered in TrkB�/� ovaries as compared with TrkB�/� mice. Panel E, c-Myc mRNA levels were increased in
TrkB�/� ovaries after oocyte-specific restoration of JAGGED1 synthesis. The ovaries from 3-d-old mice were incubated for 4 d with a lentiviral
construct carrying the Jagged1-coding region under the control of the Gdf9 promoter. Panel F, Neither p19INK4D nor p27Kip1 mRNA levels changed
after lentiviral-mediated restoration of JAGGED1 synthesis. Control ovaries were infected with a LV lacking Jagged1 cDNA (LV-no Jagged1). Each
column represents the mean of four to five mice per group, and vertical lines are SEM. One ovary from each animal was infected with LV-Jagged1
and the contralateral ovary with LV-no Jagged1. *, P � 0.05; **, P � 0.01 vs. their respective controls. AU, Arbitrary units.
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after oocyte-specific restoration of JAGGED1 synthesis.
These findings suggest that the proliferative and growth-
inducing actions of TRKB-activated NOTCH signaling
are mediated by c-MYC. Earlier studies support this con-
clusion. For instance, several years ago, it was reported
that expression of both c-Myc mRNA and c-MYC is re-
stricted to preantral follicles (52, 53). A very recent report
showed that inhibition of NOTCH2 signaling in primary
follicles decreased GC proliferation and reduced c-Myc
expression and that overexpression of the NOTCH2 in-
tracellular domain increases GC proliferation and induces
c-Myc expression (27). Further supporting an involve-
ment of c-Myc in mediating TRKB-activated Notch-
dependent GC proliferation is provided by the reduction
in Odc1 mRNA abundance observed in TrkB KO ovaries
and the increase in Odc1 expression elicited in WT ovaries
by the ligand-dependent activation of TRKB receptors.
Odc1 encodes ODC, an enzyme that plays an essential role
in cell proliferation (56) and whose transcription is acti-
vated by c-MYC (54, 55).

It has been shown that c-MYC activates the Cdc25A
gene, which encodes a phosphatase controlling CDK2 ac-
tivity, in addition to the genes encoding cyclin D2 and
CDK4. It has also been reported that c-MYC represses
p21Cip1, suggesting that c-MYC drives the cell cycle by
prolonging activation of cyclin E/CDK2 complexes (32).
The lack of changes in CycD2, Cdk4, and p21Cip1 expres-
sion that we observed in our studies may be interpreted as
indicating a lack of c-MYC effect on the expression of
these genes in the infantile ovary. However, in several in-
stances, c-MYC appears to act via a hit-and-run mecha-
nism (33), raising the possibility that changes in expres-
sion of these cell cycle components in our model are
evanescent and no longer detected after several days in
culture.

In sum, our results suggest that NOTCH signaling is
one of the cell-cell communication pathways used by NT
to control early follicular growth and that the coordinated
activation of TRKB and NOTCH signaling represents one
of the mechanisms of reciprocal oocyte-GC communica-
tion underlying the initiation of follicular growth. Our
results are consistent with a model in which BDNF/NT4/5
produced by GC would activate (directly or indirectly)
Jagged1 expression. In turn, JAGGED1 would activate
NOTCH2 receptors in GC, which would promote GC
proliferation and follicle growth by inducing expression of
the cell cycle regulator factor c-MYC. Although the early
stages of follicle development may be the most sensitive to
NOTCH signaling, it is possible that NT-initiated cell-cell
communication mediated through JAGGED1-NOTCH
also plays a role in later stages of follicle development.
Studies using mice in which TRKB receptors are condi-

tionally deleted from the ovary in a cell-specific manner
will be useful to address this question.
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