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Marı́a L Oróstica1,2, John Lopez1,2, Israel Rojas1,2, Jocelyn Rocco1,2, Patricia Dı́az1,2,
Patricia Reuquén1,2, Hugo Cardenas1,2, Alexis Parada-Bustamante3 and Pedro A Orihuela1,2

1Laboratorio de Inmunologı́a de la Reproducción, Facultad de Quı́mica y Biologı́a, Universidad de Santiago de Chile,
Alameda 3363, Casilla 40, Correo 33, Santiago, Chile, 2Centro para el Desarrollo en Nanociencia y Nanotecnologı́a–
CEDENNA, Santiago, Chile and 3Instituto de Investigaciones Materno-Infantil, Universidad de Chile, Santiago, Chile

Correspondence should be addressed to P A Orihuela; Email: pedro.orihuela@usach.cl
Abstract

In the rat oviduct, estradiol (E2) accelerates egg transport by a nongenomic action that requires previous conversion of E2 to

methoxyestrogens via catechol-O-methyltranferase (COMT) and activation of estrogen receptor (ER) with subsequent production of

cAMP and inositol triphosphate (IP3). However, the role of the different oviductal cellular phenotypes on this E2 nongenomic pathway

remains undetermined. The aim of this study was to investigate the effect of E2 on the levels of cAMP and IP3 in primary cultures of

secretory and smooth muscle cells from rat oviducts and determine the mechanism by which E2 increases cAMP in the secretory cells.

In the secretory cells, E2 increased cAMP but not IP3, while in the smooth muscle cells E2 decreased cAMPand increased IP3. Suppression

of protein synthesis by actinomycin D did not prevent the E2-induced cAMP increase, but this was blocked by the ER antagonist ICI

182 780 and the inhibitors of COMT OR 486, G protein-a inhibitory (Gai) protein pertussis toxin and adenylyl cyclase (AC) SQ 22536.

Expression of the mRNA for the enzymes that metabolizes estrogens, Comt, Cyp1a1, and Cyp1b1 was found in the secretory cells, but

this was not affected by E2. Finally, confocal immunofluorescence analysis showed that E2 induced colocalization between ESR1 (ERa)

and Gai in extranuclear regions of the secretory cells. We conclude that E2 differentially regulates cAMP and IP3 in the secretory and

smooth muscle cells of the rat oviduct. In the secretory cells, E2 increases cAMP via a nongenomic action that requires activation of

COMT and ER, coupling between ESR1 and Gai, and stimulation of AC.
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Introduction

In the female genital tract, estrogens regulate a variety of
biological functions including gamete transport, oocyte
fertilization, embryo development, and implantation
(reviewed in Croxatto (1996)). The classical mechanism
by which estradiol (E2) affects its target cells comprises
binding to estrogen receptors (ERs) and modification of
gene expression and protein synthesis (Nilsson et al.
2001). However, this model cannot explain E2 effects
that are not blocked by inhibitors of transcription or
translation, or that are too rapid to be due to changes in
gene expression. These features do not appear compa-
tible with the classical genomic actions and are termed
nongenomic (Lössel & Wheling 2003, Lössel et al. 2003).
Nongenomic actions of E2 often involve activation of
G protein-a inhibitory (Gai), stimulation of intracellular
signal transduction pathways that include generation of
second messengers such as cAMP and inositol tripho-
sphate (IP3), and activation of protein kinase A (PKA) or
phospholipase C (PLC) in the E2-target cells (Nadal et al.
2001, Wyckoff et al. 2001, Acconcia et al. 2005,
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Hill et al. 2010). Recently, it has been also proposed
that estrogen metabolites could be responsible for
some E2 nongenomic actions (Mueck & Seeger 2010,
Rincón-Rodrı́guez et al. 2013).

In the rat, the duration of oviductal egg transport is
dependent on ovarian hormones and mating-associated
signals (for review see Croxatto (2002)). A single injec-
tion of E2 on day 1 of the cycle or pregnancy shortens
oviductal transport of eggs from the normal 72–96 to
!24 h (Ortı́z et al. 1979). We have previously demon-
strated that RNA and protein synthesis inhibitors did not
block E2-induced acceleration of oviductal egg transport
in unmated rats, indicating that E2 accelerates oviductal
egg transport by a nongenomic mechanism (Orihuela
et al. 2001). This E2 nongenomic pathway involves a
previous conversion of E2 to methoxyestradiols, mediated
by the enzyme catechol-O-methyltransferase (COMT;
Parada-Bustamante et al. 2007, 2010), activation of ER
and adenylyl cyclase (AC) (Orihuela et al. 2003), and
successive production of cAMP and IP3 (Orihuela et al.
2003, 2006, 2013).
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The rat oviduct is a tubular organ mainly composed of an
intrinsic layer smooth muscle fiber, the myosalpinx, and
an innermost highly folded mucosa (secretory, ciliated,
and stromal cells), the endosalpinx. From the ovary to the
uterus, it is possible to distinguish in the oviduct the fimbria,
the ampulla, the isthmus, and the utero-tubal junction. In
the ampulla, ciliated cells are more abundant whereas
in the isthmus secretory cells are predominant (Croxatto
1996). Transport of oocytes through the ampulla depends
mainly on the activity of ciliated cells whose cilia beat
toward the uterus. In contrast, egg transport through the
isthmus depends on the contractile activity of the smooth
muscle cells (Moore & Croxatto 1988a, Rı́os et al. 2007).
The actual vision on the mechanics involved in the
acceleration of E2-induced egg transport in the rat oviduct
indicate thatE2 induces the releaseofparacrine signals from
the secretory cells initiating waves of myosalpinx (mainly
composed of smooth muscle cells) contractions that lead to
increase in the speed of the egg transport (Moore & Croxatto
1988b, Croxatto 2002, Parada-Bustamante et al. 2012).
Therefore in this work, we examined the contribution of the
secretory and smooth muscles cells in the E2 nongenomic
signaling that accelerates egg transport in the rat oviduct.
First, we determined the effect of E2 on the levels of cAMP
or IP3 in the secretory and smooth muscle cells from rat
oviducts. The results oriented us to investigate the
mechanism by which E2 increases cAMP in the secretory
cells. Thus, we examined the effect of E2 on the cAMP level
in the secretory cells under conditions in which protein
synthesis, ER, COMT, Gai, or AC activity was quenched
by selective inhibitors. In addition, the effect of E2 on the
expression of some enzymes involved in estrogen meta-
bolism and colocalization between ESR1 (ERa) and the
Gai protein was determined in the oviductal secretory cells.
Materials and methods

Animals

Locally bred Sprague–Dawley rats weighing 200–260 g were
used. The animals were kept under controlled temperature
(21–24 8C), and lights were on from 0700 to 2100 h. Water and
pelleted rat chows were supplied ad libitum. Female mature rats
were used in the estrus stage. The phases of the estrous cycle were
determined by daily vaginal smears (Turner 1961) and all females
were used after showing two consecutive 4-day cycles. The care
and manipulation of the animals was done in accordance with
the ethical guidelines of the Universidad de Santiago de Chile.
Culture of primary cells from rat oviducts

Secretory cells

A protocol to obtain secretory cells instead of ciliated cells
was performed in this work (Morales et al. 2000, 2006). For
each replicate, 12 oviducts from six rats were excised and
placed in pre-warmed Hanks’ solution (Sigma Chemical Co.) of
pH 7.4. The whole oviduct was cut into small (4–8 mm2) pieces
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in Hanks’ solution and then the epithelial cells were
mechanically removed from the rest of the tissue. The cell
suspension was centrifuged at 800 g during 5 min, washed, and
seeded into six-well tissue culture plates coated with collagen I,
rat-tail (Invitrogen) in DMEM/high modified medium with
4.0 mM L-glutamine and 4.500 mg/l glucose free of Phenol Red
(cat. no. SH30284.02, HyClone, Thermo Scientific, Walthman,
MA, USA) supplemented with 10% (V/V) of fetal bovine serum
(Cat. No. SH30396.03, HyClone), sodium pyruvate 1 mM, and
antibiotics: 100 UI/ml of penicillin and 100 mg/ml of strepto-
mycin. The epithelial cells were incubated at 37 8C in an
atmosphere of 5% (vol/vol) CO2 for at least 3 days to 75–80%
confluence and characterized by immunofluorescence staining
with a cytokeratine antibody. The presence of secretory and
ciliated cells in the primary cultures was determined using
immunohistochemical staining for MUC1 (secretory cell
marker; DeSouza et al. 1998) and b-tubulin IV (ciliated cell
marker; Shao et al. 2007, Nutu et al. 2009).

Smooth muscle cells

For each replicate, 12 oviducts from six rats were excised and
placed in pre-warmed Hanks’ solution (Sigma Chemical Co.)
of pH7.4. The whole oviduct was cut into small (4–8 mm2) pieces
in Hanks’ solution and then the smooth muscle cells were
mechanically removed from the rest of the tissue and treated
with collagenase, type I (Invitrogen) for 1 h to further the
disaggregation of the cells. The cell suspension was centrifuged
at 1200 g during 5 min, washed, and seeded into six-well tissue
culture plates (Becton Dickinson & Co., Franklin Lakes, NJ, USA)
in DMEM/high modified medium with 4.0 mM L-glutamine and
4.500 mg/l glucose free of Phenol Red (cat. no. SH30284.02,
HyClone, Thermo Scientific) supplemented with 10% (vol/vol)
of fetal bovine serum (cat. no. SH30396.03, HyClone), sodium
pyruvate 1 mM, and antibiotics: 100 UI/ml of penicillin and
100 mg/ml of streptomycin. Smooth muscle cells were incubated
at 37 8C in an atmosphere of 5% (vol/vol) CO2 for at least 7 days
to reach 75–80% confluence and characterized by immuno-
histochemical staining with an a-actin antibody.
Treatments

Primary cultures of secretory and smooth muscle cells were
treated with 10K9 M of E2 (Sigma) or ethanol 0.01% as vehicle.
Other primary cultures of secretory cells were also incubated
with the protein synthesis inhibitor actinomycin D (ActD,
1 mg/ml, Sigma), the ER antagonist ICI 182 780 (25 mg/ml, Tocris
Bioscience, Bristol, UK), the AC inhibitor SQ 22536 (7.5 mg/ml,
Calbiochem, La Jolla, CA, USA), the selective COMT activity
inhibitor OR 486 (25 mg/ml, Tocris Bioscience), or the Gai

protein inhibitor pertussis toxin (PTX, 1 mg/ml) as appropriate to
each experiment. DMSO 0.01% was used as a vehicle of the
inhibitors as it is more efficient than ethanol to dissolve
nonpolar or semi-polar drugs.
Measurement of cAMP levels

The primary cell cultures were sonicated in 100 ml of ice cold
10% (v/v) trichloroacetic acid (TCA) and centrifuged for 15 min
www.reproduction-online.org
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at 5000 g at 4 8C. The pellet was discarded and the supernatant
was washed four times with five volumes of water-saturated
diethyl ether. The upper layer was discarded after each wash.
Following the last wash, the aqueous extract was dried under a
stream of nitrogen at 60 8C. The levels of cAMP in dried extracts
were determined using Biotrak cAMP enzyme immunoassay
system, cat. no. RPN 225 (Amersham Pharmacia Biotech). This
kit is based on competition between unlabeled cAMP and
a fixed quantity of peroxidase-labeled cAMP for a limited
number of binding sites on a cAMP-specific antibody. This
allows the construction of a standard curve and the
measurement of cAMP levels in unknown samples. 3,3 0,5,5 0-
tetramethylbenzidine/hydrogen peroxide was used as a sub-
strate for color development. The optical density was read at
630 nm using a microplate reader (Bio-Tek Instruments, Inc.,
Winooski, VT, USA).
Measurement of IP3 levels

The primary cell cultures were sonicated in 100 ml of ice-cold
1 M TCA and centrifuged for 10 min at 1000 g at 4 8C. The
pellet was discarded and the supernatant was incubated for
15 min at room temperature. TCA was removed from the
supernatant with 0.5 ml of a solution 1,1,2-trichloro-trifluoro-
ethane (Sigma Chemical Co.)–trioctylamine (Sigma), 3:1 (v/v).
The levels of IP3 were determined using the Inositol-1,4,5-
trisphosphate [3H] Radioreceptor Assay Kit, cat. no. NEK064
(NEN Life Science Products, Boston, MA, USA). This kit is
based on a competition between non-radioactive IP3 and a
fixed quantity of [3H]-IP3 for a limited number of calf
cerebellum IP3 receptor-binding sites. This allows the con-
struction of a standard curve and the measurement of IP3 levels
in unknown samples.
Real-time PCR

Total RNA from primary secretory cell cultures was isolated
using TRIzol Reagent (Invitrogen). One microgram of total RNA
of each sample was treated with DNase I, amplification grade
(Invitrogen). The single-strand cDNA was synthesized by RT
using the superscript III reverse transcriptase first-strand system
for RT-PCR (Invitrogen), according to the manufacturer’s
protocol. The Light Cycler Instrument (Roche Diagnostics
GmbH) was used to quantify the relative gene expression of
Comt, Cyp1a1, and Cyp1b1 in the oviductal secretory cells;
Gapdh was chosen as the housekeeping gene for load control.
The SYBR Green I double-strand DNA binding dye (Roche
Diagnostics) was the reagent of choice for these assays. Primers
for Comt, 5 0-CAC CTA CTG CAC ACA GAA GG-3 0 (sense) and
5 0-GTT AGT GTG TGC ACT CGA AGC-3 0 (antisense); Cyp1a1,
5 0-AGT TTG GGG GAG GTT ACT GGT TC-3 0 (sense) and
5 0-GGA CAT CAC AGA CAG CCT CAT T-3 0 (antisense); Cyp1b1,
5 0-CCT TGG GGA CTC TCA GGT TG-3 0 (sense) and 5 0-CCA
TTC TTC TGC TAC TCG TTT CG-3 0; and Gapdh, 5 0-ACC ACA
GTC CAT GCC ATC AC-3 0 (sense) and 5 0-TCC ACC ACC CTG
TTG CTG TA-3 0 (anti sense). All real-time PCR assays were
carried out in duplicate. The thermal cycling conditions
included an initial activation step at 95 8C for 25 min, followed
by 40 cycles of denaturizing and annealing–amplification
www.reproduction-online.org
(95 8C for 15 s, 59 8C for 30 s, and 72 8C for 30 s), and finally
one cycle of melting (95–60 8C). To verify specificity of the
product, amplified products were subject to melting curve
analysis as well as electrophoresis, and product sequencing
was carried out to confirm identity using an ABI Prism310
Sequencer. The expression of Comt, Cyp1a1, and Cyp1b1
was determined using the equation: YZ2KDCp where Y is the
relative expression, Cp (crossing point) is the cycle in
the amplification reaction in which fluorescence begins to be
exponential above the background base line, KDCp is the
result of subtracting Cp value of Cyp1a1, Cyp1b1, and Comt
from Cp value of Gapdh for each sample. To simplify the
presentation of the data, the relative expression values were
multiplied by 103 (Livak & Schmittgen 2001).
Immunofluorescence

Oviductal cells were fixed in cold 4% paraformaldehyde in
PBS of pH 7.4–7.6 for 2 h, transferred to 10% w/v sucrose in
PBS for 60 min at 4 8C and 30% w/v sucrose in PBS at 4 8C
overnight. Then, they were blocked with 1% PBS–BSA for
120 min and incubated with mouse anti-cytokeratin (Santa
Cruz Biotechnology, Inc.) or mouse anti-a-actin (Santa Cruz
Biotechnology, Inc.) antibody 1:250 and 1:500 respectively.
After washing with PBS, the preparations were incubated for
2 h with rabbit anti-mouse IgG FITC conjugate (Santa Cruz
Biotechnology, Inc.) diluted 1:1000. The sections were
washed and counterstained with 1 mg/ml of Hoechst 33342
(Thermo Scientific, Rockford, IL, USA), washed again and
then mounted in Fluoromount G. As negative controls, the
primary antibody was replaced by preimmune serum. All
sections were visualized under an Optiphot Epifluoresence
Microscope (Olympus).
Immunohistochemical

Oviductal cells were fixed in cold 4% paraformaldehyde in
PBS of pH 7.4–7.6 for 2 h, transferred to 10% w/v sucrose in
PBS for 60 min at 4 8C and 30% w/v sucrose in PBS at 4 8C
overnight. Then, they were blocked with 1% PBS–BSA for
120 min and incubated with rabbit anti-MUC1 (Abcam,
Cambridge, MA, USA) or mouse anti-b-tubulin IV (Sigma)
antibody 1:100. After washing with PBS, the preparations were
incubated for 2 h with goat anti-rabbit or anti-mouse IgG
alkaline phosphatase conjugate (Chemicon International,
Temecula, CA, USA). The alkaline phosphatase activity was
detected by color development during incubation of the cells in
100 mM Tris/HCl of pH 9.5, 100 mM NaCl, and 5 mM MgCl2,
containing BCIP/NBT tablets (Sigma Chemical Co.; one
tablet in 10 ml). As negative controls, the primary antibody
was replaced by preimmune serum. All sections were
visualized under an phase-contrast Optiphot Epifluoresence
Microscope (Olympus).
Confocal microscopy

Oviductal cells were fixed in cold 4% paraformaldehyde in
PBS of pH 7.4–7.6 for 2 h and transferred to 10% w/v sucrose
in PBS for 60 min at 4 8C and 30% w/v sucrose in PBS at 4 8C
Reproduction (2014) 148 285–294
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MUC1 Negative control

Cytokeratin

Epithelial cells

Smooth muscle cells

α-actin Negative control

40× 40× 40×
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Figure 1 Expression of cytokeratin and a-actin in the primary cultures of
epithelial and smooth muscle cells from rat oviducts. Representative
photomicrographs of primary cultures of epithelial and smooth muscle
cells from rat oviducts were processed by immunofluorescence
microscopy to detect the expression of cytokeratin and a-actin. Note
that cytokeratin (green) and a-actin (green) were only expressed in
epithelial and smooth muscle cells respectively. Nuclei were stained
with Hoechst 33342 (blue). Negative controls of the immunoreactivity
were incubated with preimmune serum.
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overnight. Then, they were blocked with 1% PBS–BSA for
120 min and incubated with rabbit anti-ESR1 (Santa Cruz
Biotechnology, Inc.) or mouse anti-Gai (Santa Cruz Bio-
technology, Inc.) antibody 1:50 in 1% PBS–BSA in a humidified
chamber overnight. Followed by three rinses in PBS, the cells
were incubated for 60 min at room temperature with secondary
antibody Alexa Fluor 555-conjugated goat anti-rabbit IgG
(Invitrogen) or Alexa Fluor 588-conjugated goat anti-mouse
IgG (Invitrogen) diluted in 1% PBS–BSA. The samples were
subsequently washed with PBS and mounted in DABCO
(Sigma). As negative controls, the primary antibody was
replaced by preimmune serum. All sections were visualized
with laser scanning confocal microscopy on a Axiovert 100 M
microscope (Carl Zeiss, Jena, Germany).
β-tubulin IV

40× 40×

40× 40×

Negative control

Statistical analysis

Data for cAMP and IP3 assays or real-time PCR from cultured
oviductal cells were replicated five times for each treatment
(for each culture experiment, oviductal cells were recovered
from a pool of six different rats). Results subjected to statistical
analysis were expressed as meanGS.E.M. Data were subjected
to Kruskal–Wallis test, followed by Mann–Whitney U test for
pairwise comparisons when overall significance was detected.
Significance was accepted at P!0.05.
Figure 2 Primary cultures of epithelial cells from rat oviducts express
MUC1 but not b-tubulin IV. Representative photomicrographs of
primary cultures of epithelial cells from rat oviducts were processed by
immunohistochemistry to detect the expression of MUC1 (marker for
secretory cells) and b-tubulin IV (marker of ciliated cells). Note that
positive immunoreactivity for MUC1 (purple) was only observed in the
epithelial cells. Negative controls of the immunoreactivity were
incubated with preimmune serum.
Results

E2 differentially regulates cAMP and IP3 levels in
secretory and smooth muscle cells of the rat oviduct

This experiment was designed to determine the effect
of E2 on the level of cAMP and IP3 in the oviductal
Reproduction (2014) 148 285–294
secretory and smooth muscle cells. First, we
confirmed the purity of the cells by immunofluo-
rescence staining of cytokeratin or a-actin (Fig. 1) and
also established that the primary cultures of the
epithelial cells were conformed by secretory cells
(Fig. 2). Therefore, secretory or smooth muscle cells
were treated with ethanol or E2 during 0, 1, 3, or 6 h
and processed to measure the concentration of cAMP
or IP3 as described in the ‘Materials and methods’
section. Replicas of this experiment are indicated in
Figs 3 and 4.

Figure 3 shows that in the secretory cells, the basal
cAMP level ranged from 48.1G21.1 to 63.0G19.5 fmol/
mg of protein and in the smooth muscle cells it ranged
from 25.8G5.9 to 32.4G6.9 fmol/mg of protein. In the
secretory cells, treatment with E2 increased threefold
the amount of cAMP at 3 and 6 h but not at 1 h. In the
smooth muscle cells, E2 decreased threefold the amount
of cAMP level at 3 h with no effect at 1 and 6 h. On the
other hand, Fig. 4 shows that E2 did not affect the
basal level of IP3 in the secretory cells (vehicle,
134G45–164G53 fmol/mg of protein and E2, 93G55–
117G044 fmol/mg of protein) while in the smooth
muscle cells E2 increased IP3 level to fourfold at 6 h
(vehicle, 150G60 fmol/mg of protein and E2, 800G
130 fmol/mg of protein) without any effect at 1 h (vehicle,
190G70 fmol/mg of protein and E2, 140G90 fmol/mg of
protein) and 3 h (vehicle, 130G70 fmol/mg of protein
and E2, 104G90 fmol/mg of protein).
www.reproduction-online.org
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Figure 3 Effect of E2 on the cAMP level in primary cultures of secretory
and smooth muscle cells from rat oviducts. Primary cultures of
secretory and smooth muscle cells from rat oviducts were treated with
E2 10K9 M and 0, 1, 3, or 6 h later the cAMP level was determined by
an enzyme immunoassay system. Note that in the epithelial cells, E2

increased the cAMP level 3 and 6 h after treatment, while in the smooth
muscle cells E2 decreased the cAMP level 6 h after treatment. This
experiment consisted of five replicates. asb, P!0.05.
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Figure 4 Effect of E2 on the IP3 level in primary cultures of secretory and
smooth muscle cells from rat oviducts. Primary cultures of secretory
and smooth muscle cells from rat oviducts were treated with E2 10K9 M
and 0, 1, 3, or 6 h later the IP3 level was determined by a radioreceptor
assay. Note that in the epithelial cells, E2 did not affect the IP3 level
while in the smooth muscle cells E2 increased the IP3 level 6 h after
treatment. This experiment consisted of five replicates. asb, P!0.05.

Estradiol’s nongenomic action on the cAMP level 289
E2 increased cAMP level by a nongenomic action in
the oviductal secretory cells

This experiment was designed to determine whether the
effect of E2 on the cAMP level in the secretory cells
occurs under conditions in which RNA and protein
synthesis is suppressed. For this we used ActD, which is
an inhibitor of RNA and protein synthesis. Primary
cultures of secretory cells from rat oviducts were divided
into the following treatment groups: i) ethanolCDMSO,
ii) E2CDMSO, iii) ethanolCActD, and iv) E2CActD.
At 3 h after treatment, cultured cells were processed
to measure the concentration of cAMP as described in
the ‘Materials and methods’ section. Replicas of this
experiment are indicated in Fig. 5.

In the control group, the cAMP level was 58.3G
10.1 fmol/mg of protein, while in the E2-treated group it
was 283.9G16.7 fmol/mg of protein. Administration of
ActD alone or concomitant with E2 neither affected the
basal cAMP level (49.6G12.3 fmol/mg of protein) nor
the E2-induced cAMP increase (230.3G22.9 fmol/mg of
protein) in the oviductal secretory cells.
www.reproduction-online.org
E2 increased cAMP level through activation of ER,
Gai, and AC in the oviductal secretory cells

These experiments were carried out to determine
whether the effect of E2 on the cAMP level in the
oviductal secretory cells is mediated by activation of ER,
Gai, and AC. For this, we used ICI 182 780 that is an ER
antagonist, PTX that is a highly specific inhibitor of
heteromeric G proteins of the Gi class and SQ 22536 that
is a selective inhibitor of AC activity. In each experiment,
primary cultures of secretory cells from rat oviducts were
divided into the following treatment groups: i) ethanolC
DMSO, ii) E2CDMSO, iii) ethanolCinhibitor, and iv)
E2Cinhibitor. At 3 h after treatment, the cultured cells
were processed to measure the concentration of cAMPas
described in the ‘Materials and methods’ section.
Replicas of this experiment are indicated in Fig. 6.

The results are shown in Fig. 6. In the control group,
the cAMP level ranged from 51.1G10.3 to 55.6G
17.1 pmol/mg of protein while in the E2-treated group it
ranged from 283.3G19.7 to 316.9G51.3 fmol/mg of
protein. Administration of ICI 182 780, PTX, or SQ
22536 alone did not affect the basal cAMP level (range,
46.8G19.2–64.2G14.1 fmol/mg of protein) although
Reproduction (2014) 148 285–294
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blocked the E2-simulated cAMP increase (range, 83.4G
21.5–57.5G9.9 fmol/mg of protein).
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E2 increased cAMP level through activation of COMT in
the oviductal secretory cells

In this study, we investigated whether the effect of E2 on
the level of cAMP in the secretory cells occurs under
condition in which COMT activity is suppressed. For this
we used OR 486 which is a selective inhibitor of the
COMT activity. Primary cultures of secretory cells from
rat oviducts were divided into the following treatment
groups: i) ethanolCDMSO; ii) E2CDMSO; iii) ethanolC
OR, 486; and iv) E2COR 486. At 3 h after treatment, the
cultured cells were processed to measure the concen-
tration of cAMP as described in the ‘Materials and
methods’ section. Replicas of this experiment are
indicated in Fig. 7A.

Figure 7A shows that in the control group, the cAMP
level was 68.3G14.1 pmol/mg of protein, while in the
E2-treated group treated it was 243.9G36.7 fmol/mg of
protein. Administration of OR 486 alone did not affect
the basal cAMP level (71.8G23.4) although blocked the
E2-stimulated cAMP increase (69.5G19.4).
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Figure 6 Effect of ICI 182 780, PTX, or SQ 22536 on the E2-induced
cAMP increase in the oviductal secretory cells. Primary cultures of
secretory cells from rat oviducts were treated with E2 10K9 M alone or
with the estrogen receptor antagonist ICI 182 780 25 mg/ml, the Gai

protein inhibitor PTX 25 mg/ml, or the adenylyl cyclase inhibitor SQ
22536 7.5 mg/ml and 3 h later the cAMP level was determined by an
enzyme immunoassay system. Note that all three inhibitors blocked the
effect of E2 on the level of cAMP. This experiment consisted of five
replicates. asb, P!0.05.
E2 did not change the expression of the Comt, Cyp1a1,
and Cyp1b1 transcripts in the oviductal secretory cells

As COMT and the cytochrome P450 isoforms CYP1A1
and CYP1B1 convert E2 into methoxyestradiols, we
determined the effect of E2 on the mRNA levels for Comt,
Cyp1a1, and Cyp1b1. Primary cultures of oviductal
secretory cells were treated with ethanol or E2 10K9 M
and 3 h later the mRNA level for these enzymes was
assessed by real-time PCR. Replicas of this experiment
are indicated in Fig. 7B. E2 treatment did not change
Reproduction (2014) 148 285–294
the mRNA level of Comt, Cyp1a1, and Cyp1b1 in the
oviductal secretory cells (Fig. 7B).
E2 induced colocalization between ESR1 and Gai in
the oviductal secretory cells

In this study, we examined whether E2 is able to induce
colocalization between ESR1 and Gai in the oviductal
secretory cells. Primary cultures from rat oviductal
secretory cells were treated with ethanol or E2 M and
3 h later the expression and colocalization of ESR1 and
Gai were assessed by confocal microscopy. This
experiment was replicated five times.
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Figure 7 Effect of OR 486 on the E2-induced cAMP increase and
expression of Comt, Cyp1a1, and Cyp1b1 transcripts in the oviductal
secretory cells. (A) Primary cultures of secretory cells from rat oviducts
were treated with E2 10K9 M alone or with the cathecol-O-
methyltransferase activity inhibitor OR 486 25 mg/ml and 3 h later the
cAMP level was determined by an enzyme immunoassay system. Note
that OR 486 blocked the effect of E2 on the cAMP level. This experiment
consisted of five replicates. asb, P!0.05. (B) Primary cultures of
secretory cells from rat oviducts were treated with E2 10K9 M and 3 h
later the relative expression of the mRNA for Comt, Cyp1a1, and
Cyp1b1 was determined by real-time PCR. The values were normalized
to Gapdh. Note that E2 did not change the level of the transcripts.
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In the control group, ESR1 distribution was found in
the nuclear and extranuclear sites as previously reported
for the rat oviductal epithelial cells (Orihuela et al.
2009), but colocalization was not observed between
ESR1 and Gai proteins. However, E2 administration
induced colocalization between ESR1 and Gai in the
regions outside the nucleus of the oviductal secretory
cells (Fig. 8).
E2

40× 40× 40×

40× 40× 40×

Figure 8 Estradiol induces colocalization between ESR1 and Gai in the
oviductal secretory cells. Representative photomicrographs obtained
from primary cultures of oviductal secretory cells treated with E2

10K9 M or vehicle and 3 h later the colocalization between ESR1
(green) and Gai (red) were determined by confocal microscopy. The
merged image display colocalization of ESR1 and Gai as an orange
signal (arrows) only in the group treated with E2. Magnification is
shown in the inset.
Discussion

The E2 nongenomic pathway that accelerates egg
transport involves sequential activation of the signaling
cascades of cAMP–PKA–PLC–IP3 in the rat oviduct
(reviewed in Orihuela et al. (2013)). However, the role
of the different cell phenotypes of the rat oviduct on this
E2 nongenomic pathway is still unknown. Herein, we
show for the first time the separate contributions of the
secretory and smooth muscle cells on the dynamic
process that modulates cAMP and IP3 levels in response
to an E2 pulse. In the secretory cells, E2 increased cAMP
www.reproduction-online.org
production between 3 and 6 h, although the response of
IP3 was not affected. In the smooth muscle cells, E2

transiently decreased cAMP level at 3 h while IP3 level
was increased at 6 h. Thus, E2 differentially regulates
cAMP and IP3 production in the secretory and smooth
muscle cells of the rat oviduct. These differences may be
attributed to the differential expression of the ER
subtypes that exist in the secretory and smooth muscle
cells of the rat oviduct (Mowa & Iwanaga 2000, Orihuela
et al. 2009) or to changes in the different pools of ER that
initiate E2 nongenomic actions between these two
cellular phenotypes (Orihuela et al. 2009).

Further investigation to disclose the signaling pathway
by which E2 increases the level of cAMP in the secretory
cells of the rat oviduct revealed that this effect of E2 was
by a nongenomic mechanism because suppression of
mRNA protein synthesis by ActD did not prevent the
effect of E2 on the cAMP level. Blockade of ER by ICI
182 780 and inhibition of AC by SQ 22536 suppressed
the E2-induced cAMP increase in the secretory cells of
the rat oviduct indicating that the E2 nongenomic
pathway that increases cAMP requires binding of the
hormone to its classical receptor and activation of AC.
Several works have implicated to the E2 nongenomic
actions with the intracellular cAMP-signaling cascade.
E2 activates AC in vascular smooth muscle, breast
cancer, and uterine cells by a nongenomic mechanism
(Aronica et al. 1994, Farhat et al. 1996), while acute
stimulation of Ca2C uptake induced by E2 is accom-
panied by increased cAMP content in rat duodenal cells
and preosteoclastic cells (Fiorelli et al. 1996, Picotto
et al. 1996). Our findings provide the first evidence of a
nongenomic action of E2 associated to a cAMP increase
in the secretory cells of the mammalian oviduct.
Probably, this E2 nongenomic action could be associated
to the regulation of the secretory activity necessary to
Reproduction (2014) 148 285–294
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accelerate egg transport in the rat oviduct. Alternatively,
regulation of the tubal fluid formation by an increase
in the level of cAMP may be useful in providing an
adequate environment for some reproductive events as
sperm migration, oocyte fertilization, or preimplantation
embryo development. According with this assumption,
previous works have reported that estrogens regulate the
formation of tubal fluid secreted by the oviductal
epithelial cells (Leese et al. 2001) and that cAMP
increases fluid secretion into the oviductal lumen of
several species (Leung et al. 1995, Chen et al. 2010, Liao
et al. 2013).

There is increasing evidence that some biological
effects of E2 are in part mediated by its metabolites 2- and
4-methoxyestradiol (Mueck & Seeger 2010, Parada-
Bustamante et al. 2013, Perez-Sepulveda et al. 2013),
indicating an important role of methoxyestrogens in the
signaling cascades of E2 on its target organs. Our results
showing that suppression of the COMT activity blocked
the E2-stimulated cAMP accumulation in the secretory
cells of the rat oviduct suggest that this nongenomic
action of E2 requires previous conversion of E2 to
methoxyestrogens. Furthermore, the enzymes necessary
to metabolize estrogens are present in the oviductal
secretory cells, although their expression was not
regulated by E2. In order to corroborate the importance
of methoxyestrogens in the nongenomic action of E2 that
increases cAMP in the oviductal secretory cells, it is
necessary to treat these cells with methoxyestrogens and
evaluate their effects on the level of cAMP; however, this
was not explored in this work.

The role of G proteins in the nongenomic actions of
E2 has been documented in a variety of cell types
(Levin 1999, Fu & Simoncini 2008). In this context, we
have found that the ADP-ribosylating agent PTX blocked
the effect of E2 on the cAMP production in the secretory
cells, indicating a requirement for heterotrimeric Gi/o-
type proteins in this nongenomic action of E2. This is
supported by the fact that E2 also induced colocalization
between ESR1 and Gai in non-nuclear sites of these
cells, suggesting coupling of ESR1 with Gai protein as a
requisite for the E2-induced cAMP increase. Although all
major subclass of G proteins are expressed in many cell
types, it appears that Gai subclass is in a great mode, the
one most often linked with the E2 nongenomic actions
involving the participation of a presumptive ESR1
localized in extranuclear sites (Wyckoff et al. 2001,
Kumar et al. 2007, Lin et al. 2011, Watson et al. 2012).
To our knowledge, this is the first report showing
association between ESR1 and Gai in extranuclear sites
of the epithelium cells that may mediate an E2

nongenomic action in the mammalian oviduct. On the
other hand, we cannot assure whether this ESR1–Gai

colocalization occurs in the plasma membrane or is a
consequence of diminution of the ESR1 or Gai

expression in the secretory cells, because subcellular
fractionation or immunoprecipitation experiments were
Reproduction (2014) 148 285–294
not done in this work. Further studies are necessary to
disclose the molecular and cellular mechanisms that
explain how the activation of the Gai protein participates
in the E2 nongenomic pathway of the rat oviduct.

E2 regulates the expression of insulin-like growth
factor 1 (IGF1), IGF1-binding proteins, and IGF1
receptors in neurons of the CNS and in reproductive
tissues (Wimalasena et al. 1993, Sahlin et al. 1994,
Azcoitia et al. 1999). Furthermore, IGF1 stimulates the
accumulation of cAMP in mouse astrocytes and in the
preoptic area and hypothalamus of the rat. Moreover,
IGF1 is able to induce activation of ER via an increase in
intracellular cAMP level in the rat uterine cells (Aronica
& Katzenellenbogen 1993, Bartella et al. 2012).
Probably, the E2-induced cAMP increase observed in
the secretory cells of the rat oviduct involves functional
cross talk between E2/ER and IGF1 signaling pathways,
but this remains undetermined.

In summary, we have found that E2 differentially
regulates cAMP and IP3 production in the secretory and
smooth muscle cells of the rat oviduct. In the secretory
cells, E2 increases cAMP production by a nongenomic
action that requires COMT and ER activation, coupling
between ESR1 and Gai, and stimulation of AC. These
findings provide new evidence for understanding the
contribution of the different cellular phenotypes present
in the rat oviduct on the nongenomic regulation of the
egg transport exerted by E2.
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