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RESUMEN DE LA MEMORIA PARA OPTAR

AL TÍTULO DE INGENIERO CIVIL MATEMÁTICO

POR: JOSÉ MANUEL PALACIOS ARMESTO

FECHA: 2018

PROF. GUÍA: SR. CLAUDIO MUÑOZ CERÓN

PROF. COGUÍA: SR.

ESTABILIDAD DE SOLUCIONES TIPO SOLITON PARA CIERTAS ECUACIONES
DISPERSIVAS NO LINEALES

Este trabajo consiste principalmente en dos resultados matemáticos, basados en el estudio
de ecuaciones dispersivas no lineales, la estabilidad de ciertas soluciones de las mismas,
como así también la posible explosión en tiempo �nito.

En una primera parte, Capítulo 1, presentamos una breve introducción a los tópicos trata-
dos en esta memoria. Se hace especial énfasis en la descripción de los conceptos de ecuación
dispersiva, buen colocamiento, 2-solitones, estabilidad y explosión.

En el Capítulo 2 probaremos que las soluciones de tipo 2-soliton de la ecuación de sine-
Gordon (SG) son orbitalmente estables en el espacio de energía, el espacio natural para
resolver este problema. Las soluciones que estudiamos son los 2-kink, kink -antikink y
breather de SG. Con el objetivo de probar este resultado, utilizaremos las transforma-
ciones de Bäcklund implementadas gracias al Teorema de la Función Implícita. Estas
transformaciones nos permitirán reducir el problema de estabilidad para cada una de la
soluciones, al caso de la solución cero. Probaremos estos resultados siguiendo el espíritu
de un paper de M. A. Alejo y C. Muñoz, que trata el caso de la ecuación de Korteweg-de
Vries modi�cada. Sin embargo, más adelante veremos que el caso de la ecuación de SG pre-
senta varias nuevas di�cultades dado el carácter vectorial de sus soluciones. Este resultado
mejora los anteriores probados por M. A. Alejo et al., y entrega una primera demostración
rigurosa de la estabilidad de los 2-solitones de la ecuación de SG en el espacio de energía.

En el Capítulo 3 nuestro principal objetivo será estudiar nuevas propiedades de blow-up
dispersivo para el sistema de Schrödinger-Korteweg-de Vries. Más precisamente, probare-
mos explosión para datos iniciales en H2−(R)×H3/2−(R), como consecuencia de mostrar
previamente una nueva propiedad de persistencia del �ujo asociado al sistema, establecida
sobre ciertos espacios de Sobolev con pesos fraccionarios cuidadosamente escogidos.
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This work consists mainly of two mathematical results based on the study of non-linear
dispersive equations, the stability of certain solutions of them, as well as the possible �nite
time blow-up.

In a �rst part, Chapter 1, we present a brief introduction to the topics discussed in this
thesis. Special emphasis is placed on the description of the concepts of dispersive equation,
well-posedness, 2-solitons, stability and blow-up.

In Chapter 2 we prove that the 2-soliton solutions of the sine-Gordon equation (SG) are
orbitally stable in the energy space, the natural space to solve this problem. The solu-
tions that we studied are the 2-kink, kink -antikink and breather of SG. In order to prove
this result, we will use Bäcklund transformations implemented by the Implicit Function
Theorem. These transformations will allow us to reduce the stability problem for each of
the solutions to the case of the zero solution. We shall prove these results in the same
spirit of a paper done by M. A. Alejo and C. Muñoz, which deals with the case of the
modi�ed Korteweg-de Vries equation. However, we shall see that SG presents several new
di�culties due to the vectorial character of its solutions. This result improves the previous
ones proved by Alejo et al., and provides a �rst rigorous demonstration of the stability of
the 2-solitons of the SG equation in the energy space.

In chapter 3 our main goal is to study new properties of dispersive blow-up for the
Schrödinger-Korteweg-de Vries system. More precisely, we prove dispersive blow-up for
initial data in H2−(R) × H3/2−(R), as a consequence of previously proving a new persis-
tence property of the �ow associated to the system. This persistence property is established
on certain Sobolev spaces with well-chosen fractional weights.
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Chapter 1

Introduction

1.1 Linear Dispersive Equations

A constant-coe�cient linear dispersive PDE is an equation of the form

∂tu(t, x) = Lu(t, x), u(0, x) = u0(x), (1.1.1)

where the �eld u : R × Rd → V takes values in a �nite-dimensional Hilbert space V , and
L is a skew-adjoint constant coe�cient di�erential operator in space, taking the form

Lu(x) :=
∑
|α|≤k

cα∂
α
xu(x),

where k ≥ 1 is an integer (the order of the di�erential operator), α = (α1, ..., αd) ∈ Zn+
ranges over all multi-indices with |α| := α1 + ... + αd less than or equal to k, ∂αx is the
partial derivative

∂αx :=

(
∂

∂x1

)α1

...

(
∂

∂xd

)αd
,

and cα ∈ End(V ) are coe�cients that do not depend on x, where End(V ) is the set of linear
transformation V → V . This operator is classically only de�ned on k-times continuously
di�erentiable functions, but we may extend it to distributions or functions in other function
spaces in the usual manner, thus we can talk about both classical and weak (distributional)
solutions to the equation.

In order to give a complete notion of what a dispersive partial di�erential equation is,
consider the one-dimensional frame. We look for plane wave solutions of the form

u(t, x) = Aei(kx−ωt),

1



where A, k and ω are constants representing the amplitude, the wavenumber, and the
frequency, respectively. Hence u will be a solution of (1.1.1) if and only if

ω +
∑
α≤k

cαi
α−1kα = 0.

This equation for ω is called the dispersion relation. A commonly used de�ning criteria for
dispersive equations is that ω(ξ) is a real valued function of ξ and d2ω

dξ2
6= 0. In the physical

context this means that di�erent frequencies in this equation will tend to propagate at
di�erent velocities, thus when time evolves, the di�erent waves disperse in the medium,
with the result that a single hump breaks into wave-trains. Under this notion the transport
equation

∂tu = −v · ∇u, u(0, x) = u0(x),

and the wave equation

∂2
t u− ∂2

xu = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x),

are not dispersive. This is due to the fact that the �rst one moves all frequencies with the
same velocity (and is thus a degenerate case of a dispersive equation), while the last one
is such that the frequency of a wave determines the direction of propagation, but not the
speed.

The relation between ω and ξ also characterizes the plane wave motion. Consider, for
example, the linear Schrödinger equation

iut + uxx = 0,

and the plane wave u(t, x) = ei(ξx−ωt). Then, u(t, x) is a solution of the equation if and only
if the dispersion relation ω = ξ2 holds. Note that in this case ω is a real valued function of
the frequency. An interesting notion is the phase velocity of the waves which is de�ned by

νp(ξ) :=
ω

ξ
.

With this de�nition one can re-write the solution as:

u(t, x) = eiξ(x−νp(ξ)t) = u(0, x− νp(ξ)t),

and conclude that the wave travels with velocity νp(ξ). In particular, large frequency data
travel faster than smaller ones. Another related notion is the group velocity,

νg(ξ) := ω′(ξ) =
dω

dξ
,

which describes how a frequency localized bump function around ξ moves. To see why
the group velocity is di�erent than the phase velocity, let g(x) := u(0, x) be concentrated
around a frequency ξ0. Using the Fourier transform, we can write the solution as

u(t, x) =
1√
2π

∫ ∞
−∞

eixξe−itξ
2

ĝ(ξ)dξ.

2



Approximating ω(ξ) = ξ2 around ξ0 we have,

ξ2 = ω(ξ0) + (ξ − ξ0)ω′(ξ0) +O
(
(ξ − ξ0)2

)
= 2ξ0ξ − ξ2

0 +O
(
(ξ − ξ0)2

)
,

and ignoring the error term, we obtain

u(t, x) ≈ eitξ
2
0

√
2π

∫ ∞
−∞

eixξe−2itξ0ξĝ(ξ)dξ

= eitξ
2
0g(x− 2ξ0t).

This suggests that the bump function moves with group velocity ω′(ξ0) = 2ξ0, which is
twice the phase velocity at ξ0.

Comparing the plain wave solutions above with the plain wave solutions of the heat equa-
tion ut − uxx = 0, we see that ω = −iξ2 is complex valued. Therefore, each nonzero
mode decays exponentially in time. Spatially localized solutions of dispersive equations
also decay in time (at a slower rate) due to a more involved reason. When no boundary
conditions are imposed, di�erent frequency components of the data evolve with di�erent
velocities, and hence spread out in space as time increases. This causes the solution to
decay in time at a polynomial rate. This can also be understood by noting the L2 conser-
vation ‖u(t)‖L2 = ‖u(0)‖L2 for the solutions of the linear Schrödinger equation. A spatially
localized smooth bump of height

√
k and base 1/k would spread out to an interval of length

kt at time t and hence by the L2 conservation one expects the solution to decay to the
height 1√

kt
.

In contrast, on bounded domains such as the torus T the solution cannot spread out, but
instead di�erent frequency components rotate around the torus with di�erent velocities.
This makes time averages smoother because of a subtle cancellation between di�erent
frequency components.

For a more detailed discussion about these concepts see [20, 54, 82].

1.2 Semilinear equations and Well-Posedness Theory

In partial di�erential equations theory, the fact that one has to work in in�nite dimensional
spaces leads to di�culties even in the de�nition of a well-posed problem. This fact was
�rst put forward by J. Hadamard in the beginning of the twentieth century and we recall
his classical example of an ill-posed problem (see [76] for a more detailed explanation of
these examples).

3



We aim to solving the Cauchy problem in the upper half-plane for the Laplace equation:{
utt + uxx = 0, in D = R× (0,∞)

u(x, 0) = 0, ut(x, 0) = f(x).
(1.2.1)

By Schwarz re�exion principle, the data f has to be analytic if u is required to be continuous
on D. We consider the sequence of initial data φn, n ∈ N:

φn(x) = e−
√
nn sin(nx), φ0(x) ≡ 0.

It is easily checked that for any k ≥ 0,

φn → 0

in the Ck-norm. In fact, for any ε > 0, there exist Nε,k ∈ N such that

sup
x

∑
j≤k

|φ(j)
n (x)| ≤ ε if n ≥ Nε,k.

Note that φn oscillates more and more as n → +∞. On the other hand one �nds by
separation of variables that for any n ∈ N, the Cauchy problem (1.2.1) with f = φn has
the unique solution

νn(x, t) = e−
√
n sin(nx) sinh(nt),

and of course ν0(x, t) ≡ 0. Things seem going well but for any t0 > 0 (even arbitrary
small), and any k ∈ N,

sup
x
|ν(k)
n (x, t0)| = nke−

√
n sinh(nt0)→ +∞

as n → +∞. In other words, the map T : ϕn → νn(·, t0)· is not continuous in any
Ck-topology. This catastrophic instability to short waves is called Hadamard instability.
It is totally di�erent from instability phenomenon one encounters in ODE problems, for
example, the exponential growth in time of solutions.

On the other hand, the fact that norms in an in�nite dimensional space are not equiva-
lent implies of course that the asymptotic behavior of solutions to PDE's depends on the
topology as shows the following example.

Let consider the Cauchy problem {
ut + xux = 0,

u(x, 0) = u0,

where u0 ∈ S(R) is in the Scharwtz class. The Lp norms of the space derivatives u(k)
x = ∂kxu

of the solution u(x, t) = u0(xe−t) are

‖u(k)
x ‖Lp = et(

1
p
−k)‖u(k)

0 ‖Lp .

4



For instance, the L∞ norm of u is constant while the Lp norms, 1 ≤ p <∞ grow exponen-
tially. On the other hand all the homogeneous Sobolev norms Ẇ k,p, k ≥ 1, p > 1 decay
exponentially to zero.

One can state a general concept of a well-posed problem for any PDE problem (P). Let
be given three topological vector spaces (most often Banach spaces) U , V and F , with
U ⊂ V . Let f be a vector of data (initial conditions, boundary data, forcing terms, etc)
and u be the solution of (P). One says that (P) is well-posed (in the considered functional
framework) if the three following conditions are full�lled:

1. For any f ∈ F , there exists a solution u ∈ U of P .

2. This solution is unique in U .

3. The mapping f ∈ F 7→ u ∈ V is continuous from F into V .

To be more speci�c, consider for instance scalar Cauchy problems of type:{
∂tu = iLu(t) + F (u(t)),

u(0) = u0.
(1.2.2)

Here u = u(t, x), x ∈ Rn and t ∈ R. The operator L is a skew-adjoint operator de�ned in
Fourier variables by

L̂f(ξ) = p(ξ)f̂(ξ),

where the symbol p is a real function (not necessary a polynomial) and F is a nonlinear
term depending on u and possibly on its space derivatives. The linear part of (1.2.2) thus
generates an unitary group S(t) in L2(Rn) (and in all Sobolev spaces) which is unitary
equivalent to û0 7→ eitp(ξ)û0.

Classical examples of equations in the form (1.2.2) involve the nonlinear Schrödinger equa-
tion (NLS), where u is complex-valued

iut + ∆u+ |u|pu = 0,

the generalized Korteweg-de Vries equation

ut + upux + uxxx = 0,

or the Benjamin-Ono equation

ut + uux −Huxx = 0,

whereH is the Hilbert transform, and many of the classical semilinear dispersive equations.
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De�nition 1.2.1. The Cauchy problem (1.2.2) is said to be locally well-posed in X, where
X is a function space, if for every u0 ∈ X there exist T > 0 and a unique solution of
(1.2.2):

u ∈ C([0, T );X).

Moreover, the map data solution, u0 7→ u(t, ·), locally de�ned from X into C([0, T );X), is
continuous.

Therefore, our notion of well-posedness includes existence, uniqueness and persistence (the
solution u(t) belongs to the same space as the initial data and its time trajectory describes
a curve on it). Thus, the solution �ow of the equation de�nes a dynamical system in X.
In the case that T can be taken arbitrarily large, we shall say that the equation is globally
well-posed in X. In some critical cases T does not depend only on the X-norm of u0, but
on u0 itself in a more complicated way.

For a more detailed discussion about well-posedness see [76] and [82].

1.3 Nonlinear Stability of Solutions

The study of perturbations of solitons or solitary waves leads to the introduction of the
concepts of orbital and asymptotic stability. In order to give a complete notion of these
concepts, consider for instance the sine-Gordon (SG) equation:

∂2
t u(t, x)− ∂2

xu(t, x) + sinu(t, x) = 0, t, x ∈ R, u(t, x) ∈ R ∨ C. (1.3.1)

This equation has soliton (and multisoliton) solutions given by the following family of real
functions: Let x0 ∈ R be a shift parameter and β ∈ (−1, 1) a velocity parameter. Then,
the soliton solutions of the SG equation are given by

Q(t, x) := Qγ(x− βt− x0), Qγ(x) := 4 arctan
(
eγ(x+x0)

)
, γ :=

1√
1− β2

.

The following de�nition gives us the precise statement of nonlinear orbital stability for the
standard Sobolev spaces Hs(R).

De�nition 1.3.1 (Orbital Stability). Let s ∈ R �xed. We say that Qγ is nonlinearly stable
in Hs if for any u0 ∈ Hs such that ‖u0 −Qγ‖Hs < α, then one has that the corresponding
solution of the equation (1.3.1) satis�es

sup
t∈R
‖(u, ∂tu)(t)− (Qγ(· − ρ(t)), (∂tQγ)(· − ρ(t)))‖Hs×Hs−1 . α, (1.3.2)

for some ρ(t) ∈ R. Otherwise, we say that Qγ is unstable.
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In other words, a small perturbation of a soliton solution stays close enough to a soliton
with a corrected translation parameter. Note that the constant involved in (1.3.2) does
not depende on t and α. The parameter ρ(t) is absolutely necessary since if γ ∼ γ′,
with |γ − γ′| = α � 1, one has ‖Qγ − Qγ′‖Hs ∼ α � 1, but the corresponding solution
‖Qγ(· − βt) − Qγ′(· − β′t)‖Hs ∼ 1, as t → ∞. In that sense, we say that (1.3.2) is a sort
of orbital stability.

Orbital stability fo the SG kink was proved in H1 × L2 by Henry-Perez-Wreszinski [37].

On the other hand, asymptotic stability concerns with the small residue given by the
stability result above mentioned. It is legitimate to wonder whether u(t) should actually
converge to a soliton in some sense. Consider for example the generalized Korteweg-de
Vries equation:

ut + (uxx + um)x = 0, t, x ∈ R, u(t, x) ∈ R.
This equation has soliton solutions of the form

u(t, x) := Qc(x− ct), Qc(s) = c
1

m−1Q(
√
cs), Q(x) =

(
m+ 1

2 cosh2
( (m−1)x

2

)) 1
m−1

.

Thus, two solitons of similar velocities Qc(x − ρ(t)) and Qc̃(x − ρ(t)), with c ∼ c′ but
di�erent, are always at a positive distance in any Sobolev space Hs(R), s ∈ R. In addition,
a standard classi�cation result tell us that if ‖u(t) − Qc(· − x(t))‖H1(R) → 0 as t → +∞,
for some x(t), then u(t) is a pure soliton solution. These two arguments suggest the
non existence of a completely and general H1-convergence to a soliton solution of a small
perturbation of a soliton.

As Muñoz explain in [68], in order to solve this problem one needs to reformulate the
asymptotic stability property, either by introducing some suitable weighted spaces [62], or
by considering only local norms [49]. In this last formulation, one has the existence of
β > 0 depending of α small enough and c+ > 0 with |c+ − c| . α such that

‖u(t)−Qc+(· − ρ(t))‖H1(x>βt) → 0,

as t→ +∞. Moreover, limt→+∞ ρ
′(t) = c+. In other words, there is strong H1-convergence

near the soliton.

For a more detailed discusion about stability and asymptotic stability of solitons see [68, 5].

1.4 Why studying breathers

In some dispersive PDEs there is a special family of solutions called Breathers. Breathers
are oscillatory bound states. They are periodic in time (after a suitable space shift) and
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localized in space real functions. Solution like breathers have become a canonical example
of complexity in nonlinear integrable systems. Moreover, their surprising mixed behavior,
combining oscillatory and soliton character has focused the attention of many researchers
since thirty years ago (see [78, 15, 26]).

From the physical point of view, breather solutions seem to be relevant to localization-
type phenomena in optics, condensed matter physics and biological processes [9]. They
also play an important role in the modeling of freak and rogue waves events on surface
gravity waves and also of internal waves in the strati�ed ocean, in Josephson junctions and
even in nonlinear optics. See [1, 34, 33, 29] for a representative set of these examples.

From a mathematical point of view, breather solutions arise in di�erent contexts. For
instance, if we consider the modi�ed Korteweg-de Vries (mKdV) equation:

ut + (uxx + u3)x = 0, t, x ∈ R, u(t, x) ∈ R,

in a geometrical setting, mKdV breathers appear in the evolution of closed planar curves,
playing the role of smooth localized deformations traveling along the closed curve [5].
Moreover, it is interesting to point out that mKdV breather solutions have also been
considered by Kenig, Ponce and Vega in their proof of the non-uniform continuity of the
mKdV �ow in the Sobolev spaces Hs for s < 1

4
[46]. Furthermore, they should play an

important role in the soliton-resolution conjecture, according to the analysis developed by
Schuur in [78]. On the other hand, consider for example the sine-Gordon (sG) equation:

utt + uxx + sinu = 0, t, x ∈ R, u(t, x) ∈ K = R ∨ C.

In this case, SG breathers play an important role in the so-called asymptotic stability
problem for the kink solution (see [79, 50, 51]).

It should be said that there is no universal de�nition for breathers. Although, there are
de�nitions for some particular equations, for instance, in [7] you can �nd a de�nition that
match the sine-Gordon case.

For a more detailed discusion of the relevance of breather solution see [7, 6, 5, 3].

1.5 Dispersive Blow-Up

Dispersive blow up is a phenomenon of focusing of smooth initial disturbances with �nite
mass (or �nite energy, depending on the physical context) that relies upon the dispersion
relation guaranteeing that, in the linear regime, di�erent wavelengths propagate at di�erent
speeds. This is especially the case for models wherein the linear dispersion is unbounded, so
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that energy can be moved around at arbitrarily high speeds, but even bounded dispersion
can exhibit this type of singularity formation [17].

Roughly speaking, dispersive blow up refers to the fact that the loss of some type of
smoothness presented by some solutions is carried out by the linear part and not by the
nonlinear term.

To be more concrete, consider the Cauchy problema for the linear (free) Schrödinger equa-
tion

i∂tu+ ∆u = 0, u(t = 0) = u0(x), (1.5.1)

where x ∈ Rn for some n ∈ N. For u0 ∈ L2(Rn), elementary Fourier analysis shows the
solution to this initial-value problem is

u(t, x) = eit∆u0(x) :=
1

(2π)n

∫
Rn
e−it|ξ|

2

û0(ξ)eiξ·xdξ. (1.5.2)

Here, û0 denotes the Fourier transformed initial data,

Fu0(ξ) ≡ û0(ξ) =

∫
Rn
e−2πiξ·xu0(x)dx.

The corresponding inverse Fourier transform will be denoted by F−1. From (1.5.2), it is
immediately inferred that for any s ∈ R, solutions lie in C(R, Hs) whenever u0 lies in
the L2-based Sobolev space Hs. Moreover, the evolution preserves all these Sobolev-space
norms, which is to say

‖u(t, ·)‖Hs(Rn) = ‖u0‖Hs(Rn),

for t ∈ R. In certain applications of this model, the case s = 0 in the last formula
corresponds to conservation of total mass in the underlying physical system.

However, in Theorem 2.1 of [18], it was shown that for any given point (t∗, x∗) ∈ R+ ×Rn

there exists initial data u0 ∈ C∞(Rn) ∩ L2(Rn) ∩ L∞(Rn) such that the solution u(t, x) of
the corresponding initial-value problem for the free Schrödinger equation:

i∂tu+ ∆u = 0, u(t = 0) = u0(x), (1.5.3)

is continuous on R+ × Rn \ {(t∗, x∗)}, but

lim
(t,x)→(t∗,x∗)

|u(t, x)| = +∞.

This fact is referred to as (�nite-time) dispersive blow up. The analogous phenomena
also appears in other linear dispersive equations, such as the linear Korteweg-de Vries
equation [14] and the free surface water waves system linearized around the rest state [18].

As Bona et al. explain in [17], at �rst sight, one would expect that nonlinear terms would
destroy dispersive blow up. What is a little surprising is that even the inclusion of physically
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relevant nonlinearities in various models of wave propagation does not prevent dispersive
blow up. Indeed, theory shows in some important cases that initial data leading to this
focusing singularity under the linear evolution continues to blow up in exactly the same way
when nonlinear terms are included. In [16], this was shown to be true for the Korteweg-de
Vries equation, a model for shallow water waves and other simple wave phenomena. This
result and analogous dispersive blow up theory in [18] for solutions of the one-dimensional
nonlinear Schrödinger equations,

i∂tu+ ∂2
xu± |u|pu = 0, u(x, 0) = u0(x),

where x ∈ R and p ∈ (0, 3), lead to the speculation that such focusing might be one road
to the formulation of rogue waves in shallow and deep water and nonlinear optics (see
[27, 28, 47, 80]).

The analysis put forward in [16] and [18] revolves around providing bounds on the nonlinear
terms in a Duhamel representation of the evolution. Because the phenomenon is due to
the linear terms in the equation, data of arbitrarily small size will still exhibit dispersive
blow up, and indeed it can be organized to happen arbitrarily quickly. This emphasizes
the linear aspect of these singularities and di�erentiates it from the blow up that occurs
for some of the same models when the nonlinear term is focusing and su�ciently strong
(see [81] for a general overview of this aspect of Schrödinger equations). Dispersive blow
up thereby also serves to demonstrate ill-posedness of the considered models in L∞-spaces.

1.6 Results of this Thesis

This thesis contains essentially two main results, which are part of the following two articles:

� C. Muñoz, and J. M. Palacios, Nonlinear stability of 2-solitons of the Sine-Gordon
equation in the energy space, preprint arXiv:1801.09933, preprint sent for publication
[69]. (Chapter 2.)

� F. Linares, and J. M. Palacios, On the persistence properties of solutions to the
Schrödinger-Korteweg-de Vries system, and applications to dispersive blow-up, preprint
2018 [55]. (Chapter 3.)

1.6.1 First part: stability of Sine-Gordon 2-solitons

Consider the sine-Gordon equation in physical coordinates for a scalar �eld φ:

φtt − φxx + sinφ = 0. (1.6.1)
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Here, φ = φ(t, x) is a real or complex-valued function, and (t, x) ∈ R2. This equation has
the following families of explicit solutions: For x1, x2 ∈ R shift parameters, β ∈ (−1, 1) a
scaling parameter, and γ = (1− β2)−1/2 the Lorentz factor. We will study:

1. The sine-Gordon breather B = B(t, x) = B(t, x; β, x1, x2) given by

B(t, x; β, x1, x2) = 4 arctan

(
β

α

sin(α(t+ x1))

cosh(β(x+ x2))

)
, α =

√
1− β2, β 6= 0,

which represents a solution which is localized in space and oscillatory in time because
of the parameter α.

2. The sine-Gordon 2-kink R = R(t, x), given by

R(t, x; β, x1, x2) = 4 arctan

(
β

sinh(γ(x+ x2))

cosh(γ(t+ x1))

)
, β 6= 0,

which represents the interaction of two SG kinks with speeds ±β.

3. Finally, we shall consider the sine-Gordon kink-antikink A = A(t, x), which is given
by:

A(t, x; β, x1, x2) = 4 arctan

(
1

β

sinh(γ(t+ x1))

cosh(γ(x+ x2))

)
, β 6= 0,

which represents the elastic collision between a sine-Gordon kink and an anti-kink,
with speeds ±β.

The aim of this �rst part is to prove the following nonlinear stability of the 2-soliton
solutions of the SG equation de�ned above.

Theorem 1.6.1 (Stability of 2-solitons in the energy space). The 2-solitons of SG (1.6.1)
are nonlinearly stable under perturbations in the energy space H1 × L2. More precisely,
there exist C0 > 0 and η0 > 0 such that the following holds. Let (φ, φt) be a solution of
(1.6.1), with initial data (φ0, φ1) such that

‖(φ0, φ1)− (D,Dt)(0, · ; β, 0, 0)‖H1×L2 < η, (1.6.2)

for some 0 < η < η0 su�ciently small, and where (D,Dt)(t, · ; β, 0, 0) is a 2-soliton
(breather, 2-kink or kink-antikink). Then, there are shifts x1(t), x2(t) ∈ R well-de�ned and
di�erentiable such that

sup
t∈R
‖(φ(t), φt(t))− (D,Dt)(t, · ; β, x1(t), x2(t))‖H1×L2 < C0η. (1.6.3)

Moreover, we have
sup
t∈R
|x′1(t)|+ |x′2(t)| . C0η.

This theorem generalizes to the case of 2-solitons solutions the previous result of Henry-
Perez-Wreszinski concerning the nonlinear stability of the 1-soliton solution of the sine-
Gordon equation (see [37]).
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1.6.2 Second part: Dispersive blow-up and persistence properties

for the Schrödinger-Korteweg de Vries system

Consider the Initial Value Problem associated to the Schrödinger-Korteweg-de Vries system
in Rt × Rx, 

i∂tu+ ∂2
xu+ |u|2u = αuv, t, x ∈ R,

∂tv + ∂3
xv + 1

2
∂x(v

2) = γ∂x(|u|2),
u(x, 0) = u0(x), v(x, 0) = v0(x),

(1.6.4)

where u = u(t, x) is a complex-valued function and v(t, x) is a real-valued function. The
aim of this second part is to prove the following two results concerning the solutions of the
IVP (1.6.4). First, we prove persistence of regularity and decay.

Theorem 1.6.2 (Persistence). Let s ∈ R, r1, r2 ≥ 0 be �xed parameters. Let

(u0, v0) ∈
(
Hs+1/2(R) ∩ L2(|x|r1dx)

)
×
(
Hs(R) ∩ L2(|x|r2dx)

)
,

with

s >
3

4
, s+

1

2
> r1, and s > 2r2.

Then there exist T = T (‖u0‖s+ 1
2

+ ‖v0‖s) > 0 and a unique solution (u(t), v(t)) of the IVP

(1.6.4) satisfying

u ∈ C([0, T ];Hs+ 1
2 (R) ∩ L2(|x|r1dx)), v ∈ C([0, T ];Hs(R) ∩ L2(|x|r2dx)).

Furthermore,

‖Ds
x∂xu‖L∞x L2

T
+ ‖Ds− 1

2
x ∂xv‖L∞x L2

T
+ ‖Ds

x∂xv‖L∞x L2
T
<∞,

‖u‖L2
xL
∞
T

+ ‖v‖L2
x‖L∞T <∞,

‖∂xu‖L4
TL
∞
x

+ ‖∂xv‖L4
TL
∞
x
<∞.

Moreover, given T ′ ∈ (0, T ), the map data solution is Lipschitz continuous.

The proof of this theorem is based on the contracting mapping principle. Moreover, as a
consequence of Theorem 1.6.2, we are able to prove the existence of dispersive blow-up for
the Schrödinger-Korteweg-de Vries system.1

Theorem 1.6.3 (Dispersive blow-up). There exists initial data

u0 ∈ C∞(R) ∩H2−(R), v0 ∈ C∞(R) ∩H3/2−(R),

1Here we adopt the following notation, for s ≥ 0

Hs+(R) =
⋃
s′>s

Hs′(R), Hs−(R) =
⋃

0≤s′<s

Hs′(R).
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such that the following holds: there exists t∗ ∈ [0, T ] such that the corresponding solution
(u, v)(·, ·) of the IVP 1.6.4:

u ∈ C([0, T ] : H2−(R)), v ∈ C([0, T ] : H3/2−(R)),

provided by Theorem 1.6.2 is such that

u(t∗, ·) /∈ H2(R), v(t∗, ·) /∈ C1(R).

This theorem generalizes the results for each of the components itself, this time proved for
the coupled NLS-KdV system (see [17, 56]).

It should be said that in Theorem 1.6.3 there is no dispersive blow-up for component of the
solution related to the nonlinear Schrödinger equation, since neither the solution nor any
of its derivatives is loosing regularity in terms of the L∞-norm (at least we were not able
to prove that). Nevertheless, we shall prove a smoothing e�ect by a quarter of derivative
associated to its corresponding nonlinear term. The main issue to establish the dispersive
blow-up for the NLS solution is to deal with the coupled term (in KdV), which has both
worse regularity and worse persistence in weighted Sobolev spaces than the NLS part.
More explicitly, to show that the NLS solution has dispersive blow-up we must prove that
the solution u(t, x) is in H

5
2

+ε, even when it has a term which is only in H
3
2

−
(R).
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Organization of this work

In what follows we shall divide the manuscript into two chapters, each corresponding to a
di�erent article.

Chapter 2 is organized as follows: In Section 2.1 the problem and some previous literature
are introduced. In Section 2.2 we introduce the Bäcklund Transformation and prove some
preliminary Lemmas. In this section we also state and prove some basic properties of the
sine-Gordon equation. Sections 2.3 and 2.4 are devoted to study the relationship between 1-
soliton and 2-solitons solutions in terms of the Bäcklund transformation. Sections 2.6, 2.7,
2.8, 2.9 and 2.10 are devoted to study invertibility properties of the relationship between
solitons solutions stablished in the previous sections. Finally, in Section 2.11 we prove the
Main Theorem 2.1.1.

Chapter 3 is organized as follows: Section 3.1 we introduce the problem and previous
literature. In Section 3.2 we state a series of results needed in the remainder of this
chapter. The dispersive blow-up for each of the linear equation is established in Section
3.3. In this section we show how to construct the initial data which shall develop dispersive
blow-up. Section 3.4 is devoted to prove the Main Theorem 3.1.2. This last result is used
to complete the analysis in Section 3.3. The dispersive blow-up for the coupled system
(Theorem 3.1.3) is then proved in the last Section 3.5.
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Chapter 2

Nonlinear stability of 2-solitons of the

sine-Gordon in the energy space

In this chapter we prove that 2-soliton solutions of the sine-Gordon equation (SG) are
orbitally stable in the natural energy space of the problem. The solutions that we study
are the 2-kink, kink-antikink and breather of SG. In order to prove this result, we will
use Bäcklund transformations implemented by the Implicit Function Theorem. These
transformations will allow us to reduce the stability of the three solutions to the case of
the vacuum solution, in the spirit of previous results by Alejo and the �rst author, which
was done for the case of the scalar modi�ed Korteweg-de Vries equation. However, we will
see that SG presents several di�culties because of its vector valued character. Our results
improve those in Alejo et al., and give a �rst rigorous proof of the stability in the energy
space of SG 2-solitons.

This chapter is part of the article

� C. Muñoz, and J. M. Palacios, Nonlinear stability of 2-solitons of the Sine-Gordon
equation in the energy space, preprint arXiv:1801.09933, preprint enviado a referato
[69].

2.1 Introduction and Main results

2.1.1 The model

This chapter considers the sine-Gordon (SG) equation in physical coordinates for a scalar
�eld φ:

φtt − φxx + sinφ = 0. (2.1.1)
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Here, φ = φ(t, x) is a real or complex-valued function, and (t, x) ∈ R2. SG has been
extensively studied in di�erential geometry (constant negative curvature surfaces), as well
as relativistic �eld theory and soliton integrable systems. The interested reader may consult
the monograph by Lamb [53, section 5.2], and for more details about the Physics of SG,
see e.g. Dauxois and Peyrard [24].

Using the standard notation ~φ := (φ, φt), corresponding to a wave-like dynamics, and given
data ~φ(t = 0), a natural energy space for (2.1.1) is (H1 × L2)(R;K) (K = R or C), as it is
revealed by the conservation laws Energy and Momentum, respectively:

E[~φ](t) =
1

2

∫
R
(φ2

x + φ2
t )(t, x)dx+

∫
R
(1− cosφ(t, x))dx = E[~φ](0), (2.1.2)

and

P [~φ](t) =
1

2

∫
R
φt(t, x)φx(t, x)dx = P [~φ](0), (2.1.3)

although spaces slightly di�erent may be considered, using the fact that ~φ need not be
necessarily zero at in�nity for E and P being well-de�ned. However, real-valued solutions
of (2.1.1) that initially are in H1 × L2 are preserved for all time. Additionally, they are
globally well-de�ned thanks to standard Strichartz estimates and the fact that sin(·) is
a smooth bounded function. In what follows, we will assume that we have a real-valued
solution of (2.1.1) (in vector form) ~φ ∈ C(R;H1×L2), although complex-valued solutions,
or solutions with nonzero values at in�nity will be also considered in some places of this
paper.

Solutions of (2.1.1) are known for satisfying several symmetry properties: shifts in space
and time, as well as Lorentz boosts : for each β ∈ (−1, 1), given ~φ(t, x) = (φ, φt)(t, x)
solution, then

(φ, φt)β(t, x) := (φ, φt)
(
γ(t− βx), γ(x− βt)

)
, γ := (1− β2)−1/2, (2.1.4)

is another solution of (2.1.1). The parameter γ is called Lorentz scaling factor, having an
important role in what follows.

2.1.2 2-soliton solutions

In this chapter we will show stability of a certain class of particular solutions of 2-soliton
type for (2.1.1). In order to explain better the 2-solitons forms that we will study, �rst
we need to understand the notion of 1-soliton. This is an exact solution of (2.1.1) usually
referred as the kink [53]:

Q(x) := 4 arctan(ex+x0), x0 ∈ R.
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Thanks to (2.1.4), it is possible to de�ne a kink of arbitrary speed β ∈ (−1, 1). From
the integrability of SG, interactions between kinks are elastic, i.e. they are solitons [53].
Also, −Q(x) is another stationary solution of SG, usually called anti-kink. It is well-known
that (Q, 0) is stable under small perturbations in the energy space (H1 × L2)(R), see
Henry-Perez-Wreszinski [37].

These kinks are also locally asymptotically stable in the energy space under odd pertur-
bations, a property that follows from the proofs in [50], as well as some of the methods
exposed in this chapter.

A 2-soliton is formally a solution that behaves as the elastic interaction between two forms
of 1-soliton, and under di�erent scalings (or speeds, real or complex-valued). This structure
remains valid for all time. The 2-solitons considered in this paper are the following (see
Lamb [53, pp. 145�149]):

Notation: Let x1, x2 ∈ R be shift parameters, β ∈ (−1, 1) be a scaling parameter, and
γ = (1− β2)−1/2 be the Lorentz factor. We will study

1. First of all, the SG breather B = B(t, x) = B(t, x; β, x1, x2) given by

B(t, x; β, x1, x2) = 4 arctan

(
β

α

sin(α(t+ x1))

cosh(β(x+ x2))

)
, α =

√
1− β2, β 6= 0,

(2.1.5)
which represents a solution (even in x+x2) which is localized in space and oscillatory
in time because of the parameter α. This solution can be made arbitrarily small
provided β is small, and has energy E[B,Bt] = 16β, see [53, 7]. Additionally, B is
a counterexample to the asymptotic stability property of the vacuum solution under
small perturbations (except if perturbations are odd), as was discussed in [51] (see
Fig. 2.2). Similarly, in [7] it was conjectured, thanks to numerical evidence, that this
solution is stable.

2. Second, the stability of the 2-kink R = R(t, x), given by

R(t, x; β, x1, x2) = 4 arctan

(
β

sinh(γ(x+ x2))

cosh(γ(t+ x1))

)
, β 6= 0, (2.1.6)

which represents the interaction of two SG kinks with speeds ±β, with limits as
x→ ±∞ equal to −2π and 2π respectively1 (i.e., R do not decay to zero). Note that
R is odd wrt the axis x = −x2. See Fig. 2.3 for more details.

3. Finally, we shall consider the kink-antikink A = A(t, x):

A(t, x; β, x1, x2) = 4 arctan

(
1

β

sinh(γ(t+ x1))

cosh(γ(x+ x2))

)
, β 6= 0, (2.1.7)

1Note that the classic 2-kink should connect the states 0 and 4π, but the substraction of 2π to a solution

of SG is still a solution.
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which represents the elastic collision between a SG kink and an anti-kink, with speeds
±β. This solution decays to zero at in�nity, and it is even wrt x+ x2. See Fig. 2.4.

These three time depending functions are exact solutions of SG that have two modes of
independent variables, in contrast with the kink Q which has only one. Another type of
degenerate solitons, not treated in this paper, can be found in [21].

2.1.3 Main results

The purpose of this paper is to give a �rst proof of the fact that the three 2-solitons
of SG are stable under perturbations well-de�ned in the natural energy space associated
to the problem, this without any additional decay assumption, and no use of the Inverse
Scattering methods. Consecuently, our results extends those of Henry-Perez-Wreszinski
[37] to the case of SG 2-solitons, and allow possible extensions to the case of three or more
soltions. Our main theorem is the following:

Theorem 2.1.1 (Stability of 2-solitons in the energy space). The 2-solitons of SG (2.1.1)
are nonlinearly stable under perturbations in the energy space H1 × L2. More precisely,
there exist C0 > 0 and η0 > 0 such that the following holds. Let (φ, φt) be a solution of
(2.1.1), with initial data (φ0, φ1) such that

‖(φ0, φ1)− (D,Dt)(0, · ; β, 0, 0)‖H1×L2 < η, (2.1.8)

for some 0 < η < η0 su�ciently small, and where (D,Dt)(t, · ; β, 0, 0) is a 2-soliton
(breather (2.1.5), 2-kink (2.1.6) or kink-antikink (2.1.7)). Then, there are shifts x1(t), x2(t) ∈
R well-de�ned and di�erentiable such that

sup
t∈R
‖(φ(t), φt(t))− (D,Dt)(t, · ; β, x1(t), x2(t))‖H1×L2 < C0η. (2.1.9)

Moreover, we have

sup
t∈R
|x′1(t)|+ |x′2(t)| . C0η.

Remark 2.1.1. Note that in Theorem 2.1.1 we do not specify the space where (φ, φt) are
posed, this because (R,Rt)(t) in (2.1.6) does not belong to H1×L2. However, it is possible
to show local well-posedness (LWP) in each of the three cases involved in this chapter,
such that H1 × L2 perturbations are naturally allowed.

Rigorous proofs of stability of SG 2-solitons are not known in the literature, as far as
we can understand. Formal descriptions of the dynamics can be found in [30], and in [78],
under additional assumptions of rapid decay for the initial data. These last two results
are strongly based on the Inverse Scattering Theory (IST), therefore the extra decay is
essential. Theorem 2.1.1 do not require this assumptions, only perturbation data in the
energy space (and probably even less regular).
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A �rst result on conditional stability (only for the SG breather case) can be found
in Alejo et. al. [7]. In this work it was shown that, under certain spectral conditions,
breathers are stable under H2 × H1 perturbations. This result follows some of the ideas
in [3, 4], works dealing with the modi�ed KdV case, a simpler breather. Additionally, in
the same work, the spectral conditions required in [7] where numerically veri�ed in a large
set of parameters for the problem. Theorem 2.1.1 improves the results in [7] in two senses:
�rst, it establishes the stability of 2-solitons for SG in a rigorous form; and second, the
proof works in the energy space of the problem, without any additional assumption.

Although 2-solitons are stable, it is known that breathers should disappear under per-
turbations of the equation itself. In that sense, the literature is huge, from the physi-
cal and mathematical point of view. Nonexistence results for breathers can be found in
[15, 48, 23, 26, 52, 86], under di�erent conditions on the nonlinearity. Recently, Kowalczyk,
Martel and C. Muñoz [51] showed nonexistence of odd breathers for scalar �eld equations
with odd nonlinearities, with no other assumptions on the nonlinearity, except being C1.
However, in [10] it was shown existence of breathers in scalar �eld equations with non-
homogeneous coe�cients. Finally, [67] considers in a rigorous way the stability question
for Peregrine and Ma breathers, showing that they are indeed unstable, even if the equation
is locally well-posed.

On the other hand, stability and asymptotic stability results for N -solitons of several
dispersive nonlinear equations, are largely available in the literature. Concerning the NLS
equation, see [41, 74]. We also refer to the works [72, 58, 59, 60, 61] for the case of solitons
and 2-solitons in gKdV equations. The works [79, 50] are deeply concerned with scalar
�eld equations, and [71] deals with the Benjamin-Ono equation and its 2-solitons. See also
[73] for the study of 2-solitons in Dirac type equations. Finally, Alejo et al. [6] worked the
case of periodic mKdV breathers.

In this work we extend the ideas introduced in [5] to the SG case. More precisely, we will
study the Bäcklund Transformations (BT) between two solutions (φ, ϕ) for SG, and �xed
parameter a:

ϕx − φt =
1

a
sin

(
ϕ+ φ

2

)
+ a sin

(
ϕ− φ

2

)
,

ϕt − φx =
1

a
sin

(
ϕ+ φ

2

)
− a sin

(
ϕ− φ

2

)
.

These two equations allow to describe the dynamics of 2-solitons using the reduction of
complexity induced by the BT. These ideas have been successfully implemented in several
contexts: Ho�man and Wayne [38] used BT to show abstract results of stability. Next,
Mizumachi and Pelinovsky [64] showed L2 stability of the NLS soliton using this approach.
The case in [5] was the �rst where a BT was used in the case of breathers.

In the case of SG 2-solitons, the dynamics is more complex than usual, because, unlike
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mKdV in [5], here we will work with a system for (φ, φt), and not only scalar equations.
This fact makes proofs more involved, in the sense that we must work with systems at
every step of the proof.

In order to �x ideas, let us consider the case of the SG breather (2.1.5). First of all, we will
need to work with complex-valued solutions. We will introduce the kink function (K,Kt):

(K,Kt)(t, x) :=

(
4 arctan

(
eβx+iαt

)
,

4iαeβx+iαt

1 + e2(βx+iαt)

)
.

This complex-valued SG solution is connected to zero via a BT of parameter β − iα. We
have (Lemma 2.3.5):

Kx =
1

β − iα
sin

(
K

2

)
+ (β − iα) sin

(
K

2

)
,

Kt =
1

β − iα
sin

(
K

2

)
− (β − iα) sin

(
K

2

)
.

(2.1.10)

On the other hand, the complex-valued kink is a singular solution to SG, in the sense that
it blows up (in L∞ norm) in a sequence of times tk, without accumulation point (Remark
2.3.3). Even under this problem, it is possible to de�ne a dynamics for perturbations of
(K,Kt), for times t 6= t̃k ∼ tk, and proving a kind of manifold stability:

Corollary 2.1.2. Let (K,Kt)(t) be a complex-valued kink pro�le such that at time t = 0
does not blow up. For each (u0, s0) ∈ (H1 × L2)(R;C) su�ciently small and such that
Corollary 2.8.3 holds, there is a unique solution of SG

(φ, φt)(t) = (K̃, K̃t)(t) + (u, s)(t), (u, s)(t) ∈ (H1 × L2)(R;C),

where (K̃, K̃t)(t) is a complex-valued pro�le suitably modi�ed via modulations in time.
This solution is well-de�ned for each t 6= t̃k, a sequence of times unbounded and without
accumulation points, close to each tk. Similarly, this solution blows-up at time t = t̃k.

The advantage of introducing the pro�les (K,Kt) in Theorem 2.1.1 is the following: this
pro�le is connected to the breather (B,Bt) via a new BT of parameter β+ iα (Proposition
2.4.4):

Bx −Kt =
1

β + iα
sin

(
B +K

2

)
+ (β + iα) sin

(
B −K

2

)
,

Bt −Kx =
1

β + iα
sin

(
B +K

2

)
− (β + iα) sin

(
B −K

2

)
.

(2.1.11)

An important portion of this chapter deals with the generalization of these two identities,
(2.1.10) and (2.1.11), to the case of time-dependent perturbations of the breather (B,Bt).
However, this procedure presents several di�culties. First, a correct connection between
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neighborhoods of the breather and the zero solution. (Proposition 2.6.1). The obtained
function near zero must be real-valued, otherwise our method does not work (see Theorem
2.1.3 below). Next, we need to come back to the original solution for any possible time.
This step presents several di�culties since in general the BT are not invertible for free and
we need to impose additional conditions, in order to �nd the correct dynamics (Proposition
2.7.4). Another problem comes from the fact that the method falls down when the time
t approaches t̃k. We need another method for proving stability at those times, based in
energy estimates (subsection 2.11). Some of these problems were already solved in [5]
for the mKdV case, however here we propose another method, more intuitive and based
in the uniqueness returned by the modulation in time (Corollary 2.5.3). Through this
chapter, we will give a rigorous meaning to the diagram of Fig. 2.1 which describes the
proof of Theorem 2.1.1, based in two �descents� and two �ascents� from perturbations of
the breather (or any 2-soliton), to the zero solution, which is orbitally stable thanks to a
respective Cauchy theory.

(B,Bt)(0) + (z0, w0) (B,Bt)(t) + (z, w)(t)

(K,Kt)(0) + (u0, s0) (K,Kt)(t) + (ū, s̄)(t)

(y0, v0) (y, v)(t)

t

modulation

β − iα + δ̃

β − iα + δ̃

t

GWP

β + iα + δ

β + iα + δ

.

Figure 2.1: Diagram of proof of Theorem 2.1.1 in the breather case (B,Bt),
for times di�erent to t̃k. Here, (K,Kt)(t) represents the complex conjugate of
the function (K,Kt)(t) at time t.

A �rst consequence of the (rigorous) methods associated to Fig. 2.1 is the following:

Theorem 2.1.3 (Real-valued character of the double BT). Under hypotheses from Theo-
rem 2.1.1 in the breather case (B,Bt), the LHS of the diagram in Fig. 2.1 is well-de�ned
and the functions (y0, v0) ∈ H1 × L2 obtained are necessarily real-valued, even if (u0, s0)
are not.

For more details about this result, see section 2.8 and Corollary 2.8.4. Another consequence
of the same diagram in Fig. 2.1 is the following method of computing the energy and
momentum of each involved perturbation of a 2-soliton:

Corollary 2.1.4 (Energy and momentum identities). Under the consequences of Theorem
2.1.1, and according to the diagram in Fig. 2.1, the following identities are satis�ed for
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each time t ∈ R:

E[B + z,Bt + w] = E[y, v] + 8(β + Re δ)

(
1 +

1

1 + 2β Re δ + 2α Im δ + |δ|2

)
, (2.1.12)

P [B + z,Bt + w] = P [y, v] + 4(β + Re δ)

(
1

1 + 2β Re δ + 2α Im δ + |δ|2
− 1

)
. (2.1.13)

Completely similar identities are satis�ed by the other 2 cases: D = A or D = R, after
suitable modi�cations.

Finally, but not least, let us mention the fundamental work by Merle and Vega [63], who
introduced the idea of the nonlinear Miura transformation for the KdV soliton, proving L2

stability. See also [8, 65, 66] for other generalizations of this idea to other contexts.

Organization of this chapter

section 2.2 presents preliminaries that we will need along this paper. section 2.3 introduces
the basic notions of complex-valued kink pro�le, and section 2.4 describes in detail the 2-
soliton pro�les. section 2.5 deals with modulation of 2-solitons, and section 2.6 is devoted
to the connection between breathers and the zero solution. In section 2.7 we study the
corresponding inverse dynamics, while in section 2.8 we prove Theorem 2.1.3. section 2.9
and 2.10 study the 2-kink and kink-antikink cases, and section 2.11 is devoted to the proof
of Theorem 2.1.1 and Corollary 2.1.4.

2.2 Preliminaries

The purpose of this section is to announce a set of simple but fundamental properties that
we will need through this chapter. Proofs are not di�cult to establish or being checked in
the literature.

2.2.1 Bäcklund Transformation

As a �rst step, let us write (2.1.1) in matrix form, that is ~φ = (φ, φt) = (φ1, φ2), in such a
form that (2.1.1) reads now {

∂tφ1 = φ2

∂tφ2 = ∂2
xφ1 − sinφ1.

(2.2.1)

Formally speaking, we will say that a pro�le is a function of the form (φ1, φ2)(x), inde-
pendent of time, which under a particular time-dependent transformation, may be exact
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or approximate solution of (2.2.1) described above. Although not a rigorous de�nition,
this one will allow us to understand in a better form the concepts described below. Now
we introduce the Bäcklund transformation that we will use in this chapter. Recall that Ḣ1

represents the closure of C∞0 under the norm ‖∂x · ‖L2 .

De�nition 2.2.1 (Bäcklund Transformation). Let a ∈ C be �xed. Let ~φ = (φ, φt)(x) be a
function de�ned in Ḣ1(C)× L2(C). We will say that ~ϕ in Ḣ1(C)× L2(C) is a Bäcklund

transformation (BT) of ~φ by the parameter a, denoted

B(~φ)
a−−→ ~ϕ, (2.2.2)

if the triple (~φ, ~ϕ, a) satis�es the following equations, for all x ∈ R:

ϕx − φt =
1

a
sin

(
ϕ+ φ

2

)
+ a sin

(
ϕ− φ

2

)
, (2.2.3)

ϕt − φx =
1

a
sin

(
ϕ+ φ

2

)
− a sin

(
ϕ− φ

2

)
. (2.2.4)

Remark 2.2.1. Note that if the triple (~φ, ~ϕ, a) satis�es De�nition 2.2.1, then so (~ϕ, ~φ,−a)

does, and we have B(~ϕ)
−a−−−→ ~φ. In that sense, the order between φ and ϕ will not play an

important role.
Remark 2.2.2. Note also that we do not ask for uniqueness for ϕ in De�nition 2.2.1.
However, in this articule we will construct functions ϕ which are uniquely de�ned as BT
(with �xed parameter) of a unique φ.
Remark 2.2.3 (Di�erent BT for SG). In [53] (2.1.1) is written in �laboratory coordinates�
(u, v) given by

u :=
x− t

2
, v :=

x+ t

2
⇐⇒ x = u+ v , t = v − u.

Under these new variables SG (2.1.1) reads σuv = sin σ, where σ(u, v) := φ(t, x). It is not
di�cult to show that in this case, (2.2.3)-(2.2.4) are equivalent to the equations

1

2
(σu + σ̃u) = a sin

(
σ − σ̃

2

)
,

1

2
(σv − σ̃v) =

1

a
sin

(
σ + σ̃

2

)
,

which are precisely the BT appearing in [53].

The following result is standard in the literature, justifying the introduction of the BT
(2.2.3)-(2.2.4).

Lemma 2.2.2. If (~φ, ~ϕ) are C2
t,x functions related via a BT (2.2.3)-(2.2.4), then both solve

(2.2.1).

Proof. By smoothness, it is enough to check that both solve (2.1.1). Now, we prove that
ϕ solves SG. We take derivative in (2.2.3) and (2.2.4), so that

ϕtt − ϕxx =
1

2a
(ϕt − ϕx + φt − φx) cos

(
ϕ+ φ

2

)
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+
a

2
(φt + φx − ϕt − ϕx) cos

(
ϕ− φ

2

)
= − sin

(
ϕ− φ

2

)
cos

(
ϕ+ ψ

2

)
− sin

(
ϕ+ φ

2

)
cos

(
ϕ− φ

2

)
= − sin(ϕ).

Similarly, one easily proves that φ satis�es SG.

Using a standard density argument, the previous result can be extended to solutions
de�ned in the energy space, and satisfying the Duhamel formulation for SG. Now, we will
need the following notion, generalization of De�nition 2.2.1.

De�nition 2.2.3 (Bäcklund Functionals). Let (ϕ0, ϕ1, φ0, φ1, a) be data in a space X(K)
to be chosen later, with K = C or R. Let us de�ne the functional with vector values
F := (F1,F2), where F = F(ϕ0, ϕ1, φ0, φ1, a) ∈ L2(K)× L2(K), given by the system:

F1

(
ϕ0, ϕ1, φ0, φ1, a

)
:= ϕ0,x − φ1 −

1

a
sin

(
ϕ0 + φ0

2

)
− a sin

(
ϕ0 − φ0

2

)
, (2.2.5)

F2

(
ϕ0, ϕ1, φ0, φ1, a

)
:= ϕ1 − φ0,x −

1

a
sin

(
ϕ0 + φ0

2

)
+ a sin

(
ϕ0 − φ0

2

)
. (2.2.6)

2.2.2 Conserved quantities

The following result establishes a direct relation between the BT (2.2.3)-(2.2.4) and the
conserved quantities (2.1.2)-(2.1.3), without using the original equation (2.2.1).

Lemma 2.2.4 (BT and conserved quantities). Let2 (φ, φt), (ϕ, ϕt) ∈ (L∞ ∩ Ḣ1)(R;C) ×
L2(R;C) be functions related by a BT with parameter a, i.e., such that

B(φ, φt)
a−−→ (ϕ, ϕt).

Let us additionally assume that

`+
±(t) := lim

x→±∞

(
1− cos

(
ϕ+ φ

2

))
, `−±(t) := lim

x→±∞

(
1− cos

(
ϕ− φ

2

))
, (2.2.7)

are well-de�ned and �nte. Then we have

E[~ϕ] = E[~φ] +
2

a
(`+

+ − `+
−)(t) + 2a(`−+ − `−−)(t), (2.2.8)

P [~ϕ] = P [~φ] +
1

a
(`+

+ − `+
−)(t)− a(`−+ − `−−)(t), (2.2.9)

where E and P are the corresponding energy and momentum de�ned in (2.1.2)-(2.1.3).

2Note that not necessarily φ, ϕ belong to L2.
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A simple consequence of the previous result is the following:

Corollary 2.2.5 (Parametric rigidity of BT versus Energy and Momentum). Under the
hypotheses from previous lemma, let us assume in addition that φ, ϕ are such that E[~ϕ],

E[~φ] and P [~ϕ] and P [~φ] are conserved in time t ∈ R (see subsection 2.2.3 below for details).
Then, if both (`+

+ − `+
−)(t) and (`−+ − `−−)(t) do not depend on time, the parameter �a� in

the BT cannot depend on time.
Remark 2.2.4. In general, all solutions considered in this chapter do satisfy the hypotheses
in Corollary 2.2.5. Even more, if the corresponding limits in (2.2.7) are constant (our case),
then the BT parameter a cannot depend on time.

Proof of Lemma 2.2.4. First we prove that (2.2.8) holds. For that, adding the squares
of equations (2.2.3) and (2.2.4), we have

ϕ2
x + ϕ2

t + φ2
x + φ2

t − 2
(
ϕxφt + ϕtφx

)
=

2

a2
sin2

(
ϕ+ φ

2

)
+ 2a2 sin2

(
ϕ− φ

2

)
.

Now, replacing the values of ϕx and ϕt given by equations (2.2.3) and (2.2.4),

ϕ2
x + ϕ2

t + φ2
x + φ2

t = 2φt

(
φt +

1

a
sin

(
ϕ+ φ

2

)
+ a sin

(
ϕ− φ

2

))
+ 2φx

(
φx +

1

a
sin

(
ϕ+ φ

2

)
− a sin

(
ϕ− φ

2

))
+

2

a2
sin2

(
ϕ+ φ

2

)
+ 2a2 sin2

(
ϕ− φ

2

)
.

Simplifying and gathering similar terms,

ϕ2
x + ϕ2

t − φ2
x − φ2

t =
2

a

(
φt + φx

)
sin

(
ϕ+ φ

2

)
+ 2a

(
φt − φx

)
sin

(
ϕ− φ

2

)
+

2

a2
sin2

(
ϕ+ φ

2

)
+ 2a2 sin2

(
ϕ− φ

2

)
. (2.2.10)

Now, adding and sustracting ϕx in the RHS of (2.2.10), and integrating∫
R
ϕ2
x + ϕ2

t − φ2
x − φ2

t

=
2

a

∫
R

(
φt − ϕx

)
sin

(
ϕ+ φ

2

)
+ 2a

∫
R

(
φt − ϕx

)
sin

(
ϕ− φ

2

)
+

2

a2

∫
R

sin2

(
ϕ+ φ

2

)
+ 2a2

∫
R

sin2

(
ϕ− φ

2

)
+

4

a

∫
R
∂x

(
1− cos

(
ϕ+ φ

2

))
+ 4a

∫
R
∂x

(
1− cos

(
ϕ− φ

2

))
.
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Recall that B(φ, φt)
a−−→ (ϕ, ϕt). Using (2.2.7), we conclude∫

R
ϕ2
x + ϕ2

t − φ2
x − φ2

t

= −4

∫
R

sin

(
ϕ+ φ

2

)
sin

(
ϕ− φ

2

)
+

4

a
(`+

+ − `+
−)(t) + 4a(`−+ − `−−)(t). (2.2.11)

Lastly, multiplying (2.2.11) by 1
2
and using that cosϕ − cosφ = −2 sin(ϕ+φ

2
) sin(ϕ−φ

2
), we

arrive to the identity

1

2

∫
R
ϕ2
x + ϕ2

t +

∫
R

(
1− cosϕ

)
=

1

2

∫
R
φ2
x + φ2

t +

∫
R

(
1− cosφ

)
+

2

a
(`+

+ − `+
−)(t) + 2a(`−+ − `−−)(t),

which �nally proves (2.2.8). Similarly, we will show (2.2.9). Multiplying (2.2.3) and (2.2.4)
we have

ϕxϕt + φxφt − ϕxφx − ϕtφt =
1

a2
sin2

(
ϕ+ φ

2

)
− a2 sin2

(
ϕ− φ

2

)
.

Replacing ϕx and ϕt given by (2.2.3) and (2.2.4) we obtain

ϕxϕt = φxφt +
1

a

(
φx + φt

)
sin

(
ϕ+ φ

2

)
+ a
(
φx − φt

)
sin

(
ϕ− φ

2

)
+

1

a2
sin2

(
ϕ+ φ

2

)
− a2 sin2

(
ϕ− φ

2

)
. (2.2.12)

Finally, using once again that B(φ, φt)
a−−→ (ϕ, ϕt), multiplying (2.2.12) by 1

2
and integrat-

ing, we get
1

2

∫
R
ϕxϕt =

1

2

∫
R
φxφt +

1

a
(`+

+ − `+
−)(t)− a(`−+ − `−−)(t),

which �nally ends the proof.

2.2.3 Local well-posedness

The purpose of this paragraph is to announce the LWP results that we will need through
this chapter. First of all, note that the energy (2.1.2) can be written as

E[~φ](t) =
1

2

∫
R
(φ2

x + φ2
t )(t, x)dx+

∫
R

sin2

(
φ

2

)
(t, x)dx. (2.2.13)

Then, naturally the largest energy space for SG is H1
sin × L2 [25], where

H1
sin := {φ0 ∈ Ḣ1 : sinφ0 ∈ L2}.

26



Since we will consider small perturbations in this paper, φ0 ∈ H1 small enough implies
φ0 ∈ H1

sin.

Theorem 2.2.6 (GWP for real-valued data). Let (φ0, φ1) ∈ (H1 × L2)(R) be initial data.

Then there exists a unique solution ~φ ∈ C(R, (H1 × L2)(R)) (in the Duhamel sense) of
(2.2.1). Moreover, both the momentum P in (2.1.3) and the energy E in (2.1.2) are con-
served by the �ow, and we have

sup
t∈R
‖(φ, φt)(t)‖H1×L2 . ‖(φ0, φ1)‖H1×L2 , (2.2.14)

with involved constants independent of time.

Proof. This result is direct from the Duhamel formulation for (2.2.1), the conservation of
energy, plus the fact that sin(·) is smooth and bounded if the argument is real-valued.

We will also need a LWP result for complex-valued initial data.

Theorem 2.2.7 (LWP for complex-valued data). Let (φ0, φ1) ∈ (H1×L2)(C) be complex-

valued initial data. Then there exists T = T ((φ0, φ1)) > 0 and a unique solution ~φ ∈
C((−T, T ), (H1×L2)(C)) (in the Duhamel sense) of (2.2.1). Moreover, both the momentum
P in (2.1.3) as well as the energy E in (2.1.2) are conserved by the �ow during (−T, T ).
Remark 2.2.5. Note that SG with complex-valued data do have �nite time blow-up solu-
tions. See Lemma 2.3.3 for more details on this problem.

Proof. The same proof for the real-valued case works for the complex-valued one. Only
global existence is not satis�ed.

Finally, we will need a last result for the case of nontrivial values at in�nity, more
precisely for the case of the 2-kink R in (2.1.6).

Theorem 2.2.8 (Global well-posedness for real valued data with nontrivial values at
in�nity, see e.g. [63, 25]). Let (φ0, φ1) be initial data such that for R = R(t, x; β, x1, x2)
�xed 2-kink as in (2.1.6), and Rt its corresponding time derivative, one has

‖(φ0, φ1)− (R,Rt)(t = 0)‖(H1×L2)(R) < +∞.
Then there exists a unique real-valued solution (φ, φt) for SG such that (φ, φt)−(R,Rt)(t) ∈
C(R, (H1 × L2)(R)) (in the Duhamel sense). Moreover, the momentum P in (2.1.3) as
well as the energy E in (2.1.2) are conserved by the �ow.

2.3 Real and complex valued kink pro�les

2.3.1 De�nitions

The following concept is standard in the literature.
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De�nition 2.3.1 (Real-valued kink pro�le). Let β ∈ (−1, 1), β 6= 0, and x0 ∈ R be �xed

parameters. we de�ne the real-valued kink pro�le ~Q := (Q,Qt) with speed β as

Q(x) := Q(x; β, x0) = 4 arctan
(
eγ(x+x0)

)
, γ := (1− β2)−1/2, (2.3.1)

and

Qt(x) := Qt(x; β, x0) =
−4βγeγ(x+x0)

1 + e2γ(x+x0)
=

−2βγ

cosh(γ(x+ x0))
. (2.3.2)

Remark 2.3.1. This pro�le (Q,Qt), although not an exact solution of (2.2.1), can be un-
derstood as follows: for each (t, x) ∈ R2, (t, x) 7→ (Q,Qt)(x; β, x0−βt) is an exact solution
of (2.2.1), moving with speed β.

With small but essential modi�cations, we introduce a complex-valued version of the
previous kink pro�le.

De�nition 2.3.2 (Complex-valued kink pro�le). Let β ∈ (−1, 1) \ {0}, α =
√

1− β2, be
�xed, and consider shift parameters x1, x2 ∈ R. We de�ne the complex-valued kink pro�le
(K,Kt) with zero speed as

K(x) := K(x; β, x1, x2) = 4 arctan
(
eβ(x+x2)+iαx1

)
, (2.3.3)

and

Kt(x) := Kt(x; β, x1, x2) = ∂x1K(x; β, x1, x2) =
4iαeβ(x+x2)+iαx1

1 + e2(β(x+x2)+iαx1)
. (2.3.4)

Remark 2.3.2 (Multi-valued pro�les). Note that K is well-de�ned for all x ∈ R as a
univalued function with complex values, provided we choose a particular Riemann surface
for the arctan z function. In this chapter we will assume that arctan possesses two branch
cuts in C := (−i∞,−i] ∪ [i, i∞), in such a way that it remains univalued and analytic in
C − C. However, in this paper this bad behavior will be of no importance, since we will
work with functions of type sin, cos, or similar, for which all computations will remain
well-de�ned. See [5] for a similar phenomenon.
Remark 2.3.3 (Singular pro�le). Note now that Kt is a function that may be singular for
certain values of x. More precisely, whenever the condition

e2(β(x+x2)+iαx1) = −1,

(i.e., 2(β(x+ x2) + iαx1) = i(π + 2kπ), for some k ∈ Z), is satis�ed. In this case, one has

x1 =
π

α

(1

2
+ k
)
, for some k ∈ Z, (2.3.5)

and if x = −x2, then Kt is singular. See [5] for a similar phenomenon in the mKdV case.
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Lemma 2.3.3 (Blow-up). Under the notation in De�nition 2.3.2, the function

(K,Kt)(t) := (K(x; β, t+ x1, x2), Kt(x; β, t+ x1, x2))

is a smooth solution of SG (2.1.1) for all (t, x1) such that (2.3.5) is not satis�ed; i.e.,
outside the countable set of points with no accumulation point:

tk = −x1 +
π

α

(
1

2
+ k

)
, k ∈ Z. (2.3.6)

Note that, at each of the points tk, Kt(t) leaves the Schwartz class. Consequently, Kt(t)
blows up in �nite time (in L∞ norm), as t approaches some tk.

Proof. Direct, see Remarks 2.3.1 and 2.3.3.

2.3.2 Kink pro�les and BT

In what follows, we prove connections between kink pro�les and the zero solution in SG.
Although some of this results are standard, recall that we prove below not only for exact
solutions, but also for pro�les which are not exact solutions of SG.

Lemma 2.3.4 (Kink as BT of zero). Let (Q,Qt) be a SG kink pro�le with scaling parameter
β ∈ (−1, 1), β 6= 0, and shift x0, see De�nition 2.3.1. Then,

1. We have the identities

sin

(
Q

2

)
= sech(γ(x+ x0)), cos

(
Q

2

)
= tanh(γ(x+ x0)). (2.3.7)

2. For each x ∈ R, (Q,Qt) is a BT of the origin (0, 0) with parameter

a = a(β) :=

(
1 + β

1− β

)1/2

. (2.3.8)

That is,

Qx =
1

a
sin

(
Q

2

)
+ a sin

(
Q

2

)
, Qt =

1

a
sin

(
Q

2

)
− a sin

(
Q

2

)
.

Proof. Direct.

Remark 2.3.4 (Antikink and kink with opposite speeds). Note that, thanks to Lemma
2.3.4, both

(Q,Qt)(x;−β, x0) and (Q,Qt)(−x;−β, x0),
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obey respective BT with properly chosen parameters. Indeed, for

a2 := a(−β) =
(1− β)1/2

(1 + β)1/2
, a3 := − a(β) = −(1 + β)1/2

(1− β)1/2
, (2.3.9)

we obtain

B(0, 0)
a2−−→ (Q,Qt)(x;−β, x0), B(0, 0)

a3−−→ (Q,Qt)(−x;−β, x0). (2.3.10)

These two pro�les will be important in the next sections, when studying the dynamics of
the kink-antikink and 2-kink respectively.

Now we deal with the case of complex-valued pro�les. Here, we need additional condi-
tions in order to ensure smooth functions in space.

Lemma 2.3.5. Let (K,Kt) be a complex-valued kink pro�le, with scaling parameter β ∈
(−1, 1) \ {0} and shifts x1, x2, just as in De�nition 2.3.2, and such that (2.3.5) does not
hold. Then,

1. We have the identities

sin

(
K

2

)
= sech(β(x+ x2) + iαx1)), cos

(
K

2

)
= tanh(β(x+ x2) + iαx1)).

(2.3.11)

2. For each x ∈ R, (K,Kt) is a BT of the origen (0, 0), with parameter β − iα (and
where α2 + β2 = 1). That is to say,

Kx =
1

β − iα
sin

(
K

2

)
+ (β − iα) sin

(
K

2

)
, (2.3.12)

Kt =
1

β − iα
sin

(
K

2

)
− (β − iα) sin

(
K

2

)
, (2.3.13)

where sin z and cos z are de�ned in the complex place as usual.

3. Moreover, Kx, iKt, sin(K/2) and i cos(K/2) posses even real part and odd imaginary
part, with respect to the axis x = −x2.

Proof of Lemma 2.3.5. We prove �rst that K satis�es (2.3.12). Indeed, from (2.3.3) we
have

Kx =
4βeβ(x+x2)+iαx1

1 + e2β(x+x2)+2iαx1
=

2β

cosh(β(x+ x2) + iαx1)
. (2.3.14)

Using that cosh(a+ ib) = cosh(a) cos(b) + i sinh(a) sin(b), we obtain

Kx =
2β

cosh(β(x+ x2)) cos(αx1) + i sinh(β(x+ x2)) sin(αx1)

=
2β(cosh(β(x+ x2)) cos(αx1)− i sinh(β(x+ x2)) sin(αx1))

cosh2(β(x+ x2)) cos2(αx1) + sinh2(β(x+ x2)) sin2(αx1)
.

(2.3.15)
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Therefore, ReKx is even wrt −x2 and ImKx is odd wrt −x2.

On the other hand, since α2 + β2 = 1, we have 1
β−iα + β − iα = β + iα + β − iα = 2β,

and the RHS of (2.3.12) reads

RHS((2.3.12)) = 2β sin

(
K

2

)
= 4β

sin(arctan eβ(x+x2)+iαx1)

cos(arctan eβ(x+x2)+iαx1)
cos2(arctan eβ(x+x2)+iαx1)

=
4βeβ(x+x2)+iαx1

1 + e2(β(x+x2)+iαx1)
=

2β

cosh(β(x+ x2) + iαx1)
.

Similar to (2.3.15), we can conclude that sin(K/2) has even real part and odd imaginary
part wrt to x = −x2. Finally, note that

cos
(K

2

)
= tanh(β(x+ x2) + iαx1) =

tanh(β(x+ x2)) + i tan(αx1)

1 + i tanh(β(x+ x2)) tan(αx1)

=
tanh(β(x+ x2)) sech2(αx1) + i sech2(β(x+ x2)) tan(αx1)

1 + tanh2(β(x+ x2)) tan2(αx1)
.

Therefore, cos(K
2

) has odd real part and even imaginary part (wrt −x2). This ends the
proof of (2.3.12).

Now, in order to show that (2.3.13) is satis�ed, it is enough to see that from the de�nition
in (2.3.4),

Kt =
4iαeβ(x+x2)+iαx1

1 + e2(β(x+x2)+iαx1)
=
iα

β
Kx = 2iα sin

(
K

2

)
,

which proves the result, since 1
β−iα − (β − iα) = β + iα − β + iα = 2iα. The parity of Kt

is direct from that of Kx.

Let (K,Kt) denote the complex-valued kink pro�le of parameters β and −α, i.e.,

K(x) = K(x; β, x1, x2) := 4 arctan
(
eβ(x+x2)−iαx1

)
, and (2.3.16)

Kt(x) = Kt(x; β, x1, x2) := − 4iαeβ(x+x2)−iαx1

1 + e2(β(x+x2)−iαx1)
.

Corollary 2.3.6. Let (K,Kt) be a SG conjugate kink pro�le, with scaling parameter β ∈
(−1, 1) \ {0} and shifts x1, x2, as in (2.3.16), and such that (2.3.5) do not hold. Then, for
each x ∈ R, (K,Kt) is a BT of the origen (0, 0) with parameter β + iα:

Kx =
1

β + iα
sin

(
K

2

)
+ (β + iα) sin

(
K

2

)
,

Kt =
1

β + iα
sin

(
K

2

)
− (β + iα) sin

(
K

2

)
.

Proof. Direct from Lemma 2.3.5 after conjugation of (2.3.12) and (2.3.13).
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2.4 2-soliton pro�les

2.4.1 De�nitions

With a small abuse of notation (wrt the exact solutions of SG (2.1.5)-(2.1.6)-(2.1.7), de-
noted in the same form), we will introduce pro�les of 2-soliton solutions. The following
de�nition is standard, see e.g. [7].

De�nition 2.4.1 (Static breather pro�le). Let β ∈ (−1, 1), β 6= 0, and x1, x2 ∈ R be �xed
parameters. We de�ne the static breather pro�le as

B := B(x; β, x1, x2) := 4 arctan

(
β

α

sin(αx1)

cosh(β(x+ x2))

)
, α :=

√
1− β2. (2.4.1)

We also de�ne the �time-derivative pro�le� as

Bt := Bt(x; β, x1, x2) :=
4α2β cos(αx1) cosh(β(x+ x2))

α2 cosh2(β(x+ x2)) + β2 sin2(αx1)
. (2.4.2)

Finally, note that Bt vanishes only if x1 satis�es (2.3.5).
Remark 2.4.1. Note that from the previous de�nition we can recover the standing SG
breather [53, 7] if we put t+ x1 instead of x1:

B(t, x) = 4 arctan

(
β

α

sin(α(t+ x1))

cosh(β(x+ x2))

)
, α :=

√
1− β2, (2.4.3)

and similar for Bt(t, x) (see Fig. 2.2).

In what follows, we want to study the remaining two SG 2-solitons. Recall that R(t, x)
and A(t, x) represent the 2-kink and kink-antikink, respectively, see (2.1.6) and (2.1.7).
Once again, with a small abuse of notation, we de�ne �rst the generalized associated
pro�le for the 2-kink.

De�nition 2.4.2 (2-kink pro�le). Let β ∈ (−1, 1), β 6= 0, and x1, x2 ∈ R be �xed param-
eters. We de�ne the 2-kink pro�le with speed β as

R := R(x; β, x1, x2) := 4 arctan

(
β sinh(γ(x+ x2))

cosh(γx1)

)
, γ := (1− β2)−1/2. (2.4.4)

We also de�ne the �time derivative pro�le� Rt by

Rt := Rt(x; β, x1, x2) := − 4β2γ sinh(γ(x+ x2)) sinh(γx1)

cosh2(γx1) + β2 sinh2(γ(x+ x2))
. (2.4.5)

Note that (R,Rt) is odd wrt x = −x2.
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Figure 2.2: Static breather pro�le (B,Bt), de�ned in (2.4.1) with α = 1
2
,

β =
√

3
2
and x1 = t. Above, B, and below, Bt. Under these parameters, (B,Bt)

is an exact solution for SG as in (2.1.5).

Remark 2.4.2. The SG 2-kink solution R(t, x) [53] written in (2.1.6) can be recovered if x1

is replaced by x1 + βt in (2.4.4). Fig. 2.3 shows the evolution of this exact SG solution in
time.

Finally, with a slight abuse of notation wrt (2.1.7), we de�ne the kink-antikink pro�le.

De�nition 2.4.3 (kink-antikink pro�le). Let β ∈ (−1, 1), β 6= 0 and x1, x2 ∈ R be �xed
parameters. We de�ne the kink-antikink pro�le with speed β by

A := A(x; β, x1, x2) := 4 arctan

(
sinh(γx1)

β cosh(γ(x+ x2))

)
, γ := (1− β2)−1/2. (2.4.6)

We also de�ne the �time derivative pro�le� At as follows:

At := At(x; β, x1, x2) :=
4β2γ cosh(γ(x+ x2)) cosh(γx1)

β2 cosh2(γ(x+ x2)) + sinh2(γx1)
. (2.4.7)

Note that (A,At) are even wrt x = −x2.
Remark 2.4.3. Similarly to the previous case, the kink-antikink solution A(t, x) [53] men-
tioned in the Introduction (see (2.1.7)) can be recovered by replacing x1 by x1 + βt in
(2.4.6). Figure 2.4 shows this exact SG solution.
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Figure 2.3: Above: space-time evolution of a 2-kink R with parameters β = 1
2
,

x2 = 0 and x1 = βt; below: its corresponding time derivative Rt. Here (R,Rt)
is an exact solution of SG (2.1.1), see (2.1.6).

2.4.2 2-soliton pro�les and BT

In what follows we will study how to connect breathers and complex-valued kinks, by
means of a BT.

Proposition 2.4.4. Let (B,Bt) and (K,Kt) be SG breather and complex-valued kink pro-
�les respectively, both with parameters β ∈ (−1, 1) \ {0} and x1, x2, as in De�nitions 2.4.1
and 2.3.2, and such that condition (2.3.5) is not satis�ed. Then,

1. We have the limits

lim
x→±∞

cos

(
B +K

2

)
= lim

x→±∞
cos

(
B −K

2

)
= ∓1. (2.4.8)

2. For each x ∈ R, (B,Bt) is a BT of (K,Kt) with complex-valued parameter β + iα.
That is,

Bx −Kt =
1

β + iα
sin

(
B +K

2

)
+ (β + iα) sin

(
B −K

2

)
, (2.4.9)

Bt −Kx =
1

β + iα
sin

(
B +K

2

)
− (β + iα) sin

(
B −K

2

)
. (2.4.10)
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Figure 2.4: Above: representation of the kink-antikink solution (as the colli-
sion of kink and antikink), with speed β = 1

2
, and parameters x2 = 0, x1 = βt.

Below: the corresponding time derivative At. Here, (A,At) is an exact solution
of SG (2.1.1), just like A(t, x) in (2.1.7).

Proof of Proposition 2.4.4. For proving (2.4.8), we simply use the values of B and K
at in�nity, and the fact that cos is analytic in C.

Let us show now (2.4.9) and (2.4.10). Let us start by proving (2.4.9). Taking derivative
of B in (2.4.1) wrt to x and simplifying, we have

Bx = 4∂x arctan

(
β

α

sin(αx1)

cosh(β(x+ x2))

)
=

4α2 cosh2(β(x+ x2))

α2 cosh2(β(x+ x2)) + β2 sin2(αx1)

−β sin(αx1)

α cosh2(β(x+ x2))
β sinh(β(x+ x2))

=
−4αβ2 sin(αx1) sinh(β(x+ x2))

α2 cosh2(β(x+ x2)) + β2 sin2(α(t+ x1))
. (2.4.11)

On the other hand, basic trigonometric identities show that

sin

(
B ±K

2

)
= 2 sin

(
B ±K

4

)
cos

(
B ±K

4

)
= 2 tan

(
B ±K

4

)
cos2

(
B ±K

4

)
= 2 tan

(
B ±K

4

)(
1 + tan2

(
B ±K

4

))−1
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=
2 tan

(
arctan

(
β
α

sinαx1
coshβ(x+x2)

)
± arctan

(
eβ(x+x2)+iαx1

))
1 + tan2

(
arctan

(
β
α

sinαx1
coshβ(x+x2)

)
± arctan (eβ(x+x2)+iαx1)

) . (2.4.12)

For the sake of notation, let θ := β(x+x2)+iαx1. Then, using that tan(a±b) = tan a±tan b
1∓tan a tan b

,
we obtain that (2.4.12) reads now

sin

(
B ±K

2

)
=

2

(
β
α

sin(αx1)
cosh β(x+x2)

±eθ

1∓ β
α

sin(αx1)e
θ

cosh β(x+x2)

)
1 +

(
β
α

sin(αx1)
cosh β(x+x2)

±eθ

1∓ β
α

sin(αx1)e
θ

cosh β(x+x2)

)2 =
2
(
β sin(αx1)±αeθ coshβ(x+x2)
α coshβ(x+x2)∓β sin(αx1)eθ

)
1 +

(
β sin(αx1)±αeθ coshβ(x+x2)
α coshβ(x+x2)∓β sin(αx1)eθ

)2

=
2(β sin(αx1)± αeθ cosh β(x+ x2))(α cosh β(x+ x2)∓ β sin(αx1)eθ)

(α cosh(β(x+ x2))∓ β sin(αx1)eθ)2 + (β sin(αx1)± αeθ cosh(β(x+ x2)))2
,

and simplifying,

sin

(
B ±K

2

)
=

2f1(x)(
1 + e2θ

)(
α2 cosh2(β(x+ x2)) + β2 sin2(αx1)

) , (2.4.13)

where f1(x) = f1(x; β, x1, x2) is such that

f1(x) := αβ cosh(β(x+ x2)) sin(αx1)∓ β2eθ sin2(αx1)

± α2eθ cosh2(β(x+ x2))− αβe2θ cosh(β(x+ x2)) sin(αx1).

Now we show (2.4.9). Substracting (2.3.4) from (2.4.11), we get

Bx −Kt =
−4αβ2 sin(αx1) · sinh(β(x+ x2))

α2 cosh2(β(x+ x2)) + β2 sin2(α(t+ x1))
− 4iαeθ

1 + e2θ
=
Ã

C̃
,

where

C̃ =
(
1 + e2θ

) (
α2 cosh2(β(x+ x2)) + β2 sin2 αx1

)
, (2.4.14)

Ã =− 4αβ2(1 + e2θ) sinαx1 sinh(β(x+ x2))

− 4iαeθ
(
α2 cosh2(β(x+ x2)) + β2 sin2 αx1

)
.

On the other hand, recalling that α2 + β2 = 1, from (2.4.13) we obtain

(β + iα) sin

(
B −K

2

)
+

1

β + iα
sin

(
B +K

2

)
=

B̃

C̃
, (2.4.15)

where C̃ is given by (2.4.14) and

B̃ = 4αβ2
(
1− e2θ

)
sinαx1 cosh(β(x+ x2)) + 4iαβ2eθ sin2 αx1

36



− 4iα3eθ cosh2(β(x+ x2)).

Therefore, (2.4.9) reduces to prove Ã− B̃ ≡ 0. Indeed,

Ã− B̃ = −4αβ2
(
(1 + e2θ) sinαx1 sinh(β(x+ x2)) + 2ieθ sin2 αx1

)
− 4αβ2(1− e2θ) sinαx1 cosh(β(x+ x2)) = 0.

This proves (2.4.9). Finally, we prove that (2.4.10) is satis�ed. We follow the same idea as
before. From (2.3.15) and (2.4.2) we obtain

Bt −Kx =
4α2β cos(αx1) cosh(β(x+ x2))

α2 cosh2(β(x+ x2)) + β2 sin2(αx1)
− 4βeθ

1 + e2θ
=
Ã2

C̃
,

where C̃ is given by (2.4.14) and

Ã2 = 4α2β cos(αx1) cosh(β(x+ x2))
(
1 + e2θ

)
− 4βeθ

(
α2 cosh2(β(x+ x2)) + β2 sin2(αx1)

)
.

On the other hand, recalling that α2 + β2 = 1 and making similar simpli�cations as for
(2.4.15), we have

1

β + iα
sin

(
B +K

2

)
− (β + iα) sin

(
B −K

2

)
=

B̃2

C̃
,

where C̃ is given by (2.4.14) and

B̃2 = 4
(
α2βeθ cosh2(β(x+ x2))− β3eθ sin2(αx1)

+ iα2βe2θ cosh(β(x+ x2)) sin(αx1)− iα2β cosh2(β(x+ x2)) sin(αx1)
)
.

Hence, (2.4.10) is reduced to show that Ã2 − B̃2 ≡ 0. Indeed, simplifying,

Ã2 − B̃2

= 4α2β cosh(β(x+ x2))
(
cosαx1 + i sinαx1 + e2θ(cosαx1 − i sinαx1)

)
− 8α2βeθ cosh2(β(x+ x2))

= 8α2βeθ cosh2(β(x+ x2))− 8α2βeθ cosh2(β(x+ x2)) = 0.

The following corollary shows that there is also a relationship between the breather and
the conjugate of the complex-valued kink pro�le.
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Corollary 2.4.5. Let (B,Bt) and (K,Kt) be SG breather and complex-valued kink pro�les
respectively, both with scaling parameters β ∈ (−1, 1)\{0} and shifts x1, x2 such that (2.3.5)
do not satisfy. Then, for each x ∈ R, (B,Bt) is a BT of (K,Kt) with parameter β − iα:

Bx −Kt =
1

β − iα
sin

(
B +K

2

)
+ (β − iα) sin

(
B −K

2

)
, (2.4.16)

Bt −Kx =
1

β − iα
sin

(
B +K

2

)
− (β − iα) sin

(
B −K

2

)
. (2.4.17)

Proof. Direct from previous result.

When working with multiple pro�les it is convenient to introduce a schematic repre-
sentation of the BT, see [53]. Figure 2.5 shows a diagram where each arrow represents
the BT of the SG solution (φi, φi,t) towards another solution (φj, φj,t) with parameter ak,
and given in De�nition 2.2.1. The fact that both BT arrive to the same solution is not a
coincidence and it is called in the literature as Permutability Theorem. In this chapter we
will present a rigorous proof of this result for solutions of SG which are perturbations of
the pro�les showed in the previous section.

(φ3, φ3,t)

(φ1, φ1,t) (φ2, φ2,t)

(φ0, φ0,t)

a1

a1 a2

a2

Figure 2.5: A diagram representing two consecutive applications of the BT
with inverse parameters a1 y a2. The permutability property says that (φ3, φ3,t)
is the unique �nal function, independently of the two considered paths.

We remark that Proposition 2.4.4, together with Corollary 2.4.5 show the validity of
the diagram in Fig. 2.6 for SG pro�les, and not only solutions of the equation itself. This
diagram is valid as soon as x1 does not satisfy (2.3.5), in order to avoid the lack of good
de�nition for K and K.

Now we want to study the conection between the SG kink and kink-antikink.

Proposition 2.4.6 (Kink-Antikink connection). Let (A,At) be a SG kink-antikink pro�le,
with speed parameter β ∈ (−1, 1) \ {0} and shifts x1, x2, as was introduced in De�nition
2.4.3. Let also

~Q := (Q,Qt) := (Q,Qt)(x;−β, x1 + x2), (2.4.18)

be a real-valued kink pro�le (see De�nition 2.3.1 and Observation 2.3.4), with speed pa-
rameter −β ∈ (−1, 1)\{0} and shift (x1 + x2).3 Then, the following is satis�ed:

3Note the speci�c character of the choice in the shift parameter.
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(B,Bt)

(K,Kt) (K,Kt)

(0, 0)

β − iα

β − iα β + iα

β + iα

Figure 2.6: Diagram for the breather B in Proposition 2.4.4. Note that (B,Bt)
is obtained independently of the chosen path [53].

1. We have the identities

lim
x→±∞

cos

(
A±Q

2

)
=

{
−1, x→ +∞
1, x→ −∞

. (2.4.19)

2. For each x ∈ R, (A,At) is a BT of (Q,Qt) with real-valued parameter a = a(β) (see
(2.3.8)). That is,

Ax −Qt =
1

a
sin

(
A+Q

2

)
+ a sin

(
A−Q

2

)
, (2.4.20)

At −Qx =
1

a
sin

(
A+Q

2

)
− a sin

(
A−Q

2

)
. (2.4.21)

Remark 2.4.4. Generally speaking, we have the validity of the diagram in Fig. 2.7 (above),
as soon as we choose kink pro�les of parameters (Q,Qt)(x, β,−x1+x2) and (Q,Qt)(x;−β, x1+
x2). In this sense, the reconstruction of (A,At) requires a di�erent rigidity than that of the
breather. In this paper, we will only use the RHS connection via (Q,Qt)(x;−β, x1 + x2).

Proof of Proposition 2.4.6. The proof of this result is very similar to that of Proposi-
tion 2.4.4. See Appendix A.

In order to conclude this section we will study the relationship between real-valued kinks
and 2-kinks of SG.

Corollary 2.4.7 (2-kink connection). Let (R,Rt) be a SG 2-kink pro�le, with speed pa-

rameter β ∈ (−1, 1) \ {0} and shifts x1, x2. Let ~Q denote the kink de�ned in (2.4.18), with
speed parameter −β ∈ (−1, 1) and shift (x1 + x2). Then,

1. We have the limits

lim
x→±∞

cos

(
R±Q

2

)
=

{
1, x→ +∞
−1, x→ −∞

. (2.4.22)
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(A,At)(x; β, x1, x2)

(Q,Qt)(x; β,−x1 + x2) (Q,Qt)(x;−β, x1 + x2) ?

(0, 0)

a

a 1/a

1/a

(R,Rt)(x; β, x1, x2)

? (Q,Qt)(x,−β, x1 + x2) (Q,Qt)(−x;−β, x1 − x2)

(0, 0)

1/a

1/a −a

−a

Figure 2.7: Schematic diagram for the kink-antikink pair (A,At) (above), and
the 2-kink (R,Rt) (below). In this paper, we will follow the paths refereed with
?.

2. For each x ∈ R, (R,Rt) is a BT of (Q,Qt) with parameter a3 = −a(β) (see (2.3.9)):

Rx −Qt =
1

a3

sin

(
R +Q

2

)
+ a3 sin

(
R−Q

2

)
, (2.4.23)

Rt −Qx =
1

a3

sin

(
R +Q

2

)
− a3 sin

(
R−Q

2

)
. (2.4.24)

Remark 2.4.5. We have in general the validity of the diagram in Fig. 2.7 (below), but we
will only use its left side component.

Proof. Direct from Proposition 2.4.6, it is enough to change the roles of x + x2 and x1,
and a(β) by −a(β).

2.5 Modulation of 2-solitons

In order to prove Theorem 2.1.1, we will show �rst some modulation lemmas. Here we will
follow the ideas in [59] and [7].
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2.5.1 Static modulation

We will consider three pair of objects to deal with:

1. (B,Bt) a SG breather pro�le with scaling parameter β ∈ (−1, 1), β 6= 0 �xed, and
shifts x1, x2 ∈ R, as in De�nition 2.4.1.

2. (R,Rt) a SG 2-kink pro�le with speed β ∈ (−1, 1), β 6= 0 �xed, and shifts x1, x2 ∈ R,
as in De�nition 2.4.2.

3. (A,At) a SG kink-antikink pro�le with speed β ∈ (−1, 1), β 6= 0 �xed, and shifts
x1, x2 ∈ R, as in De�nition 2.4.3.

Let D denote any of the capital letters A, B or R. We will use subindexes 1 and 2 to
denote derivatives of A, B and R wrt the shifts x1 and x2 respectively, namely for j = 1, 2

Dj(x; β, x1, x2) := ∂xjD(x; β, x1, x2), (2.5.1)

(Dt)j(x; β, x1, x2) := ∂xjDt(x; β, x1, x2). (2.5.2)

Remark 2.5.1. In Appendix B we can �nd an explicit description of the derivatives above
mentioned in the casesD = A andD = R, showing clearly that these are localized functions
(see subsection B.2).

Let ν > 0 be a small real number. Let us also consider the following tubular neighbor-
hood of a 2-soliton (D,Dt) of radius ν:

U(ν) :=
{

(φ, φt) : inf
x1,x2∈R

∥∥(φ, φt)− (D,Dt)(·; β, x1, x2)
∥∥
H1×L2 < ν

}
.

It is important to mention that this set has no temporal dependence. Since (φ, φt) does not
necessarily decay to zero (e.g. 2-kink case), the key is the di�erence with (D,Dt). However
in the case of kink-antikink or breather, (φ, φt) ∈ H1 × L2. For the proof of next result,
see Appendix C.

Lemma 2.5.1 (Static Modulation). There exists ν0 > 0 such that for each 0 < ν < ν0,
the following is satis�ed. For each pair (φ, φt) ∈ U(ν), there exists a unique couple of C1

functions x̃1, x̃2 : U(ν)→ R such that , if we consider z = z(x) and w = w(x) de�ned as

z(x) := φ(x)−D(x; β, x̃1, x̃2), w(x) := φt(x)−Dt(x; β, x̃1, x̃2),

then, the following orthogonality conditions hold:∫
R
(z, w) ·

(
D1, (D1)t

)
dx =

∫
R
(z, w) ·

(
D2, (D2)t

)
dx = 0.
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2.5.2 Dynamical modulation

We need now a dynamical version of the previous lemma. Let (φ, φt) be a solution of
(2.1.1), with initial data (φ0, φ1) such that

‖(φ0, φ1)− (D,Dt)(·; β, 0, 0)‖H1×L2 < η, (2.5.3)

for some 0 < η < η0 small enough, with η0 given by Theorem 2.1.1.

De�nition 2.5.2 (Recurrence Time). Let C∗ > 1 be a large parameter (to be chosen later),
and let (φ, φt)(t) be the unique globally de�ned solution of SG with initial data (φ0, φ1), and
satisfying (2.5.3). We de�ne T ∗ := T ∗(C∗) > 0 as the maximal time for which there are
parameters x̃1(t) and x̃2(t) such that

sup
t∈[0,T ∗]

‖(φ, φt)(t)− (D,Dt)(·; β, x̃1(t), x̃2(t))‖H1×L2 ≤ C∗η. (2.5.4)

Note that T ∗ is well-de�ned thanks to continuity of the SG �ow, (2.5.3) and the fact
that C∗ > 1. Later we will prove that T ∗ can be taken in�nity for all C∗ large enough.
Even more,

In what follows we will assume that T ∗ is �nite. (2.5.5)

By choosing η0 su�ciently small if necessary, we will have C∗η < ν0 in Lemma 2.5.1, and
the following result will be valid:

Corollary 2.5.3 (Dynamical modulation). Under the assumptions of De�nition 2.5.2,
there are C1 functions x1, x2 : [0, T ∗]→ R such that, if

z(t, x) := φ(t, x)−D(x; β, x1(t), x2(t)),

w(t, x) := φt(t, x)−Dt(x; β, x1(t), x2(t)),
(2.5.6)

then, for each t ∈ [0, T ∗],∫
R
(z, w) ·

(
D1, (D1)t

)
(t, x)dx =

∫
R
(z, w) ·

(
D2, (D2)t

)
(t, x)dx = 0, (2.5.7)

and moreover
sup

t∈[0,T ∗]

‖(z, w)(t)‖H1×L2 . C∗η, (2.5.8)

‖(z, w)(0)‖H1×L2 + |x1(0)|+ |x2(0)| . η, (2.5.9)

and
sup

t∈[0,T ∗]

(|x′1(t)|+ |x′2(t)|) . sup
t∈[0,T ∗]

‖(z, w)(t)‖H1×L2 . C∗η. (2.5.10)

Moreover, if D = R and (z0, w0) are odd, or if D = B,A and (z0, w0) are even, then we
can choose x2(t) ≡ 0, and the parity property on (z, w) is preserved in time.

Proof. Direct from Lemma 2.5.1 and (2.5.4).
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2.6 Perturbations of breathers

2.6.1 Statement

In this section we will assume K = C in De�nition 2.2.3. Our goal will be to show the
following result.

Proposition 2.6.1 (Descent to the zero solution). Let (B,Bt) be a SG breather pro�le, as
in De�nition 2.4.1, with scaling parameter β ∈ (−1, 1)\{0} and shifts x1, x2 ∈ R, such that
x1 does not satisfy (2.3.5). Let also (K,Kt) be the complex-valued kink pro�le associated
to (B,Bt), that is with same parameters as (B,Bt). Then, there are constants η0 > 0 and
C > 0 such that, for all 0 < η < η0 and all (z0, w0) ∈ H1 (R)× L2 (R) such that4

‖(z0, w0)‖H1(R)×L2(R) < η,

then the following is satis�ed:

1. There are unique (u0, s0, δ) de�ned in an open subset of H1 (R;C) × L2 (R;C) × C
such that the Bäcklund functional (2.2.3) satis�es

F(B + z0, Bt + w0, K + u0, Kt + s0, β + iα + δ) = (0, 0),

and where

‖(u0, s0)‖H1×L2 + |δ| < Cη.

2. Making η0 even smaller if necessary, there are unique (y0, v0, δ̃), de�ned in an open
subset of H1 (R;C)× L2 (R;C)× C, and such that

F(K + u0, Kt + s0, y0, v0, β − iα + δ̃) = (0, 0),

and

‖(y0, v0)‖H1×L2 + |δ̃| < Cη.

The rest of the section will be devoted to the proof of this result, for which we will need
some auxiliary lemmas.

2.6.2 Integrant Factor

Let us start with an auxiliary result on existence of integrant factors for some ODEs
appearing naturally when studying breathers and BT.

4Note that both (z0, w0) are real-valued.
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Lemma 2.6.2 (Existence of Integrant Factor). Let (B,Bt) and (K,Kt) be breather and
complex-valued kink pro�les, both with scaling parameter β ∈ (−1, 1), β 6= 0, and shifts
x1, x2 ∈ R. Let us consider

µK(x) :=
1

cosh(β(x+ x2) + iαx1)
=
Kx(x)

2β
, (see (2.3.14)), (2.6.1)

and

µB(x) :=
cosh(β(x+ x2) + iαx1)

α2 cosh2(β(x+ x2)) + β2 sin2(αx1)
=

1

4α2β2
(βBt − iαBx)(x). (2.6.2)

Then the following holds:

1. (Local and global behavior)

(a) µK(x) is well-de�ned and smooth for any β ∈ (−1, 1) \ {0}, and x1, x2 ∈ R,
provided x1 does not satisfy (2.3.5). Additionally, it decays exponentially fast in
space as x→ ±∞.

(b) µB(x) is well-de�ned and smooth for any β ∈ (−1, 1) \ {0}, and x1, x2 ∈ R.
Additionally, it decays exponentially fast in space as x → ±∞. Finally, µB is
not zero if (2.3.5) is not satis�ed.

2. (ODEs) We have that µK(x) satis�es the ODE

µx − β cos

(
K

2

)
µ = 0, (2.6.3)

and µB(x) solves the ODE

µx −
(

(β − iα)

2
cos

(
B +K

2

)
+

(β + iα)

2
cos

(
B −K

2

))
µ = 0. (2.6.4)

3. (Non orthogonality) For each x1 such that (2.3.5) is not satis�ed, we have∫
R
µK sin

(
K

2

)
=

2

β
, (2.6.5)

and µB is not orthogonal to (Bx −Kt), that is:∫
R
µB (Bx −Kt) = − 4i

αβ
. (2.6.6)

Finally, these identities can be extended by continuity to all x1 ∈ R.

Proof. The proof of this result is direct but cumbersome, see Appendix D for the proof.
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2.6.3 Proof of Proposition 2.6.1

Using Lemma 2.6.2, the �rst item in Proposition 2.6.1 will be a consequence of the following
result.

Lemma 2.6.3. Let (B,Bt) and (K,Kt) be breather and complex-valued kink pro�les, both
with scaling parameter β ∈ (−1, 1) \ {0} and shifts x1, x2 ∈ R, and such that (2.3.5) is not
satis�ed. Then, there are constants η0 > 0 and C > 0 such that for all 0 < η < η0 and for
all (z0, w0) ∈ H1 (R)× L2 (R) such that

‖(z0, w0)‖H1(R)×L2(R) < η,

there are unique (u0, s0, δ) de�ned in an open subset of H1 (R;C)×L2 (R;C)×C and such
that F in (2.2.3) satis�es

F(B + z0, Bt + w0, K + u0, Kt + s0, β + iα + δ) = (0, 0), (2.6.7)

and
‖(u0, s0)‖H1×L2 + |δ| ≤ Cη. (2.6.8)

Proof. Let (z0, w0) ∈ H1 (R)×L2 (R) be given, with a size to be de�ned below. Consider
the system of equations given by the Bäcklund functionals (2.2.5)-(2.2.6) in the variables
(u0, s0, δ) ∈ H1(R;C)×L2(R;C)×C (note that this space and H1 (R)×L2 (R) de�ne the
space X(K) for F):

F1

(
B + z0, Bt + w0, K + u0, Kt + s0, β + iα + δ

)
=

= Bx + z0,x −Kt − s0 −
1

β + iα + δ
sin

(
B + z0 +K + u0

2

)
− (β + iα + δ) sin

(
B + z0 −K − u0

2

)
, (2.6.9)

F2

(
B + z0, Bt + w0, K + u0, Kt + s0, β + iα + δ

)
=

= Bt + w0 −Kx − u0,x −
1

β + iα + δ
sin

(
B + z0 +K + u0

2

)
+ (β + iα + δ) sin

(
B + z0 −K − u0

2

)
. (2.6.10)

We look for a unique choice of (u0, s0, a) such that

F(B + z0, Bt + w0, K + u0, Kt + s0, β + iα + δ) = (0, 0).

We will use the Implicit Function Theorem for (F1,F2). Note that from (2.6.9) that once
(u0, δ) are de�ned, s0 gets completely determined from (2.6.9). Hence, we will only solve
(2.6.10) for (u0, δ). Thanks to the indentity F(B,Bt, K,Kt, β + iα) = (0, 0), through a
rearrangement of (2.6.9) and (2.6.10) we have that these equations can be written as

F̃1

(
z0, w0, u0, s0, δ

)
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:= z0,x − s0 −
1

β + iα + δ
sin

(
B +K + z0 + u0

2

)
+

1

β + iα
sin

(
B +K

2

)
− (β + iα + δ) sin

(
B −K + z0 − u0

2

)
+ (β + iα) sin

(
B −K

2

)
= 0, (2.6.11)

F̃2

(
z0, w0, u0, s0, δ

)
:= w0 − u0,x −

1

β + iα + δ
sin

(
B +K + z0 + u0

2

)
+

1

β + iα
sin

(
B +K

2

)
+ (β + iα + δ) sin

(
B −K + z0 − u0

2

)
− (β + iα) sin

(
B −K

2

)
= 0. (2.6.12)

Clearly F̃2 de�nes a C1 functional in the vicinity of zero, and F̃2

(
0, 0, 0, 0, 0

)
= 0. Then,

we must verify that the partial derivative of F̃2 at (0, 0, 0, 0, 0) de�nes a bounded linear
operator, invertible with continuous inverse. From (2.6.12) we must check that the ODE

−u0,x +
δ

(β + iα)2
sin

(
B +K

2

)
− u0

2(β + iα)
cos

(
B +K

2

)
+ δ sin

(
B −K

2

)
− (β + iα)u0

2
cos

(
B −K

2

)
= f, (2.6.13)

has a unique solution (u0, δ) such that u0 ∈ H1 (R;C), δ ∈ C, for each f ∈ H1(R;C).
Rewriting (2.6.13), calling f 7→ −f , and using that (β + iα)−1 = β − iα, we have

u0,x +

(
(β − iα)

2
cos

(
B +K

2

)
+

(β + iα)

2
cos

(
B −K

2

))
u0

= f +
δ

(β + iα)2
sin

(
B +K

2

)
+ δ sin

(
B −K

2

)
. (2.6.14)

Consider µB = µB(x) de�ned in Lemma 2.6.2, see (2.6.2). Thanks to (2.6.4), we have

u0 =
1

µB

∫ x

−∞
µB

(
f + δ(β − iα)2 sin

(
B +K

2

)
+ δ sin

(
B −K

2

))
.

Recalling that (B,Bt) and (K,Kt) satisfy (2.4.9), and since α2 + β2 = 1, we arrive to the
simpli�ed expression

u0 =
1

µB

∫ x

−∞
µB (f + δ(β − iα) (Bx −Kt)) .

From (2.6.6), we know that
∫
R µB · (Bx −Kt) 6= 0. Consequently, we can choose δ ∈ C in

a unique fashion and such that∫
R
µB (f + δ(β − iα) (Bx −Kt)) = 0. (2.6.15)
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Note that from this choice we have |δ| ≤ C‖f‖L2(R), where C is a constant depending on
β and ‖µB‖L2(R;C). Let us prove that u0 ∈ H1(R;C). Indeed, from

lim
x→±∞

f(x) = lim
x→±∞

µB(x) = lim
x→±∞

Bx = lim
x→±∞

Kt = 0,

(see (2.6.2), (2.4.11) and (2.3.4)), we obtain

lim
x→±∞

u0 = lim
x→±∞

µB
(µB)x

(f + δ(β − iα)(Bx −Kt)) = 0.

Lastly, note that if s ≤ x� −1, then we have that∣∣∣∣µB(s)

µB(x)

∣∣∣∣ ≤ C

∣∣∣∣cosh(β(x+ x2))

cosh(β(s+ x2))

∣∣∣∣ ≤ C
∣∣exp

(
β(s− x)

)∣∣ .
Hence, for x� −1 we get

|u0(x)| ≤ C

∫ x

−∞
e−β(x−s) |f + δ(β − iα) (Bx −Kt)| ds

≤ Ce−βx ?
(
|f(·) + δ(β − iα) (Bx −Kt)| 1(−∞, x](·)

)
.

On the other hand, if x� 1, using (2.6.15) we have

u0(x) = − 1

µB

∫ ∞
x

µB (f + δ(β − iα) (Bx −Kt)) .

From this last result, it is not di�cult to show decay estimates for x � 1, changing e−βx

by eβx. In consequence, from Young's inequality,

‖u0‖L2(R;C) . ‖f + δ(β − iα) (Bx −Kt)‖L2(R;C) .

Finally, in order to prove u0 ∈ H1 we only must check that u0,x ∈ L2(R;C), which is direct
if we recall that f ∈ H1 and (µB)x/µB is bounded. Therefore, u0 ∈ H1(R;C). The Implicit
Function Theorem guaranties (2.6.7). The proof of (2.6.8) is direct from the smallness of
the data.

Finally, the second item in Proposition 2.6.1 is consequence of the following:

Lemma 2.6.4. Let (K,Kt) be a complex-valued kink pro�le with scaling parameter β ∈
(−1, 1) \ {0} and shifts x1, x2 ∈ R, and such that x1 does not satisfy (2.3.5). Then, there
are constants ν0 > 0 and C > 0 such that for all 0 < ν < ν0 and for all (u0, s0) ∈
H1 (R;C)× L2 (R;C) such that

‖u0‖H1(R;C) + ‖s0‖L2(R;C) < ν,

there are unique (y0, v0, δ̃) de�ned in an open subset of H1 (R;C)×L2 (R;C)×C and such
that

F(K + u0, Kt + s0, y0, v0, β − iα + δ̃) = (0, 0), (2.6.16)

and moreover,
‖(y0, v0)‖H1×L2 + |δ̃| < Cν. (2.6.17)
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Idea of proof. The proof is very similar to that of Lemma 2.6.3, so we will only sketch
the main steps.

Let (u0, s0) ∈ H1 (R;C)×L2 (R;C) be given. Consider the rescaled BT functionals (see
(2.2.5)-(2.2.6) and Lemma 2.3.5),

F̃1

(
u0, s0, y0, v0, δ̃

)
= u0,x − v0 −

1

β − iα + δ̃
sin

(
K + u0 + y0

2

)
+

1

β − iα
sin

(
K

2

)
− (β − iα + δ̃) sin

(
K + u0 − y0

2

)
+ (β − iα) sin

(
K

2

)
, (2.6.18)

F̃2

(
u0, s0, y0, v0, δ̃

)
= s0 − y0,x −

1

β − iα + δ̃
sin

(
K + u0 + y0

2

)
+

1

β − iα
sin

(
K

2

)
+ (β − iα + δ̃) sin

(
K + u0 − y0

2

)
− (β − iα) sin

(
K

2

)
, (2.6.19)

for some (y0, v0, a) ∈ H1(R;C)×L2(R;C)×C. We will use the Implicit Function Theorem
on the previous system. Note that once we �nd (y0, δ̃), v0 rests completely determined
from (2.6.18), so that we only need to solve for (2.6.19) and (y0, δ̃).

A simple computation in (2.6.19) reveals that the problem is reduced to prove that the
equation

− y0,x +
δ̃

(β − iα)2
sin

(
K

2

)
− y0

2(β − iα)
cos

(
K

2

)
+ δ̃ sin

(
K

2

)
− (β − iα)y0

2
cos

(
K

2

)
= f,

(2.6.20)

has a unique solution (y0, a) such that y0 ∈ H1(R;C), for each f ∈ H1 (R;C), continuous
in function of the parameters of the problem. Simplifying (2.6.20), we obtain the equation

y0,x + β cos

(
K

2

)
y0 = f + δ̃(1 + (β + iα)2) sin

(
K

2

)
. (2.6.21)

Recalling that α2 + β2 = 1, and that µK in (2.6.1) is integrant factor for the last ODE, we
obtain

y0 =
1

µK

∫ x

−∞
µK

(
f +

2δ̃β

β − iα
sin

(
K

2

))
.

On the other hand, from (2.6.5) we conclude that we can choose δ̃ ∈ C in a unique form
and such that ∫

R
µK

(
f +

2δ̃β

β − iα
sin

(
K

2

))
= 0. (2.6.22)
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We also have |δ̃| ≤ C‖f‖L2(R). Finally, note that

lim
x→±∞

f(x) = lim
x→±∞

sin

(
K

2

)
= 0,

and that from (2.3.11) limx→±∞ β cos(K
2

) = ∓β. The rest of the proof is very similar to
the proof of Lemma 2.6.3.

2.7 Perturbations of breathers: inverse dynamics

2.7.1 Preliminaries

In this section we will continue assuming K = C in De�nition 2.2.3. Proposition 2.6.1
showed us the connection between a vicinity of (B,Bt) with another vicinity of the vacuum
solution. Our objetive now will be the proof of an inverse result. Important di�erences
will appear in this case, in particular we will need the orthogonality conditions (2.5.7) in
the case of the breather:∫

R
(z, w) ·

(
B1, (B1)t

)
(t, x)dx =

∫
R
(z, w) ·

(
B2, (B2)t

)
(t, x)dx = 0. (2.7.1)

Recall that B1 and B2, de�ned in general in (2.5.1)-(2.5.2), are given explicitly in (B.1.1).

Lemma 2.7.1 (Nondegenerate pro�le B̃0). Let us de�ne the function

B̃0 := Bxxt +
1

2
(β − iα)(B −Bt,x) cos

(
B +K

2

)
− 1

2
(β + iα)(B +Bt,x) cos

(
B −K

2

)
.

(2.7.2)

Then B̃0 is in the Schwartz class, provided x1 does not satisfy (2.3.5). Additionally, we
have the nondegeneracy condition ∫

R
B̃0Kx ∈ R\{0}. (2.7.3)

Proof of Lemma 2.7.1. The fact that B̃0 belongs to the Schwartz class is direct, pro-
vided that Kt or Kx are well-de�ned, which is the case if x1 does not satisfy (2.3.5). An
explicit computation of (2.7.3) has escaped to us. For the numerical computation of this
constant, see Appendix F.

In next result, we will translate one of the orthogonality conditions in (2.7.1) to the case
of a pair of functions (u, s)(t) already unknown.
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Lemma 2.7.2 (A priori almost orthogonality conditions). Let t ∈ [0, T ∗] be �xed as in
De�nition 2.5.2. Let (z, w)(t) be H1 × L2 functions, and x1(t), x2(t) modulational param-
eters given by Corollary 2.5.3, such that the second condition in (2.7.1) and the bound
(2.5.8) are satis�ed, and where x1(t) does not satisfy (2.3.5). Finally, let δ ∈ C be a small
�xed parameter, independent of time. Let us assume also that, for all η > 0 small, there
are functions (u, s)(t), de�ned in H1 (R;C)× L2 (R;C), and such that

sup
t∈[0,T ∗]

‖(u, s)(t)‖H1×L2 . η, (2.7.4)

and satisfy, for each t ∈ [0, T ∗]:

F(B + z,Bt + w,K + u,Kt + s, β + iα + δ) = (0, 0). (2.7.5)

Then, necessarily we have the almost orthogonality condition∫
R
(u, s) · (B̃0, B) = N (δ, u, z), (2.7.6)

where N satis�es N (0, 0, z) = O(z2) (see (2.7.10)), and B̃0 is given by (2.7.2).
Remark 2.7.1. Condition (2.7.6) can be recast as a necessary condition for (u, s) close
to zero, for being candidate to solution in (2.7.5). This condition, motivated by (2.7.1),
implies that no every pair of functions (u, s) is allowed at the time of solving the inverse
dynamics of Bäcklund equations. This new condition will be essential to get uniqueness
when applying the Implicit Function Theorem. See [73] for another approach to this
method, involving the Lyapunov-Schmidt reduction.

Proof. Explicitly writing (2.7.5), and using (2.2.5)-(2.2.6), we get the equations

Bx + zx −Kt − s

− 1

β + iα + δ
sin

(
B + z +K + u

2

)
− (β + iα + δ) sin

(
B + z −K − u

2

)
= 0,

Bt + w −Kx − ux

− 1

β + iα + δ
sin

(
B + z +K + u

2

)
+ (β + iα + δ) sin

(
B + z −K − u

2

)
= 0.

Let us try to use the second orthogonality condition in (2.5.7) with D = B, so that
D2 = B2 = ∂x2B (see (2.5.1)-(2.5.2)). Since B2 = Bx and B2,t = Bt,x (see (2.4.1)), we have
that multiplying the �rst equation above by B, and the second by Bt,x, and integrating on
x, we will get (after some simple cancelations, see the end of Lemma 2.3.5)∫

B2z + i Im

∫
BKt +

∫
Bs+

1

β + iα + δ

∫
B sin

(
B + z +K + u

2

)
+ (β + iα + δ)

∫
B sin

(
B + z −K − u

2

)
= 0,
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∫
B2,tw − i Im

∫
Bt,xKx −

∫
B2,tux −

1

β + iα + δ

∫
Bt,x sin

(
B + z +K + u

2

)
+ (β + iα + δ)

∫
Bt,x sin

(
B + z −K − u

2

)
= 0.

Adding both equations, and using (2.5.7), we have∫
Bxxtu+

∫
Bs+

1

β + iα + δ

∫
(B −Bt,x) sin

(
B + z +K + u

2

)
+ (β + iα + δ)

∫
(B +Bt,x) sin

(
B + z −K − u

2

)
= i Im

∫
Bt,xKx − i Im

∫
BKt. (2.7.7)

The term sin
(
B+z±K±u

2

)
can be expanded as

sin

(
B + z ±K ± u

2

)
= sin

(
B ±K

2

)
+

1

2
cos

(
B ±K

2

)
(z ± u)

+N2,±(x, z, u).

Here, N2,± are nonlinear functions in (x, z, u), quadratic in (z, u). Hence, replacing in
(2.7.7) we get∫

Bxxtu+

∫
Bs+

1

2(β + iα + δ)

∫
(B −Bt,x) cos

(
B +K

2

)
u

− 1

2
(β + iα + δ)

∫
(B +Bt,x) cos

(
B −K

2

)
u

= i Im

∫
Bt,xKx − i Im

∫
BKt −

1

β + iα + δ

∫
(B −Bt,x) sin

(
B +K

2

)
− (β + iα + δ)

∫
(B +Bt,x) sin

(
B −K

2

)
− 1

2(β + iα + δ)

∫
(B −Bt,x) cos

(
B +K

2

)
z

− 1

2
(β + iα + δ)

∫
(B +Bt,x) cos

(
B −K

2

)
z +N2(z, u).

Here, N2 is a nonlinear term of second order in (z, u). Let us de�ne

B̃δ := Btxx +
1

2(β + iα + δ)
(B −Bt,x) cos

(
B +K

2

)
− 1

2
(β + iα + δ)(B +Bt,x) cos

(
B −K

2

)
.
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Thanks to Lemma 2.7.1, B̃δ = B̃0 + OS(δ), where OS(δ) represents a function in the
Schwartz class, bounded by δ, uniformly in space. Then,∫

B̃0u+

∫
Bs = i Im

∫
Bt,xKx − i Im

∫
BKt

− 1

β + iα + δ

∫
(B −Bt,x) sin

(
B +K

2

)
− (β + iα + δ)

∫
(B +Bt,x) sin

(
B −K

2

)
+N1,1(δ, z) +N2(z, u). (2.7.8)

Here, N1,1(δ, z) represents a quadratic term in δ, z, with N1,1(0, z) = N1,1(δ, 0) = 0. Lastly,
we will use the following result:

Lemma 2.7.3. For each β > 0, and x1, x2 shifts such that x1 does not satisfy (2.3.5), we
have

i Im

∫
BtxKx − i Im

∫
BKt −

1

β + iα

∫
(B −Bt,x) sin

(
B +K

2

)
− (β + iα)

∫
(B +Bt,x) sin

(
B −K

2

)
= 0. (2.7.9)

Assuming this result, we have

i Im

∫
BtxKx − i Im

∫
BKt −

1

β + iα + δ

∫
(B −Bt,x) sin

(
B +K

2

)
− (β + iα + δ)

∫
(B +Bt,x) sin

(
B −K

2

)
= N1,2(δ),

where N1,2 is a term of �rst order in δ, with N1,2(0) = 0. Therefore, coming back to (2.7.8),
we can conclude that∫

B̃0u+

∫
Bs = N1,2(δ) +N1,1(δ, z) +N2(z, u),

which shows (2.7.6). For further references, N is given by

N (δ, u, z) := N1,2(δ) +N1,1(δ, z) +N2(z, u). (2.7.10)

Clearly, N (0, 0, z) = O(z2).

Proof of Lemma 2.7.3. From (2.4.9)-(2.4.10), we have

RHS of (2.7.9)

= i Im

∫
BtxKx − i Im

∫
BKt −

∫
B(Bx −Kt) +

∫
Btx(Bt −Kx)

= i Im

∫
BtxKx − i Im

∫
BKt +

∫
BKt −

∫
BtxKx = 0.
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Last cancelations are coming from the parity properties ofKx andKt, see Lemma 2.3.5.

Our second result is the following (compare with Proposition 2.6.1):

Proposition 2.7.4 (Ascent to the perturbed breather pro�le). Let (B,Bt) be a breather
pro�le as in De�nition 2.4.1, with scaling parameter β ∈ (−1, 1) and shifts x1, x2 ∈ R, and
such that x1 does not satisfy (2.3.5). Let also (K,Kt) denote the complex-valued kink pro�le
associated to (B,Bt), that is, with same parameters as (B,Bt). Then, there exist constants
η1 > 0 and C > 0 such that for all 0 < η < η1 and for all (y, v, δ̃) ∈ H1 (R)× L2 (R) ∈ R
such that5

‖(y, v)‖H1(R)×L2(R) + |δ̃| ≤ η,

then the following is satis�ed:

1. There are unique (u, s) de�ned in a subset of H1 (R;C)× L2 (R;C) such that

F(K + u,Kt + s, y, v, β − iα + δ̃) = (0, 0),

(2.7.6) is satis�ed, and

‖(u, s)‖H1×L2 ≤ Cη.

2. For all δ > 0 small enough, making η1 smaller if necessary, there are unique (z, w),
de�ned in a subset of H1 (R;C)× L2 (R;C), and such that

F(B + z,Bt + w,K + u,Kt + s, β + iα + δ) = (0, 0),

(2.7.1) is satis�ed for B1, and also,

‖(z, w)‖H1×L2 + |δ| ≤ Cη.

For the proof of this result we will use several auxiliary results. The �rst item in
Proposition 2.7.4 is consequence of the following result.

Proposition 2.7.5. Let (K,Kt) be a complex-valued kink pro�le, with scaling parameter
β ∈ (−1, 1), β 6= 0, and shifts x1, x2 ∈ R. Then, there are constants ν1 > 0 and C > 0
such that for all 0 < ν < ν1 and for all (y, v, δ̃) ∈ H1(R;C)× L2(R;C)× C such that

‖y‖H1(R;C) + |δ̃| < ν,

there are unique (u, s) ∈ H1(R;C)× L2(R;C) such that

1. Smallness. We have
‖(u, s)‖H1×L2 ≤ Cν,

5Note that (y, v, δ̃) are real-valued.
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2. The BT are satis�ed, in the sense that (u, s) solve (see (2.7.6)):

F(K + u, Kt + s, y, v, β − iα + δ̃) ≡ (0, 0), (2.7.11)∫
R
(u, s) · (B̃0, B) = N (δ, u, z), (2.7.12)

where N was de�ned in (2.7.10).
Remark 2.7.2. Note that (2.7.12) is a necessary condition to get∫

R
(z, w) ·

(
B2, (B2)t

)
(t, x)dx = 0,

obtained via modulation theory. Additionally, (2.7.12) ensures existence and uniqueness
for the solution constructed via Implicit Function.

Proof of Proposition 2.7.5. Let (y, v, δ̃) ∈ H1 (R;C)×L2 (R;C)×C be given and small.
Let us consider the BT functionals equal zero:

F1

(
K + u,Kt + s, y, v, β − iα + δ̃

)
= Kx + u0,x − v

− 1

β − iα + δ̃
sin

(
K + u+ y

2

)
− (β − iα + δ̃) sin

(
K + u− y

2

)
= 0,

(2.7.13)

F2

(
K + u,Kt + s, y, v, β − iα + δ̃

)
= s− y0,x

− 1

β − iα + δ̃
sin

(
K + u+ y

2

)
+ (β − iα + δ̃) sin

(
K + u− y

2

)
= 0,

(2.7.14)

plus the almost orthogonality condition (2.7.12), for some (u, s) ∈ H1(R;C) × L2(R;C).
Here, z in (2.7.12) is given by a modulation (in a �xed time t far enough from the times
tk in (2.3.6)) on the breather pro�le. We look for a unique choice of (u, s) such that
(2.7.13)-(2.7.14) are satis�ed.

For simplicity, we shall rede�ne variables. Using F(K,Kt, 0, 0, β− iα) = (0, 0) (Lemma
2.3.5), we have

F̃1(u, s, y, v, δ̃) = ux − v −
1

β − iα + δ̃
sin

(
K + u+ y

2

)
+

1

β − iα
sin

(
K

2

)
− (β − iα + δ̃) sin

(
K + u− y

2

)
+ (β − iα) sin

(
K

2

)
, (2.7.15)

F̃2

(
u, s, y, v, δ̃

)
= s− yx −

1

β − iα + δ̃
sin

(
K + u+ y

2

)
+

1

β − iα
sin

(
K

2

)
+ (β − iα + δ̃) sin

(
K + u− y

2

)
− (β − iα) sin

(
K

2

)
. (2.7.16)
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Recall that y, v and δ̃ are data of the problem. We must then solve F̃1 = F̃2 = 0 and
(2.7.12), for the unknown (u, s). First of all, note that once we know u, the value of s is
evident from (2.7.16). Therefore, we only solve (2.7.15), for u.

Clearly F̃1 de�nes a C1 functional in a neighborhood of the origin. Even more, using
Lemma 2.3.5, we have F(K,Kt, 0, 0, β−iα) = (0, 0) and then, F̃1(0, 0, 0, 0) = 0. In order to
apply Implicit Function, we must verify that the Gateaux derivative of F̃1 de�nes a linear
continuous functional, and a homeomorphism between the considered spaces. A simple
checking in (2.7.15) reveals that the problem is reduced to show that the equations

ux −
u

2(β − iα)
cos

(
K

2

)
− (β − iα)

2
cos

(
K

2

)
u = f, (2.7.17)∫

R
(u, s) · (B̃0, B) = c, (2.7.18)

have a unique solution u ∈ H1 (R;C), for all f ∈ H1 (R;C) and c ∈ C given, continuous
wrt the parameters of the problem. Simplifying (2.7.17) we get

ux − β cos

(
K

2

)
u = f.

Recall that limx→±∞ cos
(
K
2

)
= ∓1 (see (2.3.11)). From µK in (2.6.1), we have

u =
µK
µK(0)

u(x = 0) + µK

∫ x

0

f

µK
.

In what follows, (2.7.18) will help us to �nd u in a unique form. Indeed, it is enough to
show that ∫

B̃0µK ∼
∫
B̃0(x) sech(β(x+ x2) + iαx1))dx ∼

∫
B̃0Kx 6= 0,

which holds thanks to (2.7.3). The rest of the proof is similar to the one for Lemma
2.6.4.

The second item in Proposition 2.7.4 requires the following previous result.

Lemma 2.7.6. Let (B,Bt) and (K,Kt) breather and complex-valued kink pro�les respec-
tively, both with parameters β ∈ (−1, 1)\{0}, shifts x1, x2 ∈ R and such that (2.3.5) is not
satis�ed. Let us consider

µB(x) =
1

µB
(x) :=

α2 cosh2(β(x+ x2)) + β2 sin2(αx1)

cosh(β(x+ x2) + iαx1)

Then, µB(x) solves the ODE

µx +

(
(β − iα)

2
cos

(
B +K

2

)
+

(β + iα)

2
cos

(
B −K

2

))
µ = 0. (2.7.19)
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Proof. Direct from Lemma 2.6.2.

Finally, the second item in Proposition 2.7.4 is a consequence of the following result.

Proposition 2.7.7. Let (B,Bt) and (K,Kt) denote breather and complex-valued kink pro-
�les respectively, both with scaling parameter β ∈ (−1, 1) \ {0} and shifts x1, x2 ∈ R, with
x1 not satisfying (2.3.5). Then, there are constants η1 > 0 and C > 0 such that for all
0 < η < η1 and for all (u, s, δ) ∈ H1(R;C)× L2(R;C)× C such that

‖u‖H1(R;C) + |δ| < η,

there are unique (z, w) ∈ H1(R;C)× L2(R;C) with

‖(z, w)‖H1×L2 ≤ Cη,

F(B + z, Bt + w, K + u, Kt + s, β + iα + δ) ≡ (0, 0),

and ∫
R
(z, w) ·

(
B1, (B1)t

)
(t, x)dx = 0. (2.7.20)

Proof. Let (u, s, δ) ∈ H1 (R;C) × L2 (R;C) × C be given. Let us consider the system of
equations for the BT (2.2.5)-(2.2.6):

F1

(
B + z, Bt + w, K + u, Kt + s, β + iα + δ

)
= Bx + zx −Kt − s−

1

β + iα + δ
sin

(
B + z +K + u

2

)
− (β + iα + δ) sin

(
B + z −K − u

2

)
= 0, (2.7.21)

F2

(
B + z, Bt + w, K + u, Kt + s, β + iα + δ

)
= Bt + w −Kx − ux −

1

β + iα + δ
sin

(
B + z +K + u

2

)
+ (β + iα + δ) sin

(
B + z −K − u

2

)
= 0, (2.7.22)

for some (z, w) ∈ H1(R;C) × L2(R;C). We will use the Implicit Function Theorem in
(F1,F2). Note that once de�ned z0, w0 gets completely de�ned from (2.7.22), therefore we
just need to solve (2.7.21) for z0. Thanks to the identity F(B,Bt, K,Kt, β + iα) = (0, 0),
rearranging (2.7.21) and (2.7.22) we have

F̃1

(
z, w, u, s, δ

)
:= zx − s−

1

β + iα + δ
sin

(
B +K + z + u

2

)
+

1

β + iα
sin

(
B +K

2

)
− (β + iα + δ) sin

(
B −K + z − u

2

)
+ (β + iα) sin

(
B −K

2

)
= 0, (2.7.23)
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F̃2

(
z, w, u, s, δ

)
:= w0 − ux −

1

β + iα + δ
sin

(
B +K + z + u

2

)
+

1

β + iα
sin

(
B +K

2

)
+ (β + iα + δ) sin

(
B −K + z − u

2

)
− (β + iα) sin

(
B −K

2

)
= 0. (2.7.24)

Clearly F̃1 de�nes a C1 functional near zero, moreover, we have F̃2(0, 0, 0, 0, 0) = 0. Then,
from (2.7.23) we obtain that the problem is reduced to show that the equation

zx −
z0

2(β + iα)
cos

(
B +K

2

)
− (β + iα)z

2
cos

(
B −K

2

)
= f,

possesses a unique solution z ∈ H1 (R;C) for all f ∈ H1 (R;C). Rearranging terms,

zx −
(
β − iα

2
cos

(
B +K

2

)
+
β + iα

2
cos

(
B −K

2

))
z = f.

Thanks to Lemma 2.6.2, we can use the integrant factor 1/µB (exponentially increasing)
de�ned in (2.6.2) and (2.3.15) to obtain

z =
µB

µB(x = 0)
z(x = 0) + µB

∫ x

0

f

µB
. (2.7.25)

Note that µB is zero only if x1 satis�es (2.3.5), which is not the case. On the other hand,
z is well-de�ned from condition (2.7.20), which holds true because of∫

R
µBB1dx ∼

∫
R
µBBtdx 6= 0.

In fact, thanks to (2.6.2) and Corollary (B.1.2), and that Bt is not zero,∫
R
µBBtdx ∼

∫
Bt(βBt − iαBx) ∼

∫
B2
t .

The rest of the proof is very similar to the one in Lemma 2.6.3.

2.8 Permutability

2.8.1 Preliminaries

In this section we want to answer the following question: are (y0, v0), the functions obtained
in Proposition 2.6.1, real-valued? We will show here that, if (z0, w0) in Proposition 2.6.1
are real-valued, then (y0, v0) will also be real-valued. This fact shows Theorem 2.1.3.
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This result will hold true because of two main ingredients: (i) Propositions 2.4.4 and
2.4.5 combined, and (ii) the uniqueness property of perturbations as a consequence of the
Implicit Function Theorem. These two properties will imply that all possible perturbation
equals its conjugate.

In what follows, we will work in an abstract form. Let us consider (z0, w0) ∈ H1(R) ×
L2(R), be real-valued functions, and let (u0, s0, δ) be the functions obtained from Lemma
2.6.3 starting at (z0, w0), i.e., (u0, s0, δ) are such that

Bx + z0,x −Kt − s0 =
1

β + iα + δ
sin

(
B + z0 +K + u0

2

)
+ (β + iα + δ) sin

(
B + z0 −K − u0

2

)
, (2.8.1)

Bt + w0 −Kx − u0,x =
1

β + iα + δ
sin

(
B + z0 +K + u0

2

)
− (β + iα + δ) sin

(
B + z0 −K − u0

2

)
, (2.8.2)

for some δ ∈ C small. Considering η0 > 0 small enough such that Cη < ν0, we have
the validity of the hypotheses in Lemma 2.6.4 for (u0, s0). With these in mind, we obtain
(y0, v0, δ̃) ∈ H1(R;C)× L2(R;C)× C satisfying (2.6.16), i.e.,

Kx + u0,x − v0 =
1

β − iα + δ̃
sin

(
K + u0 + y0

2

)
+ (β − iα + δ̃) sin

(
K + u0 − y0

2

)
, (2.8.3)

Kt + s0 − y0,x =
1

β − iα + δ̃
sin

(
K + u0 + y0

2

)
− (β − iα + δ̃) sin

(
K + u0 − y0

2

)
, (2.8.4)

for some small δ̃ ∈ C.

We want now to invert the order of the transformations. First, we apply Proposition
2.7.5, starting at (y0, v0), with �xed parameter β + iα + δ, and from Corollary 2.3.6 we
obtain (ũ0, s̃0) ∈ H1(R;C)×L2(R;C) satisfying (2.7.11) (using naturally condition (2.7.12)
applied this time to (K,Kt)). Then, invoking Proposition 2.7.7 starting at (ũ0, s̃0) with
transformation parameter β − iα + δ̃, Corollary 2.4.5 ensures the existence of functions
(z̃0, w̃0) ∈ H1(R;C)× L2(R;C) such that

Bx + z̃0,x −Kt − s̃0 =
1

β − iα + δ̃
sin

(
B + z̃0 +K + ũ0

2

)
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+ (β − iα + δ̃) sin

(
B + z̃0 −K − ũ0

2

)
, (2.8.5)

Bt + w̃0 −Kx − ũ0,x =
1

β − iα + δ̃
sin

(
B + z̃0 +K + ũ0

2

)
− (β − iα + δ̃) sin

(
B + z̃0 −K − ũ0

2

)
. (2.8.6)

2.8.2 Statement and proof

This being said, we are ready to announce and prove a permutability theorem.

Theorem 2.8.1 (Permutability Theorem). Let (z0, w0) and (z̃0, w̃0) be the perturbacions
de�ned by (2.8.1)-(2.8.2) and (2.8.5)-(2.8.6) respectively. Then, we have (z0, w0) ≡ (z̃0, w̃0).
In particular z̃0 and w̃0 are real-valued functions.
Remark 2.8.1. The previous result can be represented by the diagram in Fig. 2.8.

(B,Bt) + (z0, w0)

(K,Kt) + (u0, s0) (K,Kt) + (ū0, s̄0)

(y0, v0)

β − iα + δ̃

β − iα + δ̃ β + iα + δ

β + iα + δ

Figure 2.8: Theorem 2.8.1 about permutability, explained.

In order to prove this result, we will need the following auxiliary lemma.

Lemma 2.8.2. Let (B,Bt) and (K,Kt) be breather and kink pro�les with parameters β ∈
(−1, 1), β 6= 0, and x1, x2 ∈ R. Let also (K,Kt) be the corresponding conjugate kink
pro�le. Then, the following relations are satis�ed:

(i) Di�erence between K and its conjugate:

K −K = 4 arctan

(
iα sin(αx1)

α cosh(β(x+ x2))

)
. (2.8.7)
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(ii) The following identities are satis�ed:

sec2

(
B

4

)
= 1 +

(
β sin(αx1)

α cosh(β(x+ x2))

)2

,

tan2

(
B

4

)
=

(
β sin(αx1)

α cosh(β(x+ x2))

)2

,

(2.8.8)

and
Bt sec2

(
B
4

)
1 + `2 tan2

(
B
4

) =
4α2β cos(αx1) cosh(β(x+ x2))

α2 cosh2(β(x+ x2)) + `2β2 sin2(αx1)
. (2.8.9)

Proof. See Appendix E.

Proof of Theorem 2.8.1. We divide the proof in several steps.

Step 1. Preliminaries. For the sake of notation we de�ne

(φ0,1, φ0,2) := (y0, v0), (φ1,1, φ1,2) := (K + u0, Kt + s0),

(φ2,1, φ2,2) := (K + ũ0, Kt + s̃0).

Also,
ϕ1 = (ϕ1,1, ϕ1,2) := (B + z0, Bt + w0),

ϕ2 = (ϕ2,1, ϕ2,2) := (B + z̃0, Bt + w̃0),

and
a1 := β + iα + δ, a2 := β − iα + δ̃.

Finally, let ` and ˜̀ denote

` :=
a1 − a2

a1 + a2

, ˜̀ :=
a1 + a2

a1 − a2

. (2.8.10)

Note that both values ` and ˜̀ are well-de�ned, since δ, δ̃ are small. We want to prove
ϕ1 ≡ ϕ2. In order to prove this, let us de�ne the auxiliary function (φ3,1, φ3,2) via the
identities

φ3,1 − φ1,1 = −4 arctan

(
` tan

(
ϕ1,1 − φ0,1

4

))
, (2.8.11)

and

φ3,2 − φ1,2 =
−`(ϕ1,2 − φ0,2) sec2

(
ϕ1,1−φ0,1

4

)
1 + `2 tan2

(
ϕ1,1−φ0,1

4

) . (2.8.12)

Step 2. First identities. Note that if

(φ0,1, φ0,2) = (0, 0), (φ1,1, φ1,2) = (K,Kt), (ϕ1,1, ϕ1,2) = (B,Bt),

a1 = β + iα y a2 = β − iα,
(2.8.13)
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then from (2.8.7) we have

φ3,1 = K − 4 arctan

(
2iα

2β

β sin(αx1)

α cosh(β(x+ x2))

)
= K.

Similarly, replacing (2.8.13) in (2.8.12), we obtain

φ3,2 = Kt −
`Bt sec2

(
B
4

)
1 + `2 tan2

(
B
4

) . (2.8.14)

Therefore, using (2.8.8) and (2.8.9), we obtain that (2.8.14) is reduced to simplifying the
RHS of the identity

φ3,2 =
4iαeβ(x+x2)+iαx1

1 + e2β(x+x2)+2iαx1
− 4`α2β cos(αx1) cosh(β(x+ x2))

α2 cosh2(β(x+ x2)) + `2β2 sin2(αx1)
.

Let us consider the notation

θ1 := αx1, θ2 := β(x+ x2), θ := β(x+ x2) + iαx1. (2.8.15)

We have,

φ3,2 =

=
4iα3eθ(cosh2(θ2)− sin2(θ1))− 4iα3(1 + e2θ) cos(θ1) cosh(θ2)

(1 + e2θ)(α2 cosh2(θ2)− α2 sin2(θ1))

=
4iαeθ(cosh2(θ2)− sin2(θ1))− 4iα(1 + e2θ) cos(θ1) cosh(θ2)

(1 + e2θ)(cosh2(θ2)− sin2(θ1))

=
iα
(
eθ+2θ2 + eθ−2θ2 + eθ+2iθ1 + eθ−2iθ1 − (1 + e2θ)(eiθ1 + e−iθ1)(eθ2 + e−θ2)

)(
1 + e2θ

)(
cosh2(θ2)− sin2(θ1)

)
=

−iα
(
e3θ + e−θ + 2eθ

)(
1 + e2θ

)(
cosh2(θ2)− sin2(θ1)

) =
−iαe−θ

(
1 + e2θ

)2(
1 + e2θ

)(
cosh2(θ2)− sin2(θ1)

)
=
−iαe−θ

(
1 + e2θ

)
cosh2(θ2)− sin2(θ1)

=
−4iαe−θ

(
1 + e2θ

)(
1 + e2θ

)(
e−2iθ1 + e−2θ2

)
=

−4iαe−θ

e−2iθ1 + e−2θ2
=
−4iαeθ2−iθ1

1 + e2(θ2−iθ1)
= Kt.

Then, if (2.8.13) holds, necessarily

φ3 = (φ3,1, φ3,2) = (K,Kt). (2.8.16)

Step 3. ODEs satis�ed by φ3. Let us consider now general values of φ0, φ1, ϕ1 and
a1, a2, as before. We shall prove that φ3 = (φ3,1, φ3,2) de�ned in (2.8.11)-(2.8.12) satisfy
the identities

φ3,1
x − φ0,2 =

1

a1

sin

(
φ3,1 + φ0,1

2

)
+ a1 sin

(
φ3,1 − φ0,1

2

)
, (2.8.17)
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φ3,2 − φ0,1
x =

1

a1

sin

(
φ3,1 + φ0,1

2

)
− a1 sin

(
φ3,1 − φ0,1

2

)
. (2.8.18)

Hence, from (2.8.16) we conclude that (φ3,1, φ3,2) ≡ (φ2,1, φ2,2). Similarly, denoting φ4 :=
(φ4,1, φ4,2) the solution to

φ2,1 − φ4,1 = −4 arctan

(
a1 + a2

a1 − a2

tan

(
ϕ2,1 − φ0,1

4

))
,

φ2,2 − φ4,2 = −
˜̀
(
ϕ2,2 − φ0,2

)
sec2

(
ϕ2,1−φ0,1

4

)
1 + ˜̀2 tan2

(
ϕ2,1−φ0,1

4

) ,

and proving that (φ4,1, φ4,2) satisfy

φ4
x − φ0

t =
1

a1

sin

(
φ4 + φ0

2

)
+ a1 sin

(
φ4 − φ0

2

)
,

φ4
t − φ0

x =
1

a1

sin

(
φ4 + φ0

2

)
− a1 sin

(
φ4 − φ0

2

)
,

then we have (φ4,1, φ4,2) ≡ (φ1,1, φ1,2). From here we conclude that (ϕ1,1, ϕ1,2) ≡ (ϕ2,1, ϕ2,2).
Moreover,

tan

(
ϕ1 − φ0

4

)
= −a1 + a2

a1 − a2

tan

(
φ2 − φ1

4

)
. (2.8.19)

This identity will be used a posteriori. Let us now show (2.8.17) and (2.8.18).

Step 4. Proof of (2.8.17). In fact, from (2.8.11) we have

ϕ1,1 − φ0,1 = −4 arctan

(
`−1 tan

(
φ3,1 − φ1,1

4

))
. (2.8.20)

Then, taking derivative wrt x,

ϕ1,1
x − φ0,1

x =
−`−1(φ3,1

x − φ1,1
x ) sec2

(
φ3,1−φ1,1

4

)
1 + `−2 tan2

(
φ3,1−φ1,1

4

) , (2.8.21)

or

−1

`
(φ3,1

x − φ1,1
x ) sec2

(
φ3,1 − φ1,1

4

)
=

(
1 +

1

`2
tan

(
φ3,1 − φ1,1

4

))(
ϕ1,1
x − φ0,1

x

)
. (2.8.22)

On the other hand, from (2.8.20) it is not di�cult to show that

sin

(
ϕ1,1 − φ0,1

2

)
=
−2`−1 tan

(
φ3,1−φ1,1

4

)
1 + `−2 tan2

(
φ3,1−φ1,1

4

) ,
cos

(
ϕ1,1 − φ0,1

2

)
=

1− `−2 tan2
(
φ3,1−φ1,1

4

)
1 + `−2 tan2

(
φ3,1−φ1,1

4

) .
(2.8.23)
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Since from Proposition 2.6.1 we have the connections

B(φ0,1, φ0,2)
a2−→ (φ1,1, φ1,2), B(φ1,1, φ1,2)

a1−→ (ϕ1,1, ϕ1,2),

which in particular imply

ϕ1,1
x − φ1,2 =

1

a1

sin

(
ϕ1,1 + φ1,1

2

)
+ a1 sin

(
ϕ1,1 − φ1,1

2

)
φ1,2 − φ0,1

x =
1

a2

sin

(
φ1,1 + φ0,1

2

)
− a2 sin

(
φ1,1 − φ0,1

2

)
,

we can rewrite the LHS of (2.8.21) as follows:

ϕ1,1
x − φ0,1

x

= ϕ1,1
x − φ1,2 + φ1,2 − φ0,1

x

=
1

a1

sin

(
ϕ1,1 + φ1,1

2

)
+ a1 sin

(
ϕ1,1 − φ1,1

2

)
+

1

a2

sin

(
φ1,1 + φ0,1

2

)
− a2 sin

(
φ1,1 − φ0,1

2

)
=

1

a1

sin

(
ϕ1,1 − φ0,1 + φ0,1 + φ1,1

2

)
+ a1 sin

(
ϕ1,1 − φ0,1 + φ0,1 − φ1,1

2

)
+

1

a2

sin

(
φ1,1 + φ0,1

2

)
− a2 sin

(
φ1,1 − φ0,1

2

)
.

Expanding terms,

ϕ1,1
x − φ0,1

x =
1

a1

sin

(
ϕ1,1 − φ0,1

2

)
cos

(
φ0,1 + φ1,1

2

)
+

1

a1

cos

(
ϕ1,1 − φ0,1

2

)
sin

(
φ0,1 + φ1,1

2

)
+ a1 sin

(
ϕ1,1 − φ0,1

2

)
cos

(
φ1,1 − φ0,1

2

)
− a1 cos

(
ϕ1,1 − φ0,1

2

)
sin

(
φ1,1 − φ0,1

2

)
+

1

a2

sin

(
φ1,1 + φ0,1

2

)
− a2 sin

(
φ1,1 − φ0,1

2

)
.

Replacing this last identity in the RHS of (2.8.22), and using the identities found in (2.8.23),
we have

− 1

`
(φ3,1

x − φ1,1
x ) sec2

(
φ3,1 − φ1,1

4

)
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=

(
1 +

1

`2
tan2

(
φ3,1 − φ1,1

4

))(
1

a2

sin

(
φ1,1 + φ0,1

2

)
− a2 sin

(
φ1,1 − φ0,1

2

))
+

(
1− 1

`2
tan2

(
φ3,1 − φ1,1

4

))(
1

a1

sin

(
φ1,1 + φ0,1

2

)
− a1 sin

(
φ1,1 − φ0,1

2

))
− 2

`
tan

(
φ3,1 − φ1,1

4

)(
1

a1

cos

(
φ1,1 + φ0,1

2

)
+ a1 cos

(
φ1,1 − φ0,1

2

))
. (2.8.24)

Then, using that the LHS of (2.8.21) can be rewritten as

φ3,1
x − φ1,1

x = φ3,1
x − φ0,2 + φ0,2 − φ1,1

x ,

recalling that B(φ0,1, φ0,2)
a2−→ (φ1,1, φ1,2), i.e.,

φ1,1
x − φ0,2 =

1

a2

sin

(
φ1,1 + φ0,1

2

)
+ a2 sin

(
φ1,1 − φ0,1

2

)
φ1,2 − φ0,1

x =
1

a2

sin

(
φ1,1 + φ0,1

2

)
− a2 sin

(
φ1,1 − φ0,1

2

)
,

we can replace (2.8.24) in (2.8.21) to get

φ3,1
x − φ0,2 = φ3,1

x − φ1,1
x + (φ1,1

x − φ0,2)

= − cos2

(
φ3,1 − φ1,1

4

)(
`+ `−1 tan2

(
φ3,1 − φ1,1

4

))
(

1

a2

sin

(
φ1,1 + φ0,1

2

)
− a2 sin

(
φ1,1 − φ0,1

2

))
− cos2

(
φ3,1 − φ1,1

4

)(
`− `−1 tan2

(
φ3,1 − φ1,1

4

))
(

1

a1

sin

(
φ1,1 + φ0,1

2

)
− a1 sin

(
φ1,1 − φ0,1

2

))
+ 2 sin

(
φ3,1 − φ1,1

4

)
cos

(
φ3,1 − φ1,1

4

)
(

1

a1

cos

(
φ1,1 + φ0,1

2

)
+ a1 cos

(
φ1,1 − φ0,1

2

))
+

1

a2

sin

(
φ1,1 + φ0,1

2

)
+ a2 sin

(
φ1,1 − φ0,1

2

)
.

A further simpli�cation gives

φ3,1
x − φ0,2 =

1

a2

sin

(
φ1,1 + φ0,1

2

)
+ a2 sin

(
φ1,1 − φ0,1

2

)
− cos2

(
φ3,1 − φ1,1

4

)
sin

(
φ1,1 + φ0,1

2

)
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[(
1

a2

+
1

a1

)
`+ `−1

(
1

a2

− 1

a1

)
tan2

(
φ3,1 − φ1,1

4

)]
+ cos2

(
φ3,1 − φ1,1

4

)
sin

(
φ1,1 − φ0,1

2

)
[
(a1 + a2)`+ (a2 − a1)`−1 tan2

(
φ3,1 − φ1,1

4

)]
+ sin

(
φ3,1 − φ1,1

2

)(
1

a1

cos

(
φ1,1 + φ0,1

2

)
+ a1 cos

(
φ1,1 − φ0,1

2

))
.

Thanks to (2.8.10), we have

φ3,1
x − φ0,2

=
1

a2

sin

(
φ1,1 + φ0,1

2

)
+ a2 sin

(
φ1,1 − φ0,1

2

)
− sin

(
φ1,1 + φ0,1

2

)
[(

1

a2

− 1

a1

)
cos2

(
φ3,1 − φ1,1

4

)
+

(
1

a2

+
1

a1

)
sin2

(
φ3,1 − φ1,1

4

)]
+ sin

(
φ1,1 − φ0,1

2

)
[
(a1 − a2) cos2

(
φ3,1 − φ1,1

4

)
− (a1 + a2) sin2

(
φ3,1 − φ1,1

4

)]
+ sin

(
φ3,1 − φ1,1

2

)(
1

a1

cos

(
φ1,1 + φ0,1

2

)
+ a1 cos

(
φ1,1 − φ0,1

2

))
.

Simplifying,

φ3,1
x − φ0,2 = − 1

a1

sin

(
φ1,1 + φ0,1

2

)[
sin2

(
φ3,1 − φ1,1

4

)
− cos2

(
φ3,1 − φ1,1

4

)]
+ a1 sin

(
φ1,1 − φ0,1

2

)[
cos2

(
φ3,1 − φ1,1

4

)
− sin2

(
φ3,1 − φ1,1

4

)]
+ sin

(
φ3,1 − φ1,1

2

)(
1

a1

cos

(
φ1,1 + φ0,1

2

)
+ a1 cos

(
φ1,1 − φ0,1

2

))
=

1

a1

sin

(
φ1,1 + φ0,1

2

)
cos

(
φ3,1 − φ1,1

2

)
+ a1 sin

(
φ1,1 − φ0,1

2

)
cos

(
φ3,1 − φ1,1

2

)
+ sin

(
φ3,1 − φ1,1

2

)(
1

a1

cos

(
φ1,1 + φ0,1

2

)
+ a1 cos

(
φ1,1 − φ0,1

2

))
.
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Finally,

φ3,1
x − φ0,2 =

1

a1

sin

(
φ3,1 + φ0,1

2

)
+ a1 sin

(
φ3,1 − φ0,1

2

)
.

This ends the proof of the case (2.8.17).

Step 4. Proof of (2.8.18). We proceed as before. First, we write the LHS of (2.8.12)
as follows:

φ3,2 − φ1,2 = φ3,2 − φ0,1
x + φ0,1

x − φ1,2.

Similarly, we have ϕ1,2 − φ0,2 = ϕ1,2 − φ1,1
x + φ1,1

x − φ0,2. Thanks to (2.8.11), we have that
(2.8.12) reads now

φ3,2 − φ0,1
x = φ1,2 − φ0,1

x

− `
(
ϕ1,2 − φ1,1

x + φ1,1
x − φ0,2

)(
1 + `−2 tan2

(
φ3,1 − φ1,1

4

))
cos2

(
φ3,1 − φ1,1

4

)
. (2.8.25)

On the other hand, recall that

φ1,1
x − φ0,2 =

1

a2

sin

(
φ1,1 + φ0,1

2

)
+ a2 sin

(
φ1,1 − φ0,1

2

)
. (2.8.26)

Similarly, we have

ϕ1,2 − φ1,1
x

=
1

a1

sin

(
ϕ1,1 + φ1,1

2

)
− a1 sin

(
ϕ1,1 − φ1,1

2

)
=

1

a1

sin

(
ϕ1,1 − φ0,1 + φ0,1 + φ1,1

2

)
− a1 sin

(
ϕ1,1 − φ0,1 + φ0,1 − φ1,1

2

)
=

1

a1

(
sin

(
ϕ1,1 − φ0,1

2

)
cos

(
φ1,1 + φ0,1

2

)
+ cos

(
ϕ1,1 − φ0,1

2

)
sin

(
φ1,1 + φ0,1

2

))
− a1

(
sin

(
ϕ1,1 − φ0,1

2

)
cos

(
φ1,1 − φ0,1

2

)
− cos

(
ϕ1,1 − φ0,1

2

)
sin

(
φ1,1 − φ0,1

2

))
.

Therefore, (2.8.23) implies

ϕ1,2 − φ1,1
x

=
−2`−1 tan

(
φ3,1−φ1,1

4

)
1 + `−2 tan2

(
φ3,1−φ1,1

4

) ( 1

a1

cos

(
φ1,1 + φ0,1

2

)
− a1 cos

(
φ1,1 − φ0,1

2

))

+
1− `−2 tan2

(
φ3,1−φ1,1

4

)
1 + `−2 tan2

(
φ3,1−φ1,1

4

) ( 1

a1

sin

(
φ1,1 + φ0,1

2

)
− a1 sin

(
φ1,1 − φ0,1

2

))
(2.8.27)

66



Therefore, replacing (2.8.26) and (2.8.27) in (2.8.25) we get

φ3,2 − φ0,1
x

=
1

a2

sin

(
φ1,1 + φ0,1

2

)
− a2 sin

(
φ1,1 − φ0,1

2

)
+ sin

(
φ3,1 − φ1,1

2

)(
1

a1

cos

(
φ1,1 + φ0,1

2

)
− a1 cos

(
φ1,1 − φ0,1

2

))
−
(
` cos2

(
φ3,1 − φ1,1

4

)
− `−1 sin2

(
φ3,1 − φ1,1

4

))
(

1

a1

sin

(
φ1,1 + φ0,1

2

)
− a1 sin

(
φ1,1 − φ0,1

2

))
− `
(

1

a2

sin

(
φ1,1 + φ0,1

2

)
+ a2 sin

(
φ1,1 − φ0,1

2

))
(

1 + `−2 tan2

(
φ3,1 − φ1,1

4

))
cos2

(
φ3,1 − φ1,1

4

)
.

Finally, gathering terms and using the value of ` we obtain

φ3,2 − φ0,1
x

=
1

a2

sin

(
φ1,1 + φ0,1

2

)
− a2 sin

(
φ1,1 − φ0,1

2

)
− 1

a2
1 − a2

2

(
(a2

1 + a2
2) cos

(
φ3,1 − φ1,1

2

)
− 2a1a2

)
(

1

a1

sin

(
φ1,1 + φ0,1

2

)
+ a1 sin

(
φ1,1 − φ0,1

2

))
− 1

a2
1 − a2

2

(
a2

1 + a2
2 − 2a1a2 cos

(
φ3,1 − φ1,1

2

))
(

1

a2

sin

(
φ1,1 + φ0,1

2

)
+ a2 sin

(
φ1,1 − φ0,1

2

))
=

1

a2

sin

(
φ1,1 + φ0,1

2

)
− a2 sin

(
φ1,1 − φ0,1

2

)
+

1

a1

sin

(
φ3,1 + φ0,1

2

)
− a1 sin

(
φ3,1 − φ0,1

2

)
− 1

a2

sin

(
φ1,1 − φ0,1

2

)
+ a2 sin

(
φ1,1 − φ0,1

2

)
=

1

a1

sin

(
φ3,1 + φ0,1

2

)
− a1 sin

(
φ3,1 − φ0,1

2

)
,

which �nally proves (2.8.18).

Corollary 2.8.3. Under the assumptions of Theorem 2.8.1 we have

(u0, s0) = (ũ0, s̃0), δ = δ̃.
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Proof. Theorem 2.8.1 implies (z0, w0) ≡ (z̃0, w̃0). Then, after conjugation of (2.8.5) and
(2.8.6) we have

Bx + z0,x −Kt − ¯̃s0 =
1

β + iα + δ̃
sin

(
B + z0 +K + ¯̃u0

2

)
+ (β + iα + δ̃) sin

(
B + z0 −K − ¯̃u0

2

)
,

Bt + w0 −Kx − ¯̃u0,x =
1

β + iα + δ̃
sin

(
B + z0 +K + ¯̃u0

2

)
− (β + iα + δ̃) sin

(
B + z0 −K − ¯̃u0

2

)
.

Therefore, thanks to the uniqueness of perturbations (via Implicit Function Theorem), and
using (2.8.1) and (2.8.2), we conclude the result.

The following result will be essential in the rest of the proof.

Corollary 2.8.4 (Real-valued character of the double BT). Let (z0, w0) be satisfying the
hypotheses of Theorem 2.8.1. Then y0, v0 are real-valued.
Remark 2.8.2. This last result �nally proves Theorem 2.1.3.

Proof. Note that Corollary 2.8.3 implies δ = δ̃. Then, from (2.8.19)

tan

(
B + z0 − y0

4

)
=

2β + δ + δ̃

2iα + δ − δ̃
tan

(
K + u0 −K − ū0

4

)
.

Simplifying, we get

tan

(
B + z0 − y0

4

)
=
β + Re δ

α + Im δ
tanh

(
Im (K + u0)

2

)
,

so that y0(x) is real-valued.

2.9 2-kinks and kink-antikink perturbations

In this section we will assume that K = R in De�nition 2.2.3. Consider (D,Dt) = (R,Rt)
or (A,At), 2-kink or kink-antikink pro�les respectively, with shifts x1, x2 ∈ R and speed
β ∈ (−1, 1), β 6= 0. Also, we will consider (Q,Qt) a real-valued kink pro�le with speed −β
and shift x1 + x2, see (2.4.18) for more details.

In what follows, we denote by d the parameter of the BT associated to (D,Dt): if
(D,Dt) = (R,Rt), then d := a3(β) = −a(β); and if (D,Dt) = (A,At), then d := a(β). See
Fig. 2.7 for more details.
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Proposition 2.9.1 (Connection to the zero solution). Let (D,Dt) be a kink-antikink or
2-kink pro�le, as in De�nitions 2.4.2 and 2.4.3, with speed β ∈ (−1, 1) \ {0} and shifts
x1, x2 ∈ R. Let also (Q,Qt)(·;−β, x1 + x2) be a real-valued kink pro�le associated to
(D,Dt), with BT parameter d. Then, there exist constants η0 > 0 and C > 0 such that,
for all 0 < η < η0 and for all (z0, w0) ∈ H1 (R)× L2 (R) such that

‖(z0, w0)‖H1(R)×L2(R) < η,

the following holds:

1. There are unique (u0, s0, b) de�ned in an open subset of H1 (R) × L2 (R) × R such
that

F(D + z0, Dt + w0, Q+ u0, Qt + s0, d+ b) = (0, 0), (2.9.1)

and where

‖(u0, s0)‖H1×L2 + |b| < Cη. (2.9.2)

2. Making η0 smaller if necessary, there are unique (y0, v0, b̃), de�ned in an open subset
of H1 (R)× L2 (R)× R, and such that

F(Q+ u0, Qt + s0, y0, v0, a
−1(β) + b̃) = (0, 0), (2.9.3)

and moreover,

‖(y0, v0)‖H1×L2 + |b̃| < Cη. (2.9.4)

The proof of this result is very similar to the one of Proposition 2.6.1, so that we only
indicate the main di�erences. First of all, we need the following integrant factor lemma.
For the proofs, see Appendix D.

Lemma 2.9.2 (Integrant factor for the 2-kink). Let (R,Rt) and (Q,Qt) be 2-kink and
real-valued kink pro�les as in Proposition 2.9.1. Let us consider

µR(x) :=
cosh(γ(x+ x1 + x2))

cosh2(γx1) + β2 sinh2(γ(x+ x2))
=

1

4γ
Rx −

1

4βγ
Rt.

Then, µR(x) is smooth and solves the ODE:

µx −
1

2

(
1

d
cos

(
R +Q

2

)
+ d cos

(
R−Q

2

))
µ = 0, (2.9.5)

where d = a3 = −a(β). Moreover, we have the nondegeneracy condition∫
R
µR · (Rx −Qt) =

4

β
6= 0.
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Lemma 2.9.3 (Integrant factor for the kink-antikink). Let (A,At) and (Q,Qt) be kink-
antikink and real-valued kink pro�les, respectively exactly as in Proposition 2.9.1. Let us
consider

µA(x) :=
cosh(γ(x+ x1 + x2))

β2 cosh2(γ(x+ x2)) + sinh2(γx1)
=

1

4β2γ
At −

1

4βγ
Ax.

Then, µA(x) is smooth and solves the ODE:

µx −
1

2

(
1

d
cos

(
A+Q

2

)
+ d cos

(
A−Q

2

))
µ = 0, (2.9.6)

where d = a = a(β). Moreover, we have∫
R
µA · (Ax −Qt) = − 4

β
6= 0. (2.9.7)

In order to show (2.9.1)-(2.9.2), �rst item in Proposition 2.9.1, we follow the proof in
Lemma 2.6.3. After linearizing the BT, we must study whether or not the ODE

u0,x +

(
1

2d
cos

(
D +Q

2

)
+
d

2
cos

(
D −Q

2

))
u0

= f +
b

d2
sin

(
D +Q

2

)
+ b sin

(
D −Q

2

)
,

has a unique solution (u0, b) such that u0 ∈ H1(R), for each f ∈ H1 (R). Using µ as in
Lemmas 2.9.2 or 2.9.3 depending on the cases D = A,R, we have

u0 =
1

µ

∫ x

−∞
µ

(
f +

b

d
(Dx −Qt)

)
.

Additionally, Lemmas 2.9.2-2.9.3 imply that we can choose b ∈ R such that∫
R
µ

(
f +

b

d
(Dx −Qt)

)
= 0.

The rest of the proof is similar to the one in Lemma 2.6.3.

Finally, (2.9.3) and (2.9.4), part of the second item in Proposition 2.9.1, are consequence
of a new application of the Implicit Function Theorem. In fact, we must study whether or
not the equation

− y0,x +
b̃

a2
2

sin

(
Q

2

)
− y0

2a2

cos

(
Q

2

)
+ b̃ sin

(
Q

2

)
− a2y0

2
cos

(
Q

2

)
= f, (2.9.8)
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possesses a unique solution (y0, b̃) such that y0 ∈ H1(R), for each f ∈ H1 (R). Simplifying
(2.9.8) and recalling that γ = (1− β2)−1/2, we get

y0,x + γ cos

(
Q

2

)
y0 = f +

2b̃

1− β
sin

(
Q

2

)
.

We de�ne now the integrant factor µQ(x) := sech(γ(x+x0)). Since µQ decays exponentially
fast, we have

y0 =
1

µQ

∫ x

−∞
µQ

(
f +

2b̃

1− β
sin

(
Q

2

))
.

Note that
∫
R µQ sin(Q

2
) =

∫
R sech2(γ(x+ x0)) = 2

γ
. Then, we can choose b̃ ∈ R such that∫

R
µQ

(
f +

2b̃

1− β
sin

(
Q

2

))
= 0.

The rest of the proof is similar to the one in Lemma 2.6.4.

2.10 2-kink and kink-antikink perturbations: inverse dy-

namics

In this section we still assume K = R in De�nition 2.2.3. Our objective will be to show
the following result, in the vein of Proposition 2.7.4.

Proposition 2.10.1 (Connection with 2-soliton solutions). Let (D,Dt) be a 2-kink or
kink-antikink pro�le, as in De�nitions 2.4.2-2.4.3, with speed β ∈ (−1, 1) \ {0} and shifts
x1, x2 ∈ R. Let (Q,Qt) = (Q,Qt)(·;−β, x1 + x2) be the real-valued kink pro�le associated
to (D,Dt). Then, there are constants η1 > 0 and C > 0 such that, for all 0 < η < η1 and
for all (y, v, b̃) ∈ H1 (R)× L2 (R)× R, if

‖(y, v)‖H1(R)×L2(R) + |b̃| < η,

then the following holds:

1. There are unique (u, s) de�ned in H1 (R)× L2 (R) such that

F(Q+ u,Qt + s, y, v, a(β)−1 + b̃) = (0, 0),

and for some D̃0 in the Schwartz class and z given by the modulation (2.5.7),∫
R
(u, s) · (D̃0, D) = ND(b̃, u, z),

∫
D̃0Qx 6= 0, (2.10.1)

and where ND(b̃, u, z) is a nonlinear term in u, and where additionally

‖(u, s)‖H1×L2 < Cη.
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2. If |b| < η, and making η1 smaller if necessary, there are unique (z, w), de�ned in a
subset of H1 (R)× L2 (R), and such that

F(D + z,Dt + w,Q+ u,Qt + s, d+ b) = (0, 0),∫
R
(z, w) · (D1, (D1)t) = 0, (2.10.2)

and �nally, ‖(z, w)‖H1×L2 < Cη.

Since the proof of this result is similar to the proof of Proposition 2.7.4, we only sketch
the main ideas. The �rst part of Proposition 2.10.1 requires to understand if the ODE

ux − γ cos

(
Q

2

)
u = f, (2.10.3)

possesses a unique solution u ∈ H1 (R) for all f ∈ H1 (R). The associated integrating
factor here is µQ(x) := cosh(γ(x+ x0)), and the solution u is given by

u =
1

µQ
µQ(0)u(0) +

1

µQ

∫ x

0

µQf.

Precisely, condition (2.10.1) allows us to choose u in a unique form. The value of D̃0,
obtained in the same form as B̃0 was obtained in (2.7.2), is given by

D̃0 := Dxxt +
1

2d
(D −Dt,x) cos

(
D +Q

2

)
− 1

2
d(D +Dt,x) cos

(
D −Q

2

)
.

The rest of the proof is the same as before. For the second part, we will need the following
integrating factors:

µA(x) =:
1

µA
(x) =

β2 cosh2(γ(x+ x2)) + sinh2(γx1)

cosh(γ(x+ x1 + x2))
,

and

µR(x) :=
1

µR
(x) =

β2 sinh2(γ(x+ x2)) + cosh2(γx1)

cosh(γ(x+ x1 + x2))
,

which are smooth and solve the ODE

µx +

(
1

2d
cos

(
D +Q

2

)
+
d

2
cos

(
D −Q

2

))
µ = 0,

with D = A,R, d = a and d = a3 = −a respectively. Both integrant factors are exponen-
tially increasing in space. With these functions on hand, we plan to conclude the proof.
Indeed, the second part requires the study of the ODE

zx −
(

1

2d
cos

(
D +Q

2

)
− d

2
cos

(
D −Q

2

))
z = f.
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Simplifying, and using the integrant factors before proposed, we have

z =
1

µ
µ(0) z(0) +

1

µ

∫ x

0

µf, µ = µR, µA. (2.10.4)

Once again, the uniqueness is obtained by imposing (2.10.2). The rest of the proof is
well-known.

2.11 Stability of 2-solitons. Proof of Theorem 2.1.1

In this section we prove Theorem 2.1.1. Let us consider (φ0, φ1) satisfying (2.1.8) for some
η < η0 small. Let also (φ(t), φt(t)) be the unique solution of (2.1.1) with initial condition
(φ, φt)(0) = (φ0, φ1). Note that (φ(t), φt(t))− (D,Dt)(t) ∈ H1 × L2.

Proof of Theorem 2.1.1. Let ε0 > 0 be a �xed parameter. Let (D,Dt) be a pro�le
de�ned as in 2.5.1. Consider the tubular neighborhood (2.5.4), for t ≤ T ∗ < +∞. Note
that in order to recover the 2-soliton solutions of Remarks 2.4.2 and 2.4.3, it is enough to
rede�ne

(D,Dt)(t, x; β, x1, x2) := (D,Dt)(x; β, x1 + t, x2).

At this point we split the proof into two cases: (i) breather, and (ii) 2-kink and kink-
antikink.

Breather case

In what follow we split the proof in two cases: t is uniformly far from all tk, and the case
t close to some tk.

1. Let us assume then that (φ, φt)(t) satis�es (2.5.4) with T ∗ obeying

|T ∗ − tk| ≥ ε0,

for all k ∈ Z. We plan to show that (2.5.4) is satis�ed with C∗ replaced by C∗/2, proving
Theorem 2.1.1 for all times t far from tk. Indeed, taking η0 > 0 small and η ∈ (0, η0), thanks
to Corollary 2.5.3 we have unique functions x1(t), x2(t) ∈ R, de�ned in [0, T ∗], and such
that (z, w)(t, x), de�ned in (2.5.6), satisfy the orthogonality conditions (2.5.7). Note also
that we have (2.5.9). WLOG, we can assume (2.3.5) not satis�ed and x1(0) = x2(0) = 0.
We de�ne (z0, w0) := (z, w)(0). From Proposition 2.6.1 we obtain functions (y0, v0), (u0, s0)
and parameters δ, δ̃. Moreover, Corollary 2.8.4, implies that (y0, v0) ∈ H1(R)× L2(R) are
real-valued. Recall that the constants from Proposition 2.6.1 do not depend on C∗. Now,
we evolve SG to a time t > 0, with initial data (y0, v0). Thanks to Theorem 2.2.6 we have
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(2.2.14) for (y(t), v(t)), and Proposition 2.7.4 is valid for all t ∈ R far from tk. On the
other hand, from Corollary 2.5.3 we have

|x′1(t)|+ |x′2(t)| . C∗η,

so that the set of times t̃k where (2.3.5) is satis�ed is still a countable set of points with
no accumulation points. Invoking Proposition 2.7.4, starting at (y, v)(t), and considering
for all time t ∈ R the 2-soliton and 1-soliton pro�les

(B∗, B∗t ) := (B,Bt)(x; β, x1(t), x2(t)),

(K
∗
, K
∗
t ) := (K,Kt)(x; β, x1(t), x2(t)),

and parameters β−iα+ δ̃, β+iα+δ ∈ C, we obtain a function (B∗, B∗t )(t)+(z, w)(t). This
form constructed coincides with the solution (φ, φt)(t). Indeed, note that at time t = 0,
both initial data coincide, so that, thanks to the uniqueness of the solutions associated
to the Cauchy problem (2.1.1) (see also Theorems 2.2.6 and 2.2.8), we conclude that
(B∗ + z,B∗t + w)(t) obtained via BT is actually (φ, φt)(t). Finally, we also have

sup
|t−tk|≥ε0

‖(φ, φt)(t)− (B∗, B∗t )(t)‖H1×L2 ≤ C0η, (2.11.1)

so that, considering C∗ large such that C0 ≤ 1
2
C∗, we conclude that T ∗ must be in�nite

(see (2.5.5)). This idea is schematically represented in Fig. 2.9.

(B∗, B∗t )(0) + (z0, w0) (B∗, B∗t )(t) + (z, w)(t)

(K∗, K∗t )(0) + (u0, s0) (K̄∗, K̄∗t )(t) + (ū, s̄)(t)

(y0, v0) (y, v)(t)

t

β − iα + δ̃

β − iα + δ̃

t

β + iα + δ

β + iα + δ

Figure 2.9: Diagram for the proof of Theorem 2.1.1 in the case where x1(t)
does not follow (2.3.5).

2. Let us consider now the case |T ∗ − tk| < ε0 for some k ∈ N �xed. We shall prove
that for ε0 su�ciently small, but independent of k,

sup
|t−tk|<ε0

‖(φ, φt)− (B∗, B∗t )‖H1×L2 ≤ 3

4
C∗η. (2.11.2)
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Since C∗ grows as ε0 tends to zero, we must choose η0 su�ciently small such that each
step above holds properly. Let Ik := (tk − ε0, tk + ε0]. Let us consider

T∗ := sup
{
T ∈ Ik : ∀ t ∈ (tk − ε0, T ], ‖(z, w)(t)‖H1×L2 ≤ 3

4
C∗η

}
. (2.11.3)

It is enough to show T∗ = tk + ε0. Let us assume that T∗ < tk + ε0. Note that, by the same
argument as the previous step, using BT we have

‖(z, w)(tk − ε0)‖H1×L2 =
1

2
C∗η.

Now, we use a bootstrap argument. Let t ∈ [tk − ε0, T∗] and consider

∆ :=
d

dt

(
1

2

∫
R
(z2
x + z2 + w2)(t, x)dx

)
.

We claim that ∆ is bounded by C(C∗)2η2, a contradiction to the de�nition of T∗. First,
we will need (2.2.1) in terms of (z, w), using (2.5.6) with D = B. In fact,{

∂tB
∗ + zt = B∗t + w

∂tB
∗
t + wt = B∗xx + zxx − sin(B∗ + z).

Simplifying, we get{
zt = w − x′1Bt − x′2Bx

wt = zxx − sin(B∗ + z) + sinB∗ − x′1B∗tt − x′2B∗tx.

Now, computing directly,

∆ =

∫
R
(zzt − zxxzt + wwt)

=

∫
R
(z − zxx)(w − x′1B∗t − x′2B∗x)

+

∫
R
w(zxx − sin(B∗ + z) + sinB∗ − x′1B∗tt − x′2B∗tx)

=

∫
R
z(w − x′1B∗t − x′2B∗x) +

∫
R
zxx(x

′
1B
∗
t + x′2B

∗
x)

+

∫
R
w (sinB∗(cos z − 1) + cos(B∗) sin z − x′1B∗tt − x′2B∗tx) .

Clearly if (z, w) are small,

|∆| .
∫
R
(z2
x + z2 + w2) + |x′1(t)|2 + |x′2(t)|2.
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Therefore, using (2.11.3) and (2.5.10) we obtain that for t ∈ (tk − ε0, T∗] it holds∣∣∣∣ ddt 1

2

∫
R
(z2 + z2

x + w2)

∣∣∣∣ = |∆| ≤ C(C∗)2η2.

Consequently, integrating we have that for ε0 su�ciently small (but �xed)∫
R
z2(T ∗) + z2

x(T
∗) + w2(T ∗)

≤
∫
R
z2(tk − ε0) + z2

x(tk − ε0) + w2(tk − ε0) + Cε0(C∗)2η2 ≤ 3

4
(C∗)2η2.

Then, (2.11.3) has been improved, and T∗ = tk + ε0. This estimate does not depend on
k ∈ Z, but only on the length of the interval ∼ ε0. Therefore, T ∗ in (2.5.4) is in�nite for
all C∗ large enough. This proves (2.1.9) and the proof of Theorem 2.1.1 in the case of the
breather solution.

2-kink or kink-antikink case

Here we can repeat the previous scheme but with no problem on the time t chosen. Since
proofs are similar, we only sketch the main steps.

Let (z, w)(t) be the functions de�ned in (2.5.6) and x1(t), x2(t) modulations from Corol-
lary 2.5.3. Hence, applying Proposition 2.9.1 with perturbation (z0, w0) = (z, w)(0) we
obtain functions with real values (y0, v0). Then, we evolve SG with initial data (y0, v0) ∈
H1(R)× L2(R). Finally, we consider functions (Q,Qt)(x;−β, x1 + x2) and a parameter of
BT d ∈ R given as follows:

1. If (D,Dt) = (A,At), then we have d := a(β).

2. If (D,Dt) = (R,Rt) then d := −a(β).

Now we invoke Proposition 2.10.1 for each time t �xed, and with 2-soliton and 1-soliton
pro�les given by

(D∗, D∗t ) := (D,Dt)(x; β, x1(t), x2(t)),

(Q∗, Q∗t ) := (Q,Qt)(x;−β, x1(t) + x2(t)).

Thanks to the uniqueness of the solution to the Cauchy problem (2.1.1), we have coin-
cidence between (φ, φt)(t) and the functions returned via BT. Lastly, noticing that from
Theorem 2.2.6 we have

sup
t∈R
‖(y, v)(t)‖H1×L2 . ‖(y0, v0)‖H1×L2 ,

we conclude from Proposition 2.10.1 that

sup
t∈R
‖(φ, φt)(t)− (D∗, D∗t )(t)‖H1×L2 ≤ C0η.

The proof of Theorem 2.1.1 in these cases is complete.
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2.11.1 Proof of Corollary 2.1.4

We will show the breather case only, the other cases are very similar. Thanks to Lemma
2.2.4 and (2.4.8), it is enough to compute

`+,1
± (t) = lim

x→±∞

(
1− cos

(
B + z +K + u

2

))
= lim

x→±∞

(
1− cos

(
B +K

2

))
=

{
2, x→ +∞
0 x→ −∞

,

`−,1± (t) = lim
x→±∞

(
1− cos

(
B + z − (K + u)

2

))
=

{
2, x→ +∞
0 x→ −∞

.

and

`+,2
± (t) = lim

x→±∞

(
1− cos

(
K + u+ y

2

))
=

{
2, x→ +∞
0 x→ −∞

,

`−,2± (t) = lim
x→±∞

(
1− cos

(
K + u− y

2

))
=

{
2, x→ +∞
0 x→ −∞

.

Hence, using these values, and Proposition 2.6.1 and (2.2.8),

E[B + z,Bt + w] = E[K + u,Kt + s] +
4

β + iα + δ
+ 4(β + iα + δ),

E[K + u,Kt + s] = E[y, v] +
4

β − iα + δ̃
+ 4(β − iα + δ̃).

Since δ̃ = δ (see Corollary 2.8.3), we obtain

E[B + z,Bt + w] = E[y, v] +
8(β + Re δ)

(β + Re δ)2 + (α + Im δ)2
+ 8(β + Re δ),

from which we obtain (2.1.12), since α2 + β2 = 1. For the momentum part, we proceed in
the same fashion, obtaining (2.1.13).
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Chapter 3

Dispersive blow-up and persistence

properties for the Schrödinger-Korteweg

de Vries system

In this chapter we are concerned with persistence properties of solutions of the initial value
problem associated to the Schrödinger-Korteweg-de Vries system in well-chosen fractional
weighted Sobolev spaces. This persistence result, in addition to be interesting by itself,
is then used to prove the existence of �nite time point singularities, usually described
as dispersive blow-up. It is believed that this mathematical phenomenon is one of the
conceivable explanations for oceanic and optical rogue waves. In our case, our main goal
is to prove dispersive blow-up for initial data in H2−(R)×H3/2−(R). This is, as far as we
understand, the �rst dispersive blow up result known for this system of equations.

This chapter is part of the article

� F. Linares, and J. M. Palacios, On the persistence properties of the Schr�dinger-
Korteweg-de Vries system, and applications to dispersive blow-up, preprint 2018 [55].
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3.1 Introduction and main results

3.1.1 The model

This chapter is concerned with the Initial Value Problem (IVP) associated to the Schrödinger-
Korteweg-de Vries (NLS-KdV) system in Rt × Rx,

i∂tu+ ∂2
xu+ |u|2u = αuv, t, x ∈ R,

∂tv + ∂3
xv + 1

2
∂x(v

2) = γ∂x(|u|2),
u(x, 0) = u0(x), v(x, 0) = v0(x),

(3.1.1)

where u = u(t, x) is a complex-valued function and v(t, x) is a real-valued function. This
system governs the interactions between short-waves u = u(t, x) and longwaves v = v(t, x)
and has been studied in several �elds of physics and �uid dynamics: an electron-plasma,
ion-�eld interaction, a diatomic lattice system, and water waves theory. See [32], [39], [40]
and [77] for these applications.

The Schrödinger-Korteweg-de Vries system (3.1.1) has been shown not to be a completely
integrable system (see [13]). Therefore the solvability of (3.1.1) is dependent upon the
method of evolution equations.

De�nitions. We recall the de�nition of the Sobolev spaces Hs(R) for index s ≥ 0:

Hs(R) := {f ∈ L2(R) : ‖f‖s,2 = ‖Jsf‖2 <∞},

where

‖Jsf‖2 =

(∫ ∞
−∞

(1 + ξ2)s|f̂(ξ)|2dξ
)1/2

,

and f̂ denotes the Fourier transform of f . In particular, if s > s′ > 0, then

Hs(R) ( Hs′(R) ( L2(R).

Several works related to the well-posedness for the single equations has been done. For the
single nonlinear Schrödinger equation with cubic term (|u|2u) Y. Tsutsumi [83] established
local and global well-posedness for data in L2(R). On the other hand, for the Korteweg-de
Vries (KdV) equation Kenig, Ponce and Vega [44] have proved local well-posedness for data
in Hs(R), s > −3

4
. See also [19] and [45] for other local well-posedness results in Sobolev

spaces with negative exponents.

In general, a coupled system like (3.1.1) is more di�cult to handle in the same spaces as in
the space the single equation is solved. In the case of the system (3.1.1) this is due to the
antisymmetric nature of the characteristics of each linear part. In [12] Bekiranov, Ogawa
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and Ponce showed that the coupled system (3.1.1) is locally well-posed in Hs(R)×Hs− 1
2 (R)

with s ≥ 0. To obtain this result, the authors used the Fourier restriction norm method
introduced by Bourgain in [19] to study the NLS and KdV equations. In [22] Corcho and
Linares extended this result for weak initial data (u0, v0) ∈ Hk(R) × Hs(R) for various
values of k and s, where the lowest admissible values are k = 0 and s = −3

4
+ δ with

0 < δ ≤ 1
4
. In this case, the authors deduced some new bilinear estimates for the coupling

terms in system (3.1.1). The exact statement of this result is the following.

Theorem 3.1.1 (see [22]). Let k ≥ 0 and s > −3
4
. Then for any (u0, v0) ∈ Hk(R)×Hs(R)

such that:

1. k − 1 ≤ s ≤ 2k − 1
2
for k ∈ [0, 1

2
],

2. k − 1 ≤ s < k + 1
2
for k ∈ (1

2
,∞),

the following is satis�ed. There exist a positive time T = T (‖u0‖Hk , ‖v0‖Hs) and a unique
solution (u(t), v(t)) of the initial value problem (3.1.1), satisfying

u ∈ C([0, T ];Hk(R)) and v ∈ C([0, T ];Hs(R)).

Moreover, the map (u0, v0) 7→ (u(t), v(t)) is locally Lipschitz from Hk(R) × Hs(R) into
C([0, T ];Hk(R)×Hs(R)).

The endpoint (k, s) = (0,−3
4
) was proved by Z. Guo and Y. Wang in [35]. The key

ingredient in their proof is the use of F̄ s-type spaces (introduced by Guo in [36]) to deal
with the KdV part of the system and the coupling terms. In order to overcome the di�culty
caused by the lack of scaling invariance, they proved uniform estimates for the multiplier.

3.1.2 Main results: persistence

The aim of this work is to prove the following persistence property for local solutions to
the IVP (3.1.1) associated to the NLS-KdV system in weighted spaces.

Theorem 3.1.2. Let s ∈ R, r1, r2 ≥ 0 be �xed parameters. Let

(u0, v0) ∈
(
Hs+1/2(R) ∩ L2(|x|r1dx)

)
×
(
Hs(R) ∩ L2(|x|r2dx)

)
,

with

s >
3

4
, s+

1

2
> r1, and s > 2r2.

Then there exist T = T (‖u0‖s+ 1
2

+ ‖v0‖s) > 0 and a unique solution (u(t), v(t)) of the IVP

(1.6.4) satisfying

u ∈ C([0, T ];Hs+ 1
2 (R) ∩ L2(|x|r1dx)), v ∈ C([0, T ];Hs(R) ∩ L2(|x|r2dx)),
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Furthermore,

‖Ds
x∂xu‖L∞x L2

T
+ ‖Ds− 1

2
x ∂xv‖L∞x L2

T
+ ‖Ds

x∂xv‖L∞x L2
T
<∞,

‖u‖L2
xL
∞
T

+ ‖v‖L2
x‖L∞T <∞,

‖∂xu‖L4
TL
∞
x

+ ‖∂xv‖L4
TL
∞
x
<∞.

Moreover, given T ′ ∈ (0, T ), the map data solution is Lipschitz continuous.

The proof of Theorem 3.1.2 is based on the contraction map principle. As an application,
we consider the question of existence of dispersive blow-up for the IVP (3.1.1) associated
to the NLS-KdV system.

3.1.3 Dispersive blow up: de�nitions and properties

Dispersive blow up of (dispersive) equations is a focusing phenomenon of smooth initial
disturbances with �nite mass (or �nite energy, depending on the physical context), that
relies upon the dispersion relation guaranteeing that, in the linear regime, di�erent wave-
lengths propagate at di�erent speeds. This is especially the case for models wherein the
linear dispersion is unbounded, so that energy can be moved around at arbitrarily high
speeds, but even bounded dispersion can exhibit this type of singularity formation [17]. In
Theorem 2.1 of [18], Bona and Saut shown that for any given point (t∗, x∗) ∈ Rn × R+

there exists initial data u0 ∈ C∞(Rn) ∩ L2(Rn) ∩ L∞(Rn) such that the solution u(t, x) of
the corresponding initial-value problem for the free Schrödinger equation:

i∂tu+ ∆u = 0, u(t = 0) = u0(x), (3.1.2)

is continuous on R+ × Rn \ {(t∗, x∗)}, but

lim
(t,x)→(t∗,x∗)

|u(t, x)| = +∞.

This fact is referred to as (�nite-time) dispersive blow up. The analogous phenomena also
appears in other linear dispersive equations, such as the linear Korteweg-de Vries equation
[14] and the free surface water waves system linearized around the rest state [18].

As Bona et al. explain in [17], at �rst sight, one would expect that nonlinear terms would
destroy dispersive blow up. What is a little surprising is that even the inclusion of physically
relevant nonlinearities in various models of wave propagation does not prevent dispersive
blow up. Indeed, theory shows in some important cases that initial data leading to this
focusing singularity under the linear evolution continues to blow up in exactly the same way
when nonlinear terms are included. In [16], this was shown to be true for the Korteweg-de
Vries equation, a model for shallow water waves and other simple wave phenomena.
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Regarding the dispersive blow-up question, in [16] Bona and Saut studied the dispersive
blow-up of the generalized Korteweg-de Vries equation

vt + vxxx + vkvx = 0, k ∈ N.

In their proof the main tool was the use of weighted Sobolev spaces. Then, in [57] Linares
and Scialom proved that the use of weighted Sobolev spaces was not necessary for the case
k ≥ 2. Later, Linares, Ponce and Smith improved the previous proof to include the case
k = 1, i.e., for the KdV equation. On the other hand, Bona and Saut showed in [18] the
existence of DBU for the one dimensional nonlinear Schrödinger with nonlinearity |u|p−1u
with p in the range 1 ≤ p ≤ 3. Later, Bona et al. showed in [17] that the same conclusions
holds for the complete range of nonlinearities p ≥ bn

2
c and any dimension n ≥ 1.

In what follows, we will adopt the following notation: for s ≥ 0

Hs+(R) =
⋃
s′>s

Hs′(R), Hs−(R) =
⋃

0≤s′<s

Hs′(R).

Let 1 ≤ p, q ≤ ∞ and f : R× [0, T ]→ R. We also de�ne the norms

‖f‖LpxLqT :=

(∫
R

(∫ T

0

|f |qdt
)p/q

dx

)1/p

, ‖f‖LpTLqx :=

(∫ T

0

(∫
R
|f |qdx

)p/q
dt

)1/p

.

3.1.4 Existence of dispersive blow up for NLS-KdV

As a consequence of Theorem 3.1.2, we are able to generalize the results of DBU for the
single equations mentioned above to the Schrödinger-Korteweg-de Vries system.

Theorem 3.1.3. There exist initial data

u0 ∈ C∞(R) ∩H2−(R), v0 ∈ C∞(R) ∩H3/2−(R),

such that the following holds: there exists t∗ ∈ [0, T ] such that the corresponding solution
(u, v)(·, ·) of the IVP 3.1.1:

u ∈ C([0, T ] : H2−(R)), v ∈ C([0, T ] : H3/2−(R)),

provided by Theorem 3.1.2 is such that

u(t∗, ·) /∈ H2(R), v(t∗, ·) /∈ C1(R).

The ideas of the proof of Theorem 3.1.3 follow from the ideas of Bona and Saut in [16] and
Linares, Ponce and Smith in [56]. Nevertheless, as we shall see, in our case the NLS-KdV
system presents several new di�culties because its coupling terms. The key ingredient on
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the demonstration is the previous persistence property on weigthed spaces, which allow us
to prove some nonlinear estimates on the solution.

It should be said that there is no dispersive blow-up for the solution of the nonlinear
Schrödinger equation, since neither its solution nor any of its derivatives is loosing regu-
larity in terms of the L∞-norm (at least we were not able to prove that). Nevertheless, we
shall prove a smoothing e�ect by a quarter of derivative associated to its nonlinear term.
The main issue to stablish the dispersive blow-up for the NLS solution is to deal with the
coupled term (KdV), which has both worse regularity and worse persistence in weighted
Sobolev spaces, and prove that the solution regularizes. More explicitly, to show that the
NLS solution has dispersive blow-up we must prove that the solution u(t, x) is in H

5
2

+ε

even when it has a term which is only in H
3
2

−
(R).

3.1.5 Organization of this chapter

This paper is organized as follows. In section 3.2 we state a series of results needed in
the remainder of this chapter. The dispersive blow-up for each of the linear equation is
established in section 3.3. In this section we show how to construct the initial data which
shall develop dispersive blow-up. Section 3.4 is devoted to prove the main theorem 3.1.2.
The dispersive blow-up for the coupled system (theorem 3.1.3) is proved in the last section
3.5.

3.2 Preliminaries

3.2.1 Smoothing properties for Korteweg and Schrödinger linear

evolutions

In this subsection we review some standard results about smoothing properties of the free
Schrödinger group S(t) = eit∆ and the KdV group V (t) = e−t∂

3
x .

First, the following lemma provides the smoothing e�ect of Kato type for solutions of the
linear KdV equation.

Lemma 3.2.1 ([43]).
sup
x
‖∂xV (t)v0‖L2

T
≤ c‖v0‖L2 , (3.2.1)

and

‖∂x
∫ t

0

V (t− t′)F (·, t′) dt′‖L2
x
≤ c‖F‖L1

xL
2
T
. (3.2.2)
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From now on, we will denote the so-called homogeneous derivatives of order s > 0 by

Dsf(x) := F−1
(
|ξ|sf̂(ξ)

)
(x).

Next lemma give us the smoothing e�ects of Kato type for solutions of the linear Schrödinger
equation in dimension n = 1.

Lemma 3.2.2 ([43]).
sup
x
‖D1/2

x eit∆u0‖L2
T
≤ c‖u0‖L2 , (3.2.3)

‖D1/2
x

∫ t

0

ei(t−t
′)∆F (·, t′) dt′‖L2

x
≤ c‖F‖L1

xL
2
T
, (3.2.4)

and

sup
x
‖∂x

∫ t

0

ei(t−t
′)∆F (·, t′) dt′‖L2

T
≤ c‖F‖L1

xL
2
T
. (3.2.5)

This last Lemma is sharp, in the sense that there exists a class of initial data u0 in which
(3.2.3) becomes an identity. Next, we present Strichartz estimates.

Lemma 3.2.3 (Strichartz and smoothing estimates). Let 2 ≤ p, q ≤ ∞ be admissible, i.e.,
such that 2

q
= 1

2
− 1

p
. Then the following holds:

‖eit∆f‖LqtLpx ≤ c‖f‖L2
x
. (3.2.6)

Moreover, for (α, θ) = [0, 1/2]× [0, 1] it holds that

‖Dαθ/2
x V (t)f‖LqtLpx ≤ c‖f‖L2

x
, (3.2.7)

where (q, p) = (6/θ(α + 1), 2/(1− θ))).

For a proof of these estimates see for instace [54]. Finally, we complete the set of estimates
introducing the next maximal function estimate norms for the linear solutions.

Lemma 3.2.4 ([43]). For s > 1/2 and ρ1 > 1/4, it holds that

‖eit∆f‖L2
xL
∞
T
≤ c(1 + T )ρ1‖f‖s,2. (3.2.8)

For s > 3/4 and ρ2 > 3/4 it holds that

‖V (t)f‖L2
xL
∞
T
≤ c(1 + T )ρ2‖f‖s,2. (3.2.9)

Proof. For a proof of the �rst inequality see [84, 75]. For a proof of the second one see
[85].
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3.2.2 Weighted estimates

The following Lemma allow us to interpolate weighted Sobolev spaces by weighted L2-based
spaces and standard Sobolev spaces.

Lemma 3.2.5 ([70]). Let a, b > 0. Assume that Jaf = (1 − ∆)a/2f ∈ L2(Rn) and
〈x〉bf = (1 + |x|2)b/2f ∈ L2(Rn). Then, for any θ ∈ (0, 1)

‖〈x〉θbJ (1−θ)af‖2 ≤ c‖〈x〉bf‖θ2‖Jaf‖1−θ
2 . (3.2.10)

3.2.3 Leibnitz rules

The following Lemma is the standard Leibnitz rule and commutator estimate for fractional
derivatives in Lp-based spaces, which will be employed to deal with the nonlinear terms.

Theorem 3.2.6 ([43]).

1. For s > 0 and 1 < p <∞, it holds

‖Ds
x(fg)− fDs

xg − gDs
xf‖p ≤ c‖f‖∞‖Ds

xg‖p. (3.2.11)

2. Let 0 < b < 1. For 1 ≤ p <∞, b1, b2 ∈ [0, b] such that b1 + b2 = b and p1, p2 ∈ (1,∞)
with 1

p1
+ 1

p2
= 1, it holds

‖Db(fg)− fDbg − gDbf‖p ≤ c‖Db1f‖p1‖Db2g‖p2 . (3.2.12)

3.3 Dispersive blow-up: construction of the initial data

In this Section, we construct the initial data for which there will be dispersive blow-up.
Let us divide the analysis in two cases, the linear case for the Schrödinger equation and
the linear case for the KdV equation.

3.3.1 Linear Schrödinger equation.

We will follow the argument employed in [17] and [18] with some modi�cations. Consider
the IVP associated to the linear Schrödinger equation:{

i∂tu+ ∂2
xu = 0,

u(x, 0) = u0(x).
(3.3.1)

85



Our goal is to construct an initial data u0 ∈ H2− with enough decay and such that for any
time t ∈ R, the corresponding solution of the IVP (3.3.1) satis�es

u(t, ·) /∈ H2(R).

Now, recall that for any u0 ∈ L2(R), the unique solution u of (3.3.1) has the representation:

u(t, x) =
1

(4iπt)1/2

∫
R
e
i|x−y|2

4t u0(y)dy,

where the integral is taken in the improper Riemann sense. Choose the initial data u0 to
be

u0(x) :=
e−ix

2

1 + |x|5/2
. (3.3.2)

The Sobolev regularity of the initial data u0 is explained in the next result.

Lemma 3.3.1. Let u0 be as described in (3.3.2). Then u0 ∈ Hs(R) for any s ∈ [0, 2), but
u0 /∈ H2(R). Moreover,

〈x〉2−u0(x) ∈ L2(R).

Proof. The fact that 〈x〉2−εu0(x) ∈ L2(R) for ε ∈ (0, 2) we just notice that:

‖〈x〉2−εu0(x)‖L2(R) ≤ c

∥∥∥∥ 1

1 + |x|1/2+ε

∥∥∥∥
L2(R)

<∞.

Now, let us prove that u0 ∈ Hs(R) for any s ∈ (0, 2). Consider �rst the case 0 < s < 1.
For s in this range, Propositions 1 and 2 in [70] provide the inequalities:

|Dsei|x|2| ≤ cn(1 + |x|s), ∀x ∈ Rn, s ∈ (0, 1), (3.3.3)

and

‖Ds(fg)‖L2(Rn) ≤ ‖fDsg‖L2(Rn) + ‖gDsf‖L2(Rn), s ∈ (0, 1), (3.3.4)

where Ds is de�ned as

Dsf :=

(∫
Rn

|f(x)− f(y)|2

|x− y|n+2s

)1/2

dy.

On the other hand, a straightforward calculation reveals that

‖Dsf‖L2(Rn) = cn‖|ξ|sf̂‖L2(Rn) ≡ ‖Dsf‖L2(Rn). (3.3.5)

Combining estimates (3.3.3) and (3.3.4) with identity (3.3.5) and using interpolation, one
arrives at the inequality∥∥∥∥∥Ds

(
e−ix

2

1 + |x|5/2

)∥∥∥∥∥
L2(R)

≤
∥∥∥∥ 1

1 + |x|5/2
Ds
(
e−ix

2)∥∥∥∥
L2

+

∥∥∥∥Ds( 1

1 + |x|5/2

)∥∥∥∥
L2
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≤ c

∥∥∥∥ 1

1 + |x|5/2

∥∥∥∥
L2

+ c

∥∥∥∥ |x|s

1 + |x|5/2

∥∥∥∥
L2

+

∥∥∥∥ 1

1 + |x|5/2

∥∥∥∥1−s

L2

∥∥∥∥Dx

(
1

1 + |x|5/2

)∥∥∥∥s
L2

.

The right-hand side of this inequality is �nite for any 0 ≤ s ≤ 1. Note that if instead
s = s′ + 1, where 0 < s′ < 1, then simply apply the above analysis to the derivative:

∂xu0 =

(
− 2ix(1 + |x|5/2) + 2x

)
e−ix

2

(1 + |x|5/2)2
,

from which it follows that ‖Ds(∂xu0)‖L2(R) <∞ if and only if 0 ≤ s < 1. Thus u0 ∈ Hs(R)
for any s ∈ (0, 2) but u0 /∈ H2(R).

The following result is a direct consequence of the previous analysis, and Lemma 2.1 in
[17].

Corollary 3.3.2. Let α ∈ R, x0 ∈ R and

u0(x) =
e−iα(x−x0)2

1 + |x|5/2
.

Then,

u0 ∈ C∞(R) ∩H2−(R) ∩ L2(〈x〉2−dx) ∩ L∞(R),

and the associated global-in-time solution u ∈ C(R;H2−(R)∩L2(〈x〉2−dx)) of (3.3.1), with
initial datum u0 satis�es that, for all t ∈ R, the solution u(t, x) /∈ H2(R).

Proof. The fact that
u ∈ C

(
R;H2−(R) ∩ L2(〈x〉2−dx)

)
,

is just a consequence of the well-posedness theory for the Cauchy problem associated to the
free Schrödinger equation and the persistences properties of the solution (see [70]). Now,
to prove that u /∈ H2(R) it is enough to prove that ∂2

xu /∈ L2(R). This is just a consequence
of the fact that the free Schrödinger group is an isometry on Hs(R) for any s ∈ R. In fact,
since the Schrödinger group commutes with derivatives, we have

‖∂2
xu(t, x)‖L2

x
= ‖eit∆∂2

xu0(x)‖L2
x
. (3.3.6)

The latter norm is equals to +∞ due to the main term of ∂2
xu0(x), which is:

c
x2e−ix

2

1 + |x|5/2
,
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where c is a non-zero constant of no consequence. In fact, since eit∆ is an unitary group and
all the other terms in (3.3.6) have L2-norm �nite, we have that the norm of the solution is
bounded below by,

‖∂2
xu(t, x)‖L2

x
= ‖∂2

xu0(x)‖L2 ≥

∥∥∥∥∥ x2e−ix
2

1 + |x|5/2

∥∥∥∥∥
L2

= +∞,

Thus, for any t ∈ R we have u(t, ·) /∈ H2(R), which completes the demonstration.

This concludes the case of the free Schrödinger equation. Now the attention is turned to
construct the initial data for the linear Korteweg-de Vries equation.

3.3.2 Linear Korteweg-de Vries equation.

This part was proved in Linares et al. (see Section 3 in [56]). For completeness reasons,
we include it.

Consider the linear IVP associated to the linear Korteweg-de Vries equation:{
∂tv + ∂3

xv = 0, x ∈ R, t > 0,

v(0, x) = v0(x),
(3.3.7)

whose solution is given by

v(t, x) = V (t)v0(x) = e−t∂
3
xv0 = St ∗ v0(x), (3.3.8)

where,

St(x) :=
1

3
√

3t
Ai

(
x

3
√

3t

)
,

and Ai(·) denotes the classical Airy function. Our goal is to construct an smooth initial
data

v0 ∈ C∞(R) ∩H3/2−(R) ∩ L∞(R),

with some decay and such that, for some prescribed time t∗, the corresponding solution of
the IVP (3.3.7) satis�es

v(t∗, ·) /∈ C1(R).

In this case we will construct an initial data such that for any t ∈ N the solution satis�es
v(t, ·) /∈ C1(R). The following Lemma give us the detailed statement for the dispersive
blow-up for the initial-value problem associated to the linear KdV equation (3.3.7).
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Lemma 3.3.3 ([56]). Consider the initial data

v0(x) :=
∞∑
j=1

αjV (−j)φ(x), αj > 0,

where αj = ce−j
2
with c > 0 small enough and φ(x) := e−2|x|. Then,

v0 ∈ C∞(R) ∩H3/2−(R) ∩ L2(〈x〉3/4−dx) ∩ L∞(R),

and the associated global in-time solution v ∈ C(R;H3/2−(R) ∩ L2(〈x〉3/4−dx)) of (3.3.7)
is such that

1. For any t > 0 with t /∈ Z, we have v(t, ·) ∈ C1(R).

2. For any t ∈ N we have v(t, ·) /∈ C1(R).

Proof. De�ne the initial data

v0(x) :=
∞∑
j=1

αjV (−j)φ(x), αj > 0.

Note that if
∞∑
j=1

αj � 1,

we have that v0 ∈ H1(R), in fact in v0 ∈ H3/2−(R). This in particular guarantees the
global existence of solutions in H1(R) for the IVP (3.3.7). Now, we will divide the analysis
en four steps.

Step 1: Estimate for V (t)φ for t > 0.

Assume that ṽ0 ∈ L2(R) and exṽ0 ∈ L2(R). Now, consider w(t, x) := exṽ(t, x). Following
Kato [42], we set ṽ(t, x) = e−xw(t, x) where w is solution of the IVP:{

∂tw + (∂x − 1)3w = 0,

w(0, x) = exṽ0(x).
(3.3.9)

Since (∂x − 1)3 = ∂3
x − 3∂2

x + 3∂x − 1, one has that

w(x, t) = V (t)e3t∂2xe−3t∂xet
(
exṽ0(x)

)
= V (t)e3t∂2xe−3t∂x

(
ex+tṽ0(x)

)
.

Thus,
V (t)v0 = ṽ(t, x) = e−xV (t)e3t∂2x

(
ex−2tṽ0(x− 3t)

)
.
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We notice using the heat kernel properties that

∂mx V (t)ṽ0 ∼ e−xV (t)
(
∂mx e

3t∂2
x

)(
ex−2tṽ0(x− 3t)

)
.

It follows that

‖ex∂mx V (t)ṽ0‖2 ∼
cm

(3t)m/2
‖ex−2tṽ0(x− 3t)‖2 ∼

cm
(3t)m/2

et,

since
‖ex−2tṽ0(x− 3t)‖2 = et‖ex−3tṽ0(x− 3t)‖2 = cet.

Similarly, if t < 0, we have an IVP analogous to the one in (3.3.9) with the operator
−(∂x + 1)3 instead of (∂x − 1)3. Thus,

V (t)ṽ0 = exV (t)e−3t∂2xe−3t∂x(e−te−xṽ0)

= exV (t)e−3t∂2xe−3t∂x
(
e−x−tṽ0(x)

)
= exV (t)e−3t∂2x

(
e−x−4tṽ0(x− 3t)

)
,

and so we have,
∂mx V (t)ṽ0 ∼ exV (t)

(
∂mx e

−3t∂2x
)(
ex−4tṽ0(x+ 3t)

)
and

‖e−x∂mx V (t)ṽ0‖2 ∼
cm

(3t)m/2
e−t. (3.3.10)

Step 2: Next we prove that

v0(x) =
∞∑
j=1

αjV (−j)φ ∈ C∞(R),

or equivalently
∞∑
j=1

αje
−xV (−j)φ ∈ C∞(R).

To do this, it su�ces to show that

∞∑
j=1

αje
−x(∂mx V (−j)φ

)
∈ L2(R) for all m,

or equivalently,
∞∑
j=1

αj
cm

(3j)m/2
ej <∞.
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Step 3: For each t > 0, t /∈ Z+, we claim that

V (t)v0 =
∞∑
j=1

αjV (t− j)φ ∈ C1(R).

In fact, combining (3.3.10) and the assumption,

∞∑
j=1

αj
1

3|t− j|
e|t−j| <∞,

one has V (t)v0 ∈ H2
loc

(R) ⊆ C1(R) which proof the claim.

Step 4: For t = n ∈ Z+ we a�rm that

V (n)v0 = αnφ+
∞∑
j=0
j 6=n

αjV (n− j)φ ≡ αnφ+ Φn (3.3.11)

with Φn ∈ C1. As before, using (3.3.10) and taking

∞∑
j=0
j 6=n

αj
1

3|n− j|
e|n−j| < +∞

it follows that Φn ∈ H2
loc(R) which yields (3.3.11).

3.4 Persistence property: Proof of Theorem 3.1.2

In this Section we prove Theorem 3.1.2. For this purpose, we perform a contraction prin-
ciple argument for the IVP problem (3.1.1).

Proof of Theorem 3.1.2. We consider the system of integral equations equivalent to
(3.1.1), that is,

Φ(u) = S(t)u0 +

∫ t

0

S(t− t′)(uv)(t′) dt′ +

∫ t

0

S(t− t′)|u|2u(t′) dt′,

Ψ(v) = V (t)v0 −
∫ t

0

V (t− t′)v∂xv(t′) dt′ +

∫ t

0

V (t− t′)∂x(|u|2)(t′) dt′,

(3.4.1)

where {S(t)} and {V (t)} are the unitary groups associated to the linear Schrödinger and
the Airy equation respectively.
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By using the de�nition, group properties, Minkowski's inequality, and Sobolev spaces prop-
erties we have

‖Ds+ 1
2

x Φ(u)‖L2 ≤ c‖Ds+ 1
2

x u0‖L2 +

∫ T

0

‖Ds+ 1
2

x (uv)‖L2 dt′ +

∫ T

0

‖Ds+ 1
2

x (|u|2u)‖L2 dt′

≤ c ‖u0‖s+1/2 +

∫ T

0

‖Ds− 1
2

x ∂x(uv)‖L2 dt′ + c T sup
[0,T ]

‖u(t)‖3
s+1/2.

(3.4.2)

To complete the estimate we use the commutator estimate (3.2.11), Sobolev spaces prop-
erties, the Cauchy-Schwarz inquality, and Hölder's inequality in time to led to∫ T

0

‖Ds− 1
2

x ∂x(uv)‖L2 dt

≤ c

∫ T

0

‖Ds−1/2
x (u∂xv)‖L2 dt+ c

∫ T

0

‖Ds−1/2
x (∂xuv)‖L2 dt

≤ c

∫ T

0

‖∂xv‖L∞x ‖D
s−1/2
x u‖L2 dt+ c

∫ T

0

‖uDs−1/2
x ∂xv‖L2

+ c

∫ T

0

‖∂xu‖L∞x ‖D
s−1/2
x v‖L2 dt+ c

∫ T

0

‖vDs−1/2
x ∂xu‖L2

≤ cT 4/3 ‖∂xv‖L4
TL
∞
x

sup
[0,T ]

‖u(t)‖s+1/2 + cT 1/2‖u‖L2
xL
∞
T
‖Ds−1/2

x ∂xv‖L∞x L2
T

+ cT 4/3 ‖∂xu‖L4
TL
∞
x

sup
[0,T ]

‖v(t)‖s−1/2 + cT 1/2‖v‖L2
xL
∞
T
‖Ds−1/2

x ∂xu‖L∞x L2
T
.

(3.4.3)

Next we estimate the Hs-norm of Ψ(v). It is enough to estimate ‖DsΨ(v)‖L2 . To do so,
we use group properties, Minkowskii's and Holder's inequalities to obtain

‖Ds
xΨ(v)‖L2 ≤ c‖Ds

xv0‖L2 +

∫ T

0

‖Ds
x(v∂xv)‖L2 dt′ +

∫ T

0

‖Ds
x∂x(uū)‖L2 dt′

≤ c ‖v0‖s +

∫ T

0

‖Ds
x(v∂xv)‖L2 dt′ +

∫ T

0

‖Ds
x(ū∂xu)‖L2 dt′

+

∫ T

0

‖Ds
x(u∂xū)‖L2 dt′.

(3.4.4)

The commutator estimates (3.2.11) and Hölder's inequality yield∫ T

0

‖Ds
x(v∂xv)‖L2 dt ≤ cT 4/3 ‖∂xv‖L4

TL
∞
x

sup
[0,T ]

‖v(t)‖s + cT 1/2‖v‖L2
xL
∞
T
‖Ds

x∂xv‖L∞x L2
T
.

(3.4.5)
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Similarly, we get∫ T

0

‖Ds
x(ū∂xu)‖L2 dt′ +

∫ T

0

‖Ds
x(u∂xū)‖L2 dt′

≤ cT 4/3 ‖∂xu‖L4
TL
∞
x

sup
[0,T ]

‖u(t)‖s + cT 1/2‖u‖L2
xL
∞
T
‖Ds

x∂xu‖L∞x L2
T
.

(3.4.6)

On the other hand, using Kato's smoothing e�ect (3.2.3) and the analysis in (3.4.3)

‖Ds∂xΦ(u)‖L∞x L2
T

≤ c‖Ds+1/2
x u0‖L2 +

∫ T

0

‖Ds+1/2
x (uv)‖L2 dt+

∫ T

0

‖Ds+1/2
x (|u|2u)‖L2 dt

≤ c‖u0‖s+1/2 +

∫ T

0

‖Ds−1/2
x ∂x(uv)‖L2 dt+

∫ T

0

‖Ds+1/2
x (|u|2u)‖L2 dt.

(3.4.7)

Same argument as above, now applying Kato's smoothing e�ect (3.2.1) and the analysis
in (3.4.5), lead to

‖Ds∂xΨ(v)‖L∞x L2
T
≤ c‖Ds

xv0‖L2 +

∫ T

0

‖Ds
x(v∂xv)‖L2 dt+

∫ T

0

‖Ds
x∂x(uū)‖L2 dt

≤ c ‖v0‖s +

∫ T

0

‖Ds
x(v∂xv)‖L2 dt′ +

∫ T

0

‖Ds
x(ū∂xu)‖L2 dt′

+

∫ T

0

‖Ds
x(u∂xū)‖L2 dt′.

(3.4.8)

From the maximal norm estimates (3.2.8) and (3.2.9) it follows that

‖Φ(u)‖L2
xL
∞
T
≤ c (1 + T )ρ1

{
‖u0‖s+1/2 +

∫ T

0

‖(uv)(t)‖s+1/2 dt+

∫ T

0

‖u(t)‖3
s+1/2 dt

}
(3.4.9)

and

‖Ψ(v)‖L2
xL
∞
T
≤ c (1 + T )ρ2

{
‖v0‖s +

∫ T

0

‖v∂xv(t)‖s dt+

∫ T

0

‖∂x(uū)(t)‖s dt
}
. (3.4.10)

The Strichartz estimates (3.2.6) and (3.2.7) imply

‖∂xΦ(u)‖L4
TL
∞
x
≤ c ‖u0‖s+1/2 +

∫ T

0

‖(uv)(t)‖s+1/2 dt+

∫ T

0

‖u(t)‖3
s+1/2 dt (3.4.11)

and

‖∂xΨ(v)‖L4
TL
∞
x
≤ c ‖v0‖s +

∫ T

0

‖v∂xv(t)‖s dt+

∫ T

0

‖∂x(uū)(t)‖s dt, (3.4.12)
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respectively.

Finally, we need to estimate sup
[0,T ]

‖|x|r1Φ(u)(t)‖L2 and sup
[0,T ]

‖|x|r2Ψ(v)(t)‖L2 . To simplify the

proof we only consider the case s = 3/4+. In other words, we estimate sup
[0,T ]

‖|x| 58
+

Φ(u)(t)‖L2

and sup
[0,T ]

‖|x| 38
+

Ψ(v)(t)‖L2 .

We can also deduce a formula for solutions of the linear Schrödinger equation:

|x|rS(t)u0(x) = S(t)(|x|ru0) + S(t)
{

Λt,r(û0)(ξ)
}∨
, (3.4.13)

where
‖
{

Λt,r(û0)(ξ)
}∨‖L2

x
≤ c(1 + |t|) (‖u0‖L2

x
+ ‖Dr

xu0‖L2
x

)
, (3.4.14)

which is just an analogue to the formula deduced by Fonseca, Linares and Ponce in [31]
for the Airy group: for β ∈ (0, 1) and t ∈ R,

|x|βV (t)f = V (t)
(
|x|βf

)
+ V (t){Φt,β(f̂)}, (3.4.15)

with

‖Φt,β(f̂)‖2 ≤ c(1 + |t|)‖f‖2β,2. (3.4.16)

Thus, applying formula (3.4.13), we have

‖|x|
5
8

+

Φ(u)(t)‖L2 ≤ c‖|x|
5
8

+

S(t)u0‖L2 + ‖|x|
5
8

+

S(t)

∫ t

0

S(t′)(uv + |u|2u)(t′) dt′‖L2

≤ ‖|x|
5
8

+

u0‖L2 + c(1 + |t|) (‖u0‖L2 + ‖D
5
8

+

x u0‖L2)

+ c

∫ T

0

‖|x|
5
8

+

(uv + |u|2u)(t)‖L2 dt

+ c (1 + T )

∫ T

0

‖(uv + |u|2u)(t)‖L2 dt

+ c (1 + T )

∫ T

0

‖D
5
8

+

x (uv + |u|2u)(t)‖L2 dt

≤ ‖|x|
5
8

+

u0‖L2 + c(1 + T )‖u0‖ 5
4

+ + A1 + A2 + A3.

(3.4.17)

Next we estimate Ai, i = 1, 2, 3. Hölder's inequality and Sobolev lemma lead to

A1 ≤
∫ T

0

(‖|x|
5
8

+

uv(t)‖L2 + ‖|x|
5
8

+

u|u|2(t)‖L2) dt

≤ c T
(

sup
[0,T ]

‖|x|
5
8

+

u(t)‖L2 × sup
[0,T ]

‖v(t)‖ 3
4

+ + sup
[0,T ]

‖|x|
5
8

+

u(t)‖L2 × sup
[0,T ]

‖u(t)‖2
5
4

+

)
.
(3.4.18)
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Hölder's inequality and Sobolev lemma yield

A2 ≤ c (1 + T )T

(
sup
[0,T ]

‖u(t)‖ 5
4

+ × sup
[0,T ]

‖v(t)‖ 3
4

+ + sup
[0,T ]

‖u(t)‖3
5
4

+

)
. (3.4.19)

Applying Sobolev spaces properties we obtain

A3 ≤ c (1 + T )

∫ T

0

(
‖D

5
8

+

x (uv)(t)‖L2 + ‖D
5
8

+

x (u|u|2)(t)‖L2

)
dt

≤ c (1 + T )T
(
sup
[0,T ]

‖u(t)‖ 5
4

+sup
[0,T ]

‖v(t)‖ 3
4

+ + sup
[0,T ]

‖u(t)‖3
5
4

+

)
,

(3.4.20)

Now we estimate ‖|x| 38
+

Ψ(v)‖L2 . Applying formula (3.4.15) we get

‖|x|
3
8

+

Ψ(v)‖L2 ≤ ‖|x|
3
8

+

v0‖L2 + c(1 + T )
(
‖v0‖L2 + ‖D

3
4

+

x v0‖L2

)
+ ‖

∫ t

0

V (t− t′)|x|
3
8

+

v∂xv dt
′‖L2 + ‖

∫ t

0

V (t− t′)|x|
3
8

+

∂x|u|2 dt′‖L2

+ c (1 + T )

∫ T

0

(
‖v∂xv‖L2 + ‖∂x|u|2‖L2

)
dt

+ c (1 + T )

∫ T

0

‖D
3
4

+

x (v∂xv)‖L2 dt

+ c (1 + T )

∫ T

0

‖D
3
4

+

x ∂x(|u|2)‖L2 dt.

(3.4.21)

The last three terms above were previously estimated. To obtain the desired estimate we
need to bound the third and fourth term on the right hand side of (3.4.21). To do so we
follow an argument introduced in [31].

We take ϕ ∈ C∞0 (R) with ϕ = 1, |x| < 1/2 and ϕ = 0, |x| ≥ 1 write

|x|
3
8

+

v∂xv = ϕ(x)|x|
3
8

+

v∂xv + (1− ϕ(x))|x|
3
8

+

v∂xv

= ϕ|x|
3
8

+

v∂xv + ∂x((1− ϕ)|x|
3
8

+

v2/2)− ∂x((1− ϕ)|x|
3
8

+

)v2/2

≡ N11 +N12 +N13.

(3.4.22)

Hence

‖
∫ t

0

V (t− t′)|x|
3
8

+

v∂xv(t′)dt′‖L2

= ‖
∫ t

0

V (t− t′)(N11 +N12 +N13) dt′‖L2

≤
∫ T

0

‖V (t− t′)(N11 +N13)‖L2dt′ + ‖
∫ t

0

V (t− t′)N12 dt
′‖L2 .

(3.4.23)
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Thus, ∫ T

0

‖V (t− t′)N11‖L2dt′ ≤ ‖v∂xv‖L1
TL

2
x

≤ c T 3/4 sup
[0,T ]

‖v(t)‖L2‖∂xv‖L4
TL
∞
x

(3.4.24)

Using the dual version of Kato's smoothing e�ect (3.2.2) we obtain

‖
∫ t

0

V (t− t′)N12 dt
′‖L2

x
≤ c‖ (1− ϕ)|x|

3
8

+

v2‖L1
xL

2
T

≤ ‖|x|
3
8

+

v‖L2
xL

2
T
‖v‖L2

xL
∞
T
≤ T 1/2‖|x|

3
8

+

v‖L∞T L2
x
‖v‖L2

xL
∞
T
.

(3.4.25)

Finally, ∫ T0

0

‖V (t− t′)N13‖L2
x
dt′ ≤ c ‖ v2‖L1

TL
2
x
≤ c T‖v‖2

L∞T H
3
4
+ . (3.4.26)

As above taking ϕ ∈ C∞0 (R) with ϕ = 1, |x| < 1/2 and ϕ = 0, |x| ≥ 1 we write

|x|
3
8

+

∂x(|u|2) = ϕ|x|
3
8

+

∂x(|u|2) + ∂x((1− ϕ)|x|
3
8

+

|u|2)− ∂x((1− ϕ)|x|
3
8

+

)|u|2

≡ N21 +N22 +N23.
(3.4.27)

Hence

‖
∫ t

0

V (t− t′)|x|
3
8

+

∂x(|u|2)(t′)dt′‖L2
x

≤ ‖
∫ t

0

V (t− t′)(N21 +N22 +N23) dt′‖L2
x

≤
∫ T0

0

‖V (t− t′)(N21 +N23)‖L2
x
dt′ + ‖

∫ t

0

V (t− t′)N22 dt
′‖L2

x
.

(3.4.28)

It follows that ∫ T0

0

‖V (t− t′)N21‖L2
x
dt′ ≤ c

∫ T

0

(
‖ū∂xu‖L2 + ‖u∂xū‖L2

)
dt

≤ c T 3/4 ‖u‖L∞T L2
x
‖∂xu‖L4

TL
∞
x
.

(3.4.29)

The smoothing e�ect (3.2.2) yields

‖
∫ t

0

V (t− t′)N22 dt
′‖L2

x
= ‖∂x

∫ T

0

V (t− t′) (1− ϕ)|x|
3
8

+

uū dt′‖L2

≤ c‖ (1− ϕ)|x|
3
8

+

uū‖L1
xL

2
T
≤ c ‖ |x|

3
8

+

u‖L2
xL

2
T
‖u‖L2

xL
∞
T

≤ cT 1/2‖ |x|
5
8

+

u‖L∞T L2
x
‖u‖L2

xL
∞
T
.

(3.4.30)
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Finally,∫ T0

0

‖V (t− t′)N23‖L2
x
dt′ ≤ c0‖uū‖L1

TL
2
x
≤ cT sup

[0,T ]

(
‖u(t)‖L2‖u(t)‖L∞

)
≤ c T sup

[0,T ]

‖u(t)‖2
5/4+ .

(3.4.31)

The proof is complete.

3.5 Dispersive blow-up: Proof of Theorem 3.1.3

The proof is built upon the linear analysis appearing in Section 3.3. Consider the IVP
associated to the Schrödinger-Korteweg-de Vries system (3.1.1),

i∂tu+ ∂2
xu+ |u|2u = αuv, t, x ∈ R,

∂tv + ∂3
xv + 1

2
∂x(v

2) = γ∂x(|u|2),
u(x, 0) = u0(x), v(x, 0) = v0(x).

(3.5.1)

Let us consider
u0 ∈ H2−(R) ∩ L2(〈x〉2−dx) ∩ L∞(R),

and
v0 ∈ C∞(R) ∩H3/2−(R) ∩ L2(〈x〉3/4−dx) ∩ L∞(R),

be the initial data constructed in the Section 3.3, which leads to linear, independent dis-
persive blow-up at every time t ∈ Z. Now, using the Schrödinger group, the Airy group
and the Duhamel's formula, we obtain that the solution can be represented as

u(t, x) = S(t)u0 + C1

∫ t

0

S(t− t′)(uv)(t′)dt′ + C2

∫ t

0

S(t− t′)(|u|2u)(t′)dt′, (3.5.2)

and

v(t, x) = V (t)v0 + C3

∫ t

0

V (t− t′)(∂x(v2))(t′)dt′ + C4

∫ t

0

V (t− t′)(∂x|u|2)(t′)dt′, (3.5.3)

where C1, C2, C3 and C4 are non-zero constant of no consequence. If the integral terms
in (3.5.2) and (3.5.3) are H2+ε

x (R) and C1
x(R) functions for all t ∈ [0, T ] (respectively),

then the desired result follows from what we already known about S(t)u0 and V (t)v0 from
Section 3.3. To do this we divide the analysis in two cases, the inhomogeneous terms at
Schrödinger equation level (3.5.2) and the other ones at KdV equation level (3.5.3).

The following two propositions are su�cient to complete the proof of Theorem 3.1.3.

97



Proposition 3.5.1. Consider initial data (u0, v0) ∈ Hs+ 1
2 (R) ∩ L2(|x|r1dx) × Hs(R) ∩

L2(|x|r2dx) with s > 3/4, r1 = (s + 1
2
)− and r2 = s

2
−. Let (u(t), v(t)) the corresponding

solution for the IVP (3.1.1) given by Theorem 3.1.2. From (3.5.2), de�ne I as follows:

u(t, x) = S(t)u0 + C1

∫ t

0

S(t− t′)(uv)(t′)dt′ + C2

∫ t

0

S(t− t′)(|u|2u)(t′)dt′

=: S(t)u0 + I(t, x),

then I ∈ C([0, T ];Hs+ 3
4 (R)).

In other words, the integral term I is �smother" than the free propagator eit∆u0 by a quarter
of derivative. In particular, this implies that for initial data as at the beginning of this
section, the integral term I ∈ C([0, T ] : H

9
4

−
(R)).

Proposition 3.5.2. Consider initial data (u0, v0) ∈ Hs+ 1
2 (R) ∩ L2(|x|r1dx) × Hs(R) ∩

L2(|x|r2dx) with s > 7/6, r1 = (s + 1
2
)− and r2 = s

2
−. Let (u(t), v(t)) the corresponding

solution for the IVP (3.1.1) given by Theorem 3.1.2.

v(t, x) = V (t)v0 + C1

∫ t

0

V (t− t′)(∂x(v2))(t′)dt′ + C2

∫ t

0

V (t− t′)(∂x|u|2)(t′)dt′

=: V (t)v0 + II(t, x),

then II ∈ C([0, T ];Hs+ 1
6 (R)).

In other words, the integral term II is �smoother" than the free propagator V (t)v0 by a
one sixth derivative. In particular, this implies that for initial data as at the beginning of
this section, the integral term II ∈ C([0, T ] : C1(R)).

Proof of Proposition 3.5.1. First of all, recall that Theorem 3.1.2 guarantees the exis-
tence of the solution

u ∈ C([0, T ] : Hs+ 1
2 (R)∩L2(|x|s+

1
2
−εdx)), v ∈ C([0, T ] : Hs(R)∩L2(|x|

s
2
−εdx)). (3.5.4)

Now, let us divide the analysis in two steps. First, de�ne

u1(t) :=

∫ t

0

S(t− t′)(uv)(t′)dt′.

Thus, we shall show that u1(t) ∈ Hs+ 3
4 (R) for all t ∈ [0, T ]. In fact, by (3.2.4) we have

‖Ds+ 3
4

x u1‖L2
x
≤
∥∥D1/2

x

∫ t

0

S(t− t′)Ds+ 1
4

x (uv)(t′)dt′
∥∥
L2

≤ ‖Ds+ 1
4

x (uv)‖L1
xL

2
T

≤ ‖vDs+ 1
4

x u‖L1
xL

2
T

+ ‖uDs+ 1
4

x v‖L1
xL

2
T

+ E1, (3.5.5)
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where E1 are easy to control by considering the commutator estimates (see [43]) and
interpolated norms of the previous terms to be considered below, so we omit this proof.
Now, using Hölder's inequality we can bound the �rst term of (3.5.5) by

‖vDs+ 1
4

x u‖L1
xL

2
T
≤ c‖v‖L2

xL
∞
T
‖Ds+ 1

4
x u‖L2

xL
2
T

≤ cT 1/2‖v‖L2
xL
∞
T
‖Ds+ 1

4
x u‖L∞T L2

x
<∞.

On the other hand, we can bound the second term of (3.5.5) by

‖uDs+ 1
4

x v‖L1
xL

2
T
≤ c‖〈x〉s−εuDs+ 1

4
x v‖L1

xL
2
T

≤ cT 3/4 sup
[0,T ]

‖〈x〉s−εu‖L2
x
‖Ds+ 1

4
x v‖L4

TL
∞
x
<∞.

Thus we have u1(t) ∈ Hs+ 3
4 (R) for all t ∈ [0, T ], which concludes the demonstration of the

�rst step.

Now, let us consider the second integral term of the solution u(t, x):

u2(t) :=

∫ t

0

S(t− t′)(|u|2u)(t′)dt′.

Thus, we shall show that u2(t) ∈ Hs+ 3
4 (R) for all t ∈ [0, T ]. In fact, by the dual version of

the Kato's smoothing e�ect 3.2.2 we have

‖Ds+ 3
4

x u2‖L2
x
≤ c‖Ds+ 1

4
x (|u|2u)‖L1

xL
2
T

≤ c‖u‖L2
xL
∞
T
‖Ds+ 1

4
x u‖L∞x L2

T
+ E2 <∞.

where, again, the terms in E2 are easy to control by considering the commutator estimates
(see [43]) and the interpolated norms of the previous terms, so we omit the proof. Thus,
the proof is complete.

Proof of Proposition 3.5.2. From the previous proof, we have (3.5.4). Even more, we
have ∫ T

0

‖Dαθ/2
x Jkv(·, t)‖qpdt <∞ for 0 ≤ k ≤ s, (3.5.6)

for
(q, p) =

(
6
θ
(α + 1), 2

1−θ

)
, θ ∈ (0, 1), 0 ≤ α ≤ 1

2
.

Now, let us divide the analysis in two steps. First, de�ne

v1(t) :=

∫ t

0

V (t− t′)
(
∂x(v

2)
)
(t′)dt′ ∈ C1(R).
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Thus, we shall show that v1(t) ∈ Hs+ 1
6 (R) for all t ∈ [0, T ]. In fact, using the smoothing

Kato e�ect (3.2.2), we obtain

sup
0≤t≤T

‖Ds+1/6
x

∫ t

0

V (t− t′)(v∂xv)(t′)dt′‖2 ≤ ‖Ds−5/6
x (v∂xv)‖L1

xL
2
T

≤ ‖v‖
L
6/5
x L3

T
‖Ds+1/6

x v‖L6
xL

6
T

+ E1,

where E1 are easy to control by considering the commutator estimates (see [43]) and
interpolated norms of the previous terms to be considered below, so we omit this proof.
Now, from (3.5.6) with p = q = 6, θ = 2

3
and α = 1

2
we obtain:

‖Ds+1/6
x v‖L6

xL
6
T
<∞.

On the other hand, using (3.2.10) in Lemma 3.2.5 we deduce:

‖v‖
L
6/5
x L3

T
≤ c‖〈x〉1/2+v‖L3

TL
3
x

≤ cT 1/3‖〈x〉1/2+v‖L∞T L3
x

≤ cT 1/3‖J1/6
(
〈x〉1/2+v

)
‖L∞T L2

x

≤ cT 1/3‖Jsv‖1−γ
L∞T L

2
x
‖〈x〉

s
2
−
v‖γL∞T L2

x
,

with γ such that sγ
2
− = 1

2

+, i.e. γ > 1
s
, and such that (1 − γ)s > 1/6. Note that the last

inequality imposes the restriction s > 7
6
. Thus we have v1(t) ∈ Hs+ 1

6 (R) for all t ∈ [0, T ],
which concludes the demonstration of the �rst step.

Now, let us consider the second integral term of the solution v(t, x):

v2(t) :=

∫ t

0

V (t− t′)
(
∂x|u|2

)
(t′)dt′ ∈ C1(R).

We shall show that v2(t) ∈ Hs+ 1
6 (R) for all t ∈ [0, T ]. For this, we use the inhomogeneous

smothing Kato e�ect (3.2.2), thus we obtain:

sup
0≤t≤T

∥∥Ds+ 1
6

x

∫ t

0

V (t− t′)
(
∂x|u|2

)
dt′
∥∥

2
≤ c
∥∥Ds+ 1

6
x

(
|u|2
)∥∥

L1
xL

2
T

≤ c‖u‖L1
xL
∞
T
‖Ds+ 1

6
x u‖L∞x L2

T
+ E2,

where the terms in E2 are easy to control by considering the commutator estimates and
the interpolated norms of the previous terms to be considered below, so we omit the proof.

Now, to estimate ‖Ds+ 1
6

x u‖L∞x L2
T
, we use the homogeneous smoothing Kato e�ect (3.2.3),

Minkowskii's integral inequality and group properties to obtain

‖Ds+ 1
6

x u‖L∞x L2
T
≤ c‖u0‖Hs− 1

3
+ c

∫ T

0

‖Ds− 1
3

x (uv)‖L2
x
dt+ c

∫ T

0

‖Ds− 1
3

x (|u|2u)‖L2
x
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≤ c‖u0‖
H
s− 1

3
x

+ cT‖u‖
L∞T H

s− 1
3

x

‖v‖
L∞T H

s− 1
3

x

+ cT‖u‖3

L∞T H
s− 1

3
x

. (3.5.7)

Then, by the local-well posedness theory, we conclude that:

‖Ds+ 1
6

x u‖L∞x L2
T
<∞.

which concludes the estimates for the solution u. Thus, we conclude that we can reduce
ourselves to consider the linear associated problem so the nonlinearity after Section 3.3 is
not relevant for our purposes.
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Appendix A

Proof of Proposition 2.4.6

We start proving that (2.4.20) is satis�ed. We follow the same scheme of Proposition 2.4.4.
Taking derivative of A wrt x we get

Ax =
4β2 cosh2(γ(x+ x2))

β2 cosh2(γ(x+ x2)) + sinh2(γx1)
· − sinh(γx1)

β cosh2(γ(x+ x2))
· γ sinh(γ(x+ x2))

= − 4βγ sinh(γx1) sinh(γ(x+ x2))

sinh2(γx1) + β2 cosh2(γ(x+ x2)
. (A.0.1)

For the sake of simplicity we de�ne θ := γ(x−x1 +x2). Using basic trigonometric identities
we have

sin

(
A±Q

2

)
=

2 tan
(

arctan
(

sinh(γx1)
β cosh(γ(x+x2))

)
± arctan

(
eθ
))

1 + tan2
(

arctan
(

sinh(γx1)
β cosh(γ(x+x2))

)
± arctan (eθ)

) . (A.0.2)

Since tan(a± b) = tan a±tan b
1∓tan a tan b

, (A.0.2) reads now

sin

(
A±Q

2

)
=

2

(
sinh(γx1)± β cosh(γ(x+ x2))eθ

β cosh(γ(x+ x2))∓ sinh(γx1)eθ

)
1 +

(
sinh(γx1)± β cosh(γ(x+ x2))eθ

β cosh(γ(x+ x2))∓ sinh(γx1)eθ

)2 ,

and simplifying,

sin

(
A±Q

2

)
=

2f2(x)(
1 + e2θ

)(
sinh2(γx1) + β2 cosh2(γ(x+ x2))

) , (A.0.3)

where f2(x) = f2(x; β, x1, x2) is such that

f2(x) := β sinh(γx1) cosh(γ(x+ x2))∓ eθ sinh2(γx1)
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± β2eθ cosh2(γ(x+ x2))− βe2θ sinh(γx1) cosh(γ(x+ x2)). (A.0.4)

We are now ready to show that (2.4.20) is satis�ed. Substracting (2.3.2) from (A.0.1) we
obtain

Ax −Qt = − 4βγ sinh(γx1) sinh(γ(x+ x2))

sinh2(γx1) + β2 cosh2(γ(x+ x2))
− 4βγeθ

1 + e2θ
=
F2

F3

,

where

F3 :=
(
1 + e2θ

) (
sinh2(γx1) + β2 cosh2(γ(x+ x2)

)
, (A.0.5)

and

F2 :=− 4βγ

[
eθ
(
β2 cosh2(γ(x+ x2)) + sinh2(γx1)

)
+ (1 + e2θ) sinh(γ(x+ x2)) sinh(γx1)

]
.

On the other hand, recalling that a := a(β) and γ = 1/
√

1− β2, from (A.0.4) we conclude

1

a
sin

(
A+Q

2

)
+ a sin

(
A−Q

2

)
=
F4

F3

(A.0.6)

where F3 is given by (A.0.5) and

F4 := 4βγ
[
(1− e2θ) sinh(γx1) cosh(γ(x+ x2)) + eθ sinh2(γx1)− β2eθ cosh2(γ(x+ x2))

]
.

Therefore, (2.4.20) is reduced to show that F2 − F4 ≡ 0. Indeed,

F2 − F4 = − 4βγ
[
2eθ sinh2(γx1) + (1 + e2θ) sinh(γ(x+ x2)) sinh(γx1)

]
− 4βγ(1− e2θ) sinh(γx1) cosh(γ(x+ x2)) = 0.

This proves (2.4.20). We only need to show (2.4.21) now. We follow the same scheme as
before: from (2.4.7) and (2.3.1) we have

At −Qx =
4β2γ cosh(γ(x+ x2)) cosh(γx1)

β2 cosh2(γ(x+ x2)) + sinh2(γx1)
− 4γeθ

1 + e2θ
=
F̃2

F3

,

where F3 is given in (A.0.5) and

F̃2 :=4γ
[
β2 cosh(γ(x+ x2)) cosh(γx1)(1 + e2θ)

− (β2 cosh2(γ(x+ x2)) + sinh2(γx1))eθ
]
. (A.0.7)

On the other hand, since a = a(β) and γ = 1/
√

1− β2, and following the same ideas as in
the proof of (A.0.6), we have

1

a
sin

(
A+Q

2

)
− a sin

(
A−Q

2

)
=

F̃4

F3

,
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where F3 came from (A.0.5) and F̂4 denotes the quantity

F̃4 := − 4γ
[
β2 sinh(γx1) cosh(γ(x+ x2))(1− e2θ)

− eθ(β2 cosh2(γ(x+ x2))− sinh2(γx1))
]
. (A.0.8)

Therefore, (2.4.21) has been reduced to show that F̃2 − F̃4 ≡ 0. Indeed, from (A.0.7) and
(A.0.8)

F̃2 − F̃4 = 4γβ2 cosh(γx1) cosh(γ(x+ x2))(1 + e2θ)− 8γβ2 cosh2(γ(x+ x2))eθ

+ 4γβ2(1− e2θ) sinh(γx1) cosh(γ(x+ x2)) = 0,

which ends the proof.
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Appendix B

Description of derivatives and

orthogonality

B.1 Orthogonality for breather type functions

We start with the following result.
Lemma B.1.1. Let (B,Bt) be a SG breather pro�le with scaling parameter β ∈ (−1, 1)\{0}
and shifts x1, x2 ∈ R. Let us suppose that x2 = 0. Then, Bt and Bx are even and odd
respectively.

Proof. It is enough to see that from (2.4.1), (2.4.11) and (2.4.2),

Bt = B1 =
4α2β cos(αx1) cosh(β(x+ x2))

α2 cosh2(β(x+ x2)) + β2 sin2(αx1)
,

Bx = B2 =
−4β2α sin(αx1) sinh(β(x+ x2))

α2 cosh2(β(x+ x2)) + β2 sin2(αx1)
,

(B.1.1)

so that if x2 = 0 we get

Bt =
4α2β cos(αx1) cosh(βx)

α2 cosh2(βx) + β2 sin2(αx1)
, Bx =

−4β2α sin(αx1) sinh(βx)

α2 cosh2(βx) + β2 sin2(αx1)
,

which readily gives the respective parity properties.

Corollary B.1.2. Let (B,Bt) be a SG breather with scaling parameter β ∈ (−1, 1) \ {0}
and shifts x1, x2 ∈ R. Then, ∫

R
BtBxdx = 0.
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Proof. A consequence of the previous lemma and the invariance under translations of the
integral on R.

Lemma B.1.3. Let (B,Bt) be a SG breather pro�le with scaling parameter β ∈ (−1, 1),
β 6= 0, and shifts x1, x2 ∈ R. Consider (Bi, Bt,i) the derivatives of B and Bt wrt the
variables xi, i = 1, 2. Let us additionally suppose that x2 = 0. Then, Bt,1 and Bt,2 are
functions in the Schwartz class, even and odd in x respectively.

Proof. For the sake of brevity we de�ne θ1 := γx1 and θ2 := γ(x+ x2) = γx. Since Bt in
(2.4.2) is smooth, we have after di�erentiation

Bt,1= −4α3β

(
sin θ1 cosh θ2(α2 cosh2 θ2 + β2 sin2 θ1) + β2 sin(2θ1) cos θ1 cosh θ2

)(
α2 cosh2 θ2 + β2 sin2 θ1

)2 ,

Bt,2= 4α2β2

(
cos θ1 sinh θ2(α2 cosh2 θ2 + β2 sin2 θ1)− α2 sinh(2θ2) cos θ1 cosh θ2

)(
α2 cosh2 θ2 + β2 sin2 θ1

)2 .

The desired parity properties are then direct.

Corollary B.1.4. Let (B,Bt) be a SG breather pro�le with scaling parameter β ∈ (−1, 1)\
{0} and shifts x1, x2 ∈ R. Then, ∫

R
Bt,1Bt,2dx = 0.

Proof. Direct from previous lemma.

B.2 Orthogonality of 2-kink or kink-antikink type func-

tions

In this section, we treat the case of 2-kink R and kink-antikink A. Since proofs are similar
to the breather case, we only sketch the main ideas.
Lemma B.2.1. Let (A,At) be a SG kink-antikink pro�le with speed β ∈ (−1, 1) \ {0} and
shifts x1, x2 ∈ R. Consider (Ai, At,i) the derivatives of A and At wrt the directions xi,
i = 1, 2. Suppose again that x2 = 0. Then, At and At,1 are even, and Ax and At,2 are odd.
Each function above is in the Schwartz class.

Proof. We de�ne θ1 := γx1 y θ2 := γ(x+ x2) = γx. Thanks to (A.0.1), (2.4.7) and direct
computations, we have

At =
4β2γ cosh θ1 cosh θ2

β2 cosh2 θ2 + sinh2 θ1

, Ax =
−4βγ sinh θ1 sinh θ2

β2 cosh2 θ2 + sinh2 θ1

,
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At,1 =
4β2γ2

(
sinh θ1 cosh θ2(β2 cosh2 θ2 + sinh2 θ1)− sinh(2θ1) cosh θ1 cosh θ2

)(
β2 cosh2 θ2 + sinh2 θ1

)2 ,

At,2 =
4β2γ2

(
cosh θ1 sinh θ2(β2 cosh2 θ2 + sinh2 θ1)− β2 sinh(2θ2) cosh θ1 cosh θ2

)(
β2 cosh2 θ2 + sinh2 θ1

)2 .

Here parities are concluded directly since x2 = 0.

Corollary B.2.2. Let (A,At) be a kink-antikink pro�le with speed β ∈ (−1, 1) and shifts
x1, x2 ∈ R. Then, ∫

R
AtAxdx = 0,

∫
R
At,1At,2 = 0.

Proof. Direct form the previous lemma.

Lemma B.2.3. Let (R,Rt) be a SG 2-kink pro�le with speed β ∈ (−1, 1) and shifts x1, x2 ∈
R. Let us consider (Ri, Rt,i) the derivatives of R y Rt in the directions xi, i = 1, 2. Let
us assume additionally that x2 = 0. Then, Rt and Rt,1 are odd, and Rx and Rt,2 are even.
Each of the last four last functions is in the Schwartz class.1

Proof. Using the same notation as in the proof of Lemma B.2.1, we have

Rt =
−4β2γ sinh θ1 sinh θ2

cosh2 θ1 + β2 sinh2 θ2

, Rx =
4βγ cosh θ1 cosh θ2

cosh2 θ1 + β2 sinh2 θ2

,

and

Rt,1

4β2γ2
= −cosh θ1 sinh θ2(cosh2 θ1 + β2 sinh2 θ2)− β2 sinh(2θ1) sinh θ2 sinh θ1(

cosh2 θ1 + β2 sinh2 θ2

)2 ,

Rt,2

4β2γ2
= −sinh θ1 cosh θ2(cosh2 θ1 + β2 sinh2 θ2)− β2 sinh(2θ2) sinh θ1 sinh θ2(

cosh2 θ1 + β2 sinh2 θ2

)2 .

Finally, the following result is direct:
Corollary B.2.4. Let (R,Rt) be a 2-kink SG pro�le with speed β ∈ (−1, 1), β 6= 0, and
shifts x1, x2 ∈ R. Then, ∫

R
RtRxdx = 0,

∫
R
Rt,1Rt,2 = 0.

1Note that R is not in the Schwartz class.
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Appendix C

Proof of Lemma 2.5.1

The proof of this result is standard, we only sketch the main ideas. Let us de�ne H :
R2 × U(η)→ R2, given by(

H(x1, x2, φ, φt)
)
j

:=
(
〈φ−D, Dj〉H1 , 〈φt −Dt, (Dt)j〉L2

)
, j = 1, 2,

whereD,Dt,Dj yDt,j are evaluated at the point (·; β, x1, x2). Clearly we haveH(x1, x2, D,Dt) =
(0, 0). Moreover, H ∈ C1 in a vicinity of (x1, x2, D,Dt). Di�erentiating, we get(

Hxi(x1, x2, D,Dt)
)
j

= −
(
〈Di, Dj〉,

〈
Dt,i, Dt,j

〉)
, i, j ∈ {1, 2}.

Let us show that H ′(x1, x2, D,Dt) is invertible. In what follows, we proceed by cases,
depending on D = A,B or R.

1. CaseD = B. Thanks to Lemmas B.1.2 and B.1.4, we haveH ′ diagonal and invertible.

2. Case D = A,R. Thanks to Lemmas B.2.2 and B.2.4, we have the same situation as
before.

From the last statements we conclude that the matrix H ′(x1, x2, D,Dt) is always invertible.
Hence, the Implicit Function Theorem says that, if ν0 is su�ciently small, and ν ∈ (0, ν0),
we will have unique functions (x̃1, x̃2) in C1, depending on (φ, φt) ∈ U(ν), and such that
H(x̃1(φ, φt), x̃2(φ, φt), (φ, φt)) = (0, 0).
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Appendix D

Proof of Lemmas 2.6.2, 2.9.2 and 2.9.3

D.1 Proof of Lemma 2.6.2

First of all, note that from (2.3.15) we have that µK in (2.6.1) satis�es

µK =
cosh(β(x+ x2)) cos(αx1)− i sinh(β(x+ x2)) sin(αx1)

cosh2(β(x+ x2)) cos2(αx1) + sinh2(β(x+ x2)) sin2(αx1)
=

1

2β
Kx.

Therefore, it is necessary that x1 does not satisfy (2.3.5) in order to get µK well-de�ned
for any x. In this case, µK is smooth and decays to zero exponentially in space.

Proving (2.6.5), notice that since x1 does not satisfy (2.3.5), we can use (2.6.1) and (2.3.11):∫
R
µK sin

(
K

2

)
=

∫
R

dx

cosh2(β(x+ x2) + iαx1)
=

2

β
.

Now we prove (2.6.6). It is enough to notice that

∂x

(
β2 sin(2αx1)− iα2 sinh(2β(x+ x2))

αβ(α2 cosh(β(x+ x2))2 + β2 sin(αx1)2)

)
= Φ1 − Φ2,

where

Φ1 = −8αβ2 cosh(β(x+ x2) + iαx1) sinh(β(x+ x2)) sin(αx1)(
α2 cosh(β(x+ x2))2 + β2 sin(αx1)2

)2 = µ(x)Bx,

Φ2 =
2iα

α2 cosh(β(x+ x2))2 + β2 sin(αx1)2
= µ(x)Kt.

Integrating on R we obtain
∫
R µ ·

(
Bx −Kt

)
= − 4i

αβ
, i.e. (2.6.6).
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Let us show (2.6.3). We have from (2.3.11) β cos
(
K
2

)
= −β tanh(β(x + x2) + iαx1),

hence, from (2.6.1),

(µK)x = −β sinh(β(x+ x2) + iαx1)

cosh2(β(x+ x2) + iαx1)
= β cos

(
K

2

)
µK ,

which proves (2.6.3).

In order to �nish, we only need to prove (2.6.4). Recall the notation in (2.8.15). First
we have

µx(x) =
β sinh(θ)

(
α2 cosh2(θ2) + β2 sin2(θ1)

)
− α2β sinh(2θ2) cosh(θ)(

α2 cosh2(θ2) + β2 sin2(θ1)
)2

=

(
β tanh(θ)

(
α2 cosh2(θ2) + β2 sin2(θ1)

)
− α2β sinh(2θ2)

α2 cosh2(θ2) + β2 sin2(θ1)

)
µ(x)

=

(
β tanh(θ)− α2β sinh(2θ2)

α2 cosh2(θ1) + β2 sin2(θ1)

)
µ(x).

Consequently, our problem now is to show that

β tanh(θ)− α2β sinh(2θ2)

α2 cosh2(θ1) + β2 sin2(θ1)

=
(β − iα)

2
cos

(
B +K

2

)
+

(β + iα)

2
cos

(
B −K

2

)
. (D.1.1)

Let us compute explicitly the RHS of the last equation. Using basic trigonometric
identities

cos

(
B ±K

2

)
=

(
1− tan2

(
B ±K

4

))(
1 + tan2

(
B ±K

4

))−1

=
(1− e2θ)(α2 cosh2(θ2)− β2 sin2(θ1))∓ 4αβ cosh(θ2) sin(θ1)eθ

(1 + e2θ)(α2 cosh2(θ2) + β2 sin2(θ1))
.

Then, using this the RHS of (D.1.1) reads now

RHS(D.1.1)

=
β(1− e2θ)(α2 cosh2(θ2)− β2 sin2(θ1)) + 4iα2β cosh(θ2) sin(θ1)eθ

(1 + e2θ)(α2 cosh2(θ2) + β2 sin2(θ1))

=
β tanh(θ)(β2 sin2(θ1)− α2 cosh2(θ2))

α2 cosh2(θ2) + β2 sin2(θ1)
+

2iα2β cosh(θ2) sin(θ1)

cosh(θ)(α2 cosh2(θ2) + β2 sin2(θ1))

= β tanh(θ)− 2α2β tanh(θ) cosh2(θ2)

α2 cosh2(θ2) + β2 sin2(θ1)
+

2iα2β cosh(θ2) sin(θ1)

cosh(θ)(α2 cosh2(θ2) + β2 sin2(θ1))
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= β tanh(θ)− 2α2β cosh(θ2) (sinh(θ) cosh(θ2)− sinh(iθ1))

cosh(θ)(α2 cosh2(θ2) + β2 sin2(θ1))

= β tanh(θ)− 2α2β sinh(θ2) cosh(θ2)

α2 cosh2(θ2) + β2 sin2(θ1)
(D.1.2)

= β tanh(θ)− α2β sinh(2θ2)

α2 cosh2(θ2) + β2 sin2(θ1)
;

where in (D.1.2) we used

sinh(θ) cosh(θ2)− sinh(iθ1) = sinh(θ) cosh(θ2)− sinh(θ − θ2)

= sinh(θ) cosh(θ2)− sinh(θ) cosh(θ2) + cosh(θ) sinh(θ2) = cosh(θ) sinh(θ2),

which ends the proof.

D.2 Proof of Lemma 2.9.2

First we prove (2.6.6). Indeed, note that

∂x

(
β2 sinh2(2γ(x+ x2))− sinh(2γx1)

β
(
β2 sinh2(γ(x+ x2)) + cosh2(γx1)

)) = Φ1 − Φ2,

where

Φ1 =
4βγ cosh(γ(x+ x1 + x2)) cosh(γx1) cosh(γ(x+ x2))(

β2 sinh2(γ(x+ x2)) + cosh2(γx1)
)2 = µ(x)Rx,

Φ2 =
2βγ

β2 sinh2(γ(x+ x2)) + cosh2(γx1)
= µ(x)Qt.

Integrating on R we obtain (2.6.6). We prove now (2.9.5). We will compute each term
involved in the equation. For the sake of simplicity, we denote

θ1 := γx1, θ2 := γ(x+ x2), θ = γ(x+ x1 + x2).

First we have

µx(x) =
γ sinh(θ)

(
cosh2(θ1) + β2 sinh2(θ2)

)
− β2γ sinh(2θ2) cosh(θ)(

cosh2(θ1) + β2 sinh2(θ2)
)2

=

(
γ tanh(θ)− β2γ sinh(2θ2)

cosh2(θ1) + β2 sinh2(θ2)

)
µ(x).

Consequently, our problem now is to show that

γ tanh(θ)− β2γ sinh(2θ2)

cosh2(θ1) + β2 sinh2(θ2)
=

1

2a3

cos

(
R +Q

2

)
+
a3

2
cos

(
R−Q

2

)
.
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Let us compute the RHS of the last equation. For this, we use trigonometric identities:

cos

(
R±Q

2

)
=

(
1− tan2

(
R±Q

4

))(
1 + tan2

(
R±Q

4

))−1

=
(1− e2θ)(cosh2(θ1)− β2 sinh2(θ2))∓ 4β cosh(θ1) sinh(θ2)eθ

(1 + e2θ)(cosh2(θ1) + β2 sinh2(θ2))

Hence, using this last identity, the RHS of (2.9.5) is reduced to

RHS =
−γ(1− e2θ)(cosh2(θ1)− β2 sinh2(θ2))− 4β2γ cosh(θ1) sinh(θ2)eθ

(1 + e2θ)(cosh2(θ1) + β2 sinh2(θ2))

=
γ tanh(θ)(cosh2(θ1)− β2 sinh2(θ2))

(cosh2(θ1) + β2 sinh2(θ2))
− 2β2γ cosh(θ1) sinh(θ2)

cosh(θ)(cosh2(θ1) + β2 sinh2(θ2))

= γ tanh(θ)− 2β2γ tanh(θ) sinh2(θ2)

cosh2(θ1) + β2 sinh2(θ2)
− 2β2γ cosh(θ1) sinh(θ2)

cosh(θ)(cosh2(θ1) + β2 sinh2(θ2))

= γ tanh(θ)−
2β2γ sinh(θ2)

(
sinh(θ) sinh(θ2) + cosh(θ1)

)
cosh(θ)(cosh2(θ1) + β2 sinh2(θ2))

= γ tanh(θ)− 2β2γ sinh(θ2) cosh(θ) cosh(θ2)

cosh(θ)(cosh2(θ1) + β2 sinh2(θ2))

= γ tanh(θ)− β2γ sinh(2θ2)

cosh2(θ1) + β2 sinh2(θ2)
.

The proof is complete.

D.3 Proof of Lemma 2.9.3

Same as the proof of Lemma 2.9.2.
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Appendix E

Proof of Lemma 2.8.2

Proof of (i). We use the same notation as in (2.8.15). We have

K − 4 arctan

(
2iα

2β

β sin(θ1)

α cosh(θ2)

)
= 4 arctan

(
eθ
)
− 4 arctan

(
i sin(θ1)

cosh(θ2)

)
= 4 arctan

(
eθ
)
− 4 arctan

(
eiθ1 − e−iθ1
eθ2 + e−θ2

)
.

Therefore, using that arctan(u)− arctan(v) = arctan( u−v
1+uv

), we obtain

φ3,1 = 4 arctan
(
eθ
)
− 4 arctan

(
eiαx1 − e−iθ1
eθ2 + e−θ2

)
= 4 arctan

 eθ − eiθ1 − e−iθ1
eθ2 + e−θ2

1 + eθ
eiθ1 − e−iθ1
eθ2 + e−θ2


= 4 arctan

(
eθ
(
eθ2 + e−θ2

)
− eiθ1 + e−iθ1

eθ2 + e−θ2 + eθ
(
eiθ1 − e−iθ1

))

= 4 arctan

(
e2β(x+x2)+iαx1 + e−iθ1

e−θ2 + eβ(x+x2)+2iαx1

)
= 4 arctan

(
eθ̄ · e

β(x+x2)+2iαx1 + e−θ2

e−θ2 + eβ(x+x2)+2iαx1

)
= 4 arctan

(
eθ̄
)

= K.

Proof (ii). The identities in (2.8.8) are straightforward. In order to show (2.8.9), we have

Bt sec2
(
B
4

)
1 + `2 tan2

(
B
4

) =

(
4α2β cos(θ1) cosh(θ2)

α2 cosh2(θ2) + β2 sin2(θ1)

)(
1 +

(
β sin(θ1)

α cosh(θ2)

)2
)

1 + `2

(
β sin(θ1)

α cosh(θ2)

)2
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=
4α2β cos(θ1) cosh(θ2)

α2 cosh2(θ2) + `2β2 sin2(θ1)
.
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Appendix F

Proof of (2.7.3)

By the analysis made in chapter 3, it is direct that Re
(
B̃0Kx

)
is even and Im

(
B̃0Kx

)
is

odd. Then, from the fact that B̃0Kx belongs to the Schwartz class, whenever x1 does not
satisfy (2.3.5), we conclude ∫

R
B̃0Kx ∈ R.

Now, to show that the integral is di�erent from zero, �rst we note that from the invariance
under shifts of the integral we can assume x2 = 0. Then, since we only measure the sign of
the integral, using a proper scaling in x we can assume β = 0.2 and x1 is its only remaining
independent variable. A numeric computation performed in Mathematica obtains that the
integral is never zero, as shows Fig. F.1.

Out[82]=

-3 -2 -1 1 2 3

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Behavior of the Integral for beta fixed

Figure F.1: Behavior of I(x1) =
∫
R B̃0Kx in x1 for β = 0.2.
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Conclusions and Perspectives

Along this work, several interesting open questions appeared from the already proved
results. Here we mention some of the most interesting ones, in our personal opinion:

1. Asymptotic stability for odd data for SG 2-solitons. This is an open question
that we could not solve because of some bad preservation properties of the Bäcklund
transformations in SG. We plan to attack this problem in the near future.

2. Stability of Gardner breathers. This question is currently under work by Alejo
and myself. We plan to show that periodic and nonperiodic Gardner breathers are
stable using the techniques involved in this work. Probably these ideas are useful to
prove other low regularity stability results for nonlocal equations.

3. Sharp dispersive blow-up for NLS-KdV. This is an open question related to
the non sharp character of the proof in Chapter 3. We believe that, improving some
estimates to their best possible level, it is possible to show dispersive blow up at
the (C2

x(R), C1
x(R)) level for each equation, respectively. This is part of the current

research by Linares and myself, as well as extensions to other nonlocal dispersive
systems.
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