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PROPHET INEQUALITY
THROUGH SCHUR-CONVEXITY AND OPTIMAL CONTROL

En el clásico problema de tiempo de parada óptimo conocido como Desigualdad del profeta
realizaciones de variables positivas e independientes son descubiertas secuencialmente. Una
jugadora que conoce las distribuciones, pero no puede ver en el futuro, debe decidir cuándo
parar y tomar la última variable revelada. Su objetivo es maximizar la esperanza de lo
obtenido y su rendimiento está dado por el peor caso del cociente entre la esperanza de que
obtiene y la esperanza de lo que obtendría un profeta (que puede ver en el futuro y así siempre
elegir el máximo). En los setenta, Krengel y Sucheston, y Garling, [20] determinaron que
el rendimiento de una jugadora puede ser una constante y que 1/2 es la mejor constante.
En la última década, la desigualdad del profeta ha resurgido como un problema importante
dada su conexión con �Posted Price Mechanisms�, una teoría usada en ventas en línea. Una
variante de particular interés es �Prophet Secretary�, donde la única diferencia es que las
relaciones son descubiertas en orden aleatorio. Para esta variante, varios algoritmos logran
un rendimiento de 1 − 1/e ≈ 0.63 y recientemente Azar et al. [2] mejoraron este resultado.
En cuanto a cotas superiores, se sabe que una jugadora no puede hacerlo mejor que 0.745,
en el límite sobre el tamaño de la instancia.

En esta tesis se deriva una forma de analizar estrategias que dependen sólo del tiempo:
dada una instancia, se calcula una secuencia decreciente de exigencias que son usadas para
decidir si parar o no. La jugadora tomará el primer valor que supere la exigencia correspon-
diente al momento en que fue descubierta. Especí�camente, se considera una clase robusta
de estrategias que denominamos �blind strategies�. Constituyen una generalización de �jar
una sola exigencia para todo el proceso y consisten en �jar una función, independiente de la
instancia, que determina cómo calcular las exigencias una vez la instancia es conocida. El
resultado principal es que la jugadora logra un rendimiento de al menos 0.669, superando el
estado del arte (Azar et al. [2]) tanto para �Prophet Secretary� como para la variante en la
que la jugadora tiene la libertad de escoger el orden en que descubre las variables (Beyhaghi
et al [3]). El análisis se reduce a estudiar la distribución del tiempo de parada inducido
por estas estrategias, a través de la teoría de Schur-convexidad. También, se demuestra que
este tipo de estrategias no pueden lograr más que 0.675, a través de calcular el rendimiento
óptimo de la jugadora contra dos instancias particulares, resolviendo un problema de control
óptimo.

Finalmente, se demuestra que el conjunto más amplio de estrategias no adaptativas no
pueden lograr más de

√
3 − 1 ≈ 0.73, cota que también mejora el estado del arte en cotas

superiores para estrategias simples (Azar et al [2]). Se considera una estrategia como no
adaptativa si al decisión de parar depende del valor, la identidad y el tiempo en que fue
descubierta la variable, pero no toma en cuenta la identidad de las variables anteriores.
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In the classic prophet inequality, a problem in optimal stopping theory, samples from
independent random variables (possibly di�erently distributed) arrive online. A gambler
that knows the distributions, but cannot see the future, must decide at each point in time
whether to stop and pick the current sample or to continue and lose that sample forever. The
goal of the gambler is to maximize the expected value of what she picks and the performance
measure is the worst case ratio between the expected value the gambler gets and what a
prophet, that sees all the realizations in advance, gets. In the late seventies, Krengel and
Sucheston, and Garling [20], established that this worst case ratio is a constant and that
1/2 is the best possible such constant. In the last decade the theory of prophet inequalities
has resurged as an important problem due to its connections to posted price mechanisms,
frequently used in online sales. A particularly interesting variant is the so-called Prophet
Secretary problem, in which the only di�erence is that the samples arrive in a uniformly
random order. For this variant several algorithms are known to achieve a constant of 1− 1/e
and very recently this barrier was slightly improved by Azar et al. [2], while the best known
upper bound is approximately 0.745.

In this thesis we derive a way of analyzing time-threshold strategies that basically sets
a nonincreasing sequence of thresholds to be applied while discovering values. The gambler
will thus stop the �rst time a sample surpasses the corresponding threshold. Speci�cally
we consider a class of very robust strategies that we call blind quantile strategies. These
constitute a clever generalization of single threshold strategies and consist in �xing a function
which is used to de�ne a sequence of thresholds once the instance is revealed. Our main result
shows that these strategies can achieve a constant of 0.669 in the Prophet Secretary problem,
improving upon the best known result of Azar et al. [2], and even that of Beyhaghi et al.
[3] that works in the case the gambler can select the order of the samples. The crux of
the analysis is a very precise analysis of the underlying stopping time distribution for the
gambler's strategy that is inspired by the theory of Schur convex functions. We further
prove that our family of blind strategies cannot lead to a constant better than 0.675, solving
an optimal control problem based in the achievable performance in two carefully chosen
instances.

Finally we prove that no nonadaptive algorithm for the gambler can achieve a constant
better than 0.732, which also improves upon a recent result of Azar et al. [2]. Here, a
nonadaptive algorithm is an algorithm whose decision to stop can depend on the index of
the random variable being sampled, on the value sampled, and on the time, but not on the
history that has been observed.
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To the perfection of reality and the simplicity of Mathematics.
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Chapter 1

Introduction

When to be satis�ed with the present and stop searching in the future something that might
be better? This is a quite philosophical question, but any mathematician would understand
that this thesis is about an optimal stopping problem, and therefore the natural questions
are:

1. What do I know? (information available at the moment I take a decision)

2. How does this work? (dynamic one is subject to when deciding)

3. What is a good choice? (function to be maximized)

The �rst and most classical model, proposed in the 1960 partly as a recreational problem,
is the �Secretary Problem� and consists in the following:

1. There is a �xed and known number of options (say numbers) available and, if faced
with two options, you are able to determine which is better.

2. One by one, the options are shown to you following a random order. After discovering
the �rst option, either you take it or drop it for ever. If you drop an option, the next
is shown to you and so the process continues until you pick an option.

3. You only win if you pick the best option (the largest number).

This simple setting started a whole �eld of research for online decisions and a more modern
survey is available in [12, 13]. Another model proposed in 1977 by Krengel and Sucheston
is called �Prophet Inequality�, where the decision maker know more in advance about the
options. Prophet inequalities, in contrast with the Secretary problem, consist in the following:

1. There is a �xed number of positive numbers available. You know that each of these
numbers were drawn from probability distributions �xed and known in advance. More-
over, you the order in which these realizations are going to be shown to you.

2. One by one, these realizations of random variables are shown to you. After discovering
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the �rst option, either you take it or drop it for ever. If you drop an option, the next
is shown to you and so the process continues until you pick an option.

3. You only care about the expectation that you get, and you compare yourself against a
prophet who can see in the future and always chooses the maximum of all the realiza-
tions.

The starting point of this thesis is the work of Hajiaghayi et al. [15] and that of Chawla et
al. [5] who established an interesting connection between (revenue maximizing) PPMs and
prophet inequalities. Posted price mechanisms (PPM) constitute a widely used way of selling
items to strategic consumers. Indeed, in the last years online sales have been moving from an
auction format, to posted price formats [10], and the basic reason for this trend switch seems
to be that PPMs are much simpler than optimal auctions, yet e�cient enough. Furthermore,
several companies have started to apply price discrimination to sell their products. Under
this policy, companies set di�erent prices for di�erent consumers based on purchase history
or other factors that may a�ect their willingness to pay. For example, the online data
provider Lexis-Nexis sells to virtually every user at a di�erent price. In 2012, Orbitz online
travel agency found that people who use Mac computers spent as much as 30% more on
hotels, so it started to show them di�erent, and sometimes costlier, travel options than those
shown to Windows visitors. Furthermore, similar pricing strategies are used to determine
the (personalized) reserve prices for Google ads and have signi�cant potential impact in the
pricing of cloud services.

The way these mechanisms work is as follows. Suppose a seller has an item to sell.
Consumers arrive one at a time and the seller proposes to each consumer a take-it-or-leave-it
o�er. The �rst customer accepting the o�er pays that price and takes the item. These type of
mechanisms are �exible and adapt well to di�erent scenarios. Furthermore, their simplicity
and the fact that strategic behaviour vanishes make them quite suitable for many applications
[5]. Of course, PPMs are suboptimal and therefore the study of what their approximation
guarantees � where the benchmark is that given by the optimal Myerson's auction [22] �
has been an extremely active area in the last decade, in particular in the computer science
community.

Another explanation of the �Prophet Inequality� setting is the following: a gambler is faced
to a sequence of random variables and has to pick a stopping time so that the expected value
he gets is as close as possible to the expectation of the maximum of all random variables,
interpreted as what a prophet, who knows the realizations in advance, could get. Chawla et
al. implicitly show that any prophet type inequality can be turned into a PPM with the same
approximation guarantee. This is obtained by noting that a PPM for revenue maximization
can be seen as (threshold) stopping rule for the gambler but on the virtual values, and later
identify these thresholds with prices. Very recently Correa et al. [6] show that also the
converse holds proving that a posted price mechanism can be turned into a prophet type
inequality with the same approximation guarantee. As a consequence of these developments,
most work in the �eld concentrated on prophet inequalities and then applied the obtained
results to sequential posted price mechanisms.
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1.1 Prophet-Inequalities

For �xed n > 1, let V1, . . . , Vn be non-negative, independent random variables and Tn their
set of stopping rules. A classic result of Krengel and Sucheston, and Garling [20, 19] asserts
that the quotient between sup{E(VT ) : T ∈ Tn} and E(max{V1, . . . , Vn}) must be greater
or equal to 1/2, and that 1/2 is the best possible bound. The interpretation of this result
says that a gambler, who only knows the distribution of the random variables and that looks
at them sequentially, can select a stopping rule that guarantees her half of the value that
a prophet, who knows all the realizations could get. The study of this type of inequalities,
known as prophet inequalities, was initiated by Gilbert and Mosteller [14] and attracted a
lot of attention in the eighties [16, 17, 18, 24]. In particular Samuel-Cahn [24] noted that
rather than looking at the set of all stopping rules one can (quite naturally) only look at
threshold stopping rules in which the decision to stop depends on whether the value of the
currently observed random variable is above a certain threshold (and possibly on the rest of
the history).

Example. Consider two options V1 and V2. V1 is the constant 1 and V2 takes the value
1/ε with probability ε and zero otherwise. In the �rst step, the gambler is faced with the
value 1. The expectation of the future (V2) is also 1 and therefore, the optimal mechanism
is indi�erent between picking it or not. Therefore, the expectation of the gambler is 1. In
the other hand, the expectation of the maximum is 2 − 1/ε, so, in the limit, we get that
the gambler can not get more than half the expectation of the maximum, which is what the
prophet gets.

Although the situation for the standard prophet inequality just described is well under-
stood, there are variants of the problem, which are particularly relevant given the connection
to PPMs, for which the situation is very di�erent. In what follows we describe three such
variants that are connected to each other. The second one constitutes the main focus of this
thesis.

• Order selection. In this version the gambler is allowed to select the order in which
she examines the random variables. For this version [5] improved the bound of 1/2 (of
the standard prophet inequality) to 1 − 1/e ≈ 0.6321. This bound remained the best
known for quite some time until Azar et al. [2] improved it to 1−1/e+1/400 ≈ 0.6346.
Interestingly, the bound of Azar et al. actually applies to the random order case
described below. Very recently Beyhaghi et al. [3], use order selection to further
improve the bound to 1− 1/e + 0.022 ≈ 0.6541.

Example. Consider the same instance V1 ≡ 1 and V2 = 1/εB(ε). If the order of
discovering where V2 �rst and V1 second, the gambler could actually always pick the
maximum: if V2 is 1/ε she takes it, if not, she drops it and take V1 = 1. Now the
quotient between her expectation and that of the maximum is simply 1.

• Prophet secretary (or random order). In this version the random variables are shown
to the gambler in random order, as in the secretary problem. This version was �rst
studied by Esfandiari et al. [11] who found a bound of 1−1/e. Their algorithm de�nes
a nonincreasing sequence of n thresholds τ1, . . . , τn that only depend on the expectation
of the maximum of the V ′i s and on n. The gambler at time-step i stops if the value of
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Vσi (the variable shown at step i) surpasses τi. Later, Correa et al. [7] proved that the
same factor of 1− 1/e can be obtained with a personalized and nonadaptive sequence
of thresholds, that is thresholds τ1, . . . , τn such that whenever variable Vi is shown the
gambler stops if its value is above τi, not taking into account previously seen variables.
In recent work, Ehsani et al. [9] show that the bound of 1 − 1/e can be achieved
using a single threshold (having to randomize to break ties in some situations). This
result appears to be surprising since without the ability of breaking ties at random
1/2 is the best possible constant and this insight turns out to be the starting point
of this work. Shortly after the work of Ehsani et al., Azar et al. [2] improved it to
1−1/e+1/400 ≈ 0.6346 through an algorithm that relies on some subtle case analysis.

Example. Consider the instance V1 ≡ 1 and V2 = 1/εB(ε). If the order of discovering
where V2 �rst and V1 second, we know the gambler gets the maximum. If the order
is σ = (1, 2), we know the gambler gets 1 and the expected maximum is almost 2.
Therefore, in the limit, the quotient of interest is 3/4.

• IID Prophet inequality. Finally, we mention the case when the random variables are
identically distributed. Here, the constant 1/2 can also be improved. Hill and Kertz
[16] provided a family of �bad� instances from which Kertz [17] proved the largest
possible bound one could expect is 1/β ≈ 0.7451, where β is the unique solution to∫ 1

0
1

y(1−ln(y))+(β−1)
dy = 1. Quite surprisingly, this upper bound is still the best known

upper bound for the two variants above. Regarding algorithms Hill and Kertz also
proved a bound of 1 − 1/e which was improved by Abolhassan et al. [1] to 0.7380.
Finally Correa et al. [7] proved that 1/β ≈ 0.7451 is a tight value. To this end they
exhibit a quantile strategy for the gambler in which some quantiles q1 < . . . < qn, that
only depend on n (and not on the distribution), are precomputed and then translated
into thresholds so that if the gambler gets to step i, she will stop with probability qi.

Example. Consider the instance given by the uniform distribution in [0, 1]. Once the
�rst variable is revealed, the expectation of the future is 1/2, therefore, the optimal
algorithms picks V1 only if its value is above 1/2 (if not, it picks the second option).
Thus, the expectation of the gambler is given by 5/8. In the other hand, the expectation
of the maximum is 3/4, leading to a quotient of 5/6.

A striking fact about the three problems above is that, in terms of attainable performance,
no separation between them is known. For instance, it is perfectly plausible that the best
constant achievable in all three cases is that of the i.i.d. case, while it is also possible that
all three versions admit di�erent optimal constants. To be more speci�c, the upper bound
of approximately 0.7451 for the achievable performance in the i.i.d. case is a natural bound
for the other two variants. Moreover, it is the only upper bound for the optimal algorithm
in both cases. In terms of lower bounds, the i.i.d. case is �solved� and there is an algorithm
that achieves this upper bound. In the case of Order Selection, the algorithm of Beyhaghi et
al. [3] achieves a performance of approximately 0.6541. For Prophet Secretary, the proposal
of Azar et al. [2] rises up to approximately 0.6346.
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1.2 Contribution

In this thesis we study the prophet secretary problem and propose improved algorithms for
it. In particular our work improves upon the recent work of Ehsani et al. [9], Azar et al. [2],
and Beyhaghi et al. [3] by providing an algorithm that guarantees the gambler a fraction of
0.669 ≈ 1− 1/e + 1/27 in the Prophet secretary setting (and therefore in the Order selection
case too). Our main contribution however is not the actual numerical improvement but
rather the way in which this is obtained.

From a conceptual viewpoint we introduce a class of algorithms which we call blind quantile
strategies, that are very robust in nature. This type of algorithm is a clever generalization of
the single threshold algorithm of Ehsani et al. to a multi-threshold setting. In their algorithm
Ehsani et al. �rst compute a threshold τ such that P(max{V1, . . . , Vn} ≤ τ) = 1/e and then
use this τ as a single threshold strategy, so that the gambler stops the �rst time in which the
observed value surpasses τ . They observe that this strategy only works for random variables
with continuous distributions, however they also note that by allowing randomization the
strategy can be extended to general random variables. Rather than �xing a single probability
of acceptance we �x a function α : [0, 1] → [0, 1] which is used to de�ne a sequence of
thresholds in the following way. Given an instance with n continuous distributions we draw
uniformly and independently n random values in [0, 1], and reorder them as u[1] < · · · < u[n].
Then we set thresholds τ1, . . . , τn such that P(max{V1, . . . , Vn} ≤ τi) = α(u[i]) and the gambler
stops at time i if Vσi > τi. Note that if the function α is nonincreasing this will lead to a
nonincreasing sequence of thresholds.

The idea of blind quantile strategies comes from the i.i.d. case mentioned above. In that
setting the strategies are indeed best possible as shown by Correa et al. [7]. What makes blind
quantile strategies attractive is that although decisions are time dependent, this dependence
lies completely in the choice of the function α, which is independent of the instance. This
independence signi�cantly simpli�es the analysis of multi-threshold strategies. Again, when
facing discontinuous distributions we also require randomization for the results to hold.

From a technical standpoint our analysis introduces the use of Schur convexity [23] in the
prophet inequality setting. We start our analysis by revisiting the single threshold strategy
of Ehsani et al., which corresponds to a constant blind quantile strategy α(·) = 1/e. We
exhibit a new analysis of this strategy showing stochastic dominance type result. Indeed we
prove that the probability that the gambler gets a value of more than t is at least that of the
maximum being more than t, rescaled by a factor 1− 1/e. This result uses Schur convexity
to deduce that if there is a value above the threshold τ , then it is chosen by the gambler with
probability at least 1−1/e. Then we extend this analysis to deal with more general functions
α which require precise bounds on the distribution of the stopping time corresponding to a
function α. These bounds make use of results of Esfandiari et al. [11] and Azar et al. [2] and
of newly derived bounds that follow from the core ideas in Schur convexity theory.

Again in this more general setting we �nd an appropriate stochastic dominance type
bound on the probability that the gambler obtains at least a certain amount with respect
to the probability that the prophet obtains the same amount. Interestingly we manage to
make the bound solely dependent on the blind strategy by basically controlling the implied
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stopping time distribution (patience of the gambler). Then optimizing over blind strategies
leads to the improved bound of 0.669. Through the thesis we show two lower bounds on the
performance of a blind strategy, the second more involved than the �rst one. In the �rst
case, there is a natural way to optimize over the choice of α solving an ordinary di�erential
equation, leading to a guarantee of 0.665. In the second case, using a re�ned analysis, we
derive the stated bound of 0.669. Although it may seem that our general approach still leaves
some room for improvement, we prove that blind strategies cannot lead to a factor better
than 0.675. This bound is obtained by taking two carefully chosen instances and proving
that no blind strategy can perform well in both, through Optimal Control theory.

Finally, we prove a quite general upper bound on the performance of any nonadaptive
strategy, namely an algorithm whose decision to stop at any step can be precomputed and
does not take into account the history that has been observed. In particular, in a nonadaptive
strategy the decision to stop can depend on the distributions of the instance, on the index
of the random variable being sampled, on the value sampled, and on the current time, but
not on the history that has been observed. Our result here is to �nd an instance (which is
not i.i.d.) in which no nonadaptive strategy can perform better than

√
3 − 1 ≈ 0.732. This

improves upon the best possible bound known of 0.745 which corresponds to the i.i.d. case
and was proved by Hill and Kertz [16]. Furthermore it improves and generalizes a recent
bound of 11/15 ≈ 0.733 of Azar et al. [2] for the more restricted class of Deterministic
distribution-insensitive algorithms.

1.3 Preliminaries and notation

Given nonnegative independent random variables V1, . . . , Vn and a random permutation σ :
[n] → [n]1, in the Prophet Secretary problem a gambler is presented realizations of the
random variables, along with their identities, in the order given by σ, i.e., at time j she sees
the realization of Vσj , and also σj. The goal of the gambler is to �nd a stopping time T such
that E(VσT ) is as large as possible. In particular we want to �nd the largest possible constant
c such that

sup{E(VσT ) : T ∈ Tn} ≥ c · E(max{V1, . . . , Vn}) ,

where Tn is the set of stopping rules.

Throughout this thesis we denote by F1, . . . , Fn the underlying distributions of V1, . . . , Vn,
which we assume to be continuous. All our results apply unchanged to the case of general
distributions by introducing random tie-breaking rules (this is made precise in Section 8). To
see why random tie-breaking rules are actually needed, consider the single threshold strategy
of Ehsani et al. [9]. Recall that they compute a threshold τ such that P(max{V1, . . . , Vn} ≤
τ) = 1/e and then use this τ as a single threshold strategy, which, by allowing random tie-
breaking, leads to a performance of 1− 1/e. However, if random tie-breaking is not allowed,
a single threshold strategy cannot achieve a constant better than 1/2. Indeed, consider the
instance with n−1 deterministic random variables equal to 1 and one random variable giving
n with probability 1/n and zero otherwise. Now, for a �xed threshold τ < 1 the gambler

1
Here [n] denotes the set {1, . . . , n}
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gets n with probability 1/n2 and 1 otherwise so that she gets approximately 1, whereas if
τ ≥ 1 the gambler gets n with probability 1/n, leading to an expected value of 1. Noting that
the expectation of the maximum in this instance equals 2, we conclude that �xed thresholds
cannot achieve a guarantee better than 1/2. However, as Ehsani et al. note, if in this
instance the gambler accepts a deterministic random variable with probability 1/n, then her
expected value approaches 2(1− 1/e). In Section 8 we extend this idea for the more general
multi-threshold strategies.

The main type of stopping rules we deal with in this thesis uses a nonincreasing threshold
approach. This is a quite natural idea, since Esfandiari et al.[11] already use such an approach
to derive a guarantee of 1 − 1/e. Interestingly, the analysis of multi-threshold strategies
becomes rather di�cult when trying to go beyond this bound. This is evident from the
fact that the more recent results take a di�erent approach. In this thesis we use a rather
restrictive class of multi-threshold strategies that we call blind quantile strategies. These are
simply given by a nonincreasing function α : [0, 1]→ [0, 1] which is turned into an algorithm
as follows: given an instance F1, ..., Fn of continuous distributions, we independently draw
u1, ..., un from a uniform distribution on [0, 1] and �nd thresholds τ1, . . . , τn such that

P(max
i∈[n]
{Vi} ≤ τi) = α(u[i]) ,

where u[i] is the i-th order statistic of u1, . . . , un. Then the algorithm for the gambler stops
at the �rst time in which a value exceeds the corresponding threshold, in other words the
gambler applies the following.

Algorithm 1 Time Threshold Algorithm (TTAτ1,...,τn)
1: for i = 1, ..., n do

2: if Vσi > τi then

3: Take Vσi
4: end if

5: end for

Note that a blind strategy is uniquely determined by the choice of function α, independent
of the actual distributions or even size of the instance. This justi�es that we may simply talk
about strategy α. Our goal is thus to �nd a good function α such that the previous algorithm
performs well against any instance.

For a blind strategy α and an instance F1, . . . , Fn, we will be interested in the underlying
stopping time T which is the random variable de�ned as T := inf{j ∈ [n] : Vσj > τj}, where
the τ1, . . . , τn are the corresponding thresholds. In particular the reward of the gambler is
VσT1T<∞, which we simply denote by VσT .
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Chapter 2

Schur-convexity

A general presentation of the theory of Schur-convex functions is available in the third chapter
of [21]. Here we will present only what is necessary and useful for the understanding of this
work. The objective we have in mind is to solve the following problem:

(P )


optx φ(x)
s.t. a1 ≤ x ≤ b1∑

i∈[n] xi = β ,

where opt stands for either maximize or minimize, a, b, β ∈ R and φ : Rn → R is a smooth
function and also symmetric with respect to permutations of the input.

Solving this kind of problems will allow us to prove inequalities which are used to derive
lower bounds in the performance of blind strategies.

2.1 De�nitions

For a, b, β ∈ R, de�ne the set Ia,b,β := {x ∈ Rn : a1 ≤ x ≤ b1 ,
∑

i∈[n] xi = β}, the
domain we are interested in. We can de�ne a partial order � over this set by the following
construction. Take S : Rn → Rn de�ned by S(x)i := max{

∑
i∈I xi : I ⊆ [n], |I| = i}, then for

x, y,∈ Rn

x � y ⇔ ∀i ∈ [n] S(x)i ≤ S(y)i ,

in other words, x � y if and only if all its partial sums are less or equal to the corresponding
partial sums of y, when these are ordered respect to the usual order ≤.

With this relation we can de�ne a Schur-convex function as a �-preserving function, ie:
φ : Ia,b,β → R is Schur-convex if for all x, y ∈ Ia,b,β we have that

x � y ⇒ φ(x) ≤ φ(y) .

The other concept we need to de�ne is that of �symmetric respect to permutations of the
input�. A set I ⊆ Rn is said to be permutation-symmetric if for all x ∈ I and all permutations
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π : [n]→ [n], π(x) ∈ I. Similarly, a function φ : I → R is said to be permutation-symmetric if
I is a permutation-symmetric set and for all x ∈ I and all permutations π : [n]→ [n], φ(x) =
φ(π(x)). With this concept, we can notice that if φ : Ia,b,β → R is permutation-symmetric,
then it is su�cient to verify Schur-convexity in the set Ia,b,β ∩{x ∈ Rn : x1 ≥ x2 ≥ . . . ≥ xn}.

Example. Consider I0,1,1/2 ⊆ R2 and φ(x) = −x1x2. In this domain, we can simplify the
analysis since x2 = 1/2−x1 and therefore φ(x) = −x1(1/2−x1) = x2

1−x1/2, which is clearly
Schur-convex.

An important remark to make is that, even when � is only a partial order relation, for any
a, b, β ∈ R, there exists a unique �-minimum (xm) and �-maximum (xM) in Ia,b,β (provided
it is non-empty) given by

xm =
β

n
1 , xM = (b, b, . . . , b, a+ ε, a, a, . . . , a) ,

where ε ≥ 0 and xM concentrates as much positivity as possible in the �rst coordinates.
This is important because if one needs to solve the optimization problem (P ), proving Schur-
convexity of φ would immediately tell us that the value of the problem is either φ(xm) or
φ(xM), depending on the symbol opt.

2.2 Su�cient conditions

Given φ ∈ C1(Ia,b,β;R) (continuous in Ia,b,β and continuously di�erentiable in its interior)
a permutation symmetric function, for it to be Schur-convex it is su�cient to verify the
following condition, known as the Schur-Ostrowski condition [23],

∀x ∈ int(Ia,b,β) (x1 − x2) [∂x1φ(x)− ∂x2φ(x)] ≥ 0 ,

which simply states that φ grows in the correct direction when making a di�erential change
for all points in the interior of the domain.

Example. Consider I0,1,1/2 and φ(x) = −
∏

i∈[n] xi. Note that [∂x1φ(x)− ∂x2φ(x)] = (x1−
x2)[x3x4 . . . xn], then ∀x ∈ int(I0,1,1/2) (x1−x2) [∂x1φ(x)− ∂x2φ(x)] = (x1−x2)2[x3x4 . . . xn] ≥
0, and therefore φ is Schur-convex.

2.3 Example

Consider β > 0 and φ : I0,∞,β ⊆ Rn
+ −→ R given by

φ(x) :=
∑
S⊆[n]

1

|S|+ 1

∏
j∈S

exj − 1 .
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Trying to verify the Schur-Ostrowski condition, straightforward calculations yield

∂x1φ(x) =
∑

S⊆[n−1]
S31

1

|S|+ 1
ex1
∏
j∈S
j 6=1

exj − 1

=
ex1

ex1 − 1

 ∑
S⊆[n−1]
S31,2

1

|S|+ 1

∏
j∈S

exj − 1



+
ex1

(ex1 − 1)(ex2 − 1)

 ∑
S⊆[n−1]
S31,2

1

|S|
∏
j∈S

exj − 1


=:

ex1

ex1 − 1
A+

ex1

(ex1 − 1)(ex2 − 1)
B

and, by symmetry, ∂x2φ(x) = ex2
ex2−1

A+ ex2
(ex2−1)(ex1−1)

B. Then,

[∂x1φ(x)− ∂x2φ(x)] = A

[
ex1

ex1 − 1
− ex2

ex2 − 1

]
+B

[
ex1

(ex1 − 1)(ex2 − 1)
− ex2

(ex2 − 1)(ex1 − 1)

]
= (B − A)

[
ex1 − ex2

(ex2 − 1)(ex1 − 1)

]
.

Finally, we consider x ∈ int(I0,∞,β) and note that exj − 1 > 0 and B > A. Then, (x1 −
x2)[∂x1φ(x)−∂x2φ(x)] ≥ 0 if and only if (x1−x2) (ex1 − ex2) ≥ 0, which holds by monotonicity
of the exponential function. With this, the Schur-Ostrowski condition holds and φ is Schur-
convex.
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Chapter 3

Optimal Control

A general presentation of the theory of Optimal Control is available in the book �Optimiza-
tion�Theory and Applications: Problems with Ordinary Di�erential Equations� [4]. Here,
we will focus only in what is known as a �Mayer Problem�, which consists in the following
minimization problem:

(P )


minα h(t1, x(t1), t2, x(t2))
s.t. dx

dt
(t) = f(t, x(t), α(t)) t ∈ [t1, t2]

(t, x(t)) ∈ A t ∈ [t1, t2]
α(t) ∈ U t ∈ [t1, t2]

(t1, x(t1), t2, x(t2)) ∈ B .

In this setting, we think of a dynamic described by the controlled di�erential equation
given by ẋ(t) = f(t, x(t), α(t)), where α is the control. The rest of the constrains concern:
controlling the admissible trajectories by (t, x(t)) ∈ A, stating admissible controls by re-
stricting its values to a �xed set by α(t) ∈ U and initial and/or �nal conditions given by
(t1, x(t1), t2, x(t2)) ∈ B.

Our intention is to consider a blind strategy given by some function α : [0, 1]→ [0, 1], then
de�ne the sets A,U,B and the function f such that the solution of the controlled di�erential
equation allows us to compute an upper bound on the performance of the blind strategy α.
This way, we will be able to minimize this upper bound over all possible blind strategies
(solving the Optimal Control problem) and constrain the achievable performance for this
kind of algorithms.

The general approach to solve a Mayer problem, an optimization problem in in�nite
dimension, is �rst to prove the existence of an optimal solution satisfying some easy-to-verify
conditions. Then, one is able to deduce four necessary conditions on the optimal solution.
These are used to characterize, not always uniquely, the solutions and reduce the space in
which we search the optimal control.
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3.1 Existence of an appropriate solution

As we said, we need the existence of an appropriate solution. Formally, there must exists
an optimal solution (x∗, α∗) that not only is an admissible pair of the Mayer problem and
achieves the minimum, but also satisfy the following conditions:

(a) {(t, x∗(t)) : t ∈ [t1, t2]} ⊆ int(A).

(b) α∗ is bounded.

(c) (t1, x
∗(t1), t2, x

∗(t2)) ∈ B andB possesses a tangent linear variety, B′(t1, x∗(t1), t2, x
∗(t2)),

whose vectors will be denoted (dt1, dx1, dt2, dx2).

(d) h possesses a di�erential dh at (t1, x
∗(t1), t2, x

∗(t2)).

As we said earlier, in our particular application these conditions are trivially satis�ed.

3.2 Necessary conditions for optimality

To state the necessary conditions of optimality, we must �rst de�ne two functions:

H(t, x, u, λ) =
∑
j∈[n]

λjfj(t, x, u)

and
M(t, x, λ) = inf

u∈U
H(t, x, u, λ) .

Then, there are four necessary conditions to be satis�ed by an optimal pair (x∗, u∗).

(P1) ∃λ = (λ1, . . . , λn) an absolutely continuous vector function such that for j ∈ [n]

dλj
dt

= −dH

dxj
(t, x∗(t), u∗(t), λ(t)) ,

for t ∈ [t1, t2] (a.e.). Moreover, if dh 6= 0, then λ(t) is never zero in [t1, t2].

(P2) For t ∈ [t1, t2] (a.e.),
M(t, x∗, λ) = H(t, x∗, u∗, λ) .

(P3) M(t) := M(t, x∗(t), λ(t)) is absolutely continuous in [t1, t2] and

dM

dt
(t) =

dH

dt
(t, x∗(t), u∗(t), λ(t)) .

(P4) ∃λ0 ∈ [0,∞) such that ∀(dt1, dx1, dt2, dx2) ∈ B′(t1, x∗(t1), t2, x
∗(t2)),

λ0dh+

M(t)dt−
∑
j∈[n]

λj(t)dxj

2

1

= 0 .
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3.3 Example

Consider the following problem:

(P )



minα h(0, x(0), 1, x(1)) = −x1(1)

s.t. dx
dt

(t) = f(t, x(t), α(t)) =

 1− α(t)
exp[x3(t)]
ln(α(t))

 t ∈ [0, 1]

(t, x(t)) ∈ A = [0, 1]× R3 t ∈ [0, 1]
α(t) ∈ U = [0, 1] t ∈ [0, 1]

(t1, x(t1), t2, x(t2)) ∈ B = {(0, (0, 0, 0)′, 1, (r, r, s)′) : u, v ∈ R} .

This problem arises in the proof of our upper bound in section 7.1, and the idea is to
characterize as much as possible the optimal solution.

The set B �xes the initial and �nal time to zero and one respectively, the initial condition
to be the null vector and imposes a restriction over the �nal condition: x1(1) = x2(1). Simply
from these conditions it is not clear if there exists some α such that the controlled di�erential
equation has a solution. But, for now, assume the existence of an appropriate optimal solution
as stated in section 3.1 and we will focus our attention in applying the necessary conditions
for optimality.

We should �rst compute B′(e[x∗]), H and M .

B′(e[x∗]) = {(0, (0, 0, 0)′, 0, (dr, dr, ds)′) : dr, ds ∈ R}
H(t, x, α, λ) = λ1(1− α) + λ2ex3 + λ3 lnα

M(t, x, λ) =


H(t, x, α = 0, λ) = −∞ ; λ3 > 0
H(t, x, α = 1, λ) = λ2ex3 ; λ3 ≤ 0, λ1 ≥ λ3

H(t, x, α = λ3
λ1
, λ) = λ1 + λ2ex3 − λ3[1 + ln λ1

λ3
] ; λ3 ≤ 0, λ1 < λ3

Then, by condition (P1),

λ̇1(t) = 0 , λ̇2(t) = 0 , λ̇3(t) = −λ2(t)ex3(t) ,

so λ1 and λ2 are constants. Also notice that h = −x1(1) and therefore dh = −dx1(1) =
−dr ∈ R.

By (P4), ∃λ0 ≥ 0 such that for all dr, ds ∈ R

−λ0dr − λ1dr − λ2dr − λ3(1)ds = 0 .

Therefore, λ3(1) = 0 and λ0 + λ1 + λ2 = 0. Since λ̇3(t) = −λ2(t)ex3(t), we have that

λ3(t) = λ2

1∫
t

ex3(s)ds .

By (P3),M(t) = M(t, x∗(t), λ(t)) is an absolutely continuous function, therefore λ3(t) ≤ 0
for all t ∈ [0, 1]. Then, by the previous formula, λ2 ≤ 0, moreover, we can do this inequality
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strict. Assume λ2 = 0, then λ3 = 0 and we have that 0 ≤ λ0 = −λ1 − λ2 = −λ1, therefore,
λ1 ≤ 0, but since dh 6= 0, λ1 < 0 = λ3. Then, α = λ3/λ1 = 0, which is a contradiction. We
can conclude that for all t ∈ [0, 1]

λ2, λ3(t) < 0 .

In a similar way we can deduce that λ0 > 0. Assume λ = 0, then λ1 = −λ2 > 0. Since
λ3(t) < 0 < λ1, we have that for all t ∈ [0, 1], α = 1, which is not an optimal solution.
Therefore, and w.l.o.g.

λ0 = 1 .

Notice that λ3(·) is an increasing function, then {t ∈ [0, 1) : λ3(t) ≤ λ1} is an interval,
possibly empty. This implies that in a �rst stage α = 1 and then, as λ3 increases, α = λ3/λ1.
Since α ≡ 1 is not an optimal solution, we can deduce that λ1 < 0, because λ3(·) is always
negative and must eventually over pass it. To simplify notation, consider λ2 := −λ, then
λ1 = 1 − λ. Also, take t ∈ (0, 1) such that {t ∈ (0, 1) : λ3(t) ≤ λ1} = (0, t]. Then, we can
parametrize the space of all optimal functions α by λ, t ∈ [0, 1) in the following way:

α(t) =


1 ; 0 ≤ t < t

λ
1−λ

1∫
t

e
∫ s
0 lnα∗(r)drds ; t ≤ t ≤ 1 .

Note that we replaced x3(s) =
∫ s

0
lnα(r)dr since x3(0) = 0 and ẋ3(t) = lnα(t), for all

t ∈ (0, 1).

Finally, since for s ≥ t,
∫ s

0
lnα∗(r)dr =

∫ s
t

lnα∗(r)dr, therefore we can further describe α
by K > 0 and t ∈ (0, 1) as follows:

αK,t(t) =

{
1 ; 0 ≤ t < t
βK,t(t) ; t ≤ t ≤ 1 ,

where βK,t is the solution of the following ODE: β̇(t) = −K exp

[
t∫
t

ln β(s)ds

]
t ∈ (t, 1)

β(1) = 0 .

With this, we have been able to reduce the space of in�nite dimension to a two dimensional
space where we can �nd the optimal solution of the Mayer problem.
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Chapter 4

Single Threshold

As a warm-up exercise, we illustrate the main ideas in this thesis by providing an alternative
proof of a recent result by Eshani et al. [9]. Consider the blind strategy given by α ≡ p,
where p ∈ [0, 1] is a �xed number (taking p = 1/e gives exactly the single threshold algorithm
of Eshani et al.).

Teorema 4.1 Given α ≡ p, for all t ≥ 0,

P(VσT > t) ≥ min

{
1− p, 1− p

− ln p

}
P(max

i∈[n]
{Vi} > t) .

Proof. Recall that given an instance V1, . . . , Vn, the blind strategy α �rst computes τ such
that P(maxi∈[n]{Vi} ≤ τ) = p and then uses TTAτ1=τ,...,τn=τ , which simply stops the �rst time
a value above τ is observed.

Note that for t ≤ τ , we have that

P(VσT > t) = P(max
i∈[n]
{Vi} > τ) = 1− p ,

because whenever we pick something, that value is above τ .

Now, for t > τ ,

P(VσT > t) =
∑
i∈[n]

P(Vi > t|σT = i)P(σT = i)

=
∑
i∈[n]

P(Vi > t)

P(Vi > τ)
P(σT = i) independence

=
∑
i∈[n]

P(Vi > t)P(σT = i|Vi > τ)

≥
(

1− p
− ln p

)∑
i∈[n]

P(Vi > t) Lemma 4.3

≥
(

1− p
− ln p

)
P(max

i∈[n]
{Vi} > t) union bound .

15



Then, taking the minimum of both cases we have the result for any t ≥ 0.

For a nonnegative random variable V we have that E(V ) =
∫∞

0
P(V > t)dt. Thus, an

immediate consequence of Theorem 4.1 is a result of Eshani et al. [9].

Corolario 4.2 ([9]) Take α ≡ 1
e
, then E(VσT ) ≥

(
1− 1

e

)
E(maxi∈[n]{Vi}).

To complete the previous proof, we prove the following lemma.

Lema 4.3 Consider V1, . . . , Vn independent random variables and σ an independent ran-
dom uniform permutation of [n]. Let T be the stopping time of TTAτ1=τ,...,τn=τ and p =
P(maxi∈[n]{Vi} ≤ τ), then for all i ∈ [n] such that P(Vi > τ) > 0 we have that

P(σT = i|Vi > τ) ≥ 1− p
− ln p

.

Proof. Fix i ∈ [n] and denote the distribution of Vj by Fj, then

P(σT = i|Vi > τ) =
∑

S⊆[n]\{i}

P(σT = i, S ∪ {i} = {j : Vj > τ}|Vi > τ)

=
∑

S⊆[n]\{i}

1

|S|+ 1

∏
j∈S

1− Fj(τ)
∏

j∈[n]\(S∪{i})

Fj(τ) independence

=
∏

j∈[n]\{i}

Fj(τ)
∑

S⊆[n]\{i}

1

|S|+ 1

∏
j∈S

1− Fj(τ)

Fj(τ)

=
p

Fi(τ)

∑
S⊆[n]\{i}

1

|S|+ 1

∏
j∈S

1− Fj(τ)

Fj(τ)
def. of τ .

Forget about i for an instant and consider variables (yj)j∈[n]\{i} such that e−yj = Fj(τ).
Then, de�ne φ : Rn−1

+ −→ R by

φ(y) :=
∑

S⊆[n−1]

1

|S|+ 1

∏
j∈S

1− e−yj

e−yj
=

∑
S⊆[n−1]

1

|S|+ 1

∏
j∈S

eyj − 1

and β := − ln p+ lnFi(τ). Thus, we have that

P(σT = i|Vi > τ) ≥ p

Fi(τ)
min

φ(y) :
∑

j∈[n−1]

yj = β, yj ≥ 0

 .

As seen in section 2.3, φ is Schur-convex and therefore the minimum is achieved with the
constant vector y = β/(n − 1)1. Consequently, for �xed Fi(τ), and under the constraint
that

∏
j∈[n]\{i} Fj(τ) = p/Fi(τ), the quantity P(σT = i|Vi > τ) is minimal when, for all j 6= i,

Fj(τ) = (p/Fi(τ))
1

n−1 .
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It follows that, since σ and Vi are independent,

P(σT = i|Vi > τ) =
1

n

n∑
j=1

P(σT = i|Vi > τ, σj = i)

≥ 1

n

n−1∑
j=0

(
p

Fi(τ)

) j
n−1

random order

≥ 1

n

n−1∑
j=0

p
j

n−1 Fi(τ) ∈ [0, 1]

=
1

n

1− p
n
n−1

1− p
1

n−1

.

Now we note that the left hand side does not depend on n: we can add some dummy
variables (Vn+1, Vn+2, . . . ≡ 0) and the probability does not change. Therefore, taking limit
on n −→∞ we get

P(σT = i|Vi > τ) ≥ 1− p
− ln p

.

In this Lemma, we have seen how Schur-convexity allowed us to prove an inequality which
was used to deduce a lower bound over the performance of certain blind strategy. The
same methodology is used when proving a lower bound for general blind strategies, using
the concepts of Schur-convexity to prove inequalities which are used in the analysis of lower
bounds for their performance.

In terms of upper bounds, it is known that constant thresholds can not obtain a better
guarantee than 1− 1/e. This analysis is already done by Eshani et al. [9] studying a speci�c
instance and optimizing over all possible thresholds. This upper bound can be proved to
hold for a more general class of algorithms in the work of Correa et al. [7].
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Chapter 5

Beating 1− 1
e

Since a single threshold (or a constant blind strategy) can already achieve a performance of
1− 1/e, would it not be natural for two thresholds, applying the second after some time, to
perform better? This is the key question that led to the de�nition of blind strategies, which
consist in a particular way of de�ning thresholds to use along the process of discovering
values. In this chapter we improve upon the bound of 1− 1/e by presenting �rst the answer
to the previous question and then by using the idea of blind strategies previously described.
Notice that a single threshold is a deterministic algorithm and blind strategies are stochastic,
therefore, both approaches might have their own interest.

5.1 Two-thresholds

In this section we present one way of analyzing the use of two thresholds, using one for some
�xed portion of the game and then switching to the other. The analysis is easy to generalize
to a �xed amount of thresholds and blind strategies are simply the result of taking an in�nite
number of thresholds. To be more precise, consider λ ∈ (0, 1) and tw thresholds τ1, τ2, then
we are thinking in applying the TTA with the threshold τ1 until we get to time bλnc + 1,
when we start using the threshold τ2.

By using only Lemma 5.8 (which has nothing to do with Schur-convexity), we can get the
following result:

Teorema 5.1 Given τ1 ≥ τ2 and de�ning T as the stopping time corresponding to the strategy
TFTAτ1=τ1,...,τλn=τ1,τλn+1=τ2,...,τn=τ2, we have that

P(VσT > t) ≥



P(T <∞) ; t ≤ τ2

P(T≤λn)
1−β P(max

i∈[n]
{Vi} > t) +

[
1
n

n∑
k>λn

P(T > k)

] ∑
i∈[n]

P(Vi > t) ; τ2 < t ≤ τ1[
1
n

n∑
k=1

P(T > k)

] ∑
i∈[n]

P(Vi > t) ; τ1 < t ,
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where β := P(max
i∈[n]
{Vi} ≤ τ2).

Proof. The proof consists in analyzing each of the relevant intervals and applying Lemma
5.8. For t ≤ τ2,

P(VσT > t) = P(T <∞) .

For τ2 < t ≤ τ1,

P(VσT > t) = P(VσT > t, T ≤ λn) + P(VσT > t, T > λn)

= P(T ≤ λn) + P(VσT > t, T > λn)

≥ P(T ≤ λn)

1− β
P(max

i∈[n]
{Vi} > t) + P(VσT > t, T > λn) .

Note that, for t ≥ τ2,

P(VσT > t, T > λn) =
∑
i∈[n]

P(Vi > t, σT = i, T > λn)

=
∑
i∈[n]

n∑
k>λn

P(Vi > t, σk = i, T ≥ k)

=
∑
i∈[n]

P(Vi > t)
n∑

k>λn

P(σT = i, T ≥ k) independence

≥

[
1

n

n∑
k>λn

P(T > k)

]∑
i∈[n]

P(Vi > t) Lemma 5.8 .

Finally, for t > τ1,

P(VσT > t) =
∑
i∈[n]

P(Vi > t, σT = i)

=
∑
i∈[n]

n∑
k=1

P(Vi > t, σk = i, T ≥ k)

=
∑
i∈[n]

P(Vi > t)
n∑
k=1

P(σT = i, T ≥ k) independence

≥

[
1

n

n∑
k=1

P(T > k)

]∑
i∈[n]

P(Vi > t) ,

so we get the stated result.

Now, we introduce Lemma 5.7, which is proved using the ideas of Schur-convexity to get
the following result:
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Corolario 5.2 Given τ1 ≥ τ2 such that P(V1, ..., Vn ≤ τ1) = α,P(V1, ..., Vn ≤ τ2) = β and
de�ning T as the stopping time corresponding to TFTAτ1=τ1,...,τλn=τ1,τλn+1=τ2,...,τn=τ2, we have
that for λ ∈ { k

n
: k ∈ [n]}

E(VσT ) ≥ factor(α, β, λ)E(max
i∈[n]
{Vi}) ,

where

factor(α, β, λ) := min{1− λα− (1− λ)β, λ
1− α
1− β

+ αλ
1− β(1−λ)

− ln β
,
1− αλ

− lnα
+ αλ

1− β(1−λ)

− ln β
} .

In particular, ∃α, β, λ such that

E(VσT ) ≥ 0.6494 E(max
i∈[n]
{Vi}) .

The proof consists in replacing the terms concerning the distribution of T in Theorem 5.1
in terms of α and β using Lemma 5.7.

Proof. Notice that, by Lemma 5.7

P(T <∞) = 1− P(T > n) ≥ 1− λα− (1− λ)β

and

P(T ≤ λn) = 1− P(T > λn) ≥ 1− λα− (1− λ) = λ(1− α)

Also, we have that

1

n

n∑
k>λn

P(T > k) ≥ αλ
1

n

n∑
k>λn

β
k−λn
n = αλ

β
1
n

n

1− β(1−λ)

1− β 1
n

−−−→
n→∞

αλ
1− β(1−λ)

− ln β

and similarly,

1

n

n∑
k=1

P(T > k) =
1

n

λn∑
k=1

P(T > k) +
1

n

n∑
k>λn

P(T > k)

≥ 1

n

λn∑
k=1

α
k
n + αλ

β
1
n

n

1− β(1−λ)

1− β 1
n

=
α

1
n

n

1− αλ

1− α 1
n

+ αλ
β

1
n

n

1− β(1−λ)

1− β 1
n

−−−→
n→∞

1− αλ

− lnα
+ αλ

1− β(1−λ)

− ln β
.

Integrating over t, we get the result. For the numerical performance, notice that taking
α = 0.4126, β = 0.2185, λ = 0.6793, we get

factor(α, β, λ) = 0.6496 .
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5.2 Blind strategies

In this section we present how to use the idea of blind strategies previously described. To
this end, we �nd an appropriate stochastic dominance type bound on the probability that the
gambler obtains at least a certain amount with respect to the probability that the prophet
obtains the same amount. This bound is presented in Theorem 5.6, and improved in Lemma
6.1, where we manage to make the bound solely dependent on the blind strategy. Then
optimizing over blind strategies leads to the improved bound of 0.665, and 0.669 respectively.
The analysis of these bounds are separated for the sake of clarity and the second bound is
presented in the following chapter since it is more technical. As for the rest of the thesis we
assume for simplicity that F1, F2, ..., Fn are continuous (see Section 8 for an explanation on
how to extend the results to the discontinuous case). In summary we prove the following
result.

Teorema 5.3 There exists a nonincreasing function α : [0, 1]→ [0, 1] such that

E(VσT ) ≥ 0.669 E(max
i∈[n]
{Vi}) ,

where T is the stopping time of the blind strategy α.

To do the analysis we �rst need to note that a blind strategy can be interpreted as the
limit, as the size of the instance goes to in�nity, of strategies that do not use randomization.

De�nición 5.4 Consider a nonincreasing function α : [0, 1] → [0, 1]. The deterministic
blind strategy given by α is the strategy that applies TTAτ1,...,τn to the sequence of thresholds
τ1, . . . , τn de�ned by the following conditions:

∀j ∈ [n], P(max
i∈[n]
{Vi} ≤ τj) = α

(
j

n

)
.

To turn a deterministic blind strategy into a blind strategy consider an instance F1, . . . , Fn
and add to this instance m deterministic random variables equal to zero, Fn+i = 1[0,∞) for
i = 1, . . . ,m, so that the new instance becomes F1, . . . , Fn, Fn+1, . . . , Fn+m. Denoting by Tm
the stopping time given by the deterministic blind strategy applied to this instance, we have
that

lim
m→∞

E(VσTm ) = E(VσT ) .

Indeed, recalling the de�nition of blind strategies in Section 1.3, it is easy to see that a
deterministic blind strategy applied to instance F1, . . . , Fn+m is approximately a blind strat-
egy applied to instance F1, . . . , Fn, where the random variables u1, . . . , un are drawn from
U({ 1

n+m
, . . . , 1}), rather than from U(0, 1). Thus, by taking the limit as m → ∞ the claim

follows.

The conclusion of this remark is that in order to analyze the performance of blind strategies
it is su�cient to study the performance of deterministic blind strategies and then take the
limit as n grows to in�nity.

We are now ready to start analyzing deterministic blind strategies.
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Lema 5.5 Given an instance F1, F2, ..., Fn and nonincreasing thresholds ∞ = τ0 ≥ τ1 ≥
· · · ≥ τn ≥ τn+1 = −∞, it holds that, for j ∈ [n+ 1] and t ∈ [τj, τj−1),

P(VσT > t) = P(T ≤ j − 1) +
∑
i∈[n]

P(Vi > t)

(
n∑

k>j−1

P(T ≥ k|σk = i)

n

)
,

where T is the stopping time given by TTAτ1,...,τn.

Proof. Notice that, since thresholds are nonincreasing,

P(VσT > t) = P(T ≤ j − 1) + P(VσT > t, T ≥ j)

and therefore, we simply must analyze the second term.

P(VσT > t, T ≥ j) =
∑
i∈[n]

P(Vi > t, σT = i, T ≥ j)

=
∑
i∈[n]

n∑
k=j

P(Vi > t, σk = i, T = k)

=
∑
i∈[n]

n∑
k=j

P(Vi > t, σk = i, T ≥ k)

=
∑
i∈[n]

P(Vi > t)

(
n∑
k=j

P(σk = i, T ≥ k)

)

=
∑
i∈[n]

P(Vi > t)

(
1

n

n∑
k=j

P(T ≥ k|σk = i)

)
.

Note that for a nonincreasing blind strategy α, the previous lemma holds since the thresh-
olds used are also nonincreasing. In the rest of this section we will present a not so technical
way to derive a function α with a guarantee of 0.665, relying on two lemmata shown in section
5.3. The �rst of these, Lemma 5.7, gives precise bounds for the distribution of the stopping
time of T of TTAτ1,...,τn , namely:

1

n

∑
j∈[k]

1− αj ≤ P(T ≤ k) ≤ 1−

(
k∏
l=1

αl

) 1
n

.

The second result, Lemma 5.8, (inspired by a result of Esfandiari et al. [11]) bounds the
distribution of T conditional on the k-th element in the random permutation.

P(T ≥ k|σk = i) ≥ P(T > k)

1− k
n

+ 1
n

∑
l∈[k]

P(Vi ≤ τl)
.

Notice that the denominator is positive and less than one. In this section we deduce a lower
bound for the performance of blind strategies by using the simpler inequality P(T ≥ k|σk =
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i) ≥ P(T > k). This leads us to use the union bound
∑

i∈[n] P(Vi > t) ≥ P(maxi∈[n]{Vi} > t)
and then we conclude the existence of a blind strategy with an overall performance of at
least 0.665. This approach does not take full advantage of Lemma 5.8 and the more involved
analysis is done in the next section, where we also replace the union bound by a more re�ned
bound given by Lemma 6.3.

Teorema 5.6 Let α : [0, 1] → [0, 1] be nonincreasing, and let T be the deterministic blind
strategy stopping time. For every instance F1, . . . , Fn and t > 0,

P(VσT > t) ≥ min
j∈[n+1]

{fj(α)}P(max
i∈[n]
{Vi} > t) ,

where, for all j ∈ [n+ 1], taking α(n+1
n

) = 0,

fj(α) =

j−1∑
k=1

1− α
(
k
n

)
n
(
1− α

(
j
n

)) +
1

n

n∑
k=j

(
k∏
l=1

α

(
l

n

)) 1
n

.

Proof. Since α is nonincreasing, we can apply Lemma 5.5. Fix j ∈ [n+ 1] and t ∈ [τj, τj−1),
by Lemma 5.7 we have that

P(T ≤ j − 1) ≥
j−1∑
k=1

1− α
(
k
n

)
n

≥
j−1∑
k=1

1− α
(
k
n

)
n
(
1− α

(
j
n

))P(max
i∈[n]
{Vi} > t) ,

since t ∈ [τj, τj−1) implies that 1− α(j/n) = P(maxi∈[n]{Vi} > τj) ≥ P(maxi∈[n]{Vi} > t).

On the other hand, by Lemma 5.8, Lemma 5.7 and the union bound,∑
i∈[n]

P(Vi > t)

(
1

n

n∑
k=j

P(T ≥ k|σk = i)

)
≥

(
1

n

n∑
k=j

P(T > k)

)∑
i∈[n]

P(Vi > t)

≥

 1

n

n∑
k=j

(
k∏
l=1

α

(
l

n

)) 1
n

∑
i∈[n]

P(Vi > t)

≥ 1

n

n∑
k=j

(
k∏
l=1

α

(
l

n

)) 1
n

P(max
i∈[n]
{Vi} > t) .

Both bounds together prove the theorem.

Thus, for every n, we get a lower bound on the performance of a deterministic blind
strategy α, that only depends on α( 1

n
), . . . , α(n

n
). As we explained before, we only care about

the performance of this strategy when n tends to +∞. Assuming that α is continuous, a
standard Riemann sum analysis shows that

lim
n→∞

min
j∈[n+1]

{fj(α)} = min

{∫ 1

0

1− α(y)dy , inf
x∈[0,1]

∫ x

0

1− α(y)

1− α(x)
dy +

∫ 1

x

e
∫ y
0 lnα(w)dwdy

}
.

(5.1)
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Thus, in order to prove Theorem 5.3, we would like to �nd a blind strategy α maximizing
the latter expression. As this is a nontrivial optimal control problem we aim at �nding a
function α such that the above expression is larger than 0.665. As we already said, the 0.669
bound is proved in the next section.

Remark. Consider α being constant equal to 1/e. Then the above quantity is equal
to 1 − 1/e. Thus, we recover the one-threshold result in Corollary 4.2. Furthermore, if for
instance we take α(x) = 0.53−0.38x the guarantee of the strategy (given by expression (5.1))
is greater than 0.657. This gives an explicit α that beats signi�cantly 1− 1/e.

To maximize over expression (5.1), we resort to a numerical approximation. Note that if

α is such that α(1) = 0 and x 7→
x∫
0

1−α(y)
1−α(x)

dy+
1∫
x

e

y∫
0

lnα(w)dw
dy is a constant, then this constant

is a lower bound for the in�mum in (5.1).

Consequently, we solve the following integro-di�erential equation:
d

dx

(
x∫
0

1−α(y)
1−α(x)

dy +
1∫
x

e

y∫
0

lnα(w)dw
dy

)
= 0 ;x ∈ (0, 1)

α(1) = 0.

To this end we consider a change of variables leading to the following second order ODE:
(u′(x))2K(x, u)− u′′(x)u(x) = 0 ;x ∈ (0, 1)
u′(1) = 1
u(0) = 0,

where

u(x) :=

x∫
0

1− α(x)dx and K(x, u) := 1− exp

 x∫
0

ln(1− u′(t))dt

 .

We approximately solved this equation by taking an initial guess u0 and de�ning un+1 as the
solution to (u′(x))2K(x, un)−u′′(x)u(x) = 0. To be more precise, the initial guess u0 was the
result of maximizing over α minj∈[n+1]{fj(α)}, given in Theorem 5.6, for n = 23. Then, we
iterated the process eleven times and obtained an α with α(1) = 0 and such that the function

x 7→
x∫
0

1−α(y)
1−α(x)

dy +
1∫
x

exp

(
y∫
0

lnα(w)dw

)
dy varies between 0.6653 and 0.6720. Even if we did

not �nd an exact solution for the ODE, its performance is given by computing expression
(5.1), which gives the claimed factor of 0.665.

5.3 Inequalities

We now present the two lemmata used in the previous sections. The �rst establishes bounds
on the distribution of the stopping time T . Both the lower and upper bounds are sharp in
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the sense that they are achieved by di�erent instances: the lower bound corresponds to the
case where there is only one non-zero variable and the upper bound corresponds to the case
where all distributions are equal.

Lema 5.7 Consider α1, . . . , αn ∈ [0, 1] �xed. For every instance F1, . . . , Fn consider τ1, . . . , τn
the sequence of thresholds such that

P(max
i∈[n]
{Vi} ≤ τi) = αi.

Denoting T the stopping time of TTAτ1,...,τn, we have that ∀k ∈ [n]

1

n

∑
j∈[k]

1− αj ≤ P(T ≤ k) ≤ 1−

(
k∏
l=1

αl

) 1
n

.

Proof. The proof consists in highlighting the role of F1 and F2 in P(T > k) and using the
symmetry that the random order σ induces. We focus on three di�erent cases according to
σ:

1. σ−1(1) ≤ k Y σ−1(2) ≤ k, i.e. : only one of the variables V1 and V2 shows before time
k.

2. σ−1(1) ≤ k ∧ σ−1(2) ≤ k, i.e. : both V1 and V2 show before time k.

3. σ−1(1) > k ∧ σ−1(2) > k, i.e. : neither V1 nor V2 shows before time k.

To express this formally, denote

Σ(k) := {σ, ordered subset of [n] with size k}
Σ−1,−2(k) := {σ, ordered subset of [n] \ {1, 2} with size k} ,

then if σ ∈ Σ(k), we have that either

1. ∃p ∈ [k],∃i ∈ {1, 2} s.t. σp = i and

(σj)j∈[k]\{p} ∈ Σ−1,−2(k − 1) .

2. ∃p < q ∈ [k] s.t. {σp, σq} = {1, 2} and

(σj)j∈[k]\{p,q} ∈ Σ−1,−2(k − 2) .

3. σ ∈ Σ−1,−2(k).
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This is the key decomposition we use to show the inequality. Note that

P(T > k;F1, . . . , Fn)

=
1

|Σ(k)|
∑
σ∈Σ(k)

∏
i∈[k]

Fσi(τi)

=
(n− k)!

n!

 ∑
σ∈Σ−1,−2(k)

∏
i∈[k]

Fσi(τi)

+
∑

σ∈Σ−1,−2(k−1)
p∈[k]

p−1∏
i=1

Fσi(τi) [F1(τp) + F2(τp)]
k−1∏
i=p

Fσi(τi+1)

+
∑

σ∈Σ−1,−2(k−2)
p<q∈[k]

p−1∏
i=1

Fσi(τi) [F1(τp)F2(τq) + F2(τp)F1(τq)]

q−1∏
i=p

Fσi(τi+1)
k−1∏
i=q

Fσi(τi+2)

)
.

To simplify the notation, let us de�ne

A(F1, F2) :=
∑

σ∈Σ−1,−2(k−1)
p∈[k]

[F1(τp) + F2(τp)]
∏

i∈[k−1]

Fσi(τi+1i≥p)

B(F1, F2) :=
∑

σ∈Σ−1,−2(k−2)
p<q∈[k]

[F1(τp)F2(τq) + F2(τp)F1(τq)]
∏

i∈[k−1]

Fσi(τi+1i≥p+1i≥q)

C :=
∑

σ∈Σ−1,−2(k)

∏
i∈[k]

Fσi(τi) .

Then,

P(T > k;F1, . . . , Fn) =
(n− k)!

n!
[A(F1, F2) +B(F1, F2) + C] .

Let's show that both A and B change in the correct direction when we change F1 and F2,
by F1F2 and 1R+ , or

√
F1F2 and

√
F1F2, respectively. For this, note that ∀p ∈ [k]

1 + F1(τp)F2(τp) ≥ F1(τp) + F2(τp) ≥ 2
√
F1(τp)F2(τp) ,

and ∀p < q ∈ [k]

F1(τp)F2(τp) + F2(τq)F1(τq) ≥ F1(τp)F2(τq) + F2(τp)F1(τq) ≥ 2
√
F1(τp)F2(τp)F1(τq)F2(τq) .

Then,
A(F1F2,1R+) ≥ A(F1, F2) ≥ A(

√
F1F2,

√
F1F2) ,

and
B(F1F2,1R+) ≥ B(F1, F2) ≥ B(

√
F1F2,

√
F1F2) .
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We can conclude the lower bound by applying the inequality n times and noticing that

P

T ≤ k;
∏
i∈[n]

Fi,1R+ , . . . ,1R+

 =
1

n

∑
j∈[k]

1− αj .

The upper bound follows from applying the inequality in�nitely many times and noticing
that

P

T ≤ k;
∏
i∈[n]

F
1
n

i , . . . ,
∏
i∈[n]

F
1
n

i

 = 1−
∏
j∈[k]

α
1
n
j .

Remember that in the proof of Lemma 4.3 we solved the following optimization problem:

min
{
φ(y); s.t.

∑
j∈[n−1] yj = β

}
. The value of this problem was obtained by noticing that φ

is Schur convex. This time we considered the problem{
opt P(T > k;F1, . . . , Fn)
s.t.
∏

i∈[n] Fi = F and Fi is a distribution.

where �opt� is a symbol in {min,max}. This problem is harder since it involved optimizing
over functions rather than real numbers. Trying to apply Schur convexity theory again, one
could see P(T > k;F1, . . . , Fn) as a function of the distributions evaluated at each threshold,
that is, as a function of the vector (F1(τ1), . . . , F1(τn), . . . , Fn(τ1), . . . , Fn(τn)). Unfortunately
doing this results in a domain which is no longer symmetric and moreover the constraint of
the product being constant results in n di�erent constraints, making it hard to apply the
theory.

However, note that the previous lemma shows that P(T > k;F1, . . . , Fn) is nearly log-
Schur-convex: it increases when the components of the argument get more concentrated in
some coordinate. Nevertheless, the behavior of P(T > k) is not always monotone along the
curve λ ∈ [0, 1] 7→ (F1F

λ
2 , F

1−λ
2 , . . . , Fn), a property that would be satis�ed by a log-Schur-

convex function if F1, . . . , Fn were numbers. In spite of the latter, there is a step by step way
to go from (F1, F2, . . . , Fn) to (F1F2 . . . Fn,1R+ , . . . ,1R+) that exhibits a monotonic behavior,
while maintaining the product. This property could be called weak log-Schur-convexity and
it is enough to solve the optimization problem. The same can be said about the points
(F1, F2, . . . , Fn) and ( n

√
F1F2 . . . Fn, . . . ,

n
√
F1F2 . . . Fn).

Lema 5.8 Given V1, . . . , Vn independent random variables and τ1 ≥ . . . ≥ τn a sequence
of nonincreasing thresholds, we denote by T the stopping time of the TTAτ1,...,τn. Then,
∀i, k ∈ [n]

P(T ≥ k|σk = i) ≥ P(T > k)

1− k
n

+ 1
n

∑
l∈[k]

P(Vi ≤ τl)
.

Proof. Inspired by the proof given by Esfandiari et al. [11], �x i, k ∈ [n] and de�ne

Σ−i(k) := {σ, ordered subset of [n] \ {i} with size k} .
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Then, conditioning on the value of σ−1(i),

P(T > k) =
1

n

∑
l∈[k]

P(T > k|σl = i) +
1

n

n∑
l=k+1

P(T > k|σl = i) . (5.2)

Note that for all l = k + 1, . . . , n,

P(T > k|σl = i) = P(T > k|σk+1 = i) ≤ P(T ≥ k|σk = i)

and given l ∈ [k], since the thresholds are nonincreasing,

P(T > k|σl = i) =
P(Vi ≤ τl)

|Σ−i(k − 1)|
∑

σ∈Σ−i(k−1)

∏
j∈[k−1]

Fσj(τj+1j≥l)

≤ P(Vi ≤ τl)

|Σ−i(k − 1)|
∑

σ∈Σ−i(k−1)

∏
j∈[k−1]

Fσj(τj)

= P(Vi ≤ τl)P(T ≥ k|σk = i) .

Plugging both inequalities back into equation (5.2) we get the result.
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Chapter 6

Improved analysis

To prove Theorem 5.3 (i.e., to improve upon the bound proved in the last section) we turn
to a particular type of blind strategies where α = αα1,...,αm is given by

αα1,...,αm(x) =
∑
j∈[m]

αj1[ j−1
m
, j
m)(x) ,

in other words, piece-wise constant functions.

The idea now is to use the property that, for any instance of size larger than m, this blind
strategy uses only m thresholds. In addition, observe that Lemma 5.8 was used in a loose
way, so to take more advantage of it we present Lemma 6.3 at the end of this section.

De�ne for m ≥ 1

gm,p(k) =

{
1

1− k
m

(1−p) ; k ≤ m
2

2
1+p

; k > m
2
.

This function is used in the next lemma. Notice that it is a nondecreasing function in k that
is always greater than 1. We can prove the following statement, which has the same �avor
as Theorem 5.6.

Lema 6.1 Let α = αα1,...,αm be a nonincreasing function where αm > 0, and let T be the
blind strategy stopping time. Then,

E(VσT )

E(max
i∈[n]
{Vi})

≥ min
j∈[m+1]

{fj(α1, . . . , αm)} ,

where is given by

fj(α1, . . . , αm) =



m∑
k=1

( ∏
l∈[k−1]

αl

) 1
m (

1−α
1
m
k

− lnαk

)
; j = 1

1
m

∑
k∈[m]

1− αk ; j = m+ 1

∑
k∈[j−1]

1−αk
m(1−αj) +

m∑
k=j

( ∏
l∈[k−1]

αl

) 1
m

gm,α1(k − 1)

(
1−α

1
m
k

− lnαk

)
; 2 ≤ j ≤ m.
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Proof. As done in section 5, we analyze the performance of the corresponding deterministic
blind strategy with an instance of size n and we only care about the performance guarantee of
α as n grows to∞. Consider an instance F1, . . . , FNm, and take j ∈ [m+1] and t ∈ [τj, τj−1),
where τ0 =∞, τm+1 = 0 and αm+1 = 0. In the same spirit as in Lemma 5.5, we have that

P(VσT > t) = P(T ≤ (j − 1)N) + P(VσT > t, T > (j − 1)N)

= P(T ≤ (j − 1)N) +
∑
i∈[n]

P(Vi > t)

 Nm∑
k=(j−1)N+1

P(T ≥ k|σk = i)

Nm

 .

One key point is that since the same thresholds are used N times, we can deduce better
bounds. For the �rst term, as before, we have that

P(T ≤ (j − 1)N) ≥ P(T ≤ (j − 1)N)

1− αj
P(max

i∈[n]
{Vi} > t) .

Then, for j = m+ 1 (i.e. : t ∈ [0, τm)), using Lemma 5.7, we have that

P(VσT > t) ≥ 1

m

∑
k∈[m]

1− αk ,

which concludes the case j = m+ 1, since αm+1 = 0.

Now, for j ∈ {2, . . . ,m}, we must show the lower bound for

P(T ≤ (j − 1)N) +
∑
i∈[n]

P(Vi > t)
Nm∑

k=(j−1)N+1

P(T ≥ k|σk = i)

Nm
.

For the �rst term we use again Lemma 5.7 and deduce that

P(T ≤ (j − 1)N) ≥
∑

k∈[(j−1)N ]

1− α(k/Nm)

Nm

=
∑

k∈[j−1]

1− αk
m

≥
∑

k∈[j−1]

1− αk
m(1− αj)

P(max
i∈[n]
{Vi} > t) .

Noticing that α is nonincreasing, the corresponding thresholds are nonincreasing and we can
use both Lemma 5.8 and Lemma 6.3 in the following way. First, for every i, k ∈ [Nm],

P(T ≥ k|σk = i) ≥ P(T > k)

1− 1
Nm

∑
l∈[k] P(Vi > τl)

.

Then, interchanging the order of the sums,∑
i∈[n]

P(Vi > t)
Nm∑

k=(j−1)N+1

P(T ≥ k|σk = i)

Nm
≥

Nm∑
k=(j−1)N+1

P(T > k)
∑
i∈[n]

P(Vi > t)

Nm−
∑

l∈[k] P(Vi > τl)
.
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Now, by Lemma 6.3, for k ≤ Nm/2,∑
i∈[n]

P(Vi > t)

Nm−
∑

l∈[k] P(Vi > τl)
≥

P(maxi∈[n]{Vi} > t)

Nm− kP(maxi∈[n]{Vi} > τ1)

=
gNm,α1(k)

Nm
P(max

i∈[n]
{Vi} > t) ,

and for k > Nm/2,∑
i∈[n]

P(Vi > t)

Nm−
∑

l∈[k] P(Vi > τl)
≥

P(maxi∈[n]{Vi} > t)

Nm−Nm/2P(maxi∈[n]{Vi} > τ1)

=
gNm,α1(k)

Nm
P(max

i∈[n]
{Vi} > t) ,

which is an improvement over using the union bound (as in the previous section). All in all,
we have proven the following bound.

∑
i∈[n]

P(Vi > t)
Nm∑

k>(j−1)N

P(T ≥ k|σk = i)

Nm
≥

 Nm∑
k=(j−1)N+1

P(T > k)
gNm,α1(k)

Nm

P(max
i∈[n]
{Vi} > t) .

Moreover,
Nm∑

k=(j−1)N+1

P(T > k)
gNm,α1(k)

Nm
=

m∑
l=j

N∑
k=1

P(T > (l − 1)N + k)
gNm,α1((l − 1)N + k)

Nm

≥
m∑
l=j

(
l−1∏
l′=1

αl′

) 1
m N∑

k=1

(
α

1
Nm
l

)k gNm,α1((l − 1)N)

Nm

=
m∑
l=j

(
l−1∏
l′=1

αl′

) 1
m

gm,α1(l − 1)
α

1
Nm
l

Nm

1− α
1
m
l

1− α
1
Nm
l

−−−→
N→∞

m∑
k=j

 ∏
l∈[k−1]

αl

 1
m

gm,α1(k − 1)

(
1− α

1
m
k

− lnαk

)
.

Putting these two inequalities together, we can conclude the case j ∈ {2, . . . ,m}.

Lastly, for j = 1 (i.e. : t ∈ [τ1,∞)) we do as before, in Section 5, and use Lemma 5.8,
Lemma 5.7 and the union bound to derive the following

P(VσT > t) =
1

n

∑
i∈[n]

P(Vi > t)
Nm∑
k=1

P(T ≥ k|σk = i)

≥

[
1

n

Nm∑
k=1

P(T > k)

]
P(max

i∈[n]
{Vi} > t)

≥

 m∑
k=1

 ∏
l∈[k−1]

αl

 1
m (

1− α
1
m
k

− lnαk

)P(max
i∈[n]
{Vi} > t) ,
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where the last inequality is only valid in the limit as N →∞.

With the previous lemma we can easily establish the improved guarantee. The idea is
quite simple, we take the right-hand-side of the expression in Lemma 6.1 and optimize over
the choice of α1, . . . , αm. We do this optimization numerically and �nd a particular collection
α1, . . . , αm such that the guarantee evaluates to 0.669, as stated in the following corollary. We
must note however that there might be other choices leading to slightly improved guarantees.

Corolario 6.2 There exists 1 ≥ α1 ≥ . . . ≥ αm ≥ 0 such that

E(VσT )

E(max
i∈[n]
{Vi})

≥ 0.66975 ,

where T is the stopping time corresponding to the blind strategy α = αα1,...,αm.

In particular, taking m = 30 was enough to derive this result. The missing part on the
previous analysis is Lemma 6.3, which we now prove for completeness.

Lema 6.3 Given V1, ..., Vn independent random variables and τ1 ≥ max{τ2, τ3, ..., τn} a se-
quence of thresholds. Then, for any t < τ1 and k ≤ n

2
,

∑
i∈[n]

P(Vi > t)

1− 1
n

∑
l∈[k]

P(Vi > τl)
≥

P(max
i∈[n]
{Vi} > t)

1− k
n
P(max

i∈[n]
{Vi} > τ1)

.

Proof. De�ne λ := k
n
∈ [0, 1

2
] and notice that∑

i∈[n]

P(Vi > t)

1− 1
n

∑
l∈[k]

P(Vi > τl)
=
∑
i∈[n]

P(Vi > t)
n−k
n

+ 1
n

∑
l∈[k]

P(Vi ≤ τl)

≥
∑
i∈[n]

P(Vi > t)

1− λ+ λP(Vi ≤ τ1)

=
∑
i∈[n]

1− Fi(t)

1− λ+ λFi(τ1)

=: C(t;λ, F1, . . . , Fn) .

Therefore, it is su�cient to prove that

1− F1(t)

1− λ+ λF1(τ1)
+

1− F2(t)

1− λ+ λF2(τ1)
(6.1)

≥ 1− F1(t)F2(t)

1− λ+ λF1(τ1)F2(τ1)
,

since we can iterate this argument n times to deduce the result. To prove this inequality,
de�ne the following variables

β := F1(τ1)F2(τ1), γ := F1(t)F2(t),

x := F1(τ1), y := F1(t) .
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We can now simply solve the following optimization problem:

(P )



minx,y fλ(x, y) := 1−y
1−λ+λx

+
1− γ

y

1−λ+λβ
x

s.t. β ≤ x ≤ 1

β ≤ β
x
≤ 1

γ ≤ y ≤ x

γ ≤ γ
y
≤ β

x
.

Notice that the function fλ de�ned by

fλ(x, y) =
1

1− λ+ λx
−
(

1

1− λ+ λx

)
y +

1

1− λ+ λβ
x

−

(
γ

1− λ+ λβ
x

)
1

y
,

is concave in y. Rearranging the inequalities, the problem reduces to

(P )

{
minx fλ(x) := 1−x

1−λ+λx
+

1− γ
x

1−λ+λβ
x

s.t. β ≤ x ≤ 1

Then, all we have to show is that, if λ ∈ [0, 1
2
], x = 1 is the minimum, since this would

imply inequality (6.1). The following are three su�cient conditions for x = 1 to be the
minimum:

1. fλ(β) ≥ fλ(1).

2. x = 1 is local minimum.

3. There exists at most one critical point in the interval [β, 1].

All these conditions are true for λ ∈ [0, 1/2], but involve tedious, but straight-forward,
computations that are skipped. The �rst condition is a simple calculation. The second
condition can be proved by checking that ∂xfλ(1) ≤ 0, which is true for λ ≤ 1/2. The third
condition follows by noticing that the critical points of fλ(·) are the solution to a polynomial
equation of degree two, so there are at most two such points. Moreover, for λ ∈ [0, 1/2], one
of them must be negative, given it is a real number.

With these three conditions we can prove inequality (6.1) and therefore the lemma is
proved iterating this inequality n times.
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Chapter 7

Upper bounds

7.1 A 0.675 upper bound for blind strategies

We �rst see an upper bound for the performance of blind strategies, which is very close to
the lower bound shown in the previous section. To this end we consider two instances and
show that no blind strategy can guarantee better than 0.675 for both instances.

The �rst instance consists simply in a single random variable which is nearly deterministic,
given by V1 ∼ U(1− ε, 1 + ε). The second instance has n i.i.d. random variables de�ned by
(and we take n→∞):

Vi ∼
{

1/ε w.p. ε
U(0, ε) w.p. 1− ε .

Combining these two instances one can show the following result.

Lema 7.1 Let T be the stopping time corresponding to the blind strategy given by α. Then

sup
α

inf
n;F1,...,Fn

E(VσT )

E(max
i∈[n]
{Vi})

≤ sup
α

min

1−
1∫

0

α(s)ds ,

1∫
0

e

s∫
0

lnα(w)dw
ds

 .

With this result we need to compute the quantity on the right-hand-side of the previous
lemma to obtain an upper bound on the performance guarantee of any blind strategy. This
is done using optimal control theory. The basic procedure consists �rst in proving that
the supremum right-hand-side in Lemma 7.1 is attained, then we have Mayer's optimal
control problem for which the necessary optimality conditions can be expressed as an integro-
di�erential equation. We conclude by solving this equation numerically, and thus have the
following result.

Corolario 7.2 Let T be the stopping time corresponding to the blind strategy given by α.
Then

sup
α

inf
n;F1,...,Fn

E(VσT )

E(max
i∈[n]
{Vi})

≤ 0.675 .
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Proof of Lemma 7.1. The �rst instance is V1 = U(1 − ε, 1 + ε), with ε > 0. Notice that,
τ = 1− ε+ α(u)2ε, where u ∼ U(0, 1) and, by direct computation, we have that

E(VσT ) =

1∫
0

E(VσT |u = s)ds

=

1∫
0

E(V1|τ = 1− ε+ α(s)2ε)ds

=

1∫
0

(1 + εα(s)) (1− α(s)) ds

−−→
ε→0

1∫
0

(1− α(s))ds .

The second instance has n i.i.d. random variables de�ned by:

Vi ∼
{

1
ε

w.p. ε
U(0, ε) w.p. 1− ε .

Moreover, for ε small enough,

P(max
i∈[n]
{Vi} ≤ t) =


0 ; t < 0(

1−ε
ε

)n
tn ; 0 ≤ t < ε

(1− ε)n ; ε ≤ t < 1
ε

1 ; 1
ε
≤ t

Notice that we can assume α(x) < 1, for x > 0, since there is no gain in rejecting anything
at any point in time. Then, with probability (1 − ε)n

2
, for all i ∈ [n], ui < (1 − ε)n and

therefore, τi = n
√
α(u[i])

ε
1−ε and we have that P(Vi ≤ τi) = n

√
α(u[i]). By direct computation,

lim
ε→0

E(VσT |u) = 1 + n

√
α(u[1]) + n

√
α(u[1])α(u[2]) + . . .+ n

√
α(u[1])...α(u[n−1]) + o(ε)

=
n−1∑
i=0

i∏
j=1

n

√
α(u[j]) + o(ε) .

In addition, we have E(max
i∈[n]
{Vi}) = 1

ε
(1− (1− ε)n) −−→

ε→0
n. Then,

lim
n→∞

lim
ε→0

E(VσT )

E(max
i∈[n]
{Vi})

= lim
n→∞

Eu

[
1

n

n−1∑
i=0

i∏
j=1

n

√
α(u[j])

]
=

1∫
0

e

s∫
0

lnα(w)dw
ds .

Sketch of Proof of Corollary 7.2. We �rst show that the supremum given by Lemma 7.1 is
attained at a certain α∗. To this end we note that, without loss of generality, we can consider
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the supremum over nonincreasing functions α, by a simple exchange of mass argument. Then,
we note that the set of nonincreasing functions from [0, 1] to itself is compact for the ||·||∞ and
the functional being optimized is continuous for that metric. Then we deduce the existence
of α∗, and furthermore it satis�es

1−
∫ 1

0

α∗(t)dt =

∫ 1

0

exp

[∫ t

0

lnα∗(w)dw

]
dt . (7.1)

Therefore, α∗ is the solution of the following optimal control problem:

(P )



min
α

−x1(1) = −
1∫
0

1− α(t)dt

s.t. : ẋ(t) =

 1− α(t)
exp[x3(t)]

lnα(t)


x(0) = (0, 0, 0)′

(t, x(t)) ∈ [0, 1]× R3

α(t) ∈ [0, 1]
x1(1) = x2(1) .

Note that the objective is to maximize x1(1) = 1 −
∫ 1

0
α(s)ds by choosing the right α.

The dynamic is de�ned so that the restriction x1(1) = x2(1) represents the condition (7.1)
and the auxiliary component x3 is needed to express this in standard form.

This problem was studied in section 3.3, leading to identify α∗ with αK,t de�ned by

αK,t(t) =

{
1 ; 0 ≤ t < t
βK,t(t) ; t ≤ t ≤ 1,

where K > 0 and t ∈ [0, 1) and βK,t is the solution of the following integro-di�erential
equation  β̇(t) = −K exp

[
t∫
t

ln β(s)ds

]
t ∈ (t, 1)

β(1) = 0 .

(7.2)

We can further restrict the space of search for K and t using the fact that there is a blind
strategy with performance 0.665. First notice that

0.665 ≤
∫ 1

0

1− α∗(t)dt ≤ 1− t ,

therefore t ∈ (0, 0.335). In the other hand, consider K, t such that αK,t = α∗, then

βK,t(t) = K

∫ 1

t

exp

 t∫
t

ln β(s)ds

 dt

= K

∫ 1

t

exp

 t∫
0

lnα∗(s)ds

 dt .
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Using this equality, we can notice that

0.665 ≤
∫ 1

0

exp

[∫ t

0

lnα∗(w)dw

]
dt

= t+

∫ 1

t

exp

 t∫
t

lnα∗(s)ds

 dt

= t+
βK,t(t)

K

≤ 0.335 +
1

K
,

therefore, K ≤ 10/3.

To solve numerically equation 7.2, consider the change of variables g(t) =
∫ t
t

ln β(s)ds, so
that the equation becomes the second order ODE eġ(t)g̈(t) = −Keg(t) ; t ∈ (t, 1)

g(t) = 0
ġ(t) = ln β(t) .

Because exp(·) is continuous and locally Lipschitz, this is a well-posed Cauchy problem
with a unique local solution. The initial condition ġ(t) = ln β(t) turns out to be simply a
replacement for ġ(1) = −∞ in the sense that we search for the solutions g such that g(t) = 0
and exploits at time 1. This seemingly numerical di�culty is well treated using solvers for
sti� ODE such as ode15s of Matlab.

Then, we numerically compute (7.2) to determine that

sup
α

min

1−
1∫

0

α(s)ds,

1∫
0

e

s∫
0

lnα(w)dw
ds


= sup

K∈[0,10/3]
t∈[0,0.335)

min

1−
1∫

0

αK,t(s)ds,

1∫
0

e

s∫
0

lnαK,t(w)dw
ds


≤ 0.675 .

Finally we note that if (7.2) has no solution, this simply means that α∗ does not corresponds
to αK,t and thus it is not taken into account in the previous supremum.

7.2 A 0.732 upper bound for nonadaptive strategies

Recall that a nonadaptive strategy is an algorithm whose decision to stop can depend on the
index of the random variable being sampled, on the value sampled, and on the time, but not
on the history that has been observed. Our bound improves upon the lower bound of 0.745
which holds for the i.i.d. case [16].
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Surprisingly, our bound comes from analyzing the following simple instance. Take a ∈ [0, 1]
and consider n random variables whose values are distributed as:

V1 ∼
{
n w.p. 1

n

0 w.p. 1− 1
n

V2 ≡ a

V3 = . . . Vn ≡ 0 .

Clearly any reasonable algorithm would always accept a value of n and never accept a value
of 0. Therefore the only decision a nonadaptive algorithm has to make is that of whether
accepting a value of a or not. As we are looking at nonadaptive algorithms this decision can
depend only on the time the value a is sampled. Furthermore, the optimal decision follows
the following simple rule: �pick the value a as long as the expectation of the future is less or
equal to a�. By this principle, taking only the time i in which the value a is discovered, this
value should be picked if and only if

a ≥ E
(
max{Vσi+1,...,Vσn}|Vσ1 = ... = Vσi−1

= 0, Vσi = a
)

= φ(i) .

The function φ(·) is strictly decreasing and φ(1) = 1, φ(n) = 0. Therefore, there is an index
i∗ from which the optimal algorithm starts to pick the value a if seen. De�ne λ = i∗/n, then
applying the optimal algorithm the gambler obtains the following

E(VσT ) =
1

n

∑
i∈[n]

E(VσT |σi = 2)

=
1

n

i∗ − 1 +
1

n

n∑
i=i∗

∑
j∈[n]\{i}

E(VσT |σi = 2, σj = 1)


=

1

n

[
i∗ − 1 +

1

n− 1

n∑
i=i∗

(1 + a)(i− 1) + a(n− i)

]

=
1

n

[
i∗ − 1 +

1

n− 1

(
n(n+ 1)

2
− i∗(i∗ + 1)

2
+ (n− i∗)(an− 1− a)

)]
= λ+

1

2
− λ2

2
+ (1− λ)a+O

(
1

n

)
≤ 1 +

a∗

2
+O

(
1

n

)
,

where the last inequality comes from optimizing over λ ∈ [0, 1].

On the other hand E(maxi∈[n] {Vi}) = 1 + a − a/n which leads to conclude that, for
nonadaptive algorithms

E(VσT )

E(max
i∈[n]
{Vi})

≤
1 + a2

2
+O

(
1
n

)
1 + a+O

(
1
n

) .
By minimizing the right-hand-side of the previous expression for a ∈ [0, 1], we obtain that
the optimal value is attained at a =

√
3− 1, and therefore

E(VσT )

E(max
i∈[n]
{Vi})

≤
6− 2

√
3 +O

(
1
n

)
2
√

3 +O
(

1
n

) −−−→
n→∞

√
3− 1 ≈ 0.732 .
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Chapter 8

Dealing with discontinuous distributions

In this section we explain how to use a blind strategy in instances where the distributions
F1, . . . , Fn are not necessarily continuous. Recall that in the de�nition of blind strategies in
Section 1.3, we need the existence of τi such that P(maxi∈[n]{Vi} ≤ τi) = α(u[i]). So, what
happens if such thresholds τ1, ..., τn do not exist? For the purpose of studying the prophet
inequality, the performance of a strategy de�ned over instances with continuous distributions
is always extendable to discontinuous ones allowing stochastic tie breaking. In this case, we
can explicitly de�ne the strategy that α induces over discontinuous instances. The resulting
strategy no longer depends on the distribution of the maximum only.

The procedure to compute the tie breaking is quite natural:

1. Approximate the instance.

2. Study the strategy induced by α in the approximated instance.

3. Replicate what would happen in the original instance, allowing tie breaking.

Given a realization of uniform random variables u1, . . . , un, assume that τi does not exist, in
other words, for some i ∈ [n], there is a τ ∈ R such that

lim
ε→0

P(max
i∈[n]
{Vi} ≤ τ − ε) < α(u[i]) < P(max

i∈[n]
{Vi} ≤ τ) .

The stochastic tie breaking consists in accepting the value τ with some probability, say pi.
This acceptance rate depends on the whole instance, not only on the distribution of the
maximum, and on the identity of the revealed variable. To compute these acceptance rates
we use the following procedure. For ε > 0, consider the following approximated instance

F ε
i (t) =

{
Fi(t)
Fi(τ − ε) + t−τ+ε

ε
(F (τ)− Fi(τ − ε))

,

for t 6∈ [τ − ε, τ ] in the �rst case and t ∈ [τ − ε, τ ] in the second case. This instance
has a continuous distribution of the maximum in [τ − ε, τ ] and we are able to �nd τ ε, the
corresponding threshold for the approximated instance, such that

P(max
i∈[n]
{Vi} ≤ τ ε) = α(u[i]) .
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Then, we compute, for j ∈ [n], βj := limε→0 F
ε
j (τ ε). To �nish, we de�ne, for j such that

P(Vj = τ) > 0,

pi(j;F1, ..., Fn) :=
Fj(τ)− βj
P(Vj = τ)

and pi = 0 otherwise. In other words, pi(j;F1, ..., Fn) corresponds to the portion of the
probability that variable j is equal to τ that should be considered as a value of τ+ and so be
accepted. This will induce that, faced with Vj at time i, the gambler accepts its realization
with probability 1− βj. To be more precise, we use the following procedure.

Algorithm 2 Stochastic TTA
1: for i = 1, ..., n do

2: if Vσi > τi then

3: Take Vσi
4: else if Vσi = τi then

5: Take Vσi with probability pi(σi;F1, ..., Fn)
6: end if

7: end for

With this procedure, it is easy to see that all results extend to general instances.
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