Contents

Acronyms

1

Notations

2

1 Introduction

1.1 Statement of the Problem .. 3

1.2 Objectives ... 7

 1.2.1 Main Objective ... 7

 1.2.2 Specific Objectives .. 7

1.3 Hypotheses .. 7

1.4 Overview of this Thesis ... 8

 1.4.1 Thesis Outline ... 8

 1.4.2 Main Contributions .. 9

2 State of the Art

2.1 Introduction .. 12

2.2 UAV Definition and Applications ... 12

2.3 Battery Health Management for Electric UAVs 14

 2.3.1 BHM for Rotary-wing UAVs .. 25

 2.3.2 Considerations on the Performance of Rotary-wing UAVs 26

2.4 SOC Estimation and Prognosis Methods for Batteries 29

 2.4.1 Direct Measurement ... 29

 2.4.2 Book-keeping Estimation .. 30

 2.4.3 Adaptive Systems ... 30

2.5 A Particle-filtering-based Prognosis Scheme for non-linear Dynamic Systems ... 36

 2.5.1 Particle Filter ... 36

 2.5.2 Particle-filtering-based Prognostic 38

 2.5.3 Probability of Failure in PF-based Prognostic Algorithms 38

2.6 Summary ... 40

3 Prognostics Framework for BHM Systems in Small-size Electric Multirotors

3.1 Introduction .. 42

3.2 State-Space Model For State-Of-Charge Estimation In Batteries 46

3.3 Outer Feedback Correction Loop ... 47

3.4 Approximate Power Consumption Model for Rotary-wing Aircraft 52

3.5 Definition of Probability of Failure as Risk Mitigation Method 55
3.6 Summary

4 Case Study: Delivery Missions

- **4.1 Introduction**: 60
- **4.2 Missions Description**: 60
- **4.3 Performance Indicators**: 62
- **4.4 Simplified Battery Model Along with the Novel OFCL During Estimation Stage**: 63
- **4.5 Power Consumption Model as Future Inputs in Prediction Stage**: 73
- **4.6 Mitigating the Risk**: 79
- **4.7 Summary**: 83

5 Concluding Remarks and Future Research

- **5.1 Future work**: 85

Appendix

- **A Rotary-Wing Aerodynamics: Momentum Theory**: 88
 - **A.1 Induced Velocity and Thrust in Axial Translation**: 90
 - **A.1.1 Vertical Climb and Hovering**: 90
 - **A.1.2 Vertical Descent**: 91
 - **A.2 Power in Axial Translation**: 91
 - **A.2.1 Ideal Power in Climb and Hovering**: 91
 - **A.2.2 Ideal Power in Descent**: 92
 - **A.3 Induced Velocity and Thrust in Nonaxial Translation**: 93
 - **A.4 Power in Nonaxial Translation**: 94

- **B Causes of Battery Degradation and Failures**: 95
 - **B.1 Electrical Abuse**: 95
 - **B.1.1 Overcharge**: 95
 - **B.1.2 Over-Discharge**: 96
 - **B.1.3 External Short Circuit**: 96
 - **B.2 Thermal Abuse**: 96
 - **B.3 Mechanical Abuse**: 97

- **C Dissemination of the Results**: 98
 - **C.1 Journal and Conference Papers**: 98
 - **C.2 Presentations at Symposiums**: 98
 - **C.3 Doctoral Internships**: 98

Bibliography

x