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Resumen

El modelo estandar de la cosmología posee algunos problemas a la hora de describir las etapas
tempranas del universo. La teoría de Inflación Cósmica, una fase de expansión exponencial
acelerada, fue concebida para resolver los previos problemas en el modelo y terminó dando
una explicación para las semillas primordiales del universo. En esta tesis, compuesta de
dos partes, estudiamos el efecto de grados de libertad extra durante el periodo de inflación
cósmica, y sus implicancias en la estadística primordial del universo.

En la primera parte estudiamos la creación de features en el espectro de potencias escalar
primordial como resultado de desviaciones temporales de un fondo quasi de-Sitter. Específi-
camente, cómo podemos correlacionar estos features con los posibles features en el espectro
de potencias tensorial primordial. Notamos que estas desviaciones sobre la invariancia de
escala están relacionadas a través de los parámetros de slow-roll. Derivamos una relación
general que conecta features en el espectro de perturbaciones de curvatura con features en
el espectro de perturbaciones tensoriales. Concluimos que, incluso para grandes desviaciones
en la invariancia de escala en el espectro de potencias de las perturbaciones de curvatura,
el espectro de potencia tensorial primordial se mantiene invariante de escala para todos los
propósitos observacionales.

La segunda parte es sobre el análisis del paisaje inflacionario caracterizado por un potencial
de múltiples campos escalares con muchos mínimos locales. Si este es el caso, las fluctuaciones
cuánticas de los campos escalares tienen la oportunidad de excursionar a través de los mínimos
locales del paisaje potencial. Estudiamos esta situación analizando la dinámica de un campo
axion-like, presente durante inflación, con un potencial dado por v(ψ) = Λ4(1 − cos(ψ/f)).
Asumiendo que el valor de expectación del vacío (VEV) del campo se encuentra estabilizado
en uno de los mínimos, digamos ψ = 0, calculamos cada función de correlación de n-puntos a
primer orden en Λ4 usando el formalismo in-in. Este cálculo, que requiere resumar todos los
bucles debido a la naturaleza no lineal de v(ψ), nos permite encontrar una función distribución
que describe la probabilidad de medir ψ en un valor particular del campo durante inflación.
Debido a que ψ puede tunelear entre las barreras del potencial, encontramos que la función
distribución de probabilidad consiste de una distribución no-Gaussiana multi-modal tal que
la probabilidad de encontrar ψ cerca de un mínimo de v(ψ) dado, diferente de ψ = 0, aumenta
con el tiempo.
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Abstract

The standard model of cosmology has some problems in order to describe the early stages of
the universe. The theory of Cosmic Inflation, a phase of accelerated exponential expansion,
was conceived to solve the previous problems in the model and it ended up giving an expla-
nation for the primordial seeds of the universe. In this thesis, which consists of two parts, we
study the effect of extra degrees of freedom during the inflationary era and their implications
for the primordial statistics of the universe.

In the first part, we study the creation of features in the primordial scalar power spectrum
resulting from temporary deviations from a quasi de-Sitter background. Specifically, how we
can correlate scalar features to the ones in the primordial tensor power spectrum. We notice
that these deviations from scale invariance are related via slow roll parameters. We derive a
general relation linking features in the spectrum of curvature perturbations to the features
in the spectrum for the tensor perturbations. We conclude that, even with large deviations
from scale invariance in the curvature power spectrum, the tensor power spectrum remains
scale invariant for all observational purposes.

The second part is about the analysis of the inflationary landscape characterized by a
multi-scalar field potential with many local minima. If this is the case, the quantum fluctua-
tions of the scalar field had a chance to experience excursions traversing many local minima
of the landscape potential. We study this situation by analyzing the dynamics of an axion-
like field ψ present during inflation, with a potential given by v(ψ) = Λ4(1− cos(ψ/f)). By
assuming that the vacuum expectation value of the field is stabilized at one of its minima,
say ψ = 0, we compute every n-point correlation function of ψ to first order in Λ4 using
the in-in formalism. This computation, which requires a resummation of all the loops due
to the non-linear nature of v(ψ), allows us to find the distribution function describing the
probability of measuring ψ at a particular field-value during inflation. Because ψ is able to
tunnel between the barriers of the potential, we find that the probability distribution func-
tion consists of a non-Gaussian multi-modal distribution such that the probability of finding
ψ near a given minimum of v(ψ), different from ψ = 0, increases with time.
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Introduction

The question of how the universe started and how particles were created was fundamental
since the early stages of mankind. The search of a satisfactory answer has taken us to
different conceptions of the universe, in where most of the popular solutions through history
were that something greater took part in all the creation, ignoring the questions about how,
when and where. All these questions, mostly metaphysical, where discussed by the promising
philosophers of different ages. This generated a mixture of ideas and conceptions for the
universe where now the ideas went from a creationist perspective to a fully mathematical
and rational believing. The passionate searching to give a mathematical description of the
phenomena in our universe is now the motivation for physics. Even though this had worked
very well for classical objects, the picture gets foggier when we try to describe larger and larger
objects such as stars, galaxies, or even the universe itself. This picture began to clarify in 1915
when Albert Einstein formulated his Theory of General Relativity [1] using the concepts of
deformed space-time. With this new theory, he ended up giving a very satisfactory description
of gravity, the force that rules the large-scale structures of our universe.

This new picture of the universe according to Einstein has its foundations in two funda-
mental pillars: The cosmological principle and the cosmological constant Λ. The first one
tells us that the universe at very large scales should look the same independent of the direc-
tion of the sky that we are looking, this implies the properties of homogeneity and isotropy
for our universe. The second pillar gives us an admissible mathematical way to describe
an expanding universe, where the cosmological constant works as the energy content that
produces the expansion.

The solution for the Einstein equations that respects the previous properties was found
by Alexander Friedmann in 1922 [2]. He postulated a metric, or notion of distance, for
an expanding universe which is both homogeneous and isotropic. Its evolution depends
directly on the energy content, allowing us to describe the behavior of the universe as a
dynamical object. This implies that the universe can be separated in different epochs during
its evolution, mostly because the matter densities in our universe evolve differently with
time. The same result was obtained by Georges Lemaître in 1927 [3] and its final geometrical
consistency was developed by Howard Robertson and Arthur Walker in 1935 [4, 5], giving
the uniqueness to a geometrical metric which is homogeneous and isotropic. Because of these
developments, the metric of our universe is now known as the Friedman-Lemaître-Robertson-
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Walker metric.

The introduction of these new ideas turned out to be the starting point of a new era
of discoveries for cosmology, both theoretically and observationally. New telescopes were
built to test the theoretical models that appeared to explain the new phenomena that were
affecting the universe. In 1929, Edwin Hubble [6] established a relation between the distance
and the red-shift of the spiral nebula already discovered by the astronomer Vesto Slipher in
1909 [7]. This relation is known as the Hubble’s law, which is the first observational evidence
of an expanding universe.

The early idea of the expansion of the universe was that this expansion would be decelerat-
ing due to gravitational attraction. The big discovery appeared in 1998 when the Supernova
Cosmology Project [8] and the High-Z Supernova Search Team [9] used type Ia supernovae
to measure the rate of deceleration. They found out, surprisingly, that our universe was
accelerating. Now, in order to describe the increasing rate of expansion of our universe, the
theory needs an extra type of energy to counteract the collapse coming from gravitation.
This energy is known as dark energy and can be included in the theoretical framework of
gravity by the addition of a positive cosmological constant Λ.

These discoveries were the foundations of the standard model of cosmology known as
the ΛCDM model, or concordance model. This way of looking our universe encapsulates
different concepts for its description: First, we have the Λ component which tells us about
the expanding universe at late times, and second, we have the CDM which stands for cold
dark matter. Under this model, our universe is made of ≈ 70% of dark energy, encoded in the
cosmological constant Λ, and around a 26% of cold dark matter which is used to explain the
formation of galaxies. Its real composition and why it does not interact with ordinary matter
is still a remaining mystery. The last part is the 4% containing all the baryonic matter of
our universe, these are the particles contained in planets, stars and gas clouds.

The standard model of cosmology, besides the fact that it gives a good dynamical descrip-
tion of the universe, it runs into when dealing with earlier times. Those problems appeared
when in 1964 Arno Penzias and Robert Wilson [10] discovered a microwave signal which
was the first observational indication of a cosmological phase of the universe proposed in
1948 by George Gamow and Ralph A. Alpher known as big bang nucleosynthesis [11]. This
phase started in the first 10 seconds of the universe, the lighter nuclei such as Hydrogen and
Helium were produced and soon after they reached their lowest energy state by the releasing
of primordial photons. The photons were detected as microwave signals and identified as the
Cosmic Microwave Background (CMB) (1).

The Cosmic Microwave Background is a homogeneous black body radiation map with
small temperature fluctuations from earlier times and it is usually called the first picture
of our primordial universe. It allowed cosmologist of the time to set some fundamental
properties of the early universe, but actually, they ended up finding more problems than
actual solutions.
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Figure 1: Temperature map of the Cosmic Microwave Background. Picture obtained by
Planck [34].

The energy density distribution, encoded in the temperature, was almost homogeneous
(up to the 5th decimal point), even for two very distant and causally disconnected points in
the sky, see for example figure (2). If we consider this two points in the space as events from
the past, given that both temperatures seem to be correlated due to the homogeneity of the
CMB, this suggests that the temperature fluctuations should come from a primordial origin.
The search for an explanation of this phenomenon is known as the horizon problem.

Figure 2: Horizon problem. Credit to Theresa knott at English Wikipedia

Along the same lines, the small observed inhomogeneities in the CMB also lack some
explanation both for their origin and for their statistics. The second statistical moments
between points seem to be characterized by a near scale-invariant power spectrum at large
scales. Why this is so? was also an open question without explanation. To find a successful
description of the early universe that takes into account these properties for the CMB was
still an open question until 1981-1982 when a particular solution appeared: Cosmic Inflation.
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The foundations for the theory of Inflation were set up by Alan Guth [12], Andrei Linde
[13] and Andreas Albrecht, along with Paul Steinhardt, in 1982 [14]. It started as a solution to
the horizon problem and the flatness problem, which postulates that the universe in its early
stages was asymptotically flat. The developments of the theory were extended to address
other problems of the ΛCDM model in its primordial stages. One particular surprise was
that Inflation, apart from solving the problems previously described, it provides us with a
mechanism for the early universe to create the observed small temperature fluctuations which
serve as seeds to all the structures of the late universe.

The inflationary universe is well described as a quasi de-Sitter period of accelerated and
exponential expansion encoded in its scale factor. The term “quasi” is added because since
our late and present universe are well described by the principles of a ΛCDM model, we
need a way to stop inflation. We can introduce control parameters which will act as clocks
to stop the exponential expansion of the universe. The control quantities are called slow-roll
parameters, they are defined as deviations from a perfect de-Sitter universe. Since inflation
represents a controlled exponential expansion of the universe, we can use this theory to explain
and solve the horizon problem, the scale-invariance of the CMB or even other problems.

On the other side of the picture, around the same time, the physical description of the
baryonic matter of our universe was getting clearer. Most of the physicist of those years
believed that the answers were written in the language of Quantum Field Theory, a relativistic
description of quantum mechanics. The particles were seen as quantum states coming from
fundamental objects known as fields, whose dynamics are given by an equation of motion
coming from a Lagrangian which is constructed to respect the symmetries of our universe.
This formalism gave a successful experimental description of the collision of particles in
scattering processes and the theory was seen as a fundamental description of the particles in
our universe.

The mechanism to create the energy fluctuations from Inflation was highly motivated by
particle physics and, in fact, both share technical similarities. In the cosmic inflation frame,
all the matter started as fluctuations of a primordial field know as the Inflaton. The Inflaton
is a scalar field that fills the primordial universe and, as a scalar field, it has a similar physical
behavior as the Higgs field which turned out to be the first and only elementary scalar field
discovered in nature.

The theoretical challenges for the theory of inflation lay on the basis of the quantum theory
of fields. The quantum fluctuations of the primordial inflaton create particles, or quantum
states over a suitable vacuum, which after a period of evolution create an amount of energy
that is transferred through decay to the particles of the standard model. One remarkable
result of the fluctuations of inflaton is that, not only they evolve in the space-time, but they
are connected to the quantum fluctuations of the space-time through the Einstein equations.
It is just a matter of choice which type of perturbations we want to study. This allows
inflation to be a topic where both general relativity and quantum theory intertwine for a
good description of the early universe.

4



Once we describe the primordial universe with the fluctuations of a scalar field, then we
can wonder about a different possibility. What about if we generate a strange mechanism
that involves different kinds of interactions, in the same way that we do in particle physics
and the Higgs field, whose interaction allows the particles to have mass. Interactions via
couplings of the inflaton field to other types of fields could be an option. During this thesis,
we will refer to the other type of fields as extra degrees of freedom. The nature of these extra
fields could have different origins or motivations but its description is still based in using
the quantum field theory formalism for objects that are also affected by gravity, in this case,
an expanding universe. This gave enough motivation to rename the theory as Multi-field
inflation, where the collection of fields and their interactions draw a new object known as
landscape, which is the space where those fields live.

On the other hand, the fluctuations of the space-time produced by the merging of two
black holes were discovered in 2015 by the group of LIGO (Laser Interferometer Gravitational-
waves Observatory) [16]. They represented an empirical confirmation of the theory proposed
by Einstein in 1915. Along the same lines, another remarkable result from the theory of
inflation is that it provides a mechanism for the creation of primordial gravitational waves.
Along with the evolution of the scalar degrees of freedom, there are also tensor modes which
can be treated as fields, in the same way as the gravitational waves created by black hole
mergings. The problem with primordial gravitational waves is that the only way that they
can be detected is through the polarization of photons in the CMB, known as B-modes.
This is a very different way to see the effect of gravitational waves in comparison with the
ones detected by LIGO. Besides that difference, there are current efforts to look for the
signal of the B-modes and their possible detection would be a smoking gun for the theory of
inflation since it is the only theory that predicts primordial gravitational waves coming from
an accelerated expansion.

The way to detect the effects of the inflationary era is based on statistics encoded in
correlations functions of the temperature fluctuations. They represent a possible relation-
ship between two or more variables, and for the case of the CMB, they allow us to compute
relations between temperature fluctuations whose origin could be primordial. The correla-
tions of fields can be used to check the effect of different interactions coming from them and
from the evolution of these correlations we can connect them to the temperature fluctuations
in the CMB. The collection of fields correlation functions, or even probability distribution
functions, is what we will call as primordial statistics during this thesis. In particular, the
two-point correlation function can be connected to the matter power spectrum, which is used
to give a description of the energy density for Fourier modes expansion of the matter density
of the universe. Despite the fact that the power spectrum is nearly scale-invariant, there
are observational deviations whose explanation is still a mystery. This deviations from a
scale-invariant power spectrum are known as features, and a successful description of them
could reveal some important properties of the primordial universe.

In this thesis, we will be addressing the effect of extra degrees of freedom on the primordial
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statistics of the universe. As mentioned before, the extra degrees of freedom could appear in
different contexts. During this work, we will focus on two different kinds of effects. First, we
will use the time-dependent background of the de-Sitter universe, commonly encoded in the
slow roll parameters, to create a self-interaction term for the curvature perturbations. One
remarkable result is given in [17] where the features in the primordial power spectrum could
be related with the self-interactions of the curvature perturbations produced by the time-
dependent quantities. During this thesis, we want to analyze the effect of such background
quantities in the power spectrum of the tensor modes and establish a possible relation between
both power spectra.

The second context of the extra degrees of freedom is highly motivated by particle physics
and string theory. Axion fields appear as a solution to the strong CP problem [18]. They
are used to restore a missing symmetry hidden by topological terms that could be included
in the Lagrangian that describes the strong interaction between quarks. One particular
property of this fields is that its potential has a shift symmetry, which allows transforming
the field by a periodic factor and its lagrangian remains unaffected by the transformation.
This property is particularly interesting for the context of string theory and supergravity
where such symmetry is related to geometrical aspects which, in some extensions, could
create fields that started the period of inflation. Another possibility is that the axion-like
fields can be used as candidates for dark matter, its shift symmetry allows them to be weakly
interacting to the other matter content of the universe, which is a very important property for
the dark matter description. In [19] there is a more complete discussion about the intriguing
aspects of axions in the cosmological context. Either way, it seems that axion-like fields
could play a role in the description of our universe, and because of this, we want to examine
a scenario where an axion-like field evolves along with the inflaton during the primordial
phase of the universe. A successful description of the behavior of the axion field evolving
through the landscape could be given by the primordial statistics of the universe, and in this
case, a probability distribution function for the axion field is one of the main objectives of
this thesis.

The outline of this thesis is the following: In Chapter 1, we discuss in more details the
ΛCDM model of cosmology and how it arises from the theory of general relativity of Einstein.
In Chapter 2, we present Inflation as a solution to the problems of the standard model of
cosmology. In Chapter 3 we analyze the implications of the time-dependent background
quantities that parametrize inflation for the scale invariance of the tensor power spectrum.
In the next Chapter 4, we describe the statistics of the excursions of an axion-like field
evolving through the landscape during the inflationary era.
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Notation and Conventions

During this tesis the following conventions will be used:

• Natural units c = ~ = 1.
• We use a reduced Planck mass: M2

Pl ≡ 32πGN , with GN Newton’s constant.
• We use Einstein’s summation over repeated indices. Greek and Latin indices ranges

are given by: µ, ν, ... = 0, 1, 2, 3 and i, j, ... = 1, 2, 3.
• Sometimes we use x0 = t to simplify notations, where dots denote time derivatives, e.g.
Ȧ = dA/dt.
• We denote spatial 3-dimensional vectors in boldface, e.g. x,y,...
• The Minkowski metric is given by ηµν ≡ diag(−,+,+,+).
• Sometimes we use shortened notation

∫
p · · ·

∫
q ≡

∫ d3p
(2π)3 · · ·

∫ d3q
(2π)3 and

∫
p0
≡
∫ dp0

2π .
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Chapter 1

The ΛCDM model of cosmology

In this chapter, we are going to describe the dynamics of the universe according to the stan-
dard model of cosmology. We start with Section 1.1, where we analyze the Einstein equation
for general relativity in order to describe the dynamics of our universe. In Section 1.2, we
introduce the metric that describes our universe, the Friedmann-Robertson-Walker metric,
which is a homogeneous and isotropic solution to the Einstein’s equation. In Section 1.3,
we introduce Friedmann’s solution to different matter sources. In the following Section 1.4,
we present the Cosmic Microwave Background as one of the main observables for primordial
cosmology. In the following two sections, we show that the standard model of cosmology has
some problems in order to give a good description of our universe. We separate those prob-
lems into "old" problems, discussed in Section 1.5, that were fundamental for the paradigm
shift that motivated the main topic of this thesis and some "new" problems, discussed in
Section 1.6, that were used to reinforce that new paradigm.

1.1 Background dynamics

The discoveries about the expanding universe [24] or the recent discover of gravitational
waves coming from different sources [16, 20–23], tell us that the space-time can be deformed,
expand, and vibrate as a dynamical object. Those dynamics of the space-time are ruled by
the Einstein equations for General Relativity that describe the evolution of the space-time
given a metric gµν(x, t), which has all the information about the geometry,

ds2 = gµν(x, t)dxµdxν . (1.1)

The energy content of the universe depends on the object that is deforming the space-time and
its description is given by the energy-momentum tensor Tµν , where its components describe
properties such as internal energy, shear stress and pressure of matter. Geometry and energy
are combined via the Einstein equation, which describes the change in the geometry given
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the matter content that is deforming the space-time, the equation reads as follows:

Gµν = 8πGTµν . (1.2)

In the previous expression Gµν is known as the Einstein tensor and is given by

Gµν = Rµν −
1
2Rgµν , (1.3)

where we used the following definition of the Ricci tensor which tells us how curved is the
space-time,

Rµν ≡ ∂λΓλµν − ∂νΓλµλ + ΓλλρΓρµν − ΓρµλΓλνρ. (1.4)

From the previous expression Γµαβ are known as the Christoffel symbols whose definition is
given by,

Γµαβ ≡
1
2g

µλ (∂αgβλ + ∂βgαλ − ∂λgαβ) , (1.5)

where R is the Ricci scalar
R ≡ gµνRµν . (1.6)

During this thesis, we will be dealing with extra degrees of freedom in the context of
gravity, and because of that, we will present a more intuitive formalism to include them in
the Einstein equation. The following action is called the Einstein-Hilbert action,

S = 1
8πG

∫
d4x
√
−g (R + LM) , (1.7)

which yields the Einstein equations through the principle of least action. Any extra degree
of freedom can be added to the action through LM , which is the Lagrangian of the energy
content and it could include different matter sources, or different kinds of fields, coupled to
gravity.

1.2 The Friedmann-Lemaître-Robertson-Walker universe

Observations tell us that a large scales our universe is, to a first approximation, isotropic
and homogeneous. This means that it doesn’t matter in which direction are we looking to,
our universe looks the same to all observers, and its matter content is distributed equally
in the space. Now, in order to use the Einstein equations for our universe, we must include
this features in the geometry of the space-time. The metric solution of those equations that
includes the previous symmetries is called the Friedmann-Lemaître-Robertson-Walker metric
(FLRW metric) and is given by, in spherical coordinates,

ds2 = gµνdx
µdxν (1.8)

= −dt2 + a2(t)
[

dr2

1− kr2 + r2dΩ2
]
, (1.9)
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where a(t) is called the scale factor which describes the time dependent expansion of the 3-
dimensional space. Also, depending on the value of k our universe could be positively curved
(k = +1), negatively curved (k = −1) or spatially flat (k = 0). Since we are dealing with
and expanding universe, we need to take care on how the light signals propagate. Starting
from this, we can define the redshift z of the light traveling through universe in terms of the
expanding a(t) parameter as follows,

1 + z ≡ a(t0)
a(t1) , (1.10)

where the times t1 and t0 are selected as time of departure and arrival, respectively.
The rate of expansion can also be defined from the expanding parameter, this quantity is
known as the Hubble parameter and it is defined as,

H(t) ≡
˙a(t)

a(t) . (1.11)

At this point, we can also define a new temporal quantity which scales with the expansion
of the universe. We define the conformal time τ , as follows,

dτ ≡ dt

a(t) . (1.12)

Is straightforward to see that this redefinition of time allow us to write the FRW metric in
a more compact way,

ds2 = a2(τ)
[
−dτ 2 + dr2

1− kr2 + r2dΩ2
]
. (1.13)

We have now described the geometry of our cosmological space-time. In the other side
of the picture, the fact that we are dealing with a homogeneous and isotropic universe also
implies that the energy content of the universe should follow the same description, for this,
the energy-momentum tensor of a perfect fluid is useful to describe how matter behaves in
large scales of the universe,

Tµν = (ρ+ P )UµUν − Pgµν , (1.14)

where Uµ ≡ dXµ/ds is the relative four-velocity between the fluid and the observer, while ρ
and P are the energy density and pressure in the rest-frame of the fluid. In particular, due to
homogeneity and isotropy, we can consider that the relative velocity is the same as that of a
comoving observer, Uµ = (1, 0, 0, 0), which gives a particular form to the energy-momentum
tensor,

T µν = gµλTλν =


ρ 0 0 0
0 −P 0 0
0 0 −P 0
0 0 0 −P

 . (1.15)

The main property of any energy-momentum tensor is that it is covariantly conserved,

∇µT
µ
ν = ∂µT

µ
ν + ΓµµλT λν − ΓλµνT

µ
λ = 0, (1.16)
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using (1.9) and (1.15) in the previous expression we obtain the continuity equation for a
perfect fluid in a expanding FRW universe,

ρ̇+ 3 ȧ
a

(ρ+ P ) = 0 (1.17)

This implies that the evolution of the energy content of the universe depends on how the
universe expands.

Also, if we know the FRW metric (1.9), the energy-momentum tensor (1.15) and the
Einstein equation (1.2), we can combine them to get the Friedmann equations, that describe
the dynamics of a expanding space-time given the energy content of a perfect fluid,(

ȧ

a

)2
= 8πG

3 ρ− k

a2 , (1.18)

ä

a
= −4πG

3 (ρ+ 3P ). (1.19)

This gives a complete description of any kind of universe which is isotropic, homogeneous
and its energy content is described by a perfect fluid.

1.3 ΛCDM model

Now we have the appropriate tools to present the model that describes our universe. Accord-
ing to the Friedmann equations, the evolution of our universe is ruled by its energy content.
An important point here is that both ρ and P must be understood as the sum of all different
kinds of contributions to the energy density and pressure of our universe. This is because
different matter sources have their own dependence on the scale factor a(t) given by the
continuity equation (1.17). This implies that our universe can be separated into different
epochs, where each epoch has a energy content which dominates during the evolution of the
unvierse. We can solve (1.17) in terms of the equation of state w = P/ρ in which is included
matter (w = 0), radiation (w = 1/3) and vacuum energy (w = −1). So, we have the following
expression for each part of the energy content in terms of its equation of state

ρ ∝ a−3(1+w), (1.20)

and hence;

ρm ∝ a(t)−3, for matter, (1.21)
ρν ∝ a(t)−4, for radiation, (1.22)
ρΛ ∝ a(t)0, for vacuum. (1.23)

We can rewrite the first Friedmann equation (1.18) as a function of the Hubble parameter in
the following way,

H2 = 8πG
3 ρ− k

a2 . (1.24)
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According to observations, we know that our universe at present time is approximately flat
(k ≈ 0), this allow us to compute the critical density ρcrit in terms of the Hubble constant
H0, where the 0-subscripts denote that the time dependent quantities are valuated at the
present time,

ρcrit = 3
8πGH

2
0 . (1.25)

We can use this quantity to define the dimensionless density parameters Ω0 ≡ ρ0/ρcrit. The
previous argument allow us to write the Friedmann equation (1.18) as follows:

H(a)2 = H2
0

[
Ωr,0

(
a0

a

)4
+ Ωm,0

(
a0

a

)3
+ Ωk,0

(
a0

a

)2
+ ΩΛ,0

]
, (1.26)

where we have defined the curvature density parameter, Ωk ≡ −k/(aH)2 evaluated today.
The observations show us that the dimensionless density parameters for our universe "today"
are given by:

Ωr,0 = 9.4× 10−5, Ωm = 0.32, |Ωk| ≤ 0.01, ΩΛ = 0.68. (1.27)

From this we can conclude that our universe is mostly filled with a 68% of vacuum energy,
also know as dark energy, and a 32% of matter, where the matter content is divided in ordi-
nary "baryonic" matter (5%) and Cold dark matter (26.8%).

1.4 Cosmic Microwave Background

In the earlier times of our universe, two different kinds of energy content, matter and radia-
tion, were coupled together in a hot and dense state. In order to create the anisotropies from
this primordial fluid, we need to induce deviations from the local thermal equilibrium. "How
to?" is one of the main topics of the next chapter, for now, we are going to assume that we
have these deviations in our model. The temperature fluctuations started to induce quantum
interactions inside the primordial fluid and gave birth to the standard model particles, the
physics of this transition lay on the theory of reheating, a topic which is out of the scope
of this thesis. The different processes for these particles depend only in the temperature of
the universe at a given time. This implies that as the universe cools down different kind of
particles started to appear in our universe.

One of the main events in the history of our universe is called recombination. This epoch
starts with the formation of neutral hydrogen through the reaction e−+ p+ → H + γ leaving
the photons created from this reaction to stream freely across the universe at the tempera-
ture of approximately 3000K. Those primordial photons that were produced at the epoch
of recombination left their imprint in one of the first pictures of our universe. As mentioned
in the introduction, this first signal was discovered accidentally in 1964 by Arno Penzias and
Robert Wilson [10] and the main picture was obtained in 1992 by the COBE mission [24].
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Figure 1.1: Comparison between the CMB picture obtained from COBE [24], WMAP [41]
and PLANCK [43]. Credits for the picture: Brian Koberlein

The discovery from COBE also motivate different experiments which improved the resolution
of the temperature fluctuations. This imprint of the recombination epoch of our universe is
known as the Cosmic Microwave Background (CMB).

The principal feature of the CMB is that it is isotropic and homogeneous, just like our
universe at large scales. The color temperature today of the decoupled photons (figure 1.1)
has cooled down to T = 2.7260K with fluctuations around this central value of magnitude
∆T = 0.0013K. The measurement of these temperature fluctuations represents one of the
main observations in cosmology and, in order to make a good description of the sky, we need
to introduce an angular description of this map. The small anisotropies of the universe are
well described using a spherical harmonics mapping Ylm(θ, φ) as follows,

∆T
T

=
∞∑
`=1

∑̀
m=−`

a`mY`m(θ, φ). (1.28)

The observed temperature fluctuations of the CMB are well described by a Gaussian dis-
tribution, this turned out to be one of the triumphs of the topic that will be presented in
the next chapter. For now we have that for Gaussian distributions, the complete map of
the temperature fluctuations is given by correlations of temperature CTT at different angular
points n and n’,

CTT (θ) ≡
〈

∆T
T

(n)∆T
T

(n’)
〉
, (1.29)

where θ = cos−1(n·n’). This correlation between the temperatures is related to the multipole
moments alm as it follows,

〈a`ma∗`′m′〉 = CTT
` δ``′δmm′ , (1.30)

where CTT
` is the angular power spectrum of temperature fluctuations. The following plot

shows how the angular power spectrum for the CMB temperature fluctuations depends on
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Figure 1.2: Plot of the angular power spectrum D` ≡ `(` + 1)CTT
` /(2π) in terms of the

multipole moment ` and the angular scale. Plot obtained by Planck [34]

the scale k.
The angular power spectrum encodes the information of how the different scales of fluctua-
tions are affected by the different contents of the universe. The great success of the ΛCDM
model of cosmology is that it reproduces the shape of the power spectrum, giving a successful
description of all the other cosmological phases of the universe.

1.5 "Old" problems in cosmology

Despite the fact that the ΛCDM model gives a good explanation to the evolution of the
universe for different matter sources, there are still some limitations of the theory when we
try to describe its origin. In this section, we will describe the first problems that motivated
the construction of the theory of cosmic inflation.

1.5.1 Flatness problem

In the previous subsection in order to define the critical density of our universe we used the
fact that our universe today is nearly flat (k ≈ 0), but in fact, the standard ΛCDM predicts
a different thing. We know that observations tell us, according to eq.(1.26), that the density
related to the curvature of the universe today is given by:

|Ωk,0| =
k

(a0H0)2 ≤ 0.01. (1.31)
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The problem starts when we decide to analyze the Friedmann equations of this curvature
energy density Ωk. First, let us define a new quantity called the Comoving Hubble radius χc
which according to the Friedmann universe is given by,

χc = 1
aH

= 1
H0

a(3w+1)/2, (1.32)

where w is the equation of state for different matter sources. We can relate this comoving
Hubble radius to the curvature density Ωk via,

Ωk = k(χc)2, (1.33)

which implies that for any energy source with an equation of state w > −1/3 the comoving
radius grows. Now, if most of the energy content of universe meets the condition of a
growing comoving Hubble radius, why then the curvature density Ωk today is close to zero?
This problem is known as the flatness problem.

1.5.2 Horizon problem

For this problem, we need to define two new quantities: The comoving distance and the
particle horizon. We briefly define them as follows,

• Comoving distance: In principle, the definition of distances in an expanding universe
in really "tricky" because particles take some time to travel from 1 to 2. Due to the
fact that the scale factor is a function of time, it is not clear which dependence of time
of the scale factor we should be using. One way to define distances is to consider that
we have traveling photons which move in null geodesics (ds2 = 0), this is known as the
comoving distance,

χ(τ1, τ2) =
∫ τ2

τ1
dτ

= 1
(aH)τ2

2
3w + 1

( a

a(τ2)

)(3w+1)/2
a(τ1)

a(τ2)

. (1.34)

• Particle horizon: We can use the comoving distance to define the particle horizon
χph, which is the furthest distance between two objects that can be in causal correlation.
From this, we only need to take the limit τ1 →∞ in the definition of comoving distance
(1.34) which give us,

χph(τ∞, τ) =


∞, w < −1/3

1
aH

2
3w + 1 , w > −1/3

(1.35)

With these definitions, we can consider 2 points in the space at redshift z and compute how
the comoving distance relates to the maximum causal connected distance of their respective
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light cones. If we select w > −1/3 (which describes most of the baryonic energy content),
then the rate between the comoving distance and the particle horizon is given by,

χ(z)
χph(z) = 2

√
1 + z. (1.36)

The problem appears when we take two points from the CMB at redshift zCMB ≈ 1100, this
implies that the rate is χ(zCMB)/χph(zCMB) ≈ 66. From this we can conclude that 2 points
in the CMB are causally disconnected although their temperatures are almost the same, this
contradiction is known as the horizon problem.

1.6 "New" problems of cosmology

In this subsection, we are going to describe some of the new problems of the ΛCDM model,
which are mostly related to the behavior of perturbations in an FRW universe and they are
the following.

1.6.1 Scale invariance

In order to describe this problem first, we need to specify what we mean by scale-invariance.
For this, consider a correlation of fields as follows,

〈R(x1)R(x2)...R(xn)〉, (1.37)

where the brackets represent statistical correlations between the R′s at different points in
space. This is the same as computing statistical moments of quantities using its probability
distribution function. For a particular case when the quantities are treated quantum me-
chanically, this correlations could be computed using techniques such as the In-In formalism,
which will be presented in the next chapter.
Scale-invariance tells us that we can perform a “scaling” in the coordinates xi → λxi and
that should leave our correlations invariant,

〈R(x1)R(x2)...R(xn)〉 = 〈R(λx1)R(λx2)...R(λxn)〉. (1.38)

Now, from the angular power spectrum plot (figure 1.2) we can notice that at very large
scales, from ` = 0 ∼ 50, the power spectrum looks like a flat line, this implies that the CTT

`

is “approximately” (and we stressed out the approximately because one of the main topics
of this thesis, Chapter 3, involves the analysis of this approximation) given by:

CTT
` ∝ C

`(`+ 1) . (1.39)
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Using this we can roughly compute the correlator. If this correlation doesn’t depend on the
scaling, then we can say that it is scale-invariant. Let us compute the following, using the
flat sky approximation,〈

∆T
T

(n)∆T
T

(n’)
〉

=
∫
d`

∫
d`′

〈
∆T
T

(ˆ̀)∆T
T

(ˆ̀′)
〉
ei

ˆ̀·nei
ˆ̀′·n’ (1.40)

=
∫
d`

∫
d`′
δ(ˆ̀+ ˆ̀′)CTT

` ei
ˆ̀·nei

ˆ̀′·n’ (1.41)

where the delta function appears due to the homogeneity and isotropy of our universe, using
(1.39), 〈

∆T
T

(n)∆T
T

(n’)
〉

=
∫
d`

C

`(`+ 1)e
iˆ̀·(n−n’) (1.42)

≈ Constant, (1.43)

this implies that our universe is scale-invariant at large scales. Since the ΛCDM model
doesn’t explain why the CMB power spectrum is scale invariant at primordial scales we
consider this a problem in the model.

1.6.2 Coherent Hubble perturbations

This particular idea is known not as a problem but a feature that the primordial theory of
the universe should have in order to reproduce the primordial angular power spectrum. It
was pointed out first by Scott Dodelson in [27]. In that work, he briefly describes that the
characteristic peaks in Figure (1.2) are clear, and not just a flat line, because of all the Fourier
modes coming from the primordial correlations are coordinating their phases when they re-
enter the Hubble radius. How can the perturbations match their phases? This is another
of the new problems of the ΛCDM model and we need to present a natural mechanism to
create coherent Hubble perturbations.
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Chapter 2

Inflation

In this chapter, we present the paradigm shift that allowed to solve the previous problems
of the ΛCDM model that appeared when we asked ourselves the primordial questions of
our universe. We introduce a new epoch in the early universe known as cosmic inflation.
This theory started around 1973 by Alan Guth [12] as a solution of the two “old” problems
presented before: The horizon and flatness problem. As years went by, people discovered that
this inflationary universe not only solve the old problems, but its fluctuations gave a natural
origin to the primordial seeds of our universe when we treated them quantum mechanically.

This chapter is presented as it follows. In Section 2.1, we describe the geometry of this
epoch of the universe given by a primordial de-Sitter space-time. In Section 2.2, we present
the topic of Single field slow-roll inflation as a solution to the old problems, also, we introduce
the slow-roll parameters which keep in control inflation. In Section 2.3, we analyze how the
primordial perturbations coming from the inflaton field behave during inflation. In Section
2.4, we describe how the statistics of the primordial fluctuations can reproduce the ones in
the angular power spectrum described before. In Section 2.5, we present the quantization
procedure for the fluctuations and introduce the mechanism to compute primordial correla-
tion functions. In Section 2.6, we connect the correlation of quantum fluctuations to the ones
in the angular power spectrum. In the last section 2.7, we briefly describe how inflation can
be obtained considering more degrees of freedom in a topic called multi-field inflation.

2.1 de-Sitter space

A natural description of the primordial universe appeared when the de-Sitter geometry,
worked around the 1920’s by Willem de Sitter and Albert Einstein, was used as an ex-
ponential expanding solution to the Einstein equations. In this section, we are going to
describe some important geometrical properties of de-Sitter geometry and discuss how these
properties are naturally connected with the ones required for inflation.
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The de-Sitter space is known as a maximally symmetric space, where the line element is
given by, using the conformal time:

ds2 = −dτ
2 + dx2

(Hτ)2 . (2.1)

In the previous expression, the scale factor is equal to,

a(t) = eHt; H = constant. (2.2)

Because a de-Sitter space-time behaves as a maximally symmetric space, it comes with 10
isometries described as follows:

• 3 Spatial translations: These translations isometries give an explanation to the
homogeneity of the CMB. Since all the fluctuations started from a de-Sitter universe,
as we will show in this chapter, every perturbation has to respect the same symmetries
as they evolve during inflation leaving us with a homogeneous imprint in the CMB.
• 3 Spatial rotations: Rotation isometries can be used to describe the isotropy of the

CMB since rotational invariance tells us that the temperature fluctuations in the CMB
do not depend on the observational directions.
• Dilation: The dilation isometries are given by,

τ → τ(1 + λ), x→ x(1 + λ), (2.3)

which together with the previous isometries allow us to construct a scale invariant
power spectrum.
• dS-boost: Just like the boost part of the Lorentz transformations, the de-Sitter space

has its own boosts described as follows, in its infinitesimal form:

τ → τ(1− 2b · x), x→ x− 2(b · x)x + (x2 − τ 2)b. (2.4)

A detailed discussion of the previous symmetries in the context of inflation is given in [28].

This collection of symmetries describe most of the physical characteristics that we need for
the primordial temperature fluctuations. Now, let us briefly describe how the “old” problems
can be solved using a de-Sitter expanding universe.

• Flatness and Horizon problems: According to eq.(1.32) the solution to the flatness
problem can be obtained in a period of a shrinking comoving Hubble radius which
implies an equation of state with w < −1/3. For a de-Sitter universe, we have that the
ratio of change of Xc is given by

d

dt

(
1

a(t)H

)
= −e−Ht < 0; H = const (2.5)

this implies a shrinking comoving Hubble radius and, indeed, a equation of state w <

−1/3. Moreover, we can notice that, according to eq.(1.35), the previous equation of
state also solves the horizon problem.
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2.2 Single field slow-roll inflation

In the previous section, we described how a de-Sitter primordial expanding universe solves
some problems of the ΛCDM model cosmology. Since after this exponential expansion we
need to continue with the evolution of our universe, inflation has to end. The question now
is how can we stop this evolution? For this we have one preferred choice, what about if we
consider a cosmological constant Λ, where we know that according to the Einstein equations
that lead us to an exponential expansion, but in this case, we put some “clock” φ in such a
way that Λ → Λ(φ). This clock will be used to turn off Λ and stop the exponential growth
of the universe. We will call this clock the inflaton field which can have different origins
depending on the primordial theory. There are two different approaches to this:

• The field φ could appear breaking the time diffeomorphisms for a de-Sitter symmtery.
The symmetry breaking will induce Goldstone bosons which will be related to the
perturbations of φ, being this perturbations the ones that will be treated quantum
mechanically. This topic is covered by the Effective Field Theory of Inflation [64].
• The other option, the canonical one, is to consider the field φ with a particular almost-

flat potential V (φ). The modifications from this could include changes in the kinetic
terms and more exotic potentials, worth to mention that all of these different consid-
erations are included in the Effective field theory approach.

During this introduction to the topic, we are going to focus on this last option and as we
advance in this thesis we will make some comments on the Effective field theory of inflation
point of view.

The most simple approach to the inflationary theory is given by the model known as Single
field slow-roll inflation and is described by the following action:

S = −1
2

∫
d4x
√
−g

[
M2

plR + (∂µφ∂µφ) + 2V (φ)
]
, (2.6)

this is the Einstein-Hilbert action described before (1.7) plus the action of a scalar field, the
inflaton, which is minimally coupled to gravity. During the first chapter, we mentioned that
the information about the energy content of some epoch in the universe was encoded by its
energy-momentum tensor Tµν . In the inflationary era is straightforward to check that the
energy-momentum tensor for a scalar field theory is given by:

Tµν = − 2√
−g

δS

δgµν
= ∂µφ∂νφ− gµν

[1
2∂µφ∂

µφ+ V (φ)
]
. (2.7)

Also, the equation of motion for the inflaton can be obtained directly using the principle of
least action for eq.(2.28),

1
√
g
∂µ [√ggµν∂νφ] + ∂

∂φ
V (φ) = 0. (2.8)
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One of the requirements of the theory of inflation is that the inflaton field φ(x, t) could be
decomposed in a homogeneous part, which only depends on time, and perturbations around
that background as follows,

φ(t,x) = φ(t) + δφ(t,x), (2.9)

where ϕ(t,x) is a perturbation from the homogeneous background. For now, let us discard
the perturbations and focus only on the homogeneous background solution φ→ φ(t). Using
the equation of motion (2.8) for the background inflaton, we get the following:

φ̈(t) + 3Hφ̇(t) + ∂

∂φ
V (φ) = 0. (2.10)

Furthermore, we can relate the energy content given by the scalar field (2.7) with the energy-
momentum tensor of a perfect fluid (1.15), this gives us the following relations between a
perfect fluid and the scalar field’s kinetic and potential energies,

ρ = 1
2 φ̇

2 + V (φ), (2.11)

P = 1
2 φ̇

2 − V (φ). (2.12)

Putting all these relations back together in the first Friedmann equation (1.18), we obtain:

3H2M2
pl = 1

2 φ̇
2 + V (φ). (2.13)

This is one of the master equations which relates the evolution of the background inflaton
field to the expansion of the universe.

Now, let us think for a moment how can we stop this period of exponential expansion.
Previously we have described that this expansion can be ruled by the geometry of a de-Sitter
space-time, where its main feature is that the Hubble parameter H of the exponential expan-
sion is constant. We have presented the inflaton field as a clock that stops the exponential
evolution, in the following discussion we are going to describe how to connect this clock to
the exponential evolution and how to stop it.

The first ingredient is to analyze the nature of this constant parameter H in the expanding
universe. The fact that Inflation did end tell us that the parameter H is actually a function
of time H → H(N) but with small variations from a constant value H0 = H(N0), where N
is a new type of time measure known as the number of e-folds defined as:

dN = d(ln a) = H(t)dt. (2.14)

Since we allow the Hubble parameter H(N) to be slowly varying around a constant H0 we
can perform a taylor expansion around that value,

H(N) = H(N)
∣∣∣∣∣
N=N0

+ dH(N)
dN

∣∣∣∣∣
N=N0

(N −N0) + ... (2.15)

= H0

(
1− ε(N)

∣∣∣∣∣
N=N0

(N −N0) + ...

)
, (2.16)
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where we have defined ε(t) ≡ −d lnH/dN = −Ḣ/H2, this function is known as the First
slow-roll parameter and describes the deviations of H(t) from a constant parameter H0. This
leads us to a fundamental requirement for the inflationary universe, ε should remain small
in order to have a de-Sitter (or in this particular case a Quasi de-Sitter) expanding universe,
and also, it should grow in order to stop Inflation.

Now that we’ve defined the first parameter that controls inflation, we have another re-
quirement. The function ε, besides the fact that it should remain small, ε� 1, it also needs
to be almost constant during all the period of Inflation to avoid sudden grows in its value.
In order to achieve this, we can use the same argument for the Hubble parameter. Let us say
that the first slow roll parameter is almost constant with small deviations from a constant
value ε0 = ε(N0) as follows,

ε(N) = ε(N)
∣∣∣∣∣
N=N0

+ dε(N)
dN

∣∣∣∣∣
N=N0

(N −N0) + ... (2.17)

= ε0

(
1− η(N)

∣∣∣∣∣
N=N0

(N −N0) + ...

)
, (2.18)

where η(t) ≡ d ln ε/dN = ε̇/(Hε) is known as the second slow-roll parameter and parametrizes
deviations for a constant (and small) ε0. An important remark is that using the same pro-
cedure we can construct recursively every order of slow roll parameters, but since the two of
them are already small we don’t need to consider the other ones.

To summarize, we have related the deviations from perfect de-Sitter universe with two new
functions that should remain small in order to describe Inflation, this the first ingredient of
the inflationary theory and it will be one of the key arguments in the calculation from Chapter
3, where the relationship between these parameters allow us to connect scalar perturbations
with tensor perturbations. Finally, the slow roll conditions are given by:

ε(t) ≡ − Ḣ

H2 � 1; η(t) ≡ ε̇

Hε
� 1. (2.19)

The second ingredient is to relate the slow-roll parameters to our “φ clock” that stops
inflation. For this we use the Friedmann equations (1.18-1.19) and the previous expressions
(2.19). We can obtain the following relation between the background scalar field and the first
slow-roll parameter,

ε(t) = 1
2
φ̇(t)2

M2
plH

2 . (2.20)

In the same way for the second slow-roll parameter we have,

η = ε̇

Hε
= 2 φ̈

Hφ̇
− 2 Ḣ

H2 . (2.21)

Now, if we use the slow-roll conditions for the previous expressions we can simplify the master
equations for the scalar field, for the Friedmann equation (1.18) we obtain:

H2 ≈ V

3M2
pl

. (2.22)
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Using the same procedure now for the continuity equation (1.17),

φ̇ ≈ − 1
3H

∂V

∂φ
.. (2.23)

There are 2 remarkable things about the previous equations:

• The continuity equation (1.17) which started as a second differential equation ended
up as a first order differential equation (2.23). This approximation allows us to lose
the memory of one of the initial conditions and in principle could lead us to attractor
solutions in the phase space for the field.
• The left-hand side knows about the dynamics of our universe while the right-hand side

is purely field content given by the potential of the field. This implies that the amount
of inflation only depends on the scalar potential V (φ).

Now we have all the tools needed to describe the inflationary era of our universe. We have
defined the deviations from de-Sitter and we connected them with our “clock φ” in order to
stop inflation. The next step is to analyze the end of inflation and the amount of time that
we need in order to have solutions to the problems presented in Chapter 1.

Let us recall the rate of change of our comoving Hubble radius for a de-Sitter expansion,

d

dt

( 1
aH

)
= − ȧH + aḢ

(aH)2 = −1
a

(1− ε) < 0. (2.24)

This implies that, if we take ε ≥ 1, then the condition of de-Sitter expanding universe breaks
and Inflation stops. The duration of Inflation can be obtained through the counting of e-folds
where, in an accelerated expansion, is given by the following expression:

N =
∫
d ln a =

∫ te

ti
H(t)dt, (2.25)

where te is defined via ε(te) = 1, the end of inflation. Now, using the slow-roll conditions we
can rewrite the number of e-folds as a function that depends on the dynamics of the inflaton
field,

N =
∫ te

ti
H(t)dt =

∫ φe

φi

H

φ̇
dφ ≈

∫
V

(
∂V

∂φ

)−1

dφ (2.26)

The number of e-folds needed to reproduce the seeds in the CMB is Ncmb ' 60, this implies
that any potential that could achieve this number of e-folds is a good candidate to expand
our primordial universe.

2.3 Perturbation theory in Inflation

In the previous section, we described the foundations of the inflationary theory and we
mentioned that the inflaton field had a background part which was only time dependent. In
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this section, we are going to discuss the behavior of the small fluctuations of the inflaton field
δφ(x, t) from the following expression,

φ(x, t) = φ0(t) + δφ(x, t), δφ(x, t)� φ(t). (2.27)

Let us recall that the action of the inflationary era was previously discussed and it was given
by:

S = −1
2

∫
d4x
√
−g

[
M2

plR + (∂µφ∂µφ) + 2V (φ)
]
, (2.28)

where we have a coupling between the inflaton field φ(x, t) and the determinant of the metric
of an expanding universe ∝ g = det(gµν). This coupling makes the equation of motion for
the field φ(x, t) highly nonlinear and its way to be solved is using perturbation theory around
the background field φ0(t), and around the background FRW metric.

Considering the following small perturbation hµν of the FRW metric ḡµν ,

gµν = ḡµν + hµν , (2.29)

where the perturbations of the metric are coupled to the perturbations of the inflaton field
δφ(x, t) via the Einstein equations. First, we are going to focus on a flat Friedmann-
Robertson-Walker background, using the conformal time,

ds2 = a2(τ)
(
dτ 2 − δijdxidxj

)
. (2.30)

A perturbation of the previous metric can be written as follows,

ds2 = a2(τ)
(
(1 + 2A)dτ 2 − 2Bidtdx

i − (δij + hij)dxidxj
)
, (2.31)

where, in order to respect symmetries of the background metric, the perturbation hµν must
have some particular features. Isotropy and homogeneity, the key elements of the background,
tells us that the perturbation of the metric can be decomposed into scalars, vectors, and
tensors, which are decoupled at linear order during their evolution. For vectors is familiar
that, due to Helmholtz theorem, we can split a vector Bi into the gradient of a scalar B and
a divergenceless vector B̂i,

Bi = ∂iB + B̂i. (2.32)

In a similar way, there is a generalization of the Helmholtz theorem for any rank symmetric
tensor. In our case we can decompose the rank-2 symmetric tensor hij into a scalar, vector,
and tensor components as it follows:

hij = 2Cδij + 2∂〈i∂j〉γ + 2∂(iγj) + 2γij, (2.33)

where,

∂〈i∂j〉γ ≡
(
∂i∂j −

1
3δij∇

2
)
γ, (2.34)

∂(iγj) ≡
1
2 (∂iγj + ∂jγi) . (2.35)
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Just as before, the decomposition put some features in the components of the original ten-
sor. The vector and tensor part of the decomposition are now divergenceless and traceless
respectively, i.e. ∂iγ̂i = 0, ∂iγij = 0 and γii = 0. This implies that the perturbed quantities
around inflation have three main features:

• Scalar degrees of freedom could appear as perturbations of the metric and/or pertur-
bations of the inflaton field, this implies some kind of relationship between both of the
scalar degrees of freedom.
• The perturbation of the metric involves the appearance of tensor degrees of freedom.

These tensor perturbations are related to the production of primordial gravitational
waves during inflation and they are essential for the discussion in Chapter 3.
• Vector degrees of freedom decay rapidly as the universe expands. One way to have

significant amplitudes of these vector modes at the present is that they had very large
initial amplitudes. This spoils the initial isotropy of the universe and because of this,
we are going to neglect the vector perturbations of the metric in our description.

On the other hand, an important result appears when we consider a homogeneous FRW
space-time with the following change of spatial coordinates,

xi → x′i = xi + ξi(τ,x), (2.36)

if we assume that the change ξi(τ,x) is small, then the change in the coordinates looks just
like a perturbation. This implies that

dxi = dx′i − ∂ξi

∂τ
dτ − ∂ξi

∂xk
dx′k, (2.37)

which lead us to the following form of the metric,

ds2 = a2(τ)
[
dτ 2 − 2∂ξi

∂τ
dx′idτ − (δij + 2∂(iξj))dx′idx′j

]
. (2.38)

The previous expression looks like we have induced metric perturbations of the form Bi = ∂ξi
∂τ

and γ̂i = ξi in the equation (2.31), but in fact, we have just induced fictional gauge modes
which can be eliminated going back to the previous coordinates. The question now is, how
can we be sure that any perturbation of our metric isn’t just a gauge mode that could be
determined for a particular choice of coordinates? The solution to this is to fix the gauge
liberty of the metric. Previously, we have discussed that the scalar degrees of freedom for the
perturbations could come from two different places: direct perturbations of the scalar field,
or from the perturbed scalar part of the metric. This leaves us with two particularly special
gauge choices:

• Spatially-flat gauge: This gauge choice allow us to select the scalar degrees of freedom
in our theory to come only from the perturbation of the field δφ. This choice is the
same to set C = γ = 0 in the equation (2.31)
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• Comoving gauge: This is the contrary case of the previous gauge choice. In here, we
chose δφ = 0 which implies that the primordial seeds came from the scalar perturbations
of the metric. This particular choice will be helpful and will lead us to remarkable
results in Chapter 3.

With the previous arguments in mind, we are going to focus now on a particular kind of
formalism which doesn’t involve the vector degrees of freedom at the linear order and allows
us to analyze the gauge effect more clearly, the ADM formalism. The Arnowitt-Deser-Misner
formalism is a useful way to split the metric in (3 + 1) dimensions, with this, we can write
the unperturbed metric in the following way:

ds2 = −N2dt2 + gij(N idt+ dxi)(N jdt+ dxj), (2.39)

where N and N i are known as the lapse and shift functions respectively, and gij is the
3-dimensional induced metric. The most important result of using this metric is that the
Einstein-Hilbert action (1.7), without considering matter sources, is written as follows:

SE−H [N,N i, gij] = 1
2

∫
d4xN

√
−g(3)(R(3) −K2 +KijKij), (2.40)

where,
Kij = 1

2N [−ġij +Ni;j +Nj;i], (2.41)

and
K = gijKij. (2.42)

The great advantage of this form of the metric is that it allows us to work with the dynamics
of the spatial part of the metric gij directly and it gives a clearer way to see the scalar spatial
perturbations.

At this point, we should have noticed that we have two different sources for scalar degrees of
freedom: the perturbations from the inflaton and the scalar perturbation of the metric. Now,
we can introduce a gauge-invariant scalar variable called comoving curvature perturbation
which relates the scalar part of the metric, described by C, and the perturbation of the
inflaton δφ in the following way:

R ≡ C + H

φ̇0
δφ. (2.43)

From the previous equation is clear that depending on our gauge choice, the comoving curva-
ture perturbations can be described by either the inflaton fluctuations or the scalar perturbed
part of the metric.

2.4 Primordial statistics of the early universe

In Chapter 1, we showed that the temperature fluctuations in the CMB can be described
statistically using correlation functions between different points in space. This implies that,

26



if inflation is the mechanism that created these fluctuations, then there should be a statistical
way to describe this seeds, this is what we will call primordial statistics. The starting point for
the statistical analysis is to work with a probability distribution function (PDF) which encodes
all the statistical information of a random variable, which in our case are the curvature
perturbations. The probability distribution function for the curvature perturbations ρ(R),
in a particular long-modes limit, is related to a statistical n-point correlation as it follows:

〈Rn
L〉 =

∫
dR Rnρ(R), (2.44)

where the “L” subcript denotes that we are dealing with modes with long-wavelength, this
is translated in a condition for the momenta in the correlation function, but more on this in
Chapter 4.

Since we are dealing with close to Gaussian statistics, we can consider a perturbative
description of this PDF instead of the full n-point correlation. The most important contri-
bution is given by the second order expansion of the PDF called the power spectrum of R,
PR, defined as follows:

〈RkRk′〉 = (2π)3δ(k + k′)PR(k), (2.45)

where the brackets represent the statistical two-points correlation, or average, between the
comoving curvature perturbation R at different scales. Starting from this, we can define the
dimensionless power spectrum by,

∆2
s ≡ ∆2

R = k3

2π2PR(k), (2.46)

where we can see that the primordial power spectrum is a scale-dependent quantity. The
deviations from scale-invariance are described by the scalar spectral index,

ns − 1 ≡ d ln ∆2
s

d ln k , (2.47)

where full scale-invariance corresponds to the value ns = 1. From the previous expression,
we can also define the running of the spectral index by

αs ≡
dns
d ln k . (2.48)

As we saw, the power spectrum is related to the 2-point correlation (or the second sta-
tistical moment) and, if the comoving curvature perturbations R are Gaussian, then the
power spectrum gives us all the statistical information of the field. This argument is the
starting point to talk about primordial non-Gaussianity. The primordial perturbations are
well described by Gaussian distributions but with small room for signals of non-Gaussianity
due to non-linear interactions. Signals of non-Gaussianity can be detected by computing
higher-order correlation functions, and if they are different from zero, then we can say the
primordial comoving perturbation could be non-Gaussian. This kind of effects arises in both
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single field and multi-field inflation. We will focus in how they appear in the context of
multi-field inflation, a topic that will be briefly described in the following sections.

How can we connect these curvature perturbations to temperature fluctuations? As we
saw in Chapter 1, the correlation between temperature fluctuations is described by the CTT

` .
If these fluctuations are ruled by inflation, then CTT

` is defined by the following equation:

CTT
` = 2

π

∫
k2dkPR(k)∆T`(k)∆T`(k), (2.49)

where ∆T`(k) is known as the transfer function which, in general, has to be computed numeri-
cally using Boltzmann-codes such as CLASS [29] that describes the evolution of the curvature
perturbations depending on the background cosmology for different matter sources.

The same statistical description used for the comoving curvature perturbations can be
done for the tensor perturbations of the metric γij, which are connected to the creation of
primordial gravitational waves. The power spectrum for the polarization modes of γij, i.e
h ≡ h+, h× defined as,

〈hkhk′〉 = (2π)3δ(k + k′)Ph(k), (2.50)

can be used to compute the dimensionless power spectrum for the polarization modes:

∆2
h = k3

2π2Ph(k). (2.51)

We define the tensor power spectrum as the sum of the power spectra for the two polarizations,

∆2
t ≡ 2∆2

h, (2.52)

and, in the same way as the one for scalars, its scale-dependence can be described by the
tensor spectral index:

nt ≡
d ln ∆2

t

d ln k . (2.53)

Now that we have an idea of the objects that we need to compute, we are going to describe
in the following section the formalism to compute the correlation functions for curvature
perturbations and for primordial gravitational waves.

2.5 Quantum fluctuations in de-Sitter space

In the previous chapter, we discussed how the early universe perturbations can be related
to the temperature fluctuations in the CMB. Now, we are going to describe the remarkable
result that appears when we treat these perturbations, produced by either the inflaton or
the scalar part of the metric, as quantum fields that can create the primordial seeds of our
universe.
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2.5.1 Free Field action for scalars

First, let us consider the comoving gauge described in the previous subsection. This gauge
choice allows us to set δφ = 0 and relate directly the comoving curvature perturbation to the
spatial part of the perturbed metric:

δφ = 0; gij = a2[(1− 2R)δij + hij], ∂ihij = hii = 0. (2.54)

In this gauge we can use the ADM formalism, presented in the Chapter 1, for this per-
turbed metric. The Einstein-Hilbert action in this formalism including the inflaton field φ is
presented as follows:

Sinfl = 1
2

∫
d4xN

√
g(3)(R(3)−K2+KijKij)+

1
2

∫
d4x

√
g(3)

[
N−1(φ̇−N i∂iφ)2 −Ngij∂iφ∂jφ− 2V

]
.

(2.55)
Starting from this action we can analyze the dynamics of both lapse and shift functions, N
and N i,

∇i

[
Ki
j − δijK

]
= 0 (2.56)

R(3) − 2V − (KijK
ij −K2)−N−2φ̇2 = 0. (2.57)

The previous functions are non-dynamical quantities, this is because if we substitute the first
order solutions for N and Ni back in to the previous action they will not contribute to the
equation of motion. Also, we can expand the previous action up to second-order in R to get
the following simplified expression for the dynamics of the comoving curvature perturbation,

S
(2)
infl = 1

2

∫
d4xa3 φ̇

2

H2

[
Ṙ2 − a−2(∂iR)2

]
. (2.58)

In order to simplify even more, let us define the canonically normalized variable or
Mukhanov variable,

v ≡ zR; z2 ≡ a2 φ̇
2

H2 = 2a2ε, (2.59)

and start using conformal time τ . This leads us to the action for a canonically normalized
scalar field:

S
(2)
infl = 1

2

∫
dτd3x

[
(v′)2 + (∂iv)2 + z′′

z
v2
]
, (2.60)

where the prime denotes derivatives respect to the conformal time ()′ = d
dτ
. From the previous

action is straightforward to see that the equation of motion for the v-field is given by:

v′′ + ∂2v − z′′

z
v = 0. (2.61)

The solution of the previous differential equation is clearer if we treat the field in Fourier
space as it follows,

v(τ,x) =
∫ d3k

(2π)3vk(τ)eik·x, (2.62)
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this leads us to the equation of motion for a free field,

v′′k +
(
k2 − z′′

z

)
vk = 0. (2.63)

This equation is known as the Mukhanov Equation and, in general, is difficult to solve
because of its explicit dependence on the background dynamics via z. Luckily for us, we can
give a solution for the Mukhanov equation in a particular limit, the de-Sitter universe. In
this limit, we can take ε→ 0, or as we saw in the previous section, take H = constant. This
implies the following approximation for z′′/z,

z′′

z
≈ a′′

a
= 2
τ 2 , (2.64)

and therefore the equation that we need to solve now is:

v′′k +
(
k2 − 2

τ 2

)
vk = 0. (2.65)

It can be verified that the exact solutions for this equation of motion are given by:

vk = α
e−ikτ√

2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 + i

kτ

)
. (2.66)

In the next section, we are going to describe some extra condition that we need to impose
on this solution in order to describe the fluctuations quantum mechanically.

2.5.2 Canonical quantization

The next step in order to produce the primordial seeds of our universe is to promote the
v-field to a quantum field, this will allow us to use the techniques from quantum field theory
to describe any possible kind of primordial interaction. First, let us expand the v-field in
plane waves solution as follows,

v(x, τ) =
∫ dk3

(2π)3 v̂ke
ik·x, (2.67)

where,
v̂k = vk(τ)âk + v∗−k(τ)â†−k. (2.68)

In order to give a correct quantum mechanical description of this field, we must choose a
vacuum state for our fluctuations. For this, the standard choice is to take a comoving observer
in the far past, that is, taking τ → −∞ where all the scales were far inside the Hubble horizon
aH � k, in this limit the Mukhanov equation becomes,

v′′k + k2vk = 0. (2.69)
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This is the harmonic oscillator equation for the v-field and we require that its vacuum be the
state of minimum energy. Then the initial condition for the solution should be ruled by the
following condition,

lim
τ→−∞

vk = e−ikτ√
2k
. (2.70)

This condition defines the ground states of the fluctuations as a Bunch-Davies vacuum where,
after imposing this on (2.66), we can see that the modes solutions are given by:

vk = e−ikτ√
2k

(
1− i

kτ

)
, (2.71)

this solutions are known as the Bunch-Davies mode functions.

The next step is to impose the canonical commutation relation between the creation and
annihilation operators, â†k and âk:

[âk, â
†
k′ ] = (2π)3δ(k− k′). (2.72)

The fact that the inflationary perturbations can be expanded into Fourier modes, where all
of them are in phase, tells us that the inflationary theory is the mechanism to create the
coherent Hubble perturbations presented in Section 1.6.2. This is one of the striking aspects
of the perturbations generated during inflation.

2.5.3 Free Field action for tensors

A similar computation to the previous one can be done for the tensor degrees of freedom that
came from the perturbation of the metric. Let us start using the conditions given in (2.54)
and the ADM formalism action (2.55). From them we can obtain the following action for the
tensor perturbation γij,

S
(2)
GW =

M2
pl

8

∫
dτdx3a2

[
(γ′ij)2 − (∂lγij)2

]
. (2.73)

In here we can define the following Fourier expansion for the primordial gravitational waves,

γij =
∫ d3k

(2π)3

∑
s=+,×

esij(k)hsk(τ)eik·x, (2.74)

where we have separated the tensor degree of freedom into its polarization modes, eii =
kieij = 0 and esij(k)es′ij(k) = 2δss′ .
We can also define a canonically normalized field for the polarization modes as follows,

fs ≡
Mpl

2 a(τ)hs. (2.75)

This leads us to the following form of the action (2.73),

S
(2)
GW =

∑
s

1
2

∫
dτd3k

[
(f ′s)2 +

(
k2 + a′′

a

)
f 2
s

]
. (2.76)
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We may notice that the previous action is the same presented before for the comoving cur-
vature perturbation but now for every polarization mode. This implies that the procedure
of canonical quantization can be used in the same way as in the previous section. The simi-
larities between these two cases will be important in the next chapter, where we are going to
discuss a possible connection that could lead to important consequences for the primordial
gravitational waves.

2.5.4 in-in formalism

When we promoted the comoving curvature perturbation to a quantum field we extended
the treatments of regular quantum field theory to this new object; as we showed, second
quantization and plane wave expansion were just a part of the usual elements. What about
if we have now a non-free theory involving interaction between different matter sources or
higher order self-interacting terms? Just as in the usual quantum field theory, we can use a
new quantum picture to describe them. This is known as the interaction picture, and in it,
the action of these fields can be separated in the following way,

S
(2)
infl = S

(2)
0 + Sint, (2.77)

where S(2)
0 correspond to the free part of the action that leads to the free equation of motion

(in our case (2.60)), and Sint represents the interaction part, which in principle could involve
any kind of interaction.

In the interaction picture, the fields evolve via an interaction propagator defined as follows:

U(τ) = T exp
{
−i
∫ τ

−∞+
dτ ′HI(τ ′)

}
, (2.78)

where HI is the interaction picture Hamiltonian which is obtained from Sint. In the previous
expression, we also have T which is known as the time ordering symbol, and∞+ = (1+ iε)∞
is the prescription of isolating the in-vacuum in the infinite past. This formalism allows us
to write the solution fields as,

v(x, τ) = U †(τ)vI(x, τ)U(τ), (2.79)

where vI is the interaction picture field whose mode solutions are given by the free-field
equation, in our case,

vIk = 1√
2k

(
1− i

kτ

)
e−ikτ . (2.80)

This formalism will be crucial for the treatment of extra degrees of freedom during inflation,
which is the main topic of this thesis. The complete and more profound computations will
be shown in the next chapters.
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2.6 From Quantum fluctuations to Power Spectrum

In the previous sections, we showed that the primordial perturbations can be treated quan-
tum mechanically in terms of a field theory. Now we will see that most of the previous
computations can be used to relate these quantum fluctuations with the computation of one
of the main observables of inflation, the power spectrum. Since the power spectrum is related
to the statistical two-point correlation for the comoving curvature perturbations R, we can
connect this with the correlation between quantum fields.

The correlation is particularly straightforward in a free theory. Using the definition of the
canonically normalized fields (2.59) directly in Fourier space we get the following:

〈Rk(τ)Rk′(τ)〉 = 1
2a(τ)2ε(τ) 〈0| v̂k(τ)v̂k′(τ) |0〉 (2.81)

= 1
2a(τ)2ε(τ)(2π)3δ(k + k′)|vk(τ)|2. (2.82)

At this point, we can select a specific instant for the value of the power spectrum. If we
consider that all the modes that we want to correlate need to be evaluated at the time of
horizon crossing, then we can set a(t∗)H(t∗) = k. This ensures us that the perturbations
can re-enter the horizon at different times depending on the scale and interact with different
matter sources during its evolution. With this in mind, we see that the correlation is given
by,

〈Rk(τ)Rk′(τ)〉 = (2π)3δ(k + k′)H
2
∗

2k3
H2
∗

φ̇2
∗
, (2.83)

where, in order to derive the previous expression, we consider that the scales behave as super-
horizon scales, |kτ | � 1. This implies that the dimensionless power spectrum for comoving
curvature perturbations is given by

〈Rk(τ)Rk′(τ)〉 = (2π)3δ(k + k′)PR(k), ∆2
R(k) ≡ k3

2π2PR(k). (2.84)

This implies that the dimensionless power spectrum in terms of the inflaton field is given by:

∆2
R(k) = H2

∗
(2π)2

H2
∗

φ̇2
∗
. (2.85)

The same computation can be done for the tensor modes using (2.75) and evaluating them
at horizon crossing. The power spectrum for tensor modes is given by:

〈hsk(τ)hs′k′(τ)〉 = 4
M2

pla(τ)2 〈0| f̂
s
k(τ)f̂ s′k′(τ) |0〉 (2.86)

= (2π)3δ(k + k′)δss′ 4
M2

pl

H2
∗

2k3 . (2.87)
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This gives the following expression for the dimensionless power spectrum for tensor modes
in a de-Sitter background,

∆2
t = 2∆2

h(k) = 2
π2

H2
∗

M2
Pl

. (2.88)

One remarkable property of the tensor modes is that they don’t interact with mat-
ter sources because they can not be connected with the matter densities via the energy-
momentum tensor to linear order. This implies that the tensor power spectrum does not
need the same transfer functions in order to describe its present shape.

A more delicate treatment of the primordial power spectrum in a quasi-de Sitter back-
ground will be treated in the next chapter where the quantum mechanical description of the
background quantities will induce some new results for the power spectra of both tensor and
scalar modes.

2.7 Multi-field inflation

Throughout this entire chapter, we have told the story of how inflation driven by a single
scalar field led to the primordial seeds of our universe. These seeds were first statistically
described by quantum correlations and then evolved in order to give the plot of the primordial
power spectrum of the CMB.

The scale of energy during inflation was extremely high, around 1015GeV . This is a lot
higher than the energy that drives the collisions at the Large Hadron Collider at CERN,
where they already have confirmed the existence of a particle that comes from a scalar field,
the Higgs particle. Following this motivation, a lot of theories that go beyond the energy
scale of the standard model of particle physics have been developed in the past years, and
surprisingly, many of these theories predict multiple numbers of degrees of freedom. This
is a good motivation to think that maybe during inflation there was more than one scalar
field in the primordial universe. The theory that describes multiple primordial fields during
the beginning of the universe is called Multi-field inflation and is described by the following
action,

S = 1
2

∫
d4x
√
−gR−

∫
d4x
√
−g

[1
2γabg

µν∇µφ
a∇νφ

b + V (φa, φb)
]
, (2.89)

where ∇µ is the space-time derivative. Also, it is clear at this point that the first term
corresponds to the usual Einstein-Hilbert action for the space-time metric gµν . The γab is
the metric that describes the target space produced between the scalar fields. Furthermore,
V (φa, φb) is the potential that describes the behavior of the fields, the shape of this primordial
potential is what we will call during this thesis the landscape, where the fields can experience
different effects as they evolve through it as we will show in the last chapter.
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Let us now describe the dynamics of this kind of action. First, is straightforward to show
that the background dynamics are ruled by the following equations of motion:

D

dt
φ̇a0 + 3Hφ̇a0 + V a = 0, 3H2 = 1

2 φ̇
2
0 + V, (2.90)

where V a = ∂V/∂φa is the partial derivative of V over the fields. The D/dt operator
represents the covariant derivative with respect to the cosmic time t, whose action on a
vector Aa is defined by DtA

a ≡ Ȧa + Γabcφ̇bAc, where Γabc is the Christoffel symbol of the
induced metric γab.

Now, to connect the perturbations of the field to the shape of the landscape, it is useful
to define unit vectors tangent and normal to the trajectory described by the fields. In a
particular case, for 2-fields models, they are respectively defined as:

T a ≡ φ̇a

φ̇0
, Na ≡

√
det γεabT b (2.91)

where we used the following definition, φ̇0 ≡
√
γabφ̇a0φ̇

b
0, and εab is the two-dimensional Levi-

Civita symbol with ε11 = 1. From the previous expression, one important result is that the
scalar perturbations along the landscape can be described in terms of these two vectors in
such a way that:

δφ(x, t) = T a(t)δφ||(x, t) +Na(t)σ(x, t). (2.92)

Written in this way δφ||(x, t) correspond to the inflaton perturbations, parallel to the back-
ground trajectory, whereas σ(x, t) correspond to the perturbations normal to the trajectory.
The σ-perturbations are called entropy perturbations and, in principle, could have imprints
in non-Gaussianities and non-Adiabicity.

Now we have all the tools to describe the effect of different types of degrees freedom in the
primordial statistics of the universe. In the following chapters, we are going the describe the
problems that were the main motivations for this thesis, along with some interesting results.
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Chapter 3

Scale invariance of the primordial
tensor power spectrum

As we previously mentioned, the simplest models of cosmic inflation [12–14, 97] predict both
scalar and tensor primordial fluctuations, characterized by a set of nearly scale invariant
power spectra. While cosmic microwave background (CMB) observations have enabled us to
tightly constrain the power spectrum of scalar perturbations, a detection of primordial gravity
waves (in the form of B-modes) remains a pending challenge. Current efforts to observe the
CMB polarization will reach the limits of cosmic variance, allowing us to either measure or
constrain the tensor-to-scalar ratio r down to r ∼ 0.01 - 0.002 [30–33]. The observation
of B-modes in the CMB would give us access to the value of the Hubble expansion rate H
during inflation, reinforcing the idea that the Hot Big Bang era was preceded by a stage of
dramatic accelerated expansion.

Although current CMB observations are compatible with a nearly scale invariant power
spectrum for curvature perturbations [34], there are some hints of scale dependent features
present in the spectrum at certain multipoles [35–38]. The shape and size of such features
could in principle allow us to discriminate the type of physics that played a role during
inflation, since their appearance in the primordial spectra would invalidate the simplest
models of inflation, forcing us to consider models in which non-trivial degrees of freedom
interacted with primordial curvature fluctuations around horizon crossing [34, 39–55] (see
also [56–58] for early work on features of the tensor spectrum and [59] for an up-to-date
review). The prospects of unveiling physics beyond the single-field slow-roll paradigm has
also propelled new ideas to analyze the presence of such features in 21 cm and Large Scale
Structure observations [60–63].

The effective field theory (EFT) approach to inflation [64, 65] is particularly useful to
understand the appearance of features in the primordial spectra. This formalism allows one
to study models of inflation beyond the canonical single field paradigm by incorporating the
sound speed at which curvature fluctuations propagate, as a parameter in the Lagrangian
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for perturbations. Within this framework, features are the consequence of time variations
of background quantities appearing in the Lagrangian describing the dynamics of the lowest
energy fluctuations. These time variations break – in a controlled way – the standard behavior
required in single field slow-roll inflation, producing localized features in the spectra, though
without invalidating inflation as a mechanism to explain the origin of primordial fluctuations
in a way compatible with observations. Given that the source of features may be traced back
to background parameters that affect the evolution of all perturbations, features appearing
in different n-point correlation functions would be necessarily correlated [17, 66–76]. In the
case of scalar perturbations, a powerful way to study such time-dependent departures from
slow-roll is the joint estimator analysis of two- and three-point correlation functions [76],
since a detection of correlated signals in the power spectrum and bispectrum would increase
the statistical significance of these features.

In this chapter we explore the possibility of establishing a novel class of cross correlation
between spectra. Specifically, the questions we wish to address are the following: If features
in the primordial scalar power spectrum are confirmed, would they also show up in the tensor
power spectrum? In addition, if the scale suppression of the angular power spectrum in the
multipole range 4 ≤ ` ≤ 50 is found to be of primordial origin, what type of signal should
we expect in the angular power spectrum of B-modes? To that end, we study the effect of
time dependent backgrounds on the dynamics of fluctuations in order to correlate features
in the power spectra of scalar and tensor modes. Our main result is that features ∆PT/PT ,
appearing in the tensor power spectrum PT , are correlated to features ∆PS/PS, appearing
in the scalar spectrum PS in Fourier space, in the following way

d2

d ln k2

(
∆PT
PT

)
= 6ε0

∆PS
PS

, (3.1)

where ε0 is the (constant) average value of the slow-roll parameter ε = −Ḣ/H2. This
expression tells us that any feature appearing in the tensor spectrum is in general suppressed
with respect to those appearing in the scalar spectrum [77]. This suppression is two-fold: On
the one hand, ε0 must be small in order to keep inflation valid as a mechanism to produce
fluctuations over a large range of scales. On the other hand, the ln k-derivatives must be
large in order for features to be observable in the scalar power spectrum.1 Note that this
approach is model independent since it takes the scalar power spectrum data as an input
without reference to the mechanism that produces the features.

Our results show that any strong departure of scale invariance in the scalar spectrum must
come together with a consequential departure in the tensor spectrum, but at a level that is too
small to be observed. As a corollary, any future observation of scale invariance departures in
the tensor spectrum cannot be of primordial origin, unless some exotic mechanism underlies
their origin. For example, models where the only background quantity experiencing rapid

1As we shall see in the next section, observable features in the spectra must have an identifiable structure
over a range of scales smaller than ln k. This implies that ln k-derivatives acting on either ∆PT or ∆PS must
be large.
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variations is the tensor sound speed will have features only in the tensor spectrum [78]. On
the other hand, non Bunch-Davies initial conditions may lead to features in the two spectra
with the same amplitude [79]. In this chapter, however, we are interested in predicting the
scale dependence of the tensor spectrum from the scalar power spectrum, highlighting the
perspective of a joint analysis of the two spectra. Having this in mind, in the particular
case of the observed deficit of the angular power spectrum around ` ∼ 20, we conclude that
coming CMB polarization experiments should not encounter any scale dependence of the
spectrum around that region.

This chapter is organized as follows: In Section 3.1 we present the method used and derive
the correlation of the two power spectra for the cases where i) features appear due to sudden
variations of the Hubble scale, and ii) variations in both the Hubble scale and the sound
speed are responsible for features. Finally, in Section 3.2, we present results for the tensor
power spectrum in the low ` region, modeling the features in the scalar signal with a Gaussian
and a cosine function.

3.1 Correlation of power spectra

In this section we apply the methods elaborated in [17, 68] to correlate features appearing in
the tensor and scalar power spectra. Our method is based on the in-in formalism to study
the evolution of quantum fluctuations on a time dependent quasi-de Sitter background [80,
81]. Another widely used method to study features is the so called generalized slow-roll
formalism [82–85].

3.1.1 Preliminaries

Let us set the ground for the computation by first writing down the quadratic actions for
the scalar and tensor perturbations in Fourier space. For the scalar part we will consider the
primordial curvature perturbation R in comoving gauge. On the other hand, for the tensor
part we will work with the traceless and transverse perturbation γij as:

γij(k, τ) ≡ h+(k, τ)e+
ij(k) + h×(k, τ)e×ij(k), (3.2)

where k is the wave vector (or momenta), and e+
ij(k) and e×ij(k) are the elements of a time

independent basis for tensors satisfying δijeij = 0 and kieij = 0. We may further define
canonically normalized fields u and f+,× as

u = zR, f+,× = a(t)h+,×, z ≡
√

2ε a
cs
, (3.3)

where a(t) is the scale factor, cs is the sound speed of the curvature perturbations and
ε = −Ḣ/H2 the first Hubble slow-roll parameter. In these variables, the quadratic actions
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for scalar and tensor modes in conformal time τ are found to be

S
(2)
S = 1

2

∫
dτ d3k

[
(u′)2 + c2

sk
2u2 + z′′

z
u2
]
, (3.4)

S
(2)
T = 1

2

∫
dτ d3k

[
(f ′)2 + k2f 2 + a′′

a
f 2
]
, (3.5)

where we have chosen units such that mPl = 1, while keeping only one polarization mode for
simplicity. Notice that primes (′) represent derivatives with respect to τ . The background
quantities z′′/z and a′′/a may be written as

z′′

z
= (aH)2

(
2− ε+ 1

2η − s
)(

1 + 1
2η − s

)
+ aH

(
η′

2 − s
′
)
, (3.6)

a′′

a
= (aH)2 (2− ε) , (3.7)

where η = ε′/εaH and s = c′s/csaH.

3.1.2 Rapidly time varying backgrounds

To describe the origin of features, we may split each action into a zeroth order term, that
describes the evolution of fluctuations in a quasi-de Sitter spacetime, and an interaction term,
that contains the rapidly varying contributions of the background. To do so, we will assume
that the background is such that ε remains small (ε � 1) throughout the whole relevant
period where features are sourced. To model this behavior we will take ε to be of the form:

ε = ε0 + ∆ε, |∆ε| � ε0, (3.8)

where ε0 is (for any practical purpose) a constant, and ∆ε(τ) contains information about the
sudden variations of the background. One could consider that ε0 = −Ḣ0/H

2
0 , where H0 is

the slowly varying part of the Hubble expansion rate. In the same manner, η will have two
contributions:

η = η0 + ∆η, ∆η = − 1
ε0
τ∆ε′, (3.9)

where η0 = −ε̇0/H0ε0. Given that we are taking ε0 as a slowly varying function, we may
neglect η0 against ∆η and simply take

η = − 1
ε0
τ∆ε′. (3.10)

We will additionally assume that η remains small at all times:

|η| � 1. (3.11)

However, given that we are interested into understanding the effects of rapidly varying back-
grounds, further derivatives of η could be large, and the following hierarchy may be satisfied:

|η| � |τη′| � |τ 2η′′|. (3.12)
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On the other hand, we may also consider rapid variations of the sound speed cs admitting
departures from the slowly varying value c0 = 1:

θ ≡ 1− c2
s � 1, |θ| � |τθ′| � |τ 2θ′′|. (3.13)

The hierarchies (3.12) and (3.13), together with eqs. (3.8) and (3.11), reflect what we mean
by having a rapid varying background near a quasi-de Sitter state.

The previous assumptions allow us to rewrite z′′/z and a′′/a in the following way

z′′

z
= 2
τ 2

(
1 + 1

2δS(τ)
)
,

a′′

a
= 2
τ 2

(
1 + 1

2δT (τ)
)
, (3.14)

where we have used τ ' −(aH)−1(1 + ε), and introduced the quantities δS(τ) and δT (τ) to
parametrize the rapid variations of the background:

δS(τ) = 3ε+ 1
2η −

τ

2η
′ − 3s+ τs′, δT (τ) = 3ε. (3.15)

By plugging these expressions back into the actions of eqs. (3.4) and (3.5) and treating the
rapidly varying parts as interaction terms, we may split the theory as:

S0
S = 1

2

∫
dτd3k

[
(u′)2 + k2u2 + 2

τ 2u
2
]
, Sint

S = 1
2

∫
dτd3k

[
δS(τ)
τ 2 u2

]
, (3.16)

S0
T = 1

2

∫
dτd3k

[
(f ′)2 + k2f 2 + 2

τ 2f
2
]
, Sint

T = 1
2

∫
dτd3k

[
δT (τ)
τ 2 f 2

]
. (3.17)

Notice that eq. (3.12) implies a further hierarchy of the form

|δ| � |τδ′| � |τ 2δ′′|, (3.18)

where δ stands for both δS and δT . Given that a change in e-folds dN is related to a change
in conformal time by dN = −dτ/τ , the previous hierarchies simply tell us that δS and δT
vary rapidly over an e-fold:

|δ| �
∣∣∣∣ dδdN

∣∣∣∣� ∣∣∣∣ d2δ

dN2

∣∣∣∣. (3.19)

As we shall see, these are the rapidly varying functions that source the appearance of features
in the spectra.

3.1.3 In-in formalism

We may now use the standard in-in formalism (see [86] for a review), which provides a way
to compute the effects of the rapid time varying background on n-point correlation functions.
To simplify the discussion, let us focus our attention on the scalar sector of the theory (i.e.
the u fluctuations), and then come back to the case of tensor modes. Firstly, the complete
solution u(k, τ) can be written in terms of interaction picture fields uI(k, τ) as

u(k, τ) = U †(τ)uI(k, τ)U(τ), (3.20)
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where U(τ) is the propagator, given by

U(τ) = T exp
[
−i
∫ τ

−∞+
dτ ′HI(τ ′)

]
.

Here T is the time ordering symbol, and ∞+ = (1 + iε)∞ is the usual prescription to choose
the right vacuum in the infinite past. In addition, HI(τ) is the interaction Hamiltonian, given
by

HI = −δS(τ)
τ 2

1
2

∫
d3k u2

I . (3.21)

The interaction picture fields uI(k, τ) are given by free field solutions of the zeroth order
action (i.e. with δS = 0), written in terms of creation and annihilation operators a†k and ak

as:
uI(k, τ) ≡ akuk(τ) + a†−ku

∗
k(τ). (3.22)

The creation and annihilation operators satisfy the standard commutation relation
[
ak, a

†
k′
]

=
(2π)3δ(3)(k − k′), whereas the mode functions uk(τ) are given by mode solutions respecting
Bunch-Davies initial conditions:

uk(τ) = 1√
2k

(
1− i

kτ

)
e−ikτ . (3.23)

Furthermore, the vacuum state |0〉 is defined to satisfy ak|0〉 = 0. By expanding the propa-
gator U(τ), we may compute corrections to the two point function as

〈u(k, τ)u(k′, τ)〉 = 〈0|uI(k, τ)uI(k′, τ) |0〉+ i
∫ τ

−∞+
dτ ′ 〈0| [HI(τ ′), uI(k, τ)uI(k′, τ)] |0〉 . (3.24)

The power spectrum PR(k, τ) of the primordial curvature perturbation R (evaluated at a
given time τ) is related to the two point function 〈u(k, τ)u(k′, τ)〉 as follows:

1
z2 〈u(k, τ)u(k′, τ)〉 ≡ 2π2

k3 δ
(3)(k− k′)PR(k, τ). (3.25)

We are interested in the power spectrum of super horizon modes at the end of inflation PR(k),
which corresponds to the τ → 0 limit of PR(k, τ). By taking into account the splitting of the
theory into the zeroth order quasi-de Sitter part and the interaction part, we finally obtain

PR(k) = P0
S + ∆PS(k), P0

S(k) = H2
0

8π2ε0
, (3.26)

where P0
S corresponds to the standard power spectrum for curvature perturbations in a quasi-

de Sitter space-time, and ∆PS(k) contains the deviations from scale invariance induced by
the rapidly varying background2 [17]

∆S(k) ≡ ∆PS
P0
S

= i

4k3

∫ ∞
−∞

dτ

[
θ′′′′

8 + δ′′H
2τ 2 −

δH
τ 4

]
e2ikτ , (3.27)

2Notice that in eq. (3.27) time derivatives may be interchanged by factors of −2ik. Therefore, the ap-
pearance of four derivatives in θ might be deceiving, as the original expression [17] leading to eq. (3.27) had
no time derivatives acting on θ. Having time derivatives acting on both θ and δH in eq. (3.27) allows one to
have a single function of time being Fourier-transformed at the right hand side of the equation.
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where θ is defined in (3.13) and δH is given by

δH(τ) = 3ε+ 1
2η −

τ

2η
′. (3.28)

Notice that the integration in eq. (3.27) is performed over the whole real line (−∞,+∞),
which from now on will be omitted. To derive eq. (3.27) we did the following trick [68]: We
extended the τ -integration domain from (−∞, 0) to (−∞,+∞) by imposing that both θ and
δH are antisymmetric functions with respect to the interchange τ → −τ .

We may now repeat all of the previous steps to compute the way that features appear in
the tensor power spectrum. We find

PT (k) = P0
T + ∆PT (k), P0

T (k) = H2
0

2π2 ,

where ∆PT (k) is given by

∆T (k) ≡ ∆PT
P0
T

= i

4k3

∫
dτ

[
δ′′T
2τ 2 −

δT
τ 4

]
e2ikτ . (3.29)

Equations (3.27) and (3.29) are the basic equations that we will exploit to obtain the desired
correlation between the two sectors of the theory. Before deducing such a relation, let us
notice that the hierarchy of eq. (3.18) necessarily implies a hierarchy in Fourier space affecting
the spectra, that reads

|∆(k)| �
∣∣∣∣d∆(k)
d ln k

∣∣∣∣� ∣∣∣∣d2∆(k)
d ln k2

∣∣∣∣, (3.30)

where ∆(k) stands for both ∆S(k) and ∆T (k).

3.1.4 Features from varying Hubble parameters

In this subsection we consider the case where cs = 1 for all times, so that δS = δH , and
any observable feature is the outcome of sudden variations of H(t). Firstly, because of the
hierarchy (3.18) satisfied by δT , eq. (3.29) may be simplified as:

∆T (k) = i

8k3

∫
dτ
δ′′T
τ 2 e

2ikτ . (3.31)

Furthermore, because of eq. (3.15), we see that eq. (3.31) may be rewritten in terms of η as:

∆T (k) = −3iε0
8k3

∫
dτ
η′

τ 3 e
2ikτ . (3.32)

This expression may now be Fourier inverted, leading to a formal expression for η′ in terms
of ∆T (k) as

η′ = 1
3ε0

∫
dk

[
d3

d ln k3 ∆T (k)
]
e−2ikτ . (3.33)
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Next, we may use the hierarchy of eq. (3.18) satisfied by δS to rewrite eq. (3.27) as

∆S(k) = − i

16k3

∫
dτ

1
τ
η′′′e2ikτ , (3.34)

where we used the fact that δH ' −τη′/2. As a last step, we may insert the expression for
η′ in eq. (3.33) back into eq. (3.34), to obtain the main result of this work:

d2

d ln k2 ∆T = 6ε0∆S. (3.35)

This equation offers the desired link between features in the tensor and scalar spectra. Notice
from eq. (3.32) that even though we have assumed that ε � 1, the piece ∆T (k) could
in principle be large. However, from eq. (3.35), we see that features in the tensor power
spectrum are highly suppressed with respect to those in the scalar spectrum. This is not
only due to the presence of ε0 [77], but also due to the double ln k-derivative acting on
∆T (k), on account of the hierarchy (3.30).

In the next subsection we extend this result to the more general case in which rapid
variations of the sound speed are also allowed. As we shall see, in this case too, tensor
features remain generically suppressed.

3.1.5 Including the effects of a varying sound speed

In the EFT of inflation [64, 65], the quadratic part of the action may exhibit a non-trivial
sound speed for the perturbations, which could also lead to the presence of features in the
scalar power spectrum [87, 88]. In general the evolution of cs(t) is independent of the evolution
of H. That means that if features are generated by the simultaneous rapid variation of both
cs and H, then the scalar and tensor power spectra would exhibit uncorrelated oscillatory
features. This is because PS would have features sourced by both cs and H while PT would
have features sourced by H alone. We would then have a relation of the form

∆S = 1
6ε0

d2

d ln k2 ∆T + ∆c, (3.36)

where ∆c represents the features sourced by variations of the sounds speed cs.

There are however intuitive reasons to expect that, at least in certain classes of models,
variations of cs and H happen in synchrony. An example of such a situation is the case
where the inflationary valley admits turns, which is typical in multifield inflation [87]. In
these scenarios, as the inflaton traverses a curve in the field space, there are instant deviations
from slow-roll produced by “centrifugal" effects. Furthermore, the existence of such turns is
responsible for a non-trivial sound speed [89]. The two quantities should thus be related since
they stem from the same source. Another situation where cs and H vary simultaneously is
in P (X,ϕ) models, where the kinetic term of the inflaton has a non-trivial structure. In
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these cases a reduction of the rapidity of the vacuum expectation value of the inflaton would
inevitably induce a change in both cs and H.

To capture the aforementioned situations, in [72], a one parameter relation between the
Hubble slow-roll parameter η and the sound speed was proposed. This had the form

η = η0 −
α

2 τθ
′, (3.37)

with α ∈ R and θ = 1 − c2
s. It was also shown to hold within several classes of models

including P (X,ϕ) and multifield models, with α admitting specific values for each case.

Using this fact, one may now relate θ to η in eq. (3.27) and follow the exact same steps
to obtain a generic relation between the scalar and tensor power spectra in the case where
both the sound speed and the Hubble radius experience sudden variations:

d2

d ln k2 ∆T = 6ε0
α

1 + α
∆S, α 6= −1, (3.38)

and for the special case of α ' −1:

d

d ln k∆T = −6
5ε0∆S. (3.39)

We see that in these set-up’s too, deviations of the tensor power spectrum from scale invari-
ance are suppressed by the slow-roll parameter ε as well as a double and a single momentum
integral which smoothes out any acute variation of the scalar spectrum.

Before discussing quantitative features of these results, let us stress once more that the
simple forms of eqs. (3.35), (3.38) and (3.39) are leading order expressions based on the
assumption that any observable feature satisfy the following: i) it is sharp, in the sense that
any departure from scale invariance should take place within few e-folds, and ii) it doesn’t
disrupt inflation, that is, ε remains small through out the whole dynamics.

3.2 A quantitative discussion

We now discuss the results of the previous section in two interesting situations. First, we
consider the case in which resonant features are present throughout the whole spectra, and
second, the case of the low ` power deficit observed in the scalar power spectrum. For this
discussion, it will be useful to write concrete expressions relating features in the spectra
and the rapidly varying contributions to the slow-roll parameters ∆ε and ∆η. By Fourier
inverting eq. (3.34) for the general case where the sound speed also contributes to features,
these are found to be given by [17]

∆η(τ) = i

π

α

1 + α

∫
dk

[
d

dk

∆PS
P0
S

]
e2ikτ , ∆ε(τ) = iε0

π

α

1 + α

∫
dk

[
1
k

∆PS
P0
S

]
e2ikτ , (3.40)
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with ∆ε following from the relation ∆η = −τ∆ε′/ε0. Note that the coefficient α
1+α in eq. (3.40)

is an O(1) number for any α so it’s specific value has no impact on the results. We thus set it
to one in what follows and work with eq. (3.35). The only case where it plays a role is when
α ' −1, in which the next to leading time derivative dominates in the RHS of eq. (3.27)
leading to the following expressions:

∆η(τ) = − i

5π

∫
dk k

[
d2

dk2
∆PS
P0
S

]
e2ikτ , ∆ε(τ) = −iε05π

∫
dk

[
d

dk

∆PS
P0
S

]
e2ikτ . (3.41)

3.2.1 Resonant features

This type of scale dependence is relevant in models of inflation where the potential is periodic
or semi-periodic, such as axion monodromy inflation [90], or models like Natural Inflation
[106]. Inflationary scenarios involving axions usually require super-Planckian field range, and
hence, they are good candidates for the production of primordial gravitational waves [92, 93].

To acquire an idea of the possible impact of resonant features on the tensor power spec-
trum, we model the resonant part of the scalar power spectrum as

∆S(k) = A cos (Ω log(k/k∗) + φ) , (3.42)

where A parametrizes the amplitude of the feature, while Ω and φ denote the frequency and
the phase of the oscillation, respectively. To be concrete, we will consider the following values
A = 0.028, Ω = 30 and φ/2π = 0.634, which were found to constitute the best fit in the
analysis of resonant features by Planck [113]. In addition, we set k∗ = 0.05 [Mpc]−1 as a
reference scale.
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Case for α 6= −1

Using the parametrization (3.42) as a input, we numerically obtain the shape of the ten-
sor spectrum feature via eq. (3.35), while the slow-roll parameters are reconstructed from
eq. (3.40). The results are shown in the plots of figure 3.1. There we see that features in
the tensor power spectrum are present, albeit with an amplitude of ∆T ∼ 10−6 making them
observationally irrelevant. This is a complementary argument in support of the claim that
tensor features stemming from axionic potentials should be suppressed due to the smallness
of the decay constant of the axion [95].
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Figure 3.1: Plot of the first two slow-roll parameters ∆η and ∆ε (left panels) using eq. (3.40)
and ∆PS

P 0
S

(k), ∆PT
P 0
T

(k) (right panels) related by eq. (3.35), in the case of the resonant feature
(3.42). We have used A = 0.028, Ω = 30, φ/2π = 0.634, k∗ = 0.05[Mpc]−1 and ε0 = 0.0068.
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Case for α ' −1

Next, we consider the special case of α ' −1 for the resonance features. We numerically
solve eqs. (3.39) and (3.41) and plot the results in figure 3.2. As can be seen, even though
there is an order of magnitude enhancement with respect to the general case, the amplitude
of the deviation from a scale invariant spectrum still remains extremely small. Furthermore,
in this case η can reach values up to η ∼ 0.8. This does not invalidate the hierarchy (3.12),
as to go from eq. (3.6) to eq. (3.14) one really requires η/2 to be much smaller than 1.
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Figure 3.2: Plot of the first two slow-roll parameters ∆η and ∆ε (left panels) using eq. (3.41)
and ∆PS

P 0
S

(k), ∆PT
P 0
T

(k) (right panels) related by eq. (3.39), in the case of the resonant feature
(3.42). We have used A = 0.028, Ω = 30, φ/2π = 0.634, k∗ = 0.05[Mpc]−1 and ε0 = 0.0068.

47



3.2.2 Predictions for the low ` tensor power spectrum

The low ` multipole region is the main observational window into CMB polarization since it
is not contaminated by lensing effects. In addition, it is where the low ` deficit takes place in
the scalar power spectrum [34, 39–45]. We focus in the ` < 50 region, roughly corresponding
to 0.0002 . k . 0.004 [Mpc]−1, which is the band that CMB polarization observatories focus
on.

In order to get a quantitative look into the tensor power spectrum we model the ` ∼ 20
dip in the angular power spectrum as a sharp Gaussian:

∆S(k) = −Ae−λ(ln(k/k∗))2
, (3.43)

where k∗ determines the location of the feature. We set A = 0.15, λ = 15 and k∗ = 0.002
[Mpc]−1, which are chosen to have a rough fit with the observed power deficit. In addition,
we choose ε0 = 0.0068 [113].
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Case with α 6= −1

We solve eqs. (3.35) and (3.40) with the parametrization (3.43) as an input, with the results
shown in the plots of figure 3.3. We see that for a realistic amplitude A the tensor power
spectrum exhibits a feature of amplitude ∆T ∼ 10−9.
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Figure 3.3: Plot of the first two slow-roll parameters ∆η and ∆ε (left panels) using eq. (3.40)
and ∆PS

P 0
S

(k), ∆PT
P 0
T

(k) (right panels) related by eq. (3.35), in the case of the Gaussian feature
(3.43). We have used A = −0.15, λ = 15, k∗ = 0.002[Mpc]−1 and ε0 = 0.0068.
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Case with α ' −1

In the special case of α ' −1, we see that the tensor spectrum and the slow-roll parameters,
now given by eqs. (3.39) and (3.41) respectively, exhibit a feature which is enhanced by
an order of magnitude compared to the previous case. However, as seen in figure 3.4, the
amplitude still remains extremely small.
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Figure 3.4: Plot of the first two slow-roll parameters ∆η and ∆ε (left panels) using eq. (3.41)
and ∆PS

P 0
S

(k), ∆PT
P 0
T

(k) (right panels) related by eq. (3.39), in the case of the Gaussian feature
(3.43). We have used A = −0.15, λ = 15, k∗ = 0.002[Mpc]−1 and ε0 = 0.0068.
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Chapter 4

Axion excursions of the landscape
during inflation

In the previous chapter, we have dealt with interaction terms that appeared as deviations
from the background quantities of a de-Sitter universe. In that case the interaction was
between degrees of freedom that already part of the canonical inflation paradigm. During
this chapter, we are going to describe how a particular extra scalar field, which does not drive
inflation, could behave in the inflationary era.

As a motivation, we may think the following: How did cosmic inflation could influence the
structure of the standard model of particle physics? The string-landscape picture [99]—in
which the standard model (SM) is just one of many possible vacua—provides us with a useful
framework to address this compelling question. In it, the inflationary history plays a crucial
role in selecting the properties of our Universe, as we observe it [100].

This selection could have been classical if the inflationary trajectory followed by the scalar
fields respected classical equations of motion. In this case, the SM vacuum would have been
determined by certain initial conditions specifying the starting point of the inflationary at-
tractor trajectory. In these situations the probability distribution functions (PDFs) describing
any scalar degrees of freedom remained nearly Gaussian, and the analysis of their role on
cosmological observables is limited to the computation of two- and three-point correlation
functions.

Another more intriguing possibility is that, during inflation, tunneling across barriers
separating different classical trajectories was relevant. In this case the vacuum selection
was intrinsically quantum mechanical, and the quantum to classical transition during infla-
tion [101–104] would have played a decisive role in determining the properties of the standard
model. Moreover, the PDFs of extra scalar fields would be highly non-Gaussian, and an anal-
ysis based on the computation of two- and three-point correlation functions is found to be
insufficient to understand their role at the end of inflation.
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In this chapter, we study the role of quantum fluctuations in determining the final state
of inflation and so the properties of particle physics within our observable Universe. To do
this, we analyze a very simple inflationary setup containing an axion spectator field [18] with
a sinusoidal periodic potential. This setup is simple enough to allow us perturbative com-
putations leading to nontrivial results that are representative of more complicated systems,
containing other classes of fields and/or potentials. We will show that the quantum fluctu-
ations of axions are able to traverse many local minima of their periodic potentials, leading
to a non-Gaussian multimodal PDF. In consequence, the final value at which they stabilize
remains indeterminate during inflation, leading to a universe filled with patches characterized
by different vacuum expectation values (VEVs) of the axion. Our results should lead to the
derivation of new constraints on axions (and spectator scalar fields in general) connecting
current cosmological and/or astrophysical constraints with primordial cosmology.

4.1 Axions in inflation

Axions may have an important role in connecting particle physics with cosmology [105].
Axions are natural candidates for the inflaton [106, 107], but this requires them to have super-
Planckian decay constants, unless some alignment effect underlies their potentials [108]. In
addition, thanks to axions, inflation may play a role in the existence of hierarchies in the
SM [109].

In this paper, we will not bother about the specific nature of the inflaton. We will consider
a model in which there is an axion field ψ that remains decoupled (at tree level) from the
inflaton field φ, in charge of driving inflation. This class of models has been studied in the
past [110–112], with an emphasis on the production of Gaussian isocurvature perturbations.
The action describing this system is given by

S = SEH[gµν ] + Sinfl[gµν , φ] + Sψ[gµν , ψ], (4.1)

where SEH[gµν ] corresponds to the Einstein-Hilbert action describing the dynamics of the
metric gµν and Sinfl[gµν , φ] and Sψ[gµν , ψ] are the respective actions for φ and ψ, both of
them minimally coupled to gravity. The action Sinfl[gµν , φ] includes a potential V0(φ) that
produces inflation. The inflationary background is well described by a Friedman-Robertson-
Walker metric of the form ds2 = −dt2 + a2(t)dx2, where a(t) is the scale factor. If V0(φ)
is flat enough, the scalar field φ rolls down the potential slowly, and the background is well
approximated to a de Sitter geometry, with deviations of the order of ε ≡ −Ḣ/H2, where
H = ȧ/a is the Hubble expansion rate. The latest cosmic microwave background (CMB)
observations tell us that H∗ < 8.8 × 1013GeV [113], where H∗ is the Hubble expansion rate
at the time when fluctuations of wave number k∗ = 0.05Mpc−1 crossed the horizon.
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The axion ψ has a potential v(ψ) that we take to be

v(ψ) ≡ Λ4
[
1− cos

(
ψ

f

)]
, (4.2)

where f is the axion decay constant. This potential is the result of nonperturbative effects
due to the coupling between the axion and gauge fields. It is convenient to write the action
for ψ in conformal coordinates and in terms of a canonically normalized field u = aψ. We
may define conformal time τ through dτ = dt/a. Then, the action Sψ of Eq. (4.1) takes the
form

Sψ =
∫
d3x dτ

[1
2(u′)2 + 1

2(∇u)2 − a4v(u/a)
]
. (4.3)

In the de Sitter limit ε → 0 one has H =const. In this case one has a(τ) = −1/Hτ . The
conformal time covers the range −∞ < τ < 0, and the limit τ → 0− corresponds to t→ +∞.

4.2 The in-in formalism

In what follows, we focus on the computation of n-point correlation functions of ψ to first
order in Λ4. We shall use the shorthand notations

∫
x =

∫
d3x when integration takes place

in coordinate space and
∫
k = (2π)−3 ∫ d3k when integration takes place in momentum space.

In addition, as in the previous chapter, we shall use the following convention to relate fields
in both spaces:

u(x, τ) =
∫
k
û(k, τ)eik·x. (4.4)

The computation of n-point correlation functions in coordinate space, using the in-in for-
malism, takes the form

〈u(x1, τ) . . . u(xn, τ)〉 = 〈0|U †uI(x1, τ) . . . uI(xn, τ)U |0〉, (4.5)

where U = U(τ) is the propagator and uI(x, τ) is the interaction picture field. This field has
a momentum-space representation given by

ûI(k, τ) ≡ aku
I
k(τ) + a†−ku

I∗
k (τ) (4.6)

where a†k and ak are creation and annihilation operators satisfying the standard commutation
relation

[
ak, a

†
k′
]

= (2π)3δ(3)(k − k′). On the other hand, the mode functions uk(τ) satisfy
the equations of motion of a free field (that is, with Λ = 0), in the same way that for the
fluctuations of the inflaton field. This implies that the mode functions are given by mode
solutions respecting Bunch-Davies initial conditions:

uIk(τ) = 1√
2k

(
1− i

kτ

)
e−ikτ . (4.7)

The vacuum state |0〉 is normalized 〈0|0〉 = 1, and it is defined to satisfy ak|0〉 = 0. The
propagator may be written in terms of uI(x, τ) in the following way:

U(τ) = T exp
{
−i
∫ τ

−∞+
dτ ′HI(τ ′)

}
, (4.8)
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where HI(τ) is the Hamiltonian in the interaction picture. In the previous expression, T
stands for the standard time ordering symbol, and ∞+ = (1 + iε)∞ is the prescription
isolating the in vacuum in the infinite past. In the particular case of (4.2), the Hamiltonian
HI(τ) takes the form

HI(τ) = Λ4

H4τ 4

∫
z

[
1− cos

(
Hτ

f
uI(z, τ)

)]
. (4.9)

We may expand U to first order in Λ4 to compute n-point correlation functions. Then, in
momentum space Eq. (4.5) takes the form

〈û(k1, τ) . . . û(kn, τ)〉 = 〈0|ûI(k1, τ) . . . ûI(kn, τ)|0〉

−i
∫ τ

−∞
dτ ′〈0| [HI(τ ′), ûI(k1, τ) . . . ûI(kn, τ)] |0〉. (4.10)

We have dropped the prescription involving ∞+ which is irrelevant for computations up to
first order in the interaction.

It is important to notice that the Bunch-Davies initial condition of Eq. (4.7) does not
share the periodicity of the potential. For this initial condition to be valid, we have to assume
that the wall domain number N associated to the axion field is much larger than 1.

Before analyzing the entire theory in detail, let us briefly examine the trivial case in which
Λ = 0. In this case the theory corresponds to a massless field in a de Sitter space-time,
and the distribution function describing the probability of measuring a specific amplitude is
Gaussian. The variance of such a distribution is given by the two-point correlation function
σ2

0(τ) ≡ 〈ψ2(x, τ)〉 (with x evaluated at any desired value), which in terms of uk has the form

σ2
0 = H2τ 2

∫
k
uk(τ)u∗k(τ). (4.11)

Notice that σ2
0 is time independent, which is possible to verify by absorbing the combination

−kτ into a single integration variable. This time independence comes from the fact that we
are dealing with fluctuations in a de Sitter space-time. On the other hand, σ2

0 is formally
infinite on account of (4.7). This indeterminacy may be eliminated by introducing both
infrared and ultraviolet cutoffs. These details will turn out to be irrelevant in our analysis.

4.3 Computing n-point functions

We now proceed to compute the second line in Eq. (4.10), which corresponds to the non-
Gaussian contribution to the n-point correlation function. Notice that this computation will
take into account the leading-order contribution in terms of Λ4 which involves the whole
function 1− cos(ψ/f). In this computation, we will encounter the following function:

∆(τ ′, τ, k) ≡ uIk(τ ′)uI∗k (τ), (4.12)
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which may be thought of as a propagator in momentum space connecting vertices character-
ized by τ and τ ′. Now, to compute (4.10), we first expand the cosine function appearing in
the potential. This leads to a Hamiltonian of the form

HI(τ) = − Λ4

H4τ 4

∞∑
m=1

(−1)m
(2m)!

∫
z

(
Hτ

f
uI(z, τ)

)2m

. (4.13)

By plugging this expression back into Eq. (4.10), we find that the contribution proportional
to Λ4 is given by

〈û(k1, τ) . . . û(kn, τ)〉Λ4 = i
Λ4

f 4

∞∑
m=1

(−1)m
(2m)!∫ τ

−∞
dτ ′

(
Hτ ′

f

)2m−4

F (τ ′, τ,k1, . . .kn), (4.14)

where we have defined the function F (τ ′, τ,k1, . . .kn) as

F ≡
∫
z
〈0|

[
(uI(z, τ ′))2m

, ûI(k1, τ) . . . ûI(kn, τ)
]
|0〉. (4.15)

Because of invariance under spatial translations, this function is proportional to a δ(3)(∑j kj).
In addition, it is nonvanishing only for even values of n. The function F may be represented
as a sum of diagrams with a vertex located in τ ′ with 2m legs, some of these connected to
the n-external legs labeled by the momenta ki at a time τ (see Fig. 4.1). It will be enough
for us to consider the fully connected diagrams, in which every external leg is attached to
the vertex. Let us refer to these contributions as Fc. It is clear that Fc 6= 0 only if 2m ≥ n.
The number of ways in which the n external legs may be connected to the 2m vertex legs is
(2m)!/(2m− n)!. In addition, Fc will have m− n/2 loops resulting from vertex legs that are
not attached to any of the external legs. The number of different ways in which such legs
can be connected into loops is given by (2m− n)!/[2m−n/2(m− n/2)!].

⌧

⌧ 0

· · ·

· · ·

k2k1 k3 kn

Figure 4.1: A typical connected diagram of the order of Λ4. All the n-external legs are
attached to one of the available 2m legs of the vertex. The remaining legs from the vertex
become loops.
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All of this tells us that Fc will have a combinatorial factor (2m)!/[2m−n/2(m − n/2)!]
due to the different possible ways of contracting the various interaction fields uI present in
Eq. (4.15). More precisely, we find

Fc = −i (2π)3δ(3)
(∑

j

kj
) (2m)!

2m−n/2(m− n/2)![∫
k
∆(τ ′, τ ′, k)

]m−n/2
Gc(τ ′, τ, k1, . . . kn), (4.16)

where we have defined Gc(τ ′, τ, k1, . . . kn) as

Gc(τ ′, τ, k1, . . . kn) = i
n∑
l=1

∆(τ, τ ′, k1) . . .∆(τ, τ ′, kl−1)

[∆(τ ′, τ, kl)−∆(τ, τ ′, kl)]
∆(τ ′, τ, kl+1) . . .∆(τ ′, τ, kn). (4.17)

Notice that
∫
k ∆(τ ′, τ ′, k) in Eq. (4.16) represents a closed loop. We may now plug Fc back into

Eq. (4.14) to obtain an expression for the connected contribution to the n-point correlation
function:

〈u(k1, τ) . . . u(kn, τ)〉c = (−1)n/2 Λ4

H4 (2π)3δ(3)
(∑

j

kj
)

∞∑
m=n/2

1
(m− n/2)!

−1
2

(
Hτ ′

f

)2∫
k

∆(τ ′, τ ′, k)
m−n/2

∫ τ

−∞
dτ ′

1
(τ ′)4

(
Hτ ′

f

)n
Gc(τ ′, τ, k1, . . . kn). (4.18)

Now, one should notice that the m sum, which comes from the expansion of the cosine,
involves only closed loop contributions. If one defines m′ = m− n/2, this sum becomes

∑
m′

1
m′!

−1
2

(
Hτ ′

f

)2∫
k

∆(τ ′, τ ′, k)
m′ = e

−
σ2

0
2f2 , (4.19)

where we have used (4.11) to identify σ0. Thus, the resummation of all the loop diagrams
leads to the following n-point correlation function

〈u(k1, τ) . . . u(kn, τ)〉c = (−1)n/2(2π)3δ(3)
(∑

j

kj
)

Λ4

H4 e
−
σ2

0
2f2
∫ τ

−∞
dτ ′

1
(τ ′)4

(
Hτ ′

f

)n
Gc(τ ′, τ, k1, . . . kn). (4.20)

What remains is to solve the τ ′ integral. This integral is hard to solve in general, but we may
find a useful expression valid in the limit where the ki momenta are soft. More precisely, the
integration may be divided into two regions τ ′ ∈ (−∞, τ0) and τ ′ ∈ [τ0, τ ], with τ0 chosen
in such a way that kj|τ0| � 1. The first contribution remains finite due to the oscillatory
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nature of Gc in the asymptotic limit τ ′ → −∞. On the other hand, the second contribution
has a piece that diverges as τ → 0 given by∫ τ

τ0
dτ ′τn (τ ′)n−4

Gc →
1
3
k3

1 + · · ·+ k3
n

2n−1k3
1 . . . k

3
n

ln
(
τ0

τ

)
. (4.21)

As long as the momenta satisfy kj|τ0| � 1, this expression dominates the τ ′ integral in the
limit |τ | � |τ0|. This allows us to finally arrive to an expression for the n-point correlation
functions:

〈u(k1, τ) . . . u(kn, τ)〉c = (−1)n/2(2π)3δ(3)
(∑

j

kj
)

Λ4

H4 e
−
σ2

0
2f2

(
H

fτ

)n 1
3
k3

1 + · · ·+ k3
n

2n−1k3
1 . . . k

3
n

ln
(
τ0

τ

)
. (4.22)

This result gives us the connected contribution to the n-point correlation functions in mo-
mentum space for superhorizon fluctuations (with |τ0|kj � 1). It captures the effects of the
cosine potential to first order in Λ4 but to all orders in 1/f .

4.4 Probability distribution function in the long-wavelength
limit

Let us recall that cosmological observables connected to inflation, via hot big-bang era initial
conditions, are determined by superhorizon fluctuations. Fortunately, we can use Eq. (4.22)
to compute n-point correlation functions in coordinate space as long as we focus on long-
wavelength contributions. To this end, we may decompose ψ into short- and long-wavelength
contributions as ψ = ψS + ψL, where ψL contains the contributions from momenta satisfying
k|τ0| � 1. Then, given that (4.22) is valid only for soft momenta, we may use it to compute
n-point functions 〈ψL(x1) . . . ψL(xn)〉c. In the particular case where the proper distances
Lij(τ) = |xi − xj|/H|τ | are of the order of H−1 or smaller, at any time τ > τ0, it makes no
difference to evaluate all the coordinates xj at a common value, say xj = 0. Thus, we may
compute 〈ψnL〉c ≡ 〈ψL(x1) . . . ψL(xn)〉c

∣∣∣
xj→0

, which, after using (4.22), is found to be

〈ψnL〉c = (−1)n/2nA
2

σ2
L
e
−
σ2

L
2f2

(
σ2

L
f

)n
(4.23)

(recall that we are assuming even values of n), where we have defined

A2 ≡ Λ4

3H2 ln
(
τ0

τ

)
e
−
σ2

S
2f2 . (4.24)

In the previous expressions, we have introduced σ2
S and σ2

L as the short- and long-wavelength
contributions to the variance, in such a way that σ2

0 = σ2
S + σ2

L. In particular,

σ2
L = H2τ 2

∫
kL
uIk(τ)uI∗k (τ), (4.25)
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where the label kL tells us that we are integrating in a range such that k � |τ0|−1. Now,
we may wonder about what class of PDF gives n-point correlation functions such as those of
Eq. (4.23). To be precise, there must exist a probability distribution function ρ(ψ) such that

〈ψnL〉 =
∫
dψ ψnρ(ψ). (4.26)

Notice that 〈ψnL〉c shown in Eq. (4.23) gives the connected part of 〈ψnL〉. This is the contri-
bution coming from the right-hand side of (4.26) that brings the higher number of powers
of 1/f . This is because each external leg in the diagrammatic expansion of 〈ψ(x1) . . . ψ(xn)〉
performed in the previous section, carries a factor 1/f when it is connected to a vertex of the
order of Λ4. To find ρ(ψ), we may proceed by adopting the following trick. We first rewrite
Eq. (4.23) in the following way:

〈ψnL〉c =
(

1 + 2f 2 ∂

∂σ2
L

)[
(−1)n/2 A

2

2f 2 e
−
σ2

L
2f2

(
σ2

L
f

)n]
. (4.27)

Now, instead of looking for a PDF that gives us back (4.23), we may look for a distribution
ξ(ψ) such that it gives us back the expression inside the square brackets:

∫
dψψnξ(ψ)

∣∣∣∣
c

= (−1)n/2 A
2

2f 2 e
−
σ2

L
2f2

(
σ2

L
f

)n
, (4.28)

where the subscript c denotes that we are keeping only the connected part after the integration
is performed. It should be clear from (4.26)–(4.28) that the relation between ρ and ξ is given
by

ρ(ψ)
∣∣∣∣
c

= ξ(ψ)
∣∣∣∣
c

+ 2f 2 ∂

∂σ2
L
ξ(ψ)

∣∣∣∣
c
. (4.29)

Next, it is not difficult to see that the part of the distribution ξ(ψ) that gives the desired
connected contribution must be proportional to the combination exp(−ψ2/2σ2

L) cos(ψ/f).
This implies that

ξ(ψ)
∣∣∣∣
c

= 1√
2πσ2

L

e
− ψ2

2σ2
L
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(
ψ

f

)
. (4.30)

Now, putting together Eqs. (4.29) and (4.30), and taking into account the contributions from
the omitted disconnected diagrams (which, after all, come from the Gaussian free part of the
theory), we finally find that the desired PDF is exactly given by

ρ(ψ) = e
− ψ2

2σ2
L

√
2πσL

[
1− A2

(
σ2

L − ψ2 − σ4
L/f

2

2σ4
L

)
cos

(
ψ

f

)]
. (4.31)

This is one of our main results. It describes the PDF of measuring the amplitude of ψ
at a given value. Equation (4.31) is valid as long as the second term inside the square
brackets remains small compared to unity. Besides this limitation, the result tells us that the
probability is larger at those values that minimize the cosine potential, as it should.
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4.5 Discussion

Let us do some guesswork in order to generalize Eq. (4.31) to the case in which the second
term inside the square brackets is allowed to be large. If these terms come from exponentials,
we are immediately led to the following possible resummation:

ρ(ψ) = 1
N

e
− ψ2

2σ2(ψ)
√

2πσ(ψ)
exp

[
A2

2f 2 cos(ψ/f)
]
, (4.32)

where N is a normalization constant that depends on σL, f , and A and σ(ψ) is a function
given by

σ(ψ) ≡ σL exp
[
A2

2σ2
L

cos(ψ/f)
]
. (4.33)

There are good reasons to think that Eq. (4.32) is the correct PDF valid for all values of the
parameter A, keeping in mind that we are interested in the description of long-wavelength
modes. If this is the case, then (4.32) would be the result of taking into account those terms
in Eq. (4.10) beyond the linear order in Λ4. This conjecture is reinforced by the fact that
Eq. (4.32) acquires the correct nontrivial expression in the limit f → +∞ and Λ → +∞,
while keeping m ≡ Λ2/f fixed. Here, m is the mass of ψ at the stable value ψ = 0; that is,
m2 = v′′(ψ)

∣∣∣
ψ=0

.
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���
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ρ
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Figure 4.2: The figure shows an example of the PDF of Eq. (4.32) for the choice of parameters
f/σL = 10−1 and A2/σ2

L = 10−1 (red solid curve). For comparison, we have plotted a Gaus-
sian distribution of variance σL (blue dashed curve). The distributions are not normalized.

The PDF of Eq. (4.32) is plotted in Fig. 4.2 for certain values of A and f . The function
consists of a multimodal distribution where ∆ψ = 2πf determines the distance between
consecutive peaks. On the other hand, A controls the magnitude with which the probability

59



of measuring a value of ψ laying in the vicinity of a minimum or maximum of v(ψ) is enhanced
or suppressed respectively. Notice that the non-Gaussian effects due to the periodicity of the
potential are relevant only if f < σL. Given that σL is of the order of H, our result calls for
sub-Planckian values of f , which in fact are favored in string theory [117, 118] and quantum
gravity [119]. In what follows, we discuss three possible consequences of our result that might
be worth exploring.

4.5.1 Isocurvature fluctuations after inflation

It is common lore that scalar fields with large masses during inflation lead to the production
of suppressed levels of isocurvature modes in the CMB. Our results show that this is not
necessarily the case: If fields are able to tunnel the potential barriers separating their VEV
from other minima, then the PDFs describing them at the end of inflation can be highly non-
Gaussian, regardless of how massive they are. In the case that we have studied, the mass
of the axion about any local minima is given by m = Λ2/f , and a large value (as compared
to H) does not preclude fluctuations from leaking from one minimum to another. Thus, a
landscape with a rich structure may have strong quantum effects even with massive extra
scalar fields. It would be interesting to study how these effects could affect current studies
of inflation with many fields such as those of Refs. [114–116], and CMB observables.

Some recent results appeared in the context of axionic fields treated as isocurvature modes.
In [129], we can see that the non-Gaussian statistics generated by the mechanism in this
chapter are transferred to the statistics of the comoving curvature perturbations R. Recent
extensions to any kind of potential for the isocurvature modes were developed in [130], giving
hints of how a similar mechanism could give information about the shape of the inflationary
landscape.

4.5.2 Role of inflation to determine SM properties

Our results also reinforce the intriguing possibility that the SM of particle physics could
be just one realization among many others, taking place in a confined region of our Uni-
verse [120]. This would be the case if the field ψ determines the value of couplings of other
fields that appear in the SM, such as the Higgs field. The PDF of Eq. (4.32) tells us that
different patches of the Universe could emerge out of inflation with a long-wavelength value
of ψ corresponding to a minimum of v(ψ) different from ψ = 0, which, by assumption, was
the vacuum expectation value of the field. Our results should, in principle, allow one to
compute the probability with which these patches emerge.
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4.5.3 Dark matter

Another interesting possibility is that ψ corresponds to dark matter (DM) [121–123]. If
this is the case, our result predicts that, for certain values of the parameters, it could be
possible that within our observable Universe the DM distribution started with nontrivial
initial conditions, resulting from the multimodal PDF (4.32). We foresee that, if the initial
conditions for DM come from (4.32), then there should be certain observational signatures
that could serve as a test. It is a pending challenge to deduce them.
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Conclusions

During this thesis, we have studied the effect of extra degrees of freedom on the primordial
statistics of the universe during the epoch of Inflation. This period is characterized by an
accelerated expansion which could be driven by the evolution of one or more scalar fields.
Along with their evolution, the fields can interact with different kind of sources that can
leave an imprint in the primordial statistics of the curvature perturbations.

One interesting effect appeared when we parametrized the deviations from a de-Sitter
background with a time dependent function. This induced a self-interaction term for both
the curvature perturbations and the tensor modes in the Einstein-Hilbert Lagrangian. The
in-in formalism turned out to be a very useful tool to compute primordial correlators for both
scalar and tensor degrees of freedom coming from the perturbed metric. We found that the
self-interactions due to the inclusion of the time-dependent background functions allow us to
relate the deviations from scale invariance, or features, from the scalar power spectrum with
the features in the power spectrum for tensor modes.

In particular, we have studied the possible appearance of scale-dependent features in the
power spectrum of primordial tensor perturbations due to non-trivial inflationary dynamics
in a model-independent way. Our main result is eq. (3.35) – or eqs. (3.38), (3.39) in the
more general case of EFT’s with a sound speed – which consist of relations linking features
in the tensor power spectrum to those appearing in the scalar power spectrum, allowing us
to estimate the amplitude and shape of the former given the latter. In general, we find that
the tensor spectrum is expected to be featureless: Indeed, eq. (3.35) shows that any feature
appearing in the tensor spectrum is generically suppressed with respect to those appearing
in the scalar one for two reasons: firstly due to slow-roll [77], and more importantly, due to
the fact that features should, in general, be sharp enough in order to leave an imprint in the
CMB.

One may wonder about other mechanisms producing features in the tensor sector of the
theory. For instance, in principle, we could consider a Lagrangian describing the dynamics of
tensor modes with a sound speed ct experiencing rapid variations producing features in the
tensor spectrum. However, in [96] it was shown that under a disformal transformation, models
with a non-trivial tensor sound speed (and canonical scalar sector) map into models with a
non-trivial scalar sound speed (and canonical tensor sector). Since the spectra are invariant
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under such a transformation, our formalism to relate features in the tensor spectrum to those
appearing in the scalar spectrum would continue to be valid. Moreover, in the special case
where only ct varies, the disformal transformation would lead to an equivalent system where
both cs and H vary, but in such a way that the scalar spectrum remains featureless [78].
Given that we are interested in understanding the consequences of features in the scalar
spectrum on the tensor one, this class of situations is out of our scope.

Current CMB observations show the existence of departures from scale invariance in the
power spectrum of primordial curvature perturbations in the multipole range ` ∼ 20. If we
interpret this behavior as the result of the dynamics of inflation, we are led to conclude that
the tensor power spectrum will not show any consequential departure from scale invariance in
this region. The importance of this conclusion may be appreciated more clearly by inverting
the statement: If tensor modes are observed to have strong departures from scale invariance
in the aforementioned multipole range, then we will have good reasons to suspect that the
departures appearing in the scalar spectrum are not of primordial origin.

As we mentioned, the quantum fluctuations for both scalar and tensor degrees of freedom
allow us to relate features in the power spectra coming from its respective self-interactions.
The extra self-interacting terms turned out to be hidden in the description of the background
quantities from a quasi de-Sitter universe. In the same way that this interaction was hidden,
different extra degrees of freedom could be concealed due to the energy scale in which the
theory is developed. This was the motivation for the next topic this thesis. Axion-like fields
appear in the different context of inflationary models and a successful description of their
properties could tell us something about the primordial universe.

The second result appeared during the analysis of the inflationary landscape, in this
case, generated by the inclusion of an extra scalar field called axion. The axion potential
is described by a periodic function which introduces many vacua in the landscape. We
studied the effect of quantum fluctuations of the axion-like field evolving during the primordial
expansion given by inflation. Since the axion-like field is evolving through the landscape, we
wanted to describe its statistical behavior as it evolves along with the inflaton field. For this,
we computed an n-point correlation function, in the connected limit, of the axion field using
the in-in formalism. Starting from this correlation, we focused on the long-wavelength limit
for the scales and derived a probability distribution function (PDF). This result shows how
these spectator fields are able to tunnel between the various vacua of the axionlike potential 1.
We concluded that using the PDF, the field had non-perturbative non-Gaussian statistics for
its quantum fluctuations. This non-Gaussian statistic could be transferred to the curvature
perturbations and, in principle, induce a different type of non-Gaussianity (tomographic
non-Gaussianity) for the primordial curvature perturbations during inflation.

1It would be interesting to understand the relation between our results and other well-known tunneling
solutions in expanding backgrounds, such as the Hawking-Moss solution [124].
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