Contents

1 Introduction
 1.1 Measures on a Set of Boxes .. 2
 1.2 Matching Points with Boxes 4
 1.3 Removing Redundancies in a Set of Boxes 6
 1.4 Thesis Structure and Contributions 7

2 Foundations
 2.1 Three Fundamental Problems 10
 2.2 Matchings and Maximum Independent Sets 12
 2.2.1 Finding Matchings via Independent Sets 12
 2.2.2 Approximation Algorithms for Maximum Independent Set 13
 2.2.3 Variants and Special Cases of Matchings with Rectangles 15
 2.3 Maximum Clique and the Klee’s Measure 17
 2.3.1 A dynamic data structure for the Klee’s Measure 18
 2.3.2 A divide and conquer algorithm for the Klee’s Measure ... 20
 2.3.3 Special cases and lower bounds 22
 2.4 From Covering Sets to Orthogonal Polygons 24
 2.4.1 Coverage Kernels: between Box and Polygon Coverings 24
 2.4.2 Approximation algorithms for the Box Cover problem 26
 2.5 Final Remarks ... 29

3 Depth Distribution of a Set of Boxes 30
 3.1 Introduction .. 30
 3.2 Algorithms Computing the Depth Distribution 31
 3.2.1 Worst-case Analysis 32
 3.2.2 Adaptive Analysis .. 36
 3.3 Lower Bounds for the Depth Distribution problem 38
 3.3.1 Conditional lower bound for the case of sorted slabs 39
 3.3.2 Conditional lower bound for sets of planar boxes 43
 3.4 Discussion ... 45