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Resumen

En esta tesis se introduce el formalismo de la estadística Bayesiana aplicado a cosmología
ΛCDM y otros modelos de energía oscura, enfocado en los observables de agrupamiento de
galaxias y de crecimiento cósmico. Se explora un gran rango de aplicaciones del marco de
trabajo Bayesiano.

Primero, se exploran las posibilidades de predicción de la estadística Bayesiana con nuestro
primer proyecto, el cual consiste en la aplicación del método de Aproximación de Verosimili-
tudes con Derivadas (DALI por sus siglas en inglés) para mejorar las predicciones de Matriz
de Fisher de un experimento de agrupamiento de galaxias tipo LSST. El método contiene
una expansión de Taylor hasta el tercer orden a partir del punto de parámetros de confianza,
capturando formas de las regiones de confianza que van más allá de las usuales elipses de
Fisher en la bibliografía. Además se compara con muestras de Cadenas de Markov Monte
Carlo para mostrar la efectividad del método.

Luego, realizamos un proyecto acerca de la aplicación del formalismo de la Robustez
Interna a una compilación de datos de crecimiento cósmico, el cual es un método Bayesiano
que potencialmente puede detectar outliers (datos aislados), errores sistemáticos o nuevas
leyes físicas en los datos, considerando la posibilidad de que subconjuntos de los datos sigan
diferentes parámetros o modelos (incluyendo de esta manera el aspecto de comparación de
modelos básico de la estadística Bayesiana). No se encuentran errores sistemáticos ni outliers
en el set de datos, así asegurando su robustez interna.

Finalmente, tomamos por completo el campo de comparación de modelos Bayasiana, y
lo hacemos via un estudio acerca de diferentes métodos de comparación de modelos cos-
mológicos. Se comparan varios modelos de energía oscura usando datos crecimiento cósmico
y expansión cósmica, y esto se hace utilizando cuatro criterios de comparación: Compara-
ción de evidencias, Criterio de Información Bayesiano, Criterio de Información de Akaike
y un método reciente de Figura de Mérito. Luego, se discute acerca de la efectividad y
conveniencia de cada uno de ellos.
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Abstract

In this thesis, we introduce the Bayesian statistics formalism applied to ΛCDM cosmology
and other dark energy models, focused on galaxy clustering and cosmic growth observables.
We explore a wide range of applications of the Bayesian framework.

First, we explore the forecasting possibilities of Bayesian statistics with our first project,
which consists in the application of the Derivative Approximation of LIkelihoods (DALI)
method to improve Fisher Matrix forecasts of an LSST-like galaxy clustering survey. The
method features a Taylor expansion up to third order from the fiducial parameter point,
capturing shapes for the confidence regions that go beyond the usual Fisher ellipses in the
bibliography. We also compare with Markov Chain Monte Carlo samples to show the effec-
tiveness of the method.

Next, we take on a project about the application of the Internal Robustness formalism to
a compilation of cosmic growth data, which is a Bayesian method that can detect outliers,
systematics or potential new physics in data considering the possibility that subsets of the
data follow different parameters or models (including in this manner the model comparison
basics of Bayesian statistics). We found no systematics nor outliers in the dataset, thus
ensuring its internal robustness.

Finally, we fully take on the Bayesian model comparison field, and we perform this via
a study about contrasting different comparison methods of cosmological models. We rank
several dark energy models using cosmic growth and cosmic expansion data, and we do this
by utilizing four different comparison criteria: Evidence comparison, Bayesian Information
Criterion, Akaike Information Criteria and a recent Figure of Merit method. We also develop
a fifth method that builds on the Figure of Merit method. We then discuss the effectiveness
and convenience of each of them.
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That might be an action that’s been repeated endlessly in any era, in any world. Humans
always pursue things they can’t reach. Doesn’t it single-heartedly symbolize such yearnings?

The legend ends, and history begins.
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Introduction

Albert Einstein published his theory of gravity, General Relativity, in 1915 [4], changing
completely the way we understood the Universe. This led to a better understanding of rela-
tivistic astrophysical objects like black holes, neutron stars, active galactic nuclei, phenomena
like the Doppler effect, gravitational waves, and gravitational lensing, just to name a few.
Especially, gravity shapes the large-scale structure of the Universe through the gravitational
interaction of objects like galaxies, clustering up and forming patterns known as the cosmic
web.

Several experimental tests have confirmed General Relativity to be the correct theory
of gravity [5]. Modern cosmology then began as one of the first applications of General
Relativity1. Another important cornerstone of our current cosmovision is the cosmological
principle, which states that our Universe is homogeneous and isotropic on large scales. Such
a hypothesis has been validated by many experiments, all which are related to the observed
distribution of galaxies in our Universe, and it has been crucial at setting the stage to develop
a cosmological perturbation theory, which describes the overall growth and dynamics of the
components of the Universe. Another important part of our current understanding of the
Universe was the discovery of its expansion by Edwin Hubble [7], pointing that objects
separate between each other.

The ΛCDM model, also called the concordance model, is nowadays the standard model
that it is able to describe the dynamics of the Universe, as confirmed by several observa-
tions [8, 9]. It is governed by the laws of General Relativity, the cosmological principle, and
cosmological perturbation theory. Before carrying on, let us illustrate the current state of
the chronology of the Universe.

According to ΛCDM, our Universe began with a hot big-bang, a result that comes from
reversing the time in an expanding Universe, where physics as we know it breaks down, due
to the immense density and energy levels. After that, the Universe experienced a period
of fast expansion called inflation, which is parametrized as a field-driven process which is
not explained by the standard model of particle physics. After the inflationary epoch, the
Universe is dominated by radiation and, as the Universe expanded and cooled down, light
particles like Hydrogen and heavier elements were formed (in processes called recombination
and nucleosynthesis, respectively) and the Universe was then composed of a baryon-photon
coupled fluid. As the expansion and cooling continued, eventually, photons decoupled from

1Even recently, Einstein’s theory was confirmed again via gravitational wave detections on 2016 by the
LIGO/VIRGO consortia [6].
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baryons, and electrons followed afterward, thus liberating photons with valuable information
of the state of the Universe at that point, constituting the Cosmic Microwave Background
(CMB). The CMB is an (approximately) homogeneous radiation that comes from every
direction in the sky, evidencing that ancient period of high energy where baryon and photons
were coupled. Quantum fluctuations of the inflaton field correspond to the primordial seeds of
perturbations, and their imprints are still preserved on the CMB radiation, these seeds have
grown during the matter-dominated era forming the structures we see today. Summarizing,
the Universe started as an infinitesimal point in spacetime, experienced a quick expansion
through inflation, and then started to cool down and form larger and larger bound objects
as it expanded: from sub-atomic particles to clusters of galaxies.

Two important parts of the contemporary cosmological picture are the enigmatical dark
matter and dark energy. They are the distinctive features of ΛCDM, making up for its name:
dark energy in the form of a cosmological constant (Λ) plus cold dark matter (CDM).

The need of intruding a dark matter component comes from observations where the matter
density of the Universe is not able to describe properly the dynamics of galaxies with respect
to their rotational curves. Additionally, large-scale observations indicate that the matter
density does not match the observed luminous matter content [10]. Another important
probe for dark matter is the CMB, as it also captures the behavior of its perturbations.
Dark matter can be thought of as a form of matter that does not interact (or it interacts
weakly) with light. Since it is very hard to detect it directly, experiments need to map
it only through their gravitational interaction with ordinary matter, examples of this are
galaxy cluster dynamics and gravitational lensing. Dark matter constitutes around 25% of
the energy content of the Universe, while baryonic matter only makes for a 4% [11], it is clear
that Dark matter is the main driver on the formation of structure. Dark matter, however,
has its issues, represented mostly by the small scales problem [12]. There is a generalized
mismatch (that can be subdivided in at least 5 specific issues) between observations versus
numerical simulations and semi-analytic models of galaxy formation in a ΛCDM Universe.
These issues may lead to the discovery of unknown physics in the dark sector, such as the
possibility of interactions between baryons and dark matter. The scales of these phenomena
far in the non-linear regime (or too small), for which they cannot be properly described by
first-order perturbation theory.

Dark energy was introduced into the budget of our Universe in 1998 since the supernovae
of type Ia measurements from Refs. [13, 14]. Such experiments captured an unexpected
diminishing in the luminosity of the farther supernovae Ia, implying that they were even
farther than expected. This showed that the Universe was in a phase of accelerated expansion.
Something like this effect could be explained if we add a component that pushes objects
away from each other, challenging the dynamics of the Universe known so far. A fluid with
a negative pressure can then fuel the acceleration of the Universe, thus giving place to dark
energy in the theoretical framework. This peculiar component of the Universe constitutes
about 70% percent of the energy content of the Universe. Introducing the cosmological
constant gives rise to a sort of philosophical issue, known as the fine-tuning problem [15]. In
order to relate the cosmological constant Λ to a more fundamental property of the Universe,
it could be seen as the energy of the vacuum. However, making this connection is in an
enormous discrepancy with particle physics, which can predict the value of the vacuum energy.
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This discordance is so extraordinary that it spans more than 120 orders of magnitude2.
Nonetheless, this might be an issue of the Standard Model of Particle Physics, rather than
ΛCDM.

One of the most important probes of dark energy is the large-scale structure, with exper-
iments that study the clustering properties of galaxies. The distribution of galaxies carries
precise information about the Universe since their positions can be described (statistically)
by linear cosmological perturbation theory up to a great degree. According to this frame-
work, the small perturbations on the matter density, which come as initial conditions from
inflation, evolve along with the expansion of the Universe and eventually form stars, galaxies
and clusters of galaxies in a bottom-up fashion, a process which may defy common sense.
Of course, the positioning of galaxies is intimately related to the clustering of mass, which
includes dark matter, and this relation can be parametrized by a bias factor, which can in
principle depend on time and the properties of galaxies. The large-scale structure is nowadays
one of the most constraining probes available. Galaxy clustering surveys like the Sloan Dig-
ital Sky Survey [16] have already constrained cosmological parameters with high precision,
and will continue to improve over next generations, with experiments like the Large Synoptic
Survey Telescope [17] and the Euclid Survey [18], which over the next decade will map the
positions of billions of galaxies with unprecedented accuracy and range. Our attention to
the large-scale structure cosmology lies in that it might be the key to finally obtain answers
to the mysteries of the dark sector, and maybe even the true nature about the origin of
the Universe, if it was discovered that any model other than General Relativity dictates the
dynamics of the Universe (for both dark energy and modified gravity cases).

Throughout the years, several cosmological models have taken the spotlight in the scien-
tific community, depending on the available data at the time. Historically, simplicity and
the number of free parameters have been the cornerstones to find the best description of
phenomena. In this sense, ΛCDM excels but, at the same time, it leaves many questions
yet to answer, which are related to the fundamental theory of the model itself, as we men-
tioned earlier. Due to these problems the scientific community was forced to develop a
phenomenological description of the models in order to describe their behavior and look for
alternatives to ΛCDM, such as models that maintain dark energy, but not involving fluids,
such as Quintessence or K-essence. There are also models that modify the type of dark energy
fluid, like the Chaplygin gas dark energy or coupled dark energy. We can mention theories
that modify the type of spacetime while retaining most of the other properties of ΛCDM,
like the Lemaître-Tolman-Bondi (LTB) inhomogeneous metric model. There are also Modi-
fied Gravity theories that deviate from General Relativity, and explain the dynamics of the
Universe without the need of dark energy, like f(R) gravity, or the Dvali-Gabadadze-Parroti
brane-world model (DGP) [19].

Over the last few decades, the field of cosmology has been set through a revolution, driven
by the technological improvements in astronomical and cosmological surveys: the sensitivity,
efficiency, and detection range has been improved by orders of magnitude with every new
generation of surveys, allowing us to observe deeper, further in time and in broader ranges.

2The value of vacuum energy density predicted by quantum physics is ρΛ ≈ 1071 GeV, while the vacuum
energy density as it was produced by the cosmological constant only amounts to ρΛ ≈ 10−47 GeV.
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Along with this, the increasing computing power, performance, and throughput3 available
for the scientific community has been giving a hard fight to keep up with the even more
increasing size of the data products of each new experiment. Often this is called the era of
precision cosmology, as surveys aim to constrain the cosmological parameters within percent
accuracy, something unprecedented a few decades ago.

When having more precise and numerous data, statistical errors drop and, then, the lim-
iting factor on the amount of information that can be extracted from the measurements will
be the systematic errors of surveys, which are reduced by refining observational techniques.
Another way of maximizing the obtained information is to improve the statistical techniques
used to analyze data. This thesis will focus on the latter topic, where Bayesian statistical
methods have been crucial when moving into the era of precision cosmology.

Bayesian statistics has been a fundamental tool for the analysis of cosmological data.
It is a versatile framework that is naturally scalable with the complexity of the statistical
treatment of the data, and this gets more important as the volume and complexity of data
increases. Another factor for the flourishing of Bayesian statistics in cosmology is the increase
of the computational capabilities, allowing for the application of many numerical techniques
for data analysis that were impossible to implement, say, twenty years ago. These techniques
have to be formulated properly under a statistical point of view, what is achieved naturally
with the Bayesian formalism. Bayesian statistics’ point of view is intuitive to understand: it
gives a quantitative measure of our belief in a theory, given a set of physical measures. Of
course, it is also important to develop tools that minimize numerical cost while maximizing
the amount of output information.

The most general questions one wants to answer with Bayesian statistics are: Which is
the best model to describe observations? and which are the parameters of a theory that better
describe observations?. The former question addresses the topic of model selection, whereas
the latter addresses parameter inference.

Parameter inference is treated as the search for the confidence regions of the parameters
of a theory. An important method within the scope of the latter question is the Fisher
Matrix. This method consists in approximating the logarithm of a probability distribution
to first order in a Taylor expansion, resulting in a Gaussian distribution for the model’s
parameters. This tool is less expensive numerically in comparison with the more usual Markov
Chain Monte Carlo (MCMC) methods for obtaining confidence regions for parameters. One
important application of the Fisher Matrix formalism is forecasting the performance of future
surveys by applying the method to a simulated Universe with a fiducial model, as it would
be observed by the survey’s telescope. These forecasts have the goal of pointing what could
be improved in order to optimize each survey, thus maximizing their scientific returns.

3Data throughput refers to the amount of data processed. High Throughput Computing (HTC) is dif-
ferent than High Performance Computing (HPC) in the sense that, in an HTC facility, each machine is not
necessarily large or fast, but the vast number of machines, which can take the form of a network of desktop
computers, could process more data than an HPC facility. On the other hand, an HPC facility is closely
and efficiently connected in the same room, allowing for more communication between nodes. So, the de-
gree of parallelization needed for a given massive computation may be better suited to either HPC or HTC
treatment.
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The main objective of this thesis is to introduce the Bayesian statistics framework applied
to cosmology and use it in three independent projects, focused on the careful use of the
Bayesian techniques explained, which are based on all of the three pillars of Bayesian analysis.

Outline

On Chapter 1, we underline the major theoretical background regarding cosmology with the
ΛCDM model, including cosmic distances and standard candles and rulers.

Continuing, on Chapter 2 we briefly go through the equations needed for computing
cosmological quantities related to cosmological perturbations, in the case of non-interacting
matter and for the interacting case, we outline the ideas behind the Boltzmann equation.

Building on the foundations from the previous chapters, Chapter 3 delves on the spe-
cific topic of this thesis, the large-scale structure of the Universe, including redshift space
distortions and baryon acoustic oscillations, and how we actually observe all of it.

Next, we change the switch to the Bayesian statistics formulations on Chapter 4, where
we outline how to extract valuable information from observations, where computational con-
siderations are key.

Beginning our projects, on Chapter 5 we implement the Derivative Approximation of
Likelihoods, an extension to the Fisher Matrix method, to forecast an LSST-like galaxy
clustering survey, where we also compare to a more computationally expensive Markov Chain
Monte Carlo method.

Next, we jump into the model comparison part with the project of Chapter 6, which is
the implementation of the Internal Robustness method to a set of growth rate observations,
which is a novel test that can be applied to almost any dataset (given that it is not too large),
giving new insights into the relation of the dataset’s subsets.

Our next project, on Chapter 7 is a comparison of comparison methods for different dark
energy models (equation-of-state models), using growth rate data and direct measures of the
Hubble constant with cosmic chronometers. We contrast four ways of comparing the models,
while also proposing a new method that improves on one of the former methods.

Finally, we present our conclusions and outlook.
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Chapter 1

Fundamentals of the ΛCDM model

In this chapter, we settle the foundations for our cosmological study, based on the theory of
General Relativity, along with the current picture of the cosmological landscape. Throughout
this thesis, we will use units so that c = 1, being c the speed of light. We will state whenever
it is important to come back and use other units. Greek letters index numbers starting from
0 and Latin letters start from 1. Dots will represent derivatives with respect to the time
coordinate (except on Chapter 2), additionally, covariant derivatives and partial derivatives
of tensors are denoted by placing (next to an index) a semicolon or a comma, respectively.
Dots represent derivatives with respect to time. The main reference for this part of the thesis
is Ref. [11].

1.1 The Friedmann Equations

The ΛCDM scenario is described by a curvature-free Friedman-Lemaître-Robertson-Walker
(FLRW) metric [20, 21, 22, 23]. We now write the more general (including curvature) FLRW
spacetime, which describes a homogeneous and isotropic Universe, and its line element is
given by

ds2 = gµνdxµdxν = −dt2 + a2
[

dr2

1−Kr2 + r2(dθ2 + sin2 θdφ2)
]
. (1.1)

Here, gµν is the metric tensor, a(t) is the scale factor dependent on cosmic time t, and
we normalize it to 1 at the present epoch. r, θ, φ are spherical comoving coordinates. K
represents the curvature of the universe, and it can take the values −1, 0,+1, corresponding
to an open, flat or closed Universe, respectively.

The Einstein’s field equations [24] are given by

Gµν = 8πGTµν , (1.2)

where Gµν is the Einstein’s tensor, describing the geometry of the universe, G is the Newto-
nian constant, and Tµν is the energy-momentum tensor, accounting for the energy and matter
present in the Universe.
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The Einstein’s tensor is defined through the Ricci tensor and, from it, it can be expressed
with the Christoffel symbols, connecting to the geometry of the metric. Now we define these
quantities:

Gµν = Rµν −
1
2gµνR , (1.3)

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓβαµ , (1.4)

Γγαβ = 1
2g

γη(gαη,β + gβη,α − gαβ,η) , (1.5)

where Rµν is the Ricci tensor, R = gµνRµν the Ricci scalar, and Γγαβ the Christoffel symbol,
which finally links the Einstein tensor to the metric gµν .

We will express the energy-momentum tensor considering that the contents in the universe
are only perfect fluids with density ρ and pressure p.

Tµν = (ρ+ p)uµuν + pgµν . (1.6)

Here, uµ = (−1, 0, 0, 0) is the background four-velocity of the fluid in comoving coordinates.
By background, we refer to quantities that depend on time only, in order to study the the
averaged dynamics. In Chapter 2 we will consider deviations from this paradigm.

Combining the Einstein’s field equations with the energy-momentum tensor form above
gives the Friedmann equations, see Ref. [11]

H2 = 8πG
3 ρ− K

a2 , (1.7)
ä

a
= −4πG

3 (ρ+ 3p) . (1.8)

On these equations we define the Hubble parameter as H = ȧ/a. It will be useful to also
define the Hubble constant H0 = H(a = 1) and the adimensional Hubble constant through
100h km/s/Mpc = H0. An important caveat on this parameter is its tension, as there are
recent observational constraints on this parameter that maintain a considerable tension, as
CMB measurements point h = 0.674±0.005 [9] while local measurements (of galaxy distances
through Cepheids) obtain h = 0.7324± 0.0174 [25].

1.1.1 Background evolution of matter species

Each type of fluid ρi can be characterized by its equation of state (EoS) parameter wi , which
is the ratio of its pressure to density.

wi = pi

ρi
, (1.9)

This EoS will tell us how the density evolves respect to the scale factor. With that in mind,
the conservation of the energy-momentum tensor, or T 0ν

;ν = 0 can help us derive

ρ̇+ 3 ȧ
a

(ρ+ p) = 0 . (1.10)
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Therefore, in the case of a constant wi , Eq. (1.10) can be solved as

ρi(a) = ρi,0a
−3(1+wi) . (1.11)

Here, the subscript ‘0’ indicates present time at a = 1 (this will hold for the rest of the
thesis). We can also treat the case of a time-dependent (via the scale factor a) EoS wi(a), in
which we replace wi in Eq. (1.9) with the effective equation of state parameter ŵi , given by

ŵi = 1
log(a)

∫ 1

a

wi(x)
x

dx . (1.12)

The matter species considered are radiation and matter. We now detail more about them,
along with other components that can be described similarly:

Radiation: Radiation comprises relativistic particles like photons and massless neutri-
nos, these behave with a pressure equal to one-third of its density, a result from statistical
mechanics. Their EoS is

wr = 1/3⇒ ρr ∝ a−4 . (1.13)
This decrease in density can alternatively be derived more intuitively by considering how the
expansion affects an ensemble of photons: a factor of a−3 comes from the change in number
density of the particles, and another a−1 factor from the stretch of the light wave, making it
increase its wavelength, hence decreasing its frequency, resulting in a proportional decrease
in energy.

Matter: When we speak loosely of matter, we refer to non-relativistic particles, like
baryons, massive neutrinos and cold dark matter (cold refers to having small speeds compared
to light’s). Its equation of state is 0 since its pressure is negligible. The EoS for this species
is

wm = 0⇒ ρm ∝ a−3 . (1.14)
Baryonic matter and cold dark matter are often considered separately in analyses, to take
into account the epoch of the baryon-photon coupled fluid, while dark matter is already
starting to form more dense regions. The baryon-photon coupled era lasted until the until
the drag epoch, this is the time when baryons were released from the drag of photons via
Compton scattering. Do not confuse the drag epoch with the recombination time, as the
latter is the time when photons were released from the Thomson scattering interactions with
electrons, which is the point where the CMB was released, a moment that also defines the
last scattering surface.

Dark energy: Dark energy can be treated in several ways, as we mentioned in the
Introduction. For now, we will consider it as a fluid with an equation of state wde = −1
in the ΛCDM paradigm. This comes from the addition of a cosmological constant Λ to the
Einstein’s field equation, in order to explain the current acceleration of the Universe

Gµν = 8πGTµν → Gµν + gµνΛ = 8πGTµν . (1.15)

This addition modifies the Friedmann equation as follows

H2 = 8πG
3 ρ− K

a2 + Λ
3 . (1.16)

ä

a
= −4πG

3 (ρ+ 3p) + Λ
3 . (1.17)
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Considering this cosmological constant as a fluid, one can return to the original Friedmann
Eqs. (1.7),(1.8) by defining a constant density ρde = Λ/(8πG) and, noticing it is independent
of the scale factor, we define an effective EoS as

wde = −1 . (1.18)

The most simple extensions to ΛCDM are modifications to this EoS, namely the wCDM
model, that has a free parameter w = wde, and the CPL model [26, 27] also known as
w0waCDM, which has a time-dependent dark energy EoS parametrized by wde(a) = w0 +
wa(1 − a) (notice this is just a Taylor expansion over a = 1 to first order). This time-
dependency has to be treated with Eq.1.12 in order to include it in the density function.

An interesting issue to mention here is the coincidence problem [28]. This problem ad-
dresses why the energy density parameters of dark energy and matter are so similar, as they
are of the same order today, which demands that the densities of these species had to be set
to an incredibly precise value in the early stages of the Universe, considering that the matter
density evolves with a power law while the dark energy density is a constant. Intents on how
to answer this question often need the anthropic principle, hence converting this problem
into a philosophical issue.

Curvature: The curvature term in the Friedmann equation (Eq. (1.7)) can also be treated
as a matter species, by defining the density

ρk = −3K
8πGa2 ⇒ ρk ∝ a−2 . (1.19)

Therefore, it can be considered as a fluid with an effective equation of state

wk = −1/3 . (1.20)

Considering only these species to conform our Universe, then Eq.1.7 can be recast in a
straightforward expression,

H2

H2
0

= Ωr,0a
−4 + Ωm,0a

−3 + Ωk,0a
−2 + Ωde,0 . (1.21)

Here, we introduced the density parameters Ωi,0, given by

Ωi,0 = ρi,0

ρcrit,0
= 8πGρi

3H2
0

. (1.22)

With ρi,0 the density of the species at present time, and ρcrit,0 = 3H2
0/8πG the critical density

of the Universe at present time, which corresponds to the current average density of it. These
density parameters are very convenient since they are constants and they also fulfill

Ωr,0 + Ωm,0 + Ωk,0 + Ωde,0 = 1 . (1.23)

Nonetheless, the density parameters can be further generalized to their time-dependant ver-
sions, Ωi , which are expressed by

Ωi = ρi(a)
ρcrit(a) = H2

0
H(a)2 Ωi,0a

−3(1+wi) , (1.24)
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where ρcrit = 3H2/8πG the critical density of the Universe at a given scale factor. Thus,
these quantities follow, at all times,

1 = Ωr + Ωm + Ωk + Ωde . (1.25)

The different power laws that the species follow can define domination eras for each of them:
The radiation-dominated era (starting after inflation), the matter-dominated era and the
dark energy-dominated era, which were mentioned on the Introduction. Currently, we live
in the dark energy era, and only recently, since it started at around ∼ 10 billion years of
Universe age, out of the actual ∼ 14 billion years old. Most of the Universe’s history has
been within the matter domination era, since the Universe was ∼ 14000 years old when it
started, with the electron-photon decoupling time happening afterward at an age of ∼ 378000
years [10].

The current values for the density parameters are, according to [9]:

Ωm,0 = 0.3111± 0.0056 , (1.26)
Ωde,0 = 0.6889± 0.0056 , (1.27)
Ωk,0 = 0 (Assumed) , (1.28)
Ωk,0 = 0.0007± 0.0019 (If allowed) . (1.29)

As the radiation-dominated era is so far in the history of the Universe, the energy density of
radiation has decreased significantly, due to its EoS. Consequently, the density parameter of
radiation, which is valued at present time, is very small in comparison to the other parameters,
namely Ωr,0 ≈ 8.4 · 10−5 [10].

1.2 Cosmic distances

Distances are fundamental to portrait how the Universe is configured, therefore in this sec-
tion, we will illustrate how distances are defined and observed, plus some important related
concepts. In this section we mainly follow Ref.[29].

1.2.1 Redshift

The redshift is an important phenomenon of the light that cosmological objects emit, crucial
to define distances in the Universe. This comes from the fact that objects in an expanding
Universe receed from us, thus experiencing a cosmological Doppler effect. In specific, electro-
magnetic waves stretch during their travel from its emission to us, evidencing the expansion
of the space component of an FLRW Universe. The redshift, symbolized by z, is a way of
measuring the Doppler effect. It is defined by the wavelengths at emission and reception,
namely λe and λ0, respectively,

z = λ0 − λe

λe
. (1.30)
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If we note that the wavelength is proportional to the scale factor, as any other distance, we
arrive at a simple relation for the scale factor and the redshift,

λe

λ0
= a(te)
a(t0) ⇒ a = 1

1 + z
(1.31)

Here, te and t0 represent the times of emission and reception of the wave, respectively. We
remind the reader that our convention for the current scale factor is a(t0) = 1.

As the wavelength increases, the effect on visible light is that it gets shifted to the color
red, hence the name of the phenomenon. This effect can be measured by spectroscopy:
comparing the absorption or emission lines of the spectrum of light with samples of the same
chemical composition in the lab. Thus, it is possible to obtain the scale factor by using the
redshift of the observed object, opening a window into the past of our Universe.

1.2.2 Comoving distance

The comoving distance dc is related to the geodesic path of a photon traveling between two
points in the same line of sight. To define the comoving distance, we express the FLRW
metric (Eq. (1.1)) again, now including the speed of light c,

ds2 = −c2dt2 + a2
[
dχ2 + r2(χ)(dθ2 + sin2 θdφ2)

]
. (1.32)

Here, χ relates to the old coordinate r(χ) and on the curvature K:

r(χ) =


sinχ (K = +1) ,
χ (K = 0) ,
sinhχ (K = −1) .

(1.33)

This expression can also be compressed trough

r(χ) = 1√
−K

sinh
(
χ
√
−K

)
. (1.34)

If we consider an object at χ1, the comoving distance dc between us, at χ0, and the object
will be determined by the geodesic ds = 0, since photons must travel in null geodesics.
This equation transforms into cdt = a(t)dχ when considering a trajectory free of angular
components. The definition is as follows:

dc ≡ χ1 =
χ1∫
0

dχ = −c
t1∫

0

dt
a(t) . (1.35)

Now, if we use da = H(a)adt and da = −dz/(1 + z)2, we get

dc = −c
a1∫
1

da
H(a)a2 = c

z1∫
0

dz
H(z) . (1.36)
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Finally, with E(z) ≡ H(z)/H0 we arrive at:

dc(z) = c

H0

z∫
0

dz′
E(z′) . (1.37)

The quantity c/H0 is known as the Hubble distance, and its scale is in the order of the radius
of the Universe. Similarly, 1/H0 is the Hubble time and is in the scale of the age of the
Universe.

1.2.3 Transverse comoving distance

A closely related quantity to the comoving distance is the transverse comoving distance dM ,
also known as proper motion distance. If two objects at the same redshift are separated by
an angle θ, they are separated by dM · θ. This is the coordinate r(χ) from Eq. (1.32). In
other words,

dM(z) = 1√
−K

sinh
(

dc(z)
√
−K

)
. (1.38)

Using Ωk,0 = −Kc2/H2
0 instead of K, this can be rearranged in the more useful form:

dM(z) = cH−1
0√

−Ωk,0
sin
√−Ωk,0

z∫
0

dz′
E(z′)

 , (1.39)

which, in the case of a flat cosmology, reduces to the comoving distance:

dM(z) = c

H0

z∫
0

dz′
E(z′) . (1.40)

1.2.4 Luminosity distance and standard candles

Luminosity can be used as a way of measuring distances. We start by considering a source
object with an intrinsic luminosity Le (we use again ‘e’ for emission and ‘0’ for the present
time/arrival), and the flux (energy over surface) we observe is F0, which defines an observed
luminosity L0 via F0 = L0/A0, where A0 is the area of a sphere at a = 1.

The luminosity distance is defined trough

dL ≡
√

Le

4πF0
. (1.41)

This means that we can obtain the distance of an object if we know its intrinsic luminosity
and observe its flux. If we consider the area in a curved spacetime to be related to the
transverse comoving distance via A0 = 4πd2

M , we will only need to compute the ratio of
luminosities,

dL = dM
√
Le

L0
. (1.42)

12



The luminosity of an object is the energy emitted over time, so the cosmological Doppler
effect stretches the wavelength of the light emitted, decreasing the energy emitted per photon.
Similar to the redshift case explained earlier, this induces a ratio

Ee

E0
= λ0

λe
= 1
a
, (1.43)

where E and λ is the energy and wavelength of a photon, and a is the scale factor at the time
of emission. This also affects the period ∆t of the wave, since the stretch of the wavelength
is proportional to it, or

∆te
∆t0

= λ0

λe
= a . (1.44)

Finally, writing the luminosity as L = E/∆t yields

dL(z) = (1 + z)dM(z) , (1.45)

where we included the redshift via a = 1/(1 + z).

Supernovae Ia (SN Ia) [30] are a subtype of supernovae that is produced in a binary system
where a white dwarf is matter-fed by an accreting companion star, until the Chandrasekhar
limit of mass is surpassed and an explosion (of nuclear nature) occurs, meaning that the
electron-degenerated pressure of the white dwarf was surpassed by the gravity of it. SN
Ia are important in cosmology, thanks to their standard candle property, meaning that all
supernovae Ia have an almost equal luminosity (or it can be standardized using other of their
properties like light-curve peak, stretch, and color [31]), which allows them to place strong
cosmological constraints, especially on dark energy. In particular, they drove the discovery
of the accelerated expansion of the Universe [13, 14].

The luminosity distance is obtained in SN Ia measurements, where the distance modulus
µ of the star is the observed quantity, and it is linked to the luminosity distance through

µ = m−M = 5 log10(DL) + µ0 (1.46)

with DL = (H0/c)dL the adimensional luminosity distance and µ0 a nuisance parameter,
which we assume equal for all SN Ia. The distance modulus µ is the difference between
the magnitude m of the star (a logarithmic measure of the brightness), and the absolute
magnitude M , which corresponds to the magnitude of the star if it was located 10 pc away
from the observer.

1.2.5 Angular diameter distance and standard rulers

Observing an object that subtends a certain angle can be used as a way of measuring its
distance if we know the size of the object. The angular diameter distance is defined as the
ratio of the physical size of an object to the angular size that it is observed to subtend, i.e.

dA ≡
∆x
∆θ , (1.47)
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with ∆x the diameter of the object, orthogonal to the line of sight, and ∆θ its subtended
angle. It is related to the transverse comoving distance via

dA(z) = dM(z)
(1 + z) . (1.48)

The explanation comes from the factor ∆θ ∼ 1/a = (1 + z) that arises when moving from
the observed angular separation to the actual separation in the current redshift.

The angular diameter distance is of great importancy in cosmology, because it is used to
measure the Baryon Acoustic Oscillations (BAO) scale rs, which is the sound horizon at the
baryon drag epoch, a point in time which is close to the end of recombination. So, it can be
defined by

rs =
τdrag∫
0

cs(τ)dτ . (1.49)

where τ is the conformal time, defined through dτ = dt/a (τdrag evaluated at the drag epoch)
and cs the sound speed of the baryon-photon fluid.

The drag scale rs represents the maximum (comoving) scale at which sound waves could
propagate before the drag epoch. Before the drag epoch, sound waves propagated back and
forth in the fluid, hence the ‘oscillations’ part of BAO. So, different parts of the baryon-photon
fluid could not communicate through sound in distances larger than rs. If the cosmological
principle is correct, this phenomenon must have left a statistical imprint in the CMB and the
large-scale structure of galaxies which has been found. The importance of rs is explained by
it being a standard ruler, not in the sense of an object of constant size, but rather a ‘constant
comoving-sized ruler’, a ruler which is also obtained via the statistics of galaxies, as we will
see later.

Then, by using Eqs. (1.48) and (1.36) while observing transverse and parallel comoving
scales r⊥ and r‖ through an angle ∆θ and a small redshift range ∆z, respectively, one can
relate these quantities [32]

dA(z) = r⊥
(1 + z)∆θ , (1.50)

H(z) = c
∆z
r‖

. (1.51)

In order to link these quantities to the BAO case, we can simply set both scales to the sound
horizon, r⊥ = r‖ = rs. This last move may be an oversimplification, since modern BAO
surveys like SDSS-IV [33] use more complex models to obtain relations between r⊥, r‖ and
rs. These models are based on techniques involving numerical simulations of the 2-point
correlation function of galaxies (we treat the 2-point correlation function on Chapter 3).
The current constraint on the drag scale, rs = 147.18 ± 0.29 Mpc, was obtained via CMB
observations [9], therefore its standard ruler property is fully exploitable to enhance the
quality of BAO constraints.
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Chapter 2

A slice of cosmological perturbation
theory

Perturbation theory is the treatment of small perturbations (inhomogeneities) in a back-
ground homogeneous Universe, and how these primordial seeds evolve following the laws of
General Relativity.

In this thesis, we mainly focus on the statistical analysis of observed quantities like the
galaxy power spectrum or the growth rate of matter perturbations and, it is for that reason
that we have to settle the theoretical foundations for these quantities to be constructed,
which are based on perturbation theory.

In order to confront data to theory (or make forecasts out of a theory), we must solve
the perturbation differential equations (2.31)-(2.34) plus (2.37)-(2.38) or the Boltzmann
equation (2.52), be it analytically, numerically, or using a solver like CLASS [34, 35] or
CAMB [36, 37]. That said, those equations are the main results from this chapter. Now, we
delve into the mathematical formalism behind those equations.

Linear perturbation theory is a nice way to obtain equations out of a complex theory
like General Relativity, and it works very well at large scales, but care must be taken when
going to the smaller scales, where first order perturbations alone are insufficient to describe
the dynamics of astrophysical objects, and a non-linear treatment or semi-analytical models
must be sought.

Before we begin, we state our preference to work in Fourier space and, since we are doing
first order perturbations, all the equations are linear and therefore we can drop the eik·x

multiplying terms that appear when taking spatial derivatives. It is important to mention
that, in this chapter only, the dots represent derivatives with respect to the conformal time
τ . Our main references for the chapter are Refs. [11] and [38].
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2.1 Choosing the Gauge

There are different ways to define the perturbations in an FLRW metric. This arises from the
freedom of choosing the observer for the metric, thanks to the gauge-invariance of General
Relativity. We now introduce the two most used gauges.

2.1.1 Synchronous Gauge

We first define the Synchronous gauge through

ds2 = a2[−dτ 2 + (δij + hij)dxidxj] , (2.1)

with hij a tensor for spatial perturbations. The name stands for ‘equal time’, linked to the
fact that, by definition, there are no perturbations in time in this gauge. Boltzmann solvers
work using this gauge to maximize computational efficiency, due to the arising of batch-like
calculations on matrices.

2.1.2 Conformal Newtonian Gauge

We now present the perturbed metric, in the conformal Newtonian gauge, also known as the
longitudinal gauge or shear-free gauge.

ds2 = a2[−(1 + 2ψ)dτ 2 + (1− 2φ)dxidxi ] , (2.2)

where ψ and φ are time and space perturbations1. This metric has the advantage of having
a diagonal metric, which simplifies the calculations immensely. We are now going to utilize
this gauge to demonstrate the standard equations needed to evolve its perturbations. There
are, of course, transformation rules to go from one gauge to another whenever needed.

2.2 Perturbing General Relativity

In order to perturb the Einstein’s equations (1.2), we consider a variation on both the Einstein
tensor and the energy-momentum tensor. This is splitting them into a background and a
perturbed part according to

Gµ
ν = Gµ(0)

ν + δGµ
ν , (2.3)

T µν = T µ(0)
ν + δT µν , (2.4)

1This sign convention is often different in the bibliography on the topic, which affects the following
equations. We follow the convention of [38].
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where the (0) superscript denotes a background part. Then, the background evolution is
obtained by solving the Einstein equation at zeroth order, while the perturbed parts follow
the first order equation,

Gµ(0)
ν = 8πGT µ(0)

ν , (2.5)
δGµ

ν = 8πG δT µν . (2.6)

To obtain the expression for the perturbed Einstein tensor, we propagate the perturbations,
starting from the metric through the Christoffel symbols, and then to the Ricci tensor and
scalar, finally getting to the Einstein tensor.

2.3 Perturbed Einstein tensor

So, we begin by splitting the metric in a background (FLRW) and perturbed part gµν =
g(0)
µν + δgµν , where

δgµν = a2

−2ψ 0
0 2φδij

 . (2.7)

Then, we also write the perturbed Christoffel symbol

δΓµνλ = 1
2δg

µα(gαν,λ + gαλ,ν − gνλ,α) + 1
2g

µα(δgαν,λ + δgαλ,ν − δgνλ,α) . (2.8)

Here, the only non-vanishing terms are

δΓ0
00 = ψ̇ , (2.9)

δΓ0
ij = −δij

[
2(ψ + φ)H + φ̇

]
, (2.10)

δΓ0
0i = δΓ0

i0 = δΓi
00 = φ,i , (2.11)

δΓi
j0 = δΓi

0j = −δi
jφ̇ , (2.12)

where we define the conformal Hubble parameter by

H ≡ ȧ

a
= aH . (2.13)

Next, the perturbed Ricci tensor and scalar are

δRµν = δΓαµν,α − δΓαµα,ν + δΓαβαΓβµν + ΓαβαδΓβµν − δΓαβνΓβαµ − ΓαβνδΓβαµ , (2.14)
δR = δgµνRµν + gµνδRµν . (2.15)

Then, the perturbed Ricci tensor is

δR00 = −k2ψ + 3
[
H(ψ̇ + φ̇)− φ̈

]
, (2.16)

δRij = −φ
(
4k2 + 12H2 + 6Ḣ

)
+ ψ

(
k2 − 12H2 − 6Ḣ

)
− 3

[
H(5φ̇+ ψ̇)− φ̈

]
, (2.17)

δR0i = δRi0 = k
(
Hψ + φ̇

)
, (2.18)
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where the appearance of k reminds us that we are working in Fourier space. The Ricci scalar
becomes

δR = − 2
a2

{
2k2φ+ ψ(−k2 + 6H2 + 6Ḣ) + 3

[
H(ψ̇ + 3φ̇) + φ̈

]}
. (2.19)

Continuing, the perturbed Einstein tensors (with different indexations) are

δGµν = δRµν −
1
2δgµνR−

1
2gµνδR , (2.20)

δGµ
ν = δgµαGαν + gµαδGαν . (2.21)

Combining all the above, we arrive to the expressions for the perturbed Einstein tensor

δG0
0 = 2

a2

[
k2φ+ 3H

(
Hψ + φ̇

)]
, (2.22)

δG0
i = −δGi

0 = −2k
a2

(
Hψ + φ̇

)
, (2.23)

δGi
i = 2

a2

{
k2(φ− ψ) + 3ψ

(
H2 + 2Ḣ

)
+ 3

[
H
(
2φ̇+ ψ̇

)
+ φ̈

]}
, (2.24)

δGi
j = −k

2

a2 (φ− ψ) , when i 6= j . (2.25)

2.4 Perturbed energy-momentum tensor

2.4.1 Non-interacting fluids

If we consider the Universe to contain only ideal fluids, the energy-momentum tensor equa-
tion (1.6) holds. Considering perturbations in density δρ = ρ − ρ̄ and pressure δp = p − p̄,
where the bar symbolizes the mean at the time, we obtain

δT 0
0 = −δρ , (2.26)

δT i
0 = (ρ̄+ p̄)vi , (2.27)

δT 0
i = (ρ̄+ p̄)vi , (2.28)

δT i
j = δp δi

j + p̄Πi
j , Πi

i = 0 , (2.29)

where vi = dx/dτ is the peculiar velocity coming from perturbations in the 4-velocity ui2,
which can be treated as a first order quantity, and Πi

j is the anisotropic stress perturbation
traceless tensor, also of first order. We have to take this component into account when the
different species interact with each other, in the contrary case it vanishes.

To make more sense of the variables we are using, we can recall the equation of state from
Eq. (1.9) w = p/ρ, not necessarily a constant now, and define a sound speed through

c2
s ≡

δp

δρ
. (2.30)

2Note that the perturbations in the 4-velocity δui exist independently only in the spatial coordinates; we
tie the time coordinate to the condition uµuµ = 1.
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Thus, we arrive to the set of differential equations needed to be solved [38, 11]

k2φ+ 3H
(
φ̇+Hψ

)
= −4πGa2δρ , (2.31)

k2
(
Hψ + φ̇

)
= 4πGa2(1 + w)ρθ , (2.32)

φ̈+H(ψ̇ + 2φ̇) + (2 ä
a
− ψH2) + k3

3 (φ− ψ) = 4π
3 Ga2c2

sδρ , (2.33)

k2(φ− ψ) = 12πGa2(1 + w)ρσ , (2.34)

with θ = ikiv
i the velocity divergence3 and σ relates to the anisotropic stress via

σ(ρ̄+ p̄) = −
(
kikj
k2 −

1
3δij

)
Πi
j . (2.35)

In this set of equations, it is important to emphasize that, on the right hand side, we have to
sum over all the species present in the Universe. Also, many times we consider non-interacting
fluids like a two-fluid model including baryons and cold dark matter (they interact through
gravity only) and, in the case of matter, we can assume σ = 0, giving the condition φ = ψ
from Eq. (2.34).

We can include to this system the conservation of the energy-momentum tensor T µν;µ = 0,
with a semicolon representing a covariant derivative. Then, this equation also has to stand
at first order,

δT µν;µ = 0 = δT µν,µ − δΓα0βTαβ − Γα0βδTαβ + δΓββαT
β
0 + ΓββαδT

β
0 . (2.36)

Working this equation (depending on the index ν) leads us to the following:

δ̇ = −(1 + w)
(
θ − 3φ̇

)
−H

(
δp− wδρ

ρ

)
, (ν = 0) , (2.37)

θ̇ = −H(1− 3w)θ − ẇ

1 + w
θ + 1

1 + w

k2δp

ρ
+ k2(ψ − σ) , (ν = i) , (2.38)

where δ = δρ/ρ̄.

In order to work analytically with these equations, we should restrict ourselves to special
cases, in terms of scales and epochs. We can name two important scales for any fluid. These
scales dictate qualitatively the status of perturbations’ evolution, namely if they grow, remain
constant or even decrease.

The first important scale is the causal horizon scale kcausal = H. This scale places a limit
where scales larger than it (or k < kcausal) cannot grow since this would break causality.
Another important scale is the sound horizon scale ksound = H/cs, and it represents a limit
where smaller perturbations cannot grow since they are contained by the pressure of the
fluid. We must notice that both horizon scales increase with time as the Universe expands,
and since the sound speed is less than unity, the sound horizon scale is always smaller than
the causal horizon. This means that, as the Universe expands, perturbations can enter the

3Sometimes it is useful to replace θ with the variable V = (1 +w)θ, since it helps to avoid singularities in
Eqs. (2.37) and (2.38), see Ref. [19]. We will do so in Chapter 7.
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causal horizon and start evolving. Another possibility is that cs changes and increases, while
diminishing the value of ksound, allowing the evolution of perturbations that were trapped by
pressure. One example of this is the passage from the radiation-dominated era to the matter-
dominated era, which happened at the radiation-matter equality time, where perturbations
of baryons where trapped by the radiation coupling and were free to grow afterward.

Table 2.1: Summary of characteristic scales and its limitations on the evolution of perturba-
tions.

k . kcausal kcausal . k . ksound ksound . k

Perts. cannot grow Perts. can grow Perts. cannot grow

Another useful result that can be derived from Eqs. (2.37),(2.38) is, as it is commonly
said, baryonic matter falls into dark matter halos, which means that the dark matter density
perturbations source the matter density perturbations. This can be obtained by considering
a sub-horizon scales, and a Universe filled only with baryonic matter and cold dark matter
(which is approximately the case during the matter-dominated era), and considering that
baryonic perturbations are much smaller than CDM perturbations, since the latter do not
interact with radiation, so they could grow during the baryon-photon coupling epoch.

As a final remark of the subsection, we remind that the equations derived so far are valid
for non-interacting fluids. This means they are a good way to picture the dark Universe
through dark energy (if we assume it to be a fluid) and cold dark matter because both of
them can be modeled as non-interacting fluids. So, if we choose a starting point within the
matter-dominated era (using a well-motivated ansatz for the value of perturbations), we can
integrate the equations up to the present time. However, when we need to include other
species, as we will need in order to compute the matter power spectrum in the next chapter,
we have to resort to the Boltzmann equation.

2.4.2 Mixing interacting species: the Boltzmann equation

When we consider that fluids can interact in other ways than gravity, like the interactions of
baryons, photons, and neutrinos (an example being the Thompson scattering for baryons and
photons), we must incorporate these effects into the energy-momentum tensor, and we can do
so by working on their microscopic physics. We now follow the results from Ref. [38]. In order
to be able to consider these effects, we need to solve the Boltzmann equation, Eq. (2.52),
which takes into account all the species and their distinct properties, like photons, neutrinos
(massive or not), baryons, cold dark matter, and dark energy (in the form of a cosmological
constant or other simple EoS modifications where w 6= −1), and the possibility of curvature
or not.

We start by focusing on the distribution function of the phase space of the particles
f(P,x, t), with P and x the conjugate momentum and the position of the particles, respec-
tively. The conjugate momentum is the spatial part of the 4-momentum with lower indices,
which is expressed as

Pi = a(1− φ)pi , (2.39)
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where pi is the physical momentum. In order to obtain more comfortable expressions, we
use the variable ε ≡ a(p2 +m2)−1/2, with m the mass of the particle. Thus, ε represents the
scale factor times the energy of the particle, as measured by a comoving observer. We can
also write its relation to P0, the time coordinate of the 4-momentum (with lower indeces):

P0 = −(1 + ψ)ε . (2.40)

In the same fashion, we can define qi ≡ api , and we will refer to it as the comoving 3-
momentum. It then follows that Pi = (1 − φ)qi . We can also split it in magnitude and
direction: qi = qni . Then, we rewrite ε(q, τ)2 = q2 + a2m2. So, for massless particles, ε
reduces to q.

We now consider the phase space as a six-dimensional space, which is sliced at an equal
conformal time, a procedure which makes it not a strictly covariant quantity, but a very good
approximation nonetheless. We also take this distribution as a background quantity plus a
perturbation, denoting that by

f(xi , Pj, τ) = f (0)(q) (1 + Ψ(xi , q, nj, τ)) (2.41)

(be careful to not confuse this phase-space perturbation Ψ with the metric perturbation
ψ). We take the background part to be a Fermi-Dirac or a Bose-Einstein distribution, for
fermions and bosons, respectively, or

f (0)(ε(q, τ)) = gs
h3
P

1
exp

(
ε

kBT0

)
± 1

, (2.42)

where gs is the number of spin degrees of the particle (gs = 2s + 1 with a spin s), hP the
Planck constant, kB the Boltzmann constant, and T0 = aT is the temperature of the particles
at present time. We take the plus (+) sign for fermions and the minus (−) sign for bosons.
Then, energy-momentum tensor is obtained by computing

Tµν =
∫

dP1dP2dP3
√
−gPµPν

P 0 f(xi , Pj, τ) , (2.43)

with g the determinant of the metric. To linear order, we can obtain
√
−g = a−4(1− ψ + 3φ) , (2.44)

dP1dP2dP3 = (1− 3φ)q2dqdΩ , (2.45)

where dΩ is the solid angle differential, in reference to ni . Continuing the calculations, using
Eqs. (2.43)-(2.45) along with the plugging of the ni and qi variables, we arrive to the following
expressions for the energy-momentum tensor [38]

T 0
0 = −a−4

∫
q2dqdΩ

√
q2 +m2a2 f (0)(q) (1 + Ψ) , (2.46)

T 0
i = −a−4

∫
q2dqdΩ q nif

(0)(q) Ψ , (2.47)

T i
j = −a−4

∫
q2dqdΩ q2ninj√

q2 +m2a2 f
(0)(q) (1 + Ψ) . (2.48)
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Now, what we are left to specify is the evolution of the phase space distribution, which is
described by the Boltzmann Equation,

df
dτ = C[f ] = ∂f

∂τ
+ ∂f

∂xi
dxi

dτ + ∂f

∂q

dq
dτ + ∂f

∂ni

dni

dτ . (2.49)

where C[f ] represents collision processes that the particles experience, and their form can
get very complex depending on the species considered and the level of accuracy intended in
the physical description, also giving room for many parameters involved in these processes.
It is for that reason that there are Boltzmann solvers like CLASS or CAMB, computational
packages that solve the Boltzmann equation along with all the other perturbations equations
and give all the theoretical observables as output. They include all the species mentioned in
this thesis in the calculations, and more.

We can work the Boltzmann equation a bit more by noting that the last term in (2.49)
is the multiplication of two first order quantities and thus can be neglected. We invoke the
geodesic equation

P 0 dP µ

dτ + ΓµαβPαP β = 0 , (2.50)

and, after some algebra, we obtain

dq
dτ = qφ̇− εni∂iψ . (2.51)

Wrapping all it up, we arrive to

1
f (0)C[f ] = ∂Ψ

∂τ
+ i q

ε
Ψ kjnj + d log f (0)

d log q

[
φ̇− i ε

q
ψ kjnj

]
. (2.52)

This equation is the one actually utilized in Boltzmann solvers. It is also fair to remember that
these solvers actually work on the synchronous gauge, due to many calculations being faster
to compute that way, and the consideration that this gauge is usually better for handling
perturbations outside the causal horizon.
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Chapter 3

The Large Scale Structure of the
Universe

In order to describe the matter content of the Universe, it is important to picture it as a field
that is nearly constant in which perturbations in density arise, then giving birth to galaxies.
Now, we begin by defining the matter density contrast by

δ(x, t) ≡ ρ(x, t)− ρ̄(t)
ρ̄(t) , (3.1)

where ρ(x, t) is the local density in a given coordinate position x and cosmic time t, and
ρ̄(t) is the mean density of the Universe at that time. The density contrast embeds the
perturbation aspect just mentioned, and we can study it via its statistics, considering it a
random field. For now, we will omit the time variable with the consideration that all spacial
coordinates lie within the same time coordinate (and all quantities dependent on the matter
density contrast). Therefore, we can define the 2-point correlation function as follows

ξ(r) ≡ 〈δ(x)δ(x + r)〉 , (3.2)
with the braces denoting a spatial average. It is important to emphasize that we need to
do a spatial average rather than averaging over many realizations, as usual in frequentist
statistics1, because the Universe is not an experiment we can reproduce. We may also refer
to this as an ensemble average. Hence, it can also be written as

ξ(r) = 1
V

∫
δ(x)δ(x + r)d3x , (3.3)

with V the integration volume. Later on, we will set it to the volume of a given galaxy
survey.

It will now be essential to introduce the 3-dimensional Fourier transform convention to
follow from now on [11].

δk = 1
V

∫
δ(x)e−ikxd3x , (3.4)

δ(x) = V

(2π)3

∫
δkeikxd3k , (3.5)

1In Chapter 4 we will cover the frequentist and Bayesian statistics basics.

23



where δk is the Fourier conjugate of the matter density contrast (the same transformation
rule applies for any function f(x)), as a function of the wave vector k. Often, we would refer
to k or rather its modulus k as the scale of a given quantity or formula, but, to avoid any
confusion, we now clarify that the scale refers to the amplitude of the mode, via λ = 2π/k.
This means that large scales are bound to small k values and vice-versa, because small k
values dictate the behaviour of matter on large scales, as we will see shortly.

Now we can define the matter power spectrum through the 2-point correlation function
of the Fourier transform of the density contrast

V 〈δkδ
∗
k′〉 = (2π)3P (k)δD(k− k′) , (3.6)

with δD the Dirac delta function in Fourier space, defined by

δD(k) = 1
(2π)3

∫
eikxd3x . (3.7)

Another important property is that we can relate the power spectrum to the correlation
function via Fourier transformations, this is

P (k) =
∫
ξ(x)e−ikxd3x , (3.8)

ξ(x) = 1
(2π)3

∫
P (k)eikxd3k . (3.9)

Now we can recover the time coordinate back to our calculations, in the form of the red-
shift. Therefore we can write the power spectrum P (k, z), which can only depend on the
wavenumber k due to the assumed isotropy of the Universe. Likely so, we can consider only
the modulus of the space coordinate in the correlation function.

In galaxy surveys, one only obtains galaxies as counts, and from that, the density per-
turbations must be obtained. So, smoothing these shallow density peaks allows us to obtain
the correlation function and then the power spectrum. An important quantity that uses a
window function smoothing is the root-mean-square normalization of the power spectrum,

σ2
R = 1

2π2

∫
P (k)W 2

R(k)k2dk , (3.10)

where R is a characteristic scale in Mpc/h units andWR is the Fourier transform of a window
function in real space, which is usually a top-hat function that smooths structures smaller
than R. In that case, it reads

WR(k) = 3(sin(kR)− kR cos(kR))
(kR)3 . (3.11)

It is usual to choose R = 8Mpc/h since this value makes the normalization to be in the
order of one (currently, σ8 = 0.8102± 0.00601 [9]). This number gives us a sense of linearity
limit for structures, where values for σR above 1 alert that the scale is not suited to a linear
treatment.

Another important property of the window function smoothing is the Poisson noise in-
duced on the covariance of the density contrast: We begin by taking the smoothed density
contrast δs,

δs(x) = V δ(x)W (x) , (3.12)

24



where the subscript ‘s’ stands for smoothed, meaning that we get a smoothed density contrast
after applying the window selection function. This is important since δ consists in several
sharp peaks in space (which are modelled through Dirac deltas). If we take the covariance
of the Fourier transform of δs, we obtain an extra noise spectrum [11],

∆2(k) ≡ 〈δs,kδ∗s,k〉 = P (k) + Pn . (3.13)

Here, Pn = V/N = 1/n is a Poisson noise, equal to the inverse of the number density of
galaxies, and corresponds to the power spectrum of a sample of galaxies at random positions,
or in a Poisson distribution. Loosely speaking, we usually take δs,k as δk in most calculations,
but we take Eq. (3.13) into consideration whenever the covariance of the density contrast is
needed to perform any statistical procedure.

3.1 The matter power spectrum

In this section, we describe the components of the power spectrum, and we can treat it on
two parts: the primordial power spectrum, which we will see as a starting condition, and its
evolving factors.

An important part of the cosmological view is the inflation epoch of the Universe, a process
that gave origin to an extreme expansion after the Big Bang, flattening the Universe and
shaping the primordial power spectrum, which can be parametrized by

Pprim(k) = Ask
ns , (3.14)

where As is the amplitude of the power spectrum and ns is called the spectral index of scalar
perturbations, a number close to 1, that comes as a result from a power-law inflation2. If we
approximate ns ≈ 1, the matter power spectrum is called the Harrison-Zel’dovich spectrum
PHZ(k) ≡ Ask , which comes from an exponential inflation [11].

Then, the matter power spectrum in the linear regime can be described through the
formula [11, 39]

P (k, z) = Ask
nsT 2(k)G2(z) , (3.15)

In this equation, we introduce T (k), the transfer function, which encapsulates the behavior
of the power spectrum over different scales. This quantity is paramount when running a
Boltzmann solver, due to the complexity of the physics underlying the radiation era, in
contrast to the decoupling over different scales of the dark components when dominating the
Universe, in which case their perturbation’s evolution can be obtained from Eqs. (2.31)-(2.34)
and (2.37)-(2.38). A plot of the matter power spectrum can be seen in Fig. 3.1.

We also included G(k, z), called the growth factor of density perturbations. It is defined
by

G(k, z) ≡ δ(k, z)
δ(k, 0) . (3.16)

2Currently, the constrains on these parameters are 109As = 2.105± 0.030 and ns = 0.9665± 0.0038 [9].
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Figure 3.1: A plot of the matter power spectrum from linear perturbation theory as a function
of k, at redshift z = 0. This was obtained from the CLASS code with its default parameters.
Notice the almost scale-invariant part until k ∼ 10−2 h/Mpc, which corresponds to the
primordial power spectrum. The peak occurs at keq ∼ 0.015 h/Mpc, the wavenumber that
crosses the Hubble horizon at the radiation-matter equality time; wavenumbers greater than
it have had time to properly evolve and form structure, after being unfrozen as they already
crossed the Hubble horizon. On smaller scales, the BAO wiggles (product of the oscillations
in the baryon-photon fluid) can be seen around k = 1/rs ∼ 10−1 h/Mpc. Care must be
taken when going into the range k & 10−1 h/Mpc, where one should consider switching to
nonlinear perturbation theory to obtain accurate results (this plot does not consider non-
linear corrections).

In most cases, we can drop the dependence on the wavenumber k, because the behavior
is almost constant across linear scales (although it depends on the model chosen), and we
will adopt this choice from now on. The constant behavior comes from considering sub-
horizon scales in a Universe composed only of cold dark matter and a cosmological constant
(ΛCDM), which makes the perturbations equations, Eqs. (2.37)-(2.38), scale-independent.
This consideration can be done when considering the Universe from the matter-dominated
era onwards3.

A related quantity to the the growth function Eq. (3.16) is the growth factor of matter

3Another more conservative start point is after the decoupling epoch.
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perturbation, defined by

f(a) = d log δ(a)
d log a . (3.17)

This quantity has been important in cosmology since it is closely related to the velocity
distribution of galaxies, as we will see for the RSD effect in Eq. (3.21). Another interesting
fact is that the growth rate has a very good empirical fit f = Ωγ

m, originating the growth index
of matter perturbations, an almost constant quantity for ΛCDM. In particular, γ ≈ 0.55 [11].

3.2 Observational effects in the matter power spectrum

Several considerations and effects come in when measuring the matter power spectrum via
the mapping of galaxy counts. In this section, we present some of the most important effects
to take into account for a galaxy clustering survey, while the more technical ones (which
address the redshift-binning of the measurements) are left for discussion on Chapter 5. This
chapter is essential to set the grounds for the analysis of Chapter 5.

3.2.1 The Bias

It is important to emphasize that what we measure in a galaxy clustering survey are galaxies,
and that means we can only trace the luminous part of the matter content in the Universe.
However, we can assume that the galaxy density contrast δg is related to the total matter
density contrast δm by a bias factor b,

b = δg
δm

. (3.18)

This procedure, while has been proven to work fairly well, is far from being an optimal
description of the relation between the density contrasts of galaxies and dark matter. In a
more general regime, b could depend on time and the scale, or the type of galaxy considered,
like blue and red galaxies, which are younger and older, respectively. This consideration
immediately gives us the following correction for the galaxy power spectrum, as a function
of the total matter power spectrum P (k)

Pobs(k) = b2P (k) (w/ Bias) . (3.19)

3.2.2 Redshift Space Distortions

Galaxy distances in a galaxy clustering survey are measured through their redshifts. Then,
the peculiar velocities of the galaxies as they tend to fall towards massive clusters produce
differences in the observed power spectrum. This effect can be parametrized and included
in the observed power spectrum. Before we can parametrize this effect, we must first get to
know the velocities of galaxies, as a function of the quantities we have derived so far.
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Velocity field and bulk flow

We start by obtaining the peculiar velocity as in Eq. (2.37), for the case of a baryonic matter
fluid (w = cs = 0 and considering a small scale 1/k),

vi = i
ki
δ̇k . (3.20)

Separating the time part from the density contrast using the growth factor, Eq. (3.16),
δ(k, τ) = δkG(τ), and also using d/dτ = aH(a) d/da we obtain

vi = i
ki
δkaH(a)d lnG

da = i
ki
a2H(a)f(a)δk , (3.21)

where we used the growth rate from Eq. (3.17). Now we consider local scales in the vicinity
of the cluster, so we set a ≈ 1 and H ≈ H0, getting to

v = iH0fδk
k
k2 . (3.22)

We then obtain the velocity in real space by inverse-Fourier transforming the former expres-
sion

v(x) = iH0f
V

(2π)3

∫
δk

k
k2 eik·xd3k . (3.23)

Going a bit further, we can relate this velocity field to the power spectrum. We do so by
considering the average of the squared speed in a volume VR of radius R,

〈v2〉R = H2
0f

2 V 2

(2π)6

∫
〈δkδ∗k′〉

k
k2

k′

k2WR(k)WR(k′)d3k d3k′

= H2
0f

2

2π2

∫
P (k)W 2

R(k)dk , (3.24)

(3.25)

where we integrated over the angles and utilized the matter power spectrum definition from
Eq. (3.6) and used a window function WR as in Eq. (3.10). 〈v2〉R is called the bulk flow on
the scale R. So, if a survey constrains the power spectrum and the bulk flow independently,
it is possible to constrain the growth rate f .

Now, we continue to derive the redshift space distortion (RSD) effect on the power spec-
trum. We define the line-of-sight velocity u via

u(r) = v
r
r
. (3.26)

Now we define the redshift space vector s through

s = r
[
1 + ∆u(r)

r

]
, (3.27)

where ∆u(r) = u(r) − u(0). The importance of the redshift space comes from the fact that
galaxy distances are measured on the redshift space, via the galaxy number counts in the
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detector. Then, our task is to compare the different density contrasts in real and redshift
space via a coordinate transformation. From now on, we divide velocities by H0 to obtain
Mpc units. We accept that the number of galaxies is the same in both spaces, in other words,

n(r)dVr = n(s)dVs , (3.28)

where the subscrips r and s refer to real and redshift space, respectively. So, we can relate the
volumes through a coordinate transformation with a Jacobian matrix J , whose determinant
is

|J | =
∣∣∣∣∣∂s
∂r

∣∣∣∣∣ = 1 + du
dr . (3.29)

Therefore, we write the volume as

dVs = s2dsdθdφ =
(

1 + ∆u(r)
r

)2

|J |dVr . (3.30)

Then, we can write the density contrast in redshift space by using Eqs.(3.28) and (3.30),

δs = n(s)dVs
n0dVs

− 1 = n(r)
n0
(
1 + ∆u(r)

r

)2
|J |
− 1 . (3.31)

Therefore, we obtain (with approximations)

δs ≈ δr − 2∆u(r)
r
− du

dr . (3.32)

We now continue to express the velocity field v from Eq.(3.23), now including the bias in
the parameter β ≡ f/b,

v = iH0β
∫
δ(g)keik·x k

k
d3k , (3.33)

where we omitted the constant V/(2π)3 and included the subscript (g) to denote that we are
considering a galaxy density contrast. Now we can derive u(r) and du/dr from this equation,

u(r) = iβ
∫
δ(g,r)keik·x k · r

k2r
d3k , (3.34)

du
dr = −β

∫
δ(g,r)keik·x

(
k · r
kr

)2

d3k . (3.35)

Therefore, it follows that

δ(g,s)k = δ(g,r)k + β
∫
δ(g,r)k

(
k · r
kr

)2

d3k . (3.36)

If we consider small angular size surveys, we can assume that the cosine µ is constant, with

µ ≡ k · r
kr

. (3.37)
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Finally, we get to the relation between galaxy density contrasts in redshift space and real
space.

δ(g,s)k = δ(g,r)k(1 + βµ2) , (3.38)
This last expression leads us to the next correction in the observed power spectrum, which
we note is now not isotropic:

Pobs(k, µ) = P (k, µ)b2(1 + βµ2)2 (w/ Bias and RSD) , (3.39)

where ‘RSD’ stands for Redshift Space Distortions. We remind the reader that we measure
the galaxy power spectrum in redshift space, while the theoretical power spectrum is the
total matter power spectrum in real space.

3.2.3 The Alcock-Paczynski Effect

Our next task is to include the Alcock-Paczynski effect in the observed matter power spec-
trum. This treatment addresses the change in volume in the power spectrum when changing
the parameters, this is, how the change in parameters affects the conversion of redshifts and
angles to distances. In concrete, we will study how this effect changes the wavevector and
the volume the survey, and how this impacts the observed power spectrum.

We begin by considering two cosmologies: a reference cosmology (with a subscript ‘r’)
and another cosmology (no subscript). We split the reasoning in a transverse and a radial
part.

If we have an object of transverse comoving size dM at redshift z, and we observe it
subtends an angle θ, its angular diameter distance would be dA = dM/(1+z)θ, as in Eq. (1.48).
In this example, the angular diameter distance and the transverse comoving distance are
cosmology-dependent, while the redshift and angle are not. So, if we take another cosmology,
the fraction dA/dM would still hold constant. Then, if we recognize dM = λ⊥ = 1/k⊥ as our
transverse scale, we would have

k⊥ = kr,⊥
dA,r
dA

, (3.40)

which explains the change of the transverse part of the wavevector when changing parameters.

In a similar way, we now consider a small object of small comoving size d(dc) subtending a
small redshift range dz. Therefore, by Eq. (1.2.2) we obtain d(dc) = cdz/H(z). Thus, taking
d(dc) = λ‖, the product λ‖H is a constant across cosmologies and we can express the parallel
wavenumber correction:

k‖ = kr,‖
H

Hr

. (3.41)

Using what we just obtained, we can derive expressions for the magnitude of the wavenumber
k and the cosine µ:

k =
√
k2
⊥ + k2

‖ = RAPkr , (3.42)

µ = k‖
k

= Hµr
HrRAP

, (3.43)
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where

RAP =

√
H2d2

Aµ
2
r −H2

r d2
A,r(µ2

r − 1)
HrdA

. (3.44)

Analogously, we can obtain the change in volume (which is the multiplication of a parallel
scale correction and two transverse scale corrections),

V = Vr
Hrd2

A

Hd2
A,r

. (3.45)

It is useful to write the matter power spectrum as P (k) = V δ2
k in its true cosmology.

That way, we can note that expressing the observed power spectrum (which uses a reference
cosmology to transform redshifts) induces a correction factor of Vr/V . Consequently, the
observed matter power spectrum now reads:

Pobs(kr, µr, z) =
H(z)d2

A,r(z)
Hr(z)d2

A(z) P (k, µ, z)b2(z)
(
1 + β(z)µ2

)2
(w/ Bias, RSD and AP) ,

(3.46)
where ‘AP’ stands for Alcock-Paczynski. We also made the redshift dependance explicit,
allowing for a redshift-dependent bias b(z). Also, note that the cosine µ in the RSD correction
is also affected by the correction.

Using Baryon Acoustic Oscillations

So far, we can measure the observed power spectrum and, through velocity statistics on the
correlation function, we can also obtain the growth rate f(z) 4. Our remaining task is, then,
to obtain H(z) and dA(z), which is accomplished by utilizing baryon acoustic oscillations.
This is done by using the standard ruler property of the BAO scale at the drag epoch, rs,
which is a well-constrained quantity on CMB surveys [9]. Thus, one can simply obtain H(z)
and dA(z) using Eqs. (1.50) and (1.51), assuming a known formula to link r‖ and r⊥ to rs. In
practice, BAO surveys define parameters related to H and dA, such as the transverse radial
BAO dilation parameters α⊥ and α‖ [33],

α⊥ ≡
Hr(z)rs,r
H(z)rs

, (3.47)

α‖ ≡
dA(z)rs,r
dA,r(z)rs

, (3.48)

where ‘r’ also stands for a reference cosmology. These parameters are near to constant and can
be included as free parameters in the analysis. Nonetheless, more general parametrizations
exist, and are better suited to take in consideration several redshift bins, see [40].

4To avoid the bias, a more robust quantity to obtain is the combination fσ8.
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3.2.4 Redshift error supression

A simple but important effect to take into account is the redshift error coming from the
survey. If this error comes as the standard deviation σz of a Gaussian distribution, then
the error in comoving distance will be σr = c σz/H(z), since d(dc) = c dz/H(z). Thus we
consider that the position measures also distribute as a Gaussian centered in the true position
r0 with a standard deviation σr, or

fr0(r) = 1√
2πσr

e− 1
2 [(r−r0)/σr]2 . (3.49)

Then, the correlation function will be updated by marginalizing over r [11],

ξ(r0) =
∞∫
0

ξ(r)fr0(r)dr . (3.50)

This can be done thanks to the correlation representing the probability of having galaxies
separated by a certain distance. The Fourier transform of a convolution is the product of the
Fourier transform of each term. The 1-D Fourier transform of the function fr0 is5

F [fr0 ] (k‖) = e−k
2
‖σ

2
r , (3.51)

where we considered that the 1-D Fourier transform must be done in the line of sight com-
ponent of a more general wavevector k, and we approximated this Gaussian to be negligible
for negative values, in order for it to be normalized in (−∞,∞). Therefore, if we Fourier
transform the 2-point correlation function into the matter power spectrum, and remembering
k‖ = kµ, we obtain

Pobs(k, µ) = P e−k2µ2σ2
r (w/ z-error) . (3.52)

3.2.5 Shot noise and survey types

Our last effect addition is a shot noise Ps, scale independent, that makes up for white noise
from the detector itself. This noise may or may not be significant.

Putting everything together, we have:

Pobs(kr, µr, z) = Pshot(z) +
H(z)d2

A,r(z)
Hr(z)d2

A(z) P (k, µ, z)b2(z)
(
1 + β(z)µ2

)2
e−k2µ2σ2

r

(w/ Bias, RSD, AP, z-error and Shot noise) . (3.53)

Galaxy clustering surveys are of two types: spectroscopic and photometric. Spectroscopic
surveys utilize a dispersive element to separate the light and then observe features to obtain
redshifts, while photometric surveys use color filters to split the light in different wavelengths.
The practical difference is that spectroscopic surveys can detect fewer sources simultaneously

5See Wolfram MathWorld for more details.
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than photometric surveys6, but the redshift measurement is more accurate. Both types of
survey have their advantages and they also target different types of galaxies.

The most notable examples of future galaxy clustering surveys are LSST, a ground-based
telescope which is being built in the north of Chile which measures galaxies by photometric
means, and Euclid, a space telescope of spectroscopic nature. In fact, our first project, on
Chapter 5, delves into the use of the observed power spectrum to make forecasts on the
parameter constraining power of LSST and uses all of the effects mentioned in this section.

6This can be parametrized by an efficiency factor that decreases the effective number density of galaxies.
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Chapter 4

Bayesian Statistical Methods

Now that we have worked out the cosmological background needed for the upcoming projects,
we shift our focus to the Bayesian statistical tools we are going to use for the different analyses.
We follow Refs. [1] and [41]. Our first task is to explain why we rely so much on Bayesian
statistics rather than the traditional, frequentist statistical methodology. Next, we go more
into detail into the principal aspects of Bayesian tools: inference, forecasting and model
comparison and their related numerical/approximation methods. We will frequently refer to
a ‘probability density function’ by ‘PDF’.

4.1 Frequentist and Bayesian experiments

A simple way to illustrate the importance of Bayesian statistics in cosmology is to inspect
the Bayes’ theorem

P (A|B) = P (B|A) P (A)
P (B) . (4.1)

This equation relates the probability of two events, A and B. To be more specific, we can
set these variables to x and θ, where x represents a data vector obtained from a certain
experiment and θ is a parameter vector that characterizes the experiment.

P (θ|x) = P (x|θ) P (θ)
P (x) . (4.2)

This equation is a complete game-changer, since we can completely move the interpreta-
tion of the procedure we are considering: from seeing the probability of results given some
parameters, to seeing the probability of the parameters given some results.

The word experiment is crucial to define the concept of probability in both branches of
statistics:

• Frequentist: If you repeat an experiment many (infinite) times, the probability of a
certain event/situation will be the fraction of outcomes that fulfills it. This relative
frequency gives the frequentist philosophy its name.
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• Bayesian: Probability is defined as the degree of belief one has in a situation or event
to happen.

We can immediately see the lack of context put into these definitions, but it can be clarified
by determining the nature of the experiment in question, especially on the possibility of the
repetition of the experiment for where frequentists laid the foundations of the theory. To
be fair, both approaches are appropriate for certain experiments, while many others would
argue that the Bayesian approach is more general and more multipurpose (see Ref. [1]).
Nonetheless, there are experiments that are inherently frequentist, like experimental high-
energy physics, where particle collisions are studied via analysis of their frequencies. On the
other hand, there are experiments completely Bayesian, like the study of our Universe, which
is hard to see as an experiment, since we only have one. In spite of having only one Universe,
we can study certain phenomena in an ensemble-average fashion like the 2-point correlation
function of Eq. (3.2), a procedure which lies in a middle-ground between frequentist and
Bayesian philosophies (even though the procedures utilized afterward for the analysis are
entirely Bayesian).

4.2 Bayesian Inference

In this section we apply the Bayes theorem in order to get insights into the parameters of a
certain model, which will remain fixed for now (we will consider several models in Sec. 4.4).
We take a new look on Eq. (4.2),

P(θ|x) = L(x|θ) π(θ)
E(x) , (4.3)

where we put different labels and names to our probabilities. From now on we will consider
these probabilities to be probability distributions, as is more common to see in cosmology.
Here, x = (x1, x2, . . . , xN) are N random data, and θ = (θ1, θ2, . . . , θn) are the n theoretical
parameters of our physical model which (hopefully) describes the results. Each one of the
terms in Eq. (4.3) is interesting to explain on its own, so we proceed to list their definitions,

4.2.1 Likelihood

The likelihood L(x|θ) can be seen as the sampling distribution of our data. This is the
quantity used in the frequentist regime to do inference, and is often written as function of
the parameters L(θ) ≡ L(x|θ). The likelihood function is usually the place to apply the
central limit theorem in order to obtain a Gaussian distribution to approximate the data,
which will be a correct strategy if there are enough measurements to satisfy the theorem. In
the case of a Gaussian likelihood, its equation is

L(x|θ) = 1√
(2π)N det C(θ)

exp
(
−1

2(x− µ(θ))TC−1(θ)(x− µ(θ))
)
, (4.4)
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where µ(θ) is the mean of the Gaussian distribution, representing the prediction of the model
about the data, and C(θ) is the covariance matrix of the data. As explicited in Eq. (4.4),
µ and C depend on the parameters of the model, but usually only one of them is affected
by the parameters, depending on the nature of the observable and its produced data. In
cosmology, random fields like the matter power spectrum, the CMB or weak gravitational
lensing can be described by a covariance that depends on the cosmology, while other probes
like SN Ia, BAO’s or direct Hubble measures1 are treated utilizing a parameter-dependent
mean.

4.2.2 Prior probability

The prior probability π(x) represents the knowledge we have about the parameters before
seeing the data, like other experiments or theoretical findings. The prior can easily be turned
into a topic of controversy, since we, in principle, can set whatever distribution we like, and
if we do not like any distribution, we have to select a prior anyways, even if it is a constant
(a flat prior) we have to specify boundaries for it to make it normalizable as any other
probability distribution. The prior can heavily impact the results of any Bayesian analysis,
especially on model selection, so one must be reasonable at selecting the priors and always
explicit them and their goals. The most common example are uninformative priors, which
are based on the sensitivity of the posterior to the parameters [42].

4.2.3 Posterior probability

The posterior probability P(θ|x) represents our state of knowledge after considering all
the other quantities described. And by ‘after’, we mean in a logic sense rather than in a
temporal way, as our prior knowledge can very well be based on newer experiments that
complement an outdated theory and/or dataset we might attempt to analyze. In order
to constrain our parameters, we focus on obtaining the best fit (the maximum posterior
probability point) of parameters and their confidence regions2. These confidence regions
consist a plot outlining the 68% and 95% probability regions3, in other words, an area in
a two-dimensional parameter space where there is a 68% or 95% probability of having the
parameters. This region has a contour level line where the posterior probability distribution
is a constant. The confidence region procedure is then done for every pair of parameters.
A very similar plot is the confidence interval of one parameter, which is the 1-dimensional
equivalent to the confidence region. We show an example of confidence regions on Fig. 4.1.

1In Chapter 7 we include direct H(z) measurements through cosmic chronometers, which are evolving
galaxies that can be related to a certain time on the history of the Universe via its characteristics, like
standard clocks.

2Some authors (as in Ref. [43]) prefer to refer to the confidence regions (or confidence intervals) as a purely
frequentist concept, as it is used for likelihood-based constraining (and is essentially a random variable too),
while reserving the term credible regions for its Bayesian homologous. In this thesis, we will loosely utilize
the more common ‘confidence regions’ term.

3The numbers 68 and 95 come from the case of a 1-dimensional Gaussian distribution of mean µ and
variance σ2, where the intervals defined by µ±1σ and µ±2σ enclose a 68% and 95% probability, respectively.
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Figure 4.1: An example of confidence regions for the parameters of a model, also known
as a triangle plot or corner plot. The regions enclose the 68% and 95% probability regions.
The model used was ΛCDM with a free sound speed parameter, computed using the CLASS
code, and the data used are the growth rate and Hubble parameter compilation used in the
projects of Chapters 6 and 7, plus the Union2.1 SN Ia catalogue [3]. One can observe several
degeneracies on the parameters (easily identifiable by their banana shapes). It is especially
interesting to see that c2

s is not constrained at all by the data since we used a flat prior
between 0 and 1 for that parameter.

4.2.4 The Evidence

The evidence E(x) is the central quantity for Sec. 4.4, since it represents the probability
of having the data given the assumption of a theoretical model (for now we have kept the
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model implicit). The evidence is also called marginal likelihood and model likelihood, since
its resemblance to the likelihood. Nevertheless, for most inference problems it can be ignored
since it only impacts the inference as a normalization factor for the posterior probability
distribution. In that regard, it can be computed via

E(x) =
∫
L(x|θ) π(θ) dnθ . (4.5)

We can get rid of the evidence when doing inference by considering the log-posterior prob-
ability since it only represents a normalization factor, and most numerical methods rely on
doing just that to explore the parameter space more efficiently as we will see shortly.

As mentioned in the posterior probability subsection 4.2.3, we base our parameter con-
straining efforts into sampling this probability distribution rather than evaluating it in a grid
of n dimensions, because this becomes extremely difficult when the number of dimensions
grows. As a rule of thumb, when the parameter dimensionality surpasses 3, one must resort
to the more efficient sampling techniques. By sampling the distribution, we mean to use a
Markov Chain Monte Carlo sampler in order to explore the parameter space in a very efficient
way, defeating the old-fashioned method of grid-evaluation.

4.2.5 Markov Chain Monte Carlo methods

The use of Markov Chain4 Monte Carlo5 (hereinafter MCMC) methods exploded about 15
years ago when the CosmoMC package became available to the scientific community [37], a
code that evolved to become the CAMB Boltzmann code. In practice, when constraining the
parameters of a model, one employs a MCMC sampler to simulate a collection of parameter
points Θ = {θ(1), ...,θ(s)}, such that they follow the posterior distribution (s will be the
number of samples). Having obtained the chain pointsΘ, one can obtain a density estimation
(with a kernel smoothing) to plot the confidence regions, by counting the samples that fall
in an iso-probability region, be it the 68% or 95% of the points usually.

Another useful property of MCMC-chains is that marginalization of parameters become a
trivial process. Traditionally, to marginalize over a certain parameter(s) involves integrating
the posterior over that(those) parameter(s). For example, if we want to marginalize over all
the parameters except the first one, we do it by computing

P(θ1|x) =
∫
P(θ|x)dθ2 . . . dθn . (4.6)

The quantity P(θ1) is called a marginal posterior probability density. This is extremely useful
when some of the parameters are of no scientific interest, but nevertheless, have to be included
in the analysis for completeness. These are called nuisance parameters and they usually are
parameters of the experimental setup that are unrelated to the physics of the phenomenon
observed. They can also be, say, astrophysical fitting formulas that are not important in a
cosmological analysis.

4A ‘Markov Chain’ is a process where the state of the new step is only defined by the last step, i.e. it has
no memory of past steps other than the last one.

5And ‘Monte Carlo’ refers to algorithms based on random sampling.
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Continuing with the perks of MCMC sampling, one can reuse a chain in order to obtain
the posterior probability distribution of any quantity that is a function of the parameters.
We denote this quantity by q = q(θ) and its derived chain is

q(Θ) =
{
q(θ(1)), ..., q(θ(s))

}
, (4.7)

this is, applying the function to every point of the chain returns a chain of the function. This
procedure can be useful to compute the PDF for intermediate quantities in a calculation.
This property is exploited in Chapter 7.

Having mentioned the principal characteristics of MCMC chains, we could not mention
the most popular samplers like Metropolis-Hastings [44, 45], Hamilton Monte Carlo sampling
and Gibbs sampling [46]. The simplest MCMC sampler is the former. Due to it being so
straightforward to implement, we will use it in our projects. We now proceed to outline the
algorithm structure to produce samples:

Metropolis-Hastings algorithm

1. We start on a random point in the parameter space (which can be drawn from the
Prior PDF). We denote it by θ(1).

2. A proposed step, θ(prop), is drawn from a step probability function (usually Gaussian)
centered in the current point.

3. The proposed step is accepted with a probability equal to the ratio of the posteriors.
If this is ratio is larger than 1, it is accepted immediately, i.e.

P (Acceptance) = min
(

1, P(θ(prop)|x)
P(θ(i)|x)

)
. (4.8)

4. If the proposed step is accepted, it gets included in the chain. In other words, θ(i+1) =
θ(prop). On the contrary, if the proposed step is not accepted, the current point gets
updated to itself. This is θ(i+1) = θ(i).

5. Return to step 2 until sufficient points are stored.

Running an MCMC chain can be a tough labor since several requirements must be secured
in order to obtain a good chain, in the sense that it truly lives up to represent the posterior
PDF of the parameters.

A way to enhance the parameter space exploration in a chain is using a step that has
a shape similar to the posterior. This can be achieved by choosing a Gaussian step, with
a covariance equal to the covariance of another chain that has already finished. Also, the
step probability function has to be tuned in size too (this can be done by multiplying the
covariance by a scaling factor) in order for the sampler to get an appropriate acceptance
rate for the steps, which has been found to be optimal at around a 23.4% [47]. Typically, a
Metropolis-Hastings has at least a number of points on the order of 106, and that number
has to increase when the parameter space is highly non-Gaussian, which makes a Gaussian
step less efficient to explore the space.
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Another thing to worry is the starting position of the chain because it takes some steps
to arrive at the ‘bulk’ of the distribution, after being initialized on the outskirts of it. These
points are not representative of the posterior distribution. So, in order to mitigate this effect,
the first ≈ 500 points in the chain should be discarded, since they do not follow (or get to)
the distribution just yet. This process is called burn-in.

To improve time efficiency, multiple computer cores or nodes can run multiple chains
simultaneously, as this algorithm is completely parallelizable, as one can obtain a larger
chain by adding each individual core-chain. One can take even more advantage of this if one
finds a posterior that has multiple modes, considering that several chains might converge to
different modes and stay there long enough to not explore the whole space during the given
steps for each one.

Finally, in terms of the stopping criterion of the algorithm, one must check that the chain
has converged. It is difficult to determine exactly when this happens, so one must be cautious
and compute long chains, letting it travel several times over the posterior and also check that
the chain is in a stationary state. Nonetheless, there are more quantitative ways to asses
convergence, like performing a Gelman-Rubin diagnostic [48]. This is a method that contrasts
the variance of the parameters inside chains to the variance across chains. This method, of
course, needs us to have run several chains, which is typically done while parallelizing runs.
The method can tell whether the chains have converged or not by checking if these variances
are close to being equal, as would happen with long chains that started in different places in
the parameter space.

4.3 Forecasting an experiment

One of the most interesting applications of the Bayesian theory is the possibility of forecasting
the constraining power of upcoming experiments, and cosmology is a good field to apply
these methods since cosmological surveys’ specifications are publicly announced in advance.
Forecasting in cosmology consists in taking a fiducial cosmology, like the best-fit ΛCDM
parameters from a past survey, and simulate data accordingly with an approximation on the
expected experimental uncertainties (in the form of a data covariance matrix) and perform
Bayesian inference on this mock dataset, just as it was a real one. An example of this is on
Chapter 5, where one can use a Boltzmann solver to obtain the theoretical matter power
spectrum, and compute from it the observed galaxy power spectrum with the experimental
specifications of a survey.

However, this approach has the emerging problem of it potentially being too time-consuming,
as it could take weeks for a desktop computer to run an MCMC algorithm on the order of
106 samples. We bring up the desktop computer case since a person/team (without access to
large computing facilities) outside the scientific committee of the survey might want to make
forecasts on the survey’s capabilities. A good idea might be to use an approximation (like in
most physics branches) to the posterior PDF, as the whole idea of forecasting is fundamen-
tally a science-based guess on the future constraints on the parameters of a cosmology.
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4.3.1 The Fisher Matrix method

In order to forecast an experiment, we first set broad flat priors on the parameters of the
model, in order to only be concerned with the computation of the likelihood. In order to
forget several normalization constants, we prefer to work with the log-likelihood L(θ) ≡
log(L(x|θ)). We start by Taylor-expanding the log-likelihood over the parameters up to
second order around the maximum likelihood (ML) point θML,

L(θ) ≈ L(θML) + 1
2

∂2L
∂θi∂θj

∣∣∣∣∣
θML

·∆θi∆θj , (4.9)

where the parameter distance from the ML point is ∆θi = θi − θi
ML. With this equation, we

can obtain an approximation to the likelihood after finding the maximum likelihood point by
just computing a few derivatives, which is an enormous improvement over the more expensive
MCMC methods. However, since we intend to do a forecast, we set the maximum likelihood
cosmology as the fiducial one, and therefore we will only need to compute the second term
of Eq. (4.9), and we can also neglect the zeroth-order log-likelihood, considering that it
transforms to a normalization constant once we revert to the likelihood. In order to explore
more characteristics on this approximation, we need to define the Fisher matrix.

The Fisher matrix (FM) was originally a frequentist quantity, defined by the mean value
of the Hessian matrix, or

Fij ≡ −
〈

∂2L
∂θi∂θj

〉
(Frequentist) . (4.10)

This mean is a data average. If we were dealing with real data, we should then take an
ensemble average like we mentioned on the 2-point correlation function, Eq. (3.2). On the
other hand, the Fisher Matrix used in cosmological forecasting applications is essentially
different, as it is defined as the Hessian matrix evaluated at the ML point,

Fij ≡ −
∂2L
∂θi∂θj

∣∣∣∣∣
θML

(Bayesian) . (4.11)

This equation is Bayesian in the sense that there is only one dataset to do inference, and
hence it makes no sense to use a data-average. Continuing, we can easily implement the
Bayesian Fisher matrix into the Taylor approximation, via

L(θ) ≈ L(θML)− 1
2Fij∆θi∆θj . (4.12)

Nevertheless, as noted in Ref. [11], in the case of forecasting, the two Fisher matrix definitions
coincide, by considering that the likelihood is Gaussian, i.e. it follows Eq. (4.4). Specifically,
if we average over many realizations on the production of mock datasets, it can be proven
that the frequentist Fisher matrix coincides with its Bayesian counterpart [49]. The Fisher
matrix for a Gaussian likelihood with mean µ(θ) and covariance C(θ) is [41, 11]

1
2 Tr

[
C−1C,iC−1C,j + C−1Mij

]
, (4.13)
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where the commas represent partial derivatives with respect to the parameter that corre-
sponds to the index. We also define Mij ≡ µ,iµ

T
,j + µ,jµ

T
,i .

Apart from its numerical convenience, the FM-approximated likelihood distributes as a
Gaussian on the parameters, with a parameter covariance matrix equal to the inverse of the
Fisher matrix, and centered on the ML point. Then, probably the most important property
of this method, is the direct approximation of the parameter errors, via

σ2
θi = [F−1]ii , (4.14)

There are several other useful properties for the Fisher matrix, and we quote a good
resume of them: “The 5 golden rules of fisherology”, as portrayed in Ref. [11],

1. To transform variables, multiply the Fisher matrix on the right and on the left by the
transformation Jacobian.

2. To maximize over some parameters, remove from the matrix the rows and the columns
related to those parameters.

3. To marginalize over some parameters, remove from the inverse matrix the rows and
the columns related to those parameters (being careful about the numerical instability
pointed out above).

4. To combine Fisher matrices from independent experiments with the same fiducial
model, sum the corresponding Fisher matrices, ensuring the same order of parameters,
and, if necessary, inserting rows and columns of zeros for unconstrained parameters.

5. The ellipsoidal confidence regions have semiaxes lengths equal to the square root of
the eigenvalues of the inverse Fisher matrix, while the semiaxes are oriented along
the corresponding eigenvectors. The area of the ellipse (or volume of ellipsoid) is
proportional to the square root of the determinant of the inverse Fisher matrix. The
determinant of the Fisher matrix is an indicator of performance or a figure of merit.

The most important property of the above (for our subsequent work) is the property of
combination of Fisher matrices, given that galaxy clustering forecasts separate the galaxy
power spectrum into several redshift bins. Consequently, we can sum the Fisher matrices of
each bin to obtain the total Fisher matrix for the complete survey.

4.4 Bayesian Model Comparison

In this section, we take on a more complex topic than Bayesian parameter inference: Bayesian
model comparison. This part is usually more challenging since we take everything done
before, and add to it the possibility of several models. Before that, our first task for this
section is to employ Bayes’ theorem to find the posterior probability P(M |x) of having a
model M given some data

P(M |x) = E(x|M) π(M)
π(x) . (4.15)
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Here, x = (x1, x2, ..., xN) is again the N random data, and now θM = (θ1, θ2, ..., θn) are
the n theoretical parameters of the model M . This equation is the big picture of this section
since it embodies the seeking of the probability of a certain model to be true.

Before the proper model comparison, we go a bit deeper on Eq. (4.15) by also writing the
Bayes’ equation following Eq .(4.3), but expliciting the presence of the given model M ,

P(θ|x,M) = L(x|θM ,M) π(x|M)
E(x|M) . (4.16)

Here, the likelihood function L(x|θM ,M), the prior probability π(θM |M), the posterior
P(θ|x,M) now refer to the specific model M . Unlike we did in Sec. 4.2, we see the evidence
as the most important quantity to characterize the probability of a model,

E(x|M) =
∫
L(x|θM ,M) π(θM |M) dθM . (4.17)

We use Eq. (4.15) with two models M1 and M2: we compare them by taking the ratio of
their probabilities:

P(M1|x)
P(M2|x) = B12

π(M1)
π(M2) , (4.18)

where π(Mi) is the prior on each model, and we defined the Bayes factor via

B12 = E(x|M1)
E(x|M2) . (4.19)

For most cases, we can consider the prior probability of each model to be equal: if we have
m contesting models, each one would have a weight of 1/m. That way, the Bayes factor
is the decisive quantity in Bayesian model comparison. However, this factor confronts only
pairs of models, so it is more practical to rank the evidences of as many models as wanted
to confront. Once one obtains the Bayes factors of two models, one can have a first guess on
the severity of the difference by looking it up on the Jeffrey’s scale on Table 4.1, which is a
merge between quantitative and qualitative rankings on the Bayes factor, which is meant to
not be taken too seriously.

Table 4.1: Jeffrey’s Scale as in Ref. [1]. B12 is the Bayes factor of two models M1 and M2.
The different levels represent different degrees of belief in that M1 is the true theory.

log(B12) Probability Evidence
0 ≤ log(B12) < 1.0 0 ≤ P1 < 0.75 Inconclusive

1.0 ≤ log(B12) < 2.5 0.75 ≤ P1 < 0.923 Weak
2.5 ≤ log(B12) < 5.0 0.923 ≤ P1 < 0.993 Moderate

5.0 ≤ log(B12) 0.993 ≤ P1 Strong

Obtaining the evidence is usually a difficult task like the posterior when doing Bayesian
inference. As we mentioned, most cosmological models have several parameters (physical
and nuisance), usually in the range 5 < n < 15, but sometimes it can get up to hundreds
of parameters. As a consequence, there are several methods to do a more efficient posterior
probability integration. We now outline the (by far) most popular method for evidence
calculation in cosmology, the Nested sampling algorithm [50].
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4.4.1 Nested Sampling

Metropolis-Hastings and many other MCMC samplers are typically not good to compute
evidences since they do not explore low probability areas at all, and most likely also missing
information if the model is multi-modal. In response to that, Nested sampling is the most
used evidence MCMC-integrator in cosmology6. We proceed to explain the framework of
regular Nested Sampling, for means of simplicity.

Nested sampling works by transforming the parameter integral to an integral over the
enclosed prior mass X, defined through

X(λ) =
∫

L>λ

π(θ)dnθ . (4.20)

where λ is a variable that represents a likelihood-level cut. Now, considering Eq. (4.5), we
can rewrite it using X,

E(x) =
1∫

0

L(X)dX . (4.21)

This is a wonderful way of transforming a multidimensional integral into a one-dimensional
one. Then, calculating this integral can be done as follows (in the most simple form):

The algorithm stores a chain of likelihoods Li which starts at a value zero (L0 = 0), a chain
of prior masses Xi that starts at a value 1 (X0 = 1), and a chain of weights wi . The weights
are the numerical differences in the prior mass in order to obtain the numerical integration of
Eq. (4.21). This weight can then be set to wi = Xi−1−Xi , where we consider that the prior
mass is decreasing as we increase the likelihood. The integral is done by summing wiLi to
the stored evidence from the last step. Then, we can approximate and constrain the evidence
by

E /

(
s∑

i=1
wiLi

)
+ LmaxXs , (4.22)

where s is the number of steps and Lmax is the maximum likelihood. The right hand side of
the equation represents an optimal additional step, such that Xs+1 = 0 and Ls+1 = Lmax.

At each step of the algorithm, we have a batch of b points in the parameter space (this
defines the batch B = {θ(1), ...,θ(b)}). These points have been sampled from the prior in such
a way that the likelihoods of these points are larger than Li−1. The algorithm then chooses
the parameter point of less likelihood in the batch to be set as the next point of the likelihood
chain. Therefore, this process obtains a sample which is ‘nested’ in the likelihood-cut level
from the last step.

Another interesting characteristic of the algorithm is the assignation of the prior mass Xi .
The trick is to assume7 the analogy of the process of sampling a Uniform(0,1) variable ti so

6Nested sampling is usually used in the form of the MultiNest algorithm [51, 52], an improved version of
Nested Sampling, which is more widely used in cosmology.

7This comes from the qualitative behavior of most evidences, where the sampling in X advances in a
logarithmic fashion when the likelihood is Gaussian. For a more in-depth discussion see Ref. [50].
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that the new point would be Xi = tiXi−1, to the process of sampling a parameter point from
the prior probability so that Li > Li−1. Specifically, this is implemented by comparing the
process of selecting the point of less likelihood from the batch, to selecting the larger value
in the sampling of b Uniform variables in the range (0, Xi−1). Statistically, this progression
in the prior mass can be shown to go as Xi = exp(−i/b).

Wrapping all this up, the algorithm is as follows:

Nested Sampling Algorithm

1. First, we start by computing the complete batch of b points from the prior probability.
We also initialize the evidence E = 0, the likelihood L0 = 0 and the enclosed prior mass
X0 = 1.

2. Then, select the point of less likelihood Li = min(L(θ(b))) and set Xi = exp(−i/b) and
the weight wi = Xi−1 −Xi , also increase E by Liwi .

3. Remove the point of less likelihood from the batch and replace it with a new sample
with a higher likelihood (in the nested likelihood region), this is L(θ(new)) > Li . The
rest of the points do not need to be sampled again since they all fulfill the minimum
likelihood requirement.

4. Repeat steps 2 and 3 for a fixed amount of steps or until a stopping criterion is triggered,
such as a negligible increment on the likelihood, or considering that even the maximum
likelihood of the batch would not increase the evidence by a given threshold.

5. (Optional) Finally, after the run ends, increase the evidence by

1
b

∑
θ∈B

L(θ)Xs . (4.23)

This mean batch-likelihood is to approximately sum the gap mentioned on Eq. (4.22).

Nested sampling is usually fast, and needs a batch size of around 100 − 500 to have good
accuracy. The algorithm also produces a chain of parameters (the ones from each likelihood
point Li = L(θi)) that follow the posterior PDF, and this chain usually beats Metropolis-
Hastings in terms of speed of convergence.

As a closing remark, we must mention that MultiNest improves on Nested sampling in that
it approximates the nested likelihood regions with ellipsoidal nested regions. Additionally, it
allows for multiple ellipses, in order to tackle problems of multimodal evidence computation,
plus several other features. See [52] for detailed improvements upon Nested sampling.
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Chapter 5

Non-Gaussian galaxy clustering LSST
forecasts

This chapter presents a research work that is soon to be published, and will closely follow the
following structure. We repeat some definitions on the observed power spectrum with some
slight additions, in order to integrate the survey specifications in a straightforward way.

Abstract

We implement the Derivative Approximation of LIkelihoods (DALI) method to make fore-
casts of an LSST-like galaxy clustering survey for wCDM. DALI is an extension to the
traditional Fisher Matrix approach, which can obtain a non-Gaussian approximation to the
posterior probability density of the parameters of a theory. We present the results via the
confidence regions for the parameters, which are compared to Markov Chain Monte Carlo
samples. We found good fittings for the DALI method in terms of the confidence regions’ size
for all the redshift bins of the survey. At the same time, FM regions are vastly overestimated
for the first redshift bins, covering wide non-physical regions. For higher redshift bins, neither
the FM nor DALI obtains precise sizes for the region. The whole analysis was limited by
numerical precisions, especially for the higher redshift bins, masking the potential of DALI.

5.1 Introduction

The large-scale distribution of galaxies embeds useful information about our Universe, es-
pecially related to its matter and energy content, and their dynamics. An important part
of our current understanding of the Universe is dark energy, a useful concept to explain the
current state of accelerated expansion, which was first found through Supernovae of type Ia
observations [13, 14]. Dark energy is usually modeled in its simplest form as a fluid of nega-
tive pressure, and little is known about its fundamental nature, thus, a better explanation is
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needed in order to construct a satisfactory model for our Universe, see Ref. [19] for a review
on the topic. Consequently, it is important to predict if future surveys would be able to
provide the data necessary to discern between contestant models and to constrain the values
for their parameters.

Considering that larger and more precise galaxy surveys are in construction, like LSST
[17] or Euclid [18], it is imperative to forecast how they might perform in constraining cos-
mological parameters, as these experiments will collect orders of magnitude of data than
past generations. These surveys will map billions of galaxies along a wide redshift range and
area coverage, probing the correlation function of galaxies and its associated power spectrum
with unprecedented accuracy. These quantities portrait the physical information content
from galaxies, as they can be related to cosmological models and their parameters.

Parameter constraining forecasts consist in obtaining confidence regions for the parameters
of a cosmological model that describes the Universe. For this, mock data that mimics the
survey’s specifications are produced, following the reference or fiducial cosmology assumed.
Also, one assumes that the posterior probability (or the likelihood, if one uses flat priors) of
the parameters is well described by a Gaussian distribution. The inverse of the covariance
matrix of this normal distribution is the Fisher matrix [53]. However, valuable information on
the shape of the confidence regions is lost when performing the FM approximation, because it
approximates the confidence regions to ellipses. The Derivative Approximation of LIkelihoods
(DALI) [49, 54, 55] is an extension to the FM that includes derivatives of higher orders
than those used in the FM approximation, enabling it to capture shapes beyond the ellipses
produced by FM forecasts. In this work, we will apply the DALI method to forecast an
LSST-like galaxy clustering survey. For that purpose, we utilize the CLASS Boltzmann
solver [34, 35] to obtain the matter power spectrum and other background quantities.

The present work is structured as follows: In Sec. 5.2, we outline the theoretical considera-
tions used to derive the observed galaxy power spectrum formulas. In Sec. 5.3 we present the
FM and DALI approximations and their implementation for a galaxy clustering survey. In
Sec. 5.4 we state the cosmological model and its considered parameters, plus the survey spec-
ifications, and other numerical considerations of interest, especially on the MCMC sampling.
Next, in Sec. 5.5 we present the results obtained and corresponding analysis and, finally, we
present our conclusions in Sec. 5.6.

5.2 The Observed Galaxy Power Spectrum

The observed power spectrum has several differences with the actual matter power spectrum.
To start, one measures the light of galaxies, which can be tracers of the overall matter
content, plus several effects from the peculiar velocities of galaxies in clusters, the change
of the reference cosmology, among others. We now introduce the formula for the observed
power spectrum [32, 56, 39] and briefly explain their associated effects:

Pobs(k, µ, z) = dA(z)2
refH(z)

dA(z)2H(z)ref

(
b(z) + f(z)µ2

AP

)2
P (kAP, z) exp

(
−k2

APµ
2
APσr

)
+Pshot(z) . (5.1)
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The observed power spectrum is not independent of direction, since it depends on µ, the
cosine of its direction to the line of sight. For simplicity, we now list the considered effects
bounded to each multiplying factor, along with the definition of the variables not mentioned
so far, see [57] for a more in-detail derivation of this formula.

• The first multiplying term,
(

dA(z)2
refH(z)

dA(z)2H(z)ref

)
, corresponds to the Alcock-Paczynski effect

[58], which considers the change of volume when changing the cosmological param-
eters, due to the need of a cosmology to convert redshifts and angles to distances.
The quantities dA(z) and H(z) are in Mpc/h and h/Mpc units, respectively1, with
h the adimensional Hubble constant in the respective cosmology. It is defined by
100h km/s/Mpc = H0, where H0 is the Hubble constant in km/s/Mpc units. The
subscript ‘ref’ denotes that the quantity is evaluated at a reference cosmology. In
addition, k, µ are valued on the reference cosmology too, so they are affected by the
Alcock-Paczynski effect as well, and we denote it via the ‘AP’ subscript. We can write
kAP, µAP explicitly:

kAP(k, µ) = RAPk (5.2)

µAP(k, µ) = H(z)µ
H(z)refRAP

, (5.3)

where

RAP =

√
H(z)2dA(z)µ2 −H(z)refdA(z)ref(µ2 − 1)

H(z)refdA(z) . (5.4)

• The second term, (b(z) + f(z)µ2
AP)2, is the Kaiser formula [59], which accounts for the

velocities in the line of sight of galaxies as they fall into clusters, which cause distortions
in the observed redshift. This distortions in redshift space, where galaxies are measured
appear in the power spectrum on real space. Here, we also considered the bias b(z),
defined as the ratio of galactic to total matter, and we will leave it as part of the
survey’s specifications, for it usually depends on the type of galaxy considered by the
survey and can have certain redshift parametrizations motivated from simulations.
• Next, the exponential term, exp(−k2

APµ
2
APσ

2
r), is the suppress of power thanks to the

uncertainty in redshift, since it affects the position in the line of sight where galaxies
are detected. σr is the error in real space (or positional uncertainty), and relates to the
error in redshift via

σr = σz
H(z) , (5.5)

with σz the error in redshift, given by

σ2
z = (1 + z)2(σ2

0γz + σ2
0v) , (5.6)

where σ0γz is the photometric redshift measurement error, and σ0v is an error from the
intrinsic velocity dispersion of galaxies. In this work we will consider σz ≈ (1 + z)σ0γz ,
as σ0v can be considered negligible compared to σ0γz [2].
• The last term is the baseline instrumental shot noise Pshot(z) of the survey. We will

assume no dependence on the cosmological parameters for it and, going further, we will
neglect this nuisance term in our analysis.

1This is possible by setting the speed of light to c = 1 and dividing H by it.
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5.3 Likelihood, Fisher Matrix, and DALI formalism

In a galaxy clustering survey, the data are the Fourier transforms of the modes, δi = δki , which
have mean 0 by construction. Their distribution is assumed Gaussian, with an associated
covariance matrix equal to the power spectrum plus a Poisson noise term [11]

Cij = ∆2
i δij = (Pi + 1/n̄)δij , (5.7)

where δij is a Kronecker delta. The Poisson noise represents the probability distribution
of a random ensemble of galaxies. It arises from the consideration of a window smoothing
of the galaxy counts to construct a continuous density function. This covariance matrix is
diagonal, and it relates the power spectrum Pi = P (ki) to the mean galaxy density n̄ of each
redshift bin. Technically, n̄ is the selection function of the survey, which is an estimator of
the number density of galaxies that the survey will measure, allowing for considering that a
fraction of galaxies can be measured, be it due to its brightness or color or type. It is for
that reason that it will be considered one of the survey parameters later on and, as such, it
will not depend on the cosmological parameters.

The forecasts will be under the framework of [54], where the Gaussian likelihood in the
data is approximated only by using the derivatives of the covariance matrix C with respect
to the cosmological parameters θ2. For the approximation, the data needs o have a null
mean, and the density modes δi fulfill this requirement. Data without this mean can be
easily transformed via subtraction of their mean.

Continuing, the Gaussian likelihood to be approximated reads

L = A√
det C

exp
(
−1

2xtC−1x
)
. (5.8)

For a galaxy clustering case, it becomes

LGC = A∏
i ∆i

exp
(
−1

2
∑

i

δ2
i

∆2
i

)
. (5.9)

In order to move on to forecasting, we consider that the quantities in the likelihood need
to be the mean of many mock data realizations in order to make a forecast free of random
errors. This can be expressed as LForecast = 〈L〉. Since we know the distribution of the data
we are forecasting, we can average the squared density modes,

〈δ2
i 〉 = ∆2

i |ML = Cii |ML , (5.10)

where the subscript ‘ML’ indicates that the quantity is evaluated in the maximum likelihood
point, which is going to be a fiducial (or reference) cosmology. This last consideration is
key, since not fixing the reference cosmology for the data would mean we are producing
new dataset whenever evaluating the likelihood in different points, sabotaging the effort of
forecasting. Hence, the forecasted log-likelihood will be

L = −1
2
∑

i
log (∆2

i ) + ∆2
i |ML

∆2
i

, (5.11)

2In other types of problems, the data x can be the parameter-dependent quantity.
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where L ≡ log
(
LForecast
GC

)
. From now on we will drop the labels ‘GC’ and ‘Forecast’ for brevity.

The Fisher Matrix of a likelihood that depends on the parameters via its covariance matrix
is given by [11]

Fαβ = −
〈

∂2L
∂θα∂θβ

〉
(5.12)

= 1
2 Tr

[
C−1

0 C,αC−1
0 C,β

]
(5.13)

= 1
2
∑
ki

Pobs,α Pobs,β
(Pobs + 1/n̄)2 , (5.14)

where we denoted C0 ≡ C|ML. We also denoted partial derivatives respect to a parameter by
a comma and the index of the parameter. Additionally, we must consider that the observed
power spectrum and their derivatives are evaluated at the reference cosmology. The last
passage was possible by remembering that the covariance matrix is diagonal. We invoked
the wavevectors ki in the last step because we can transform the sum of Eq. (5.14) into an
integral over the Fourier volume, an integral on k and the cosine µ

Fαβ = Vbin
8π2

kmax∫
kmin

1∫
−1

dµdk Pobs,α Pobs,β(Pobs + 1/n̄)2k
2 . (5.15)

Here, kmax and kmin are the maximum and minimum wavenumbers that the survey can
measure. Also, Vbin = fskyVshell is the survey redshift bin volume in the reference cosmology,
since we are integrating with the fiducial cosmology wavenumber k and cosine µ. Other way
of seeing Vbin, is considering it the expected bin volume, in a similar manner as the expected
number density n̄. The bin volume is equal to the fraction of the sky fsky covered by the
survey, multiplied by the volume of the redshift bin shell Vshell, given by

Vshell = 4π
3 (dM(z))3

∣∣∣∣zmin

zmin

, (5.16)

where dM(z) = (1+z)dA(z) is the transverse comoving distance and zmin, zmax are the ranges
of the redshift bin. The log-likelihood in the FM approximation reads (with Einstein’s sum
notation)

LFM = −1
2Fαβ∆θα∆θβ (5.17)

The DALI method is an extension that goes beyond the ellipsoidal regions in the parameter
space obtained from Fisher forecasts, potentially capturing banana, boomerang or potato
shapes that are a common result in cosmology. The method features an expansion that is
positive definite in the whole parameter space. In other words, by construction, it cannot
yield negative probabilities. We use the approximation from Ref. [54], which features a
log-likelihood expressed by

LD2 =− 1
4Dαβ∆θα∆θβ

− 1
4Dαβγ∆θα∆θβ∆θγ

− 1
16Dαβγδ∆θα∆θβ∆θγ∆θδ , (5.18)
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where ‘D2’ stands for DALI-doublet. This denomination comes as we are considering deriva-
tives of first and second order. There exists the DALI-triplet approximation that includes
third-order derivatives as well, but we opted to be conservative in this sense. The DALI
tensors of second, third and fourth rank, respectively, are defined by

Dαβ = Tr
[
C−1

0 C,α C−1
0 C,β

]
, (5.19)

Dαβγ = Tr
[
C−1

0 C,α C−1
0 C,βγ

]
, (5.20)

Dαβγδ = Tr
[
C−1

0 C,αβ C−1
0 C,γδ

]
. (5.21)

We can see that the DALI-tensor of second rank in Eq. (5.19) is twice the Fisher matrix,
i.e. 2Fαβ = Dαβ. Now, in a complete analogous mechanism to the FM case, we recast these
expressions directly into integrals on the Fourier volume,

Dαβ = Vbin
4π2

kmax∫
kmin

1∫
−1

dµdk Pobs,α Pobs,β(Pobs + 1/n̄)2k
2 , (5.22)

Dαβγ = Vbin
4π2

kmax∫
kmin

1∫
−1

dµdk Pobs,α Pobs,βγ(Pobs + 1/n̄)2k
2 , (5.23)

Dαβγδ = Vbin
4π2

kmax∫
kmin

1∫
−1

dµdkPobs,αβ Pobs,γδ(Pobs + 1/n̄)2 k
2 . (5.24)

It is worth noting that we need to work with the partial derivatives of the observed power
spectrum respect to the cosmological parameters θ directly, and not to other intermediate
variables because it’s not straightforward to marginalize over them in the DALI approxima-
tion, unlike in the Fisher Matrix approach.

During all this section we considered independent redshift bins. Therefore, in order to
obtain the full log-likelihood, we need to sum the log-likelihoods of each bin. Analogously,
to obtain the full FM and DALI approximations we need to sum the Fisher matrices and
DALI-tensors, respectively.

5.4 Methodology

5.4.1 Cosmological parameters

The cosmology considered is a wCDM model, which corresponds to a Universe with a dark
energy perfect fluid with equation of state parameter w, constant over redshift. The free
parameters we consider are

θ = {Ωc,Ωb, h, ns, ln (1010As), w} , (5.25)

where Ωc is the cold dark matter density parameter, Ωb the baryon density parameter, h the
adimensional Hubble constant, ns and As are the spectral index and amplitude of primordial
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perturbations, respectively, and w is the EoS parameter of dark energy just mentioned. Their
fiducial values are

θ0 = {0.25, 0.05, 0.7, 0.96, 3.1,−1} . (5.26)

It is worth nothing that the choice of Ωc and Ωb over the measurable quantities Ωch
2 and

Ωbh
2 was made purely to improve the stability of the derivatives of the power spectrum, and

so the confidence regions3.

In addition to the free parameters, the parameters Ωγ and Ωn correspond to the density
parameters of photons and relativistic neutrinos, respectively. They have fixed values of
Ωγ = 5e−5 and Ωn = 3.5e−5. By demanding 1 = Ωc + Ωb + Ωde + Ωγ, we derive a value for
the density parameter of dark energy, which ensures we remain in a flat Universe. Therefore,
its fiducial value is Ωde,ML ≈ 0.7.

The priors for the analysis are flat, and they mean to represent the allowed physical regions
for each parameter. Not every parameter needs these constraints and, consequently, for them,
we consider priors broad enough that allow for the likelihood to cover the parameter space
without restriction. We list these bounds on Table 5.1.

Lower limit Parameter Upper limit
0 Ωc 1
0 Ωb 1
0 h -
- ns -
- ln (1010As) -
- w −1/3

Table 5.1: Flat prior constrains. When not mentioned, we consider priors broad enough so
that the likelihood alone creates the bound.

In order to compute the DALI-tensors, one needs the observed power spectrum of Eq. (5.1)
and, for that purpose, as mentioned in the Introduction, we utilize the CLASS code4 to solve
the Boltzmann equations considering all the species in the Universe and also to obtain the
functions P (k, z), dA(z), H(z) and f(z), which also depend on the cosmological parameters
θ. Any other cosmological parameter not mentioned in this section is left to the default
CLASS’ value.

5.4.2 Survey specifications

As mentioned before, we use an LSST-like survey with 7 independent redshift bins, as speci-
fied in [2]. The redshift bins and other survey parameters are shown in Table 5.2. This table

3If wanted, one can obtain the other set of parameters after getting the samples by using a parameter
transformation on them.

4http://class-code.net/
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has values for the mean of the redshift bin, z-mean, the range in redshift z-range= zmin-zmax,
the expected number density per bin n̄, and the limits of the wavenumber, kmin and kmax.

z-mean z-range n̄ [h3Mpc−3] kmin [h/Mpc] kmax [h/Mpc]
0.31 0.20-0.46 0.15 0.0071 0.08
0.55 0.46-0.64 0.10 0.0050 0.09
0.84 0.64-1.04 0.064 0.0040 0.11
1.18 1.04-1.32 0.036 0.0035 0.14
1.59 1.32-1.86 0.017 0.0030 0.17
2.08 1.86-2.30 0.0069 0.0028 0.23
2.67 2.30-3.00 0.0022 0.0026 0.31

Table 5.2: The LSST-like survey parameters associated to each redshift bin according to
[2]. In addition to them, the survey has a sky coverage fsky = 0.58, a photometric redshift
measurement error σ0γz = 0.04, and a bias b(z) = 0.84z.

Each quantity inside a bin, be it the power spectrum or any background function, is
approximated to the mean redshift value.

5.4.3 MCMC sampling and FoM

After the computation of the FM and the DALI-tensors, and considering broad flat priors,
we perform several Metropolis-Hastings Markov Chain Monte Carlo (MCMC-MH) [44, 45]
runs of the unapproximated likelihood, which is explicitely parameter-dependent:

L(θ) = −Vbin8π2

kmax∫
kmin

1∫
−1

dµdk `(θ)k2 , (5.27)

where we used
`(θ) ≡ log (Pobs(θ) + 1/n̄) + Pobs(θ0) + 1/n̄

Pobs(θ) + 1/n̄ . (5.28)

This expression corresponds to Eq. (5.11), after transforming the sum of modes into an
integral.

We produce a chain for each redshift bin and for the total survey. The purpose of this is
to observe the performance of DALI at each bin since combining all of them might result in
a loss of shape information. It’s important to mention that MCMC sampling is much slower
than DALI, but it can be parallelized in a more straightforward way in a computer cluster,
the reason being that DALI only needs to compute the first and second order derivatives for
the observed power spectrum at the reference cosmology, and store those power spectrum
derivatives as interpolations to be called later by the integrals of Eqs. (5.22)-(5.24). On the
other hand, the MCMC method relies on computing the order of 106 likelihood evaluations.

In order to optimize the exploration of the parameters, the step needed in the algorithm
is set up to be Gaussian, with a covariance equal to the Fisher matrix corresponding to the
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bin, times a scaling factor to get a proper acceptance rate of ∼23% [47]. For the total survey,
we use the full Fisher matrix as the covariance of the proposal step, scaled accordingly as
well.

The approximated methods, FM and DALI, are also MCMC-sampled in order to obtain
their confidence regions, with an overwhelming speed difference in comparison to the direct
likelihood MCMC-sampling. With that in mind, we sample all the regions without consid-
ering the priors, and then we filter them by invoking the prior boundaries, discarding the
points that fall off the priors. This procedure will be of importance in the next section. We
must note, however, that the priors do not affect the direct MCMC sampling region since
CLASS needs physical values in order to compute the physical quantities we need. The only
exception to this rule is the w parameter, which is not physically bound to the upper value
of −1/3, since that limit is to have an expanding Universe only, and is supported by CLASS
on higher values than it.

In order to asses the size of the different regions obtained, we define a Figure of Merit
(FoM) as the logarithm of the area of the 95% confidence region of each parameter
pair in a given redshift bin, or

FoMαβ,z ≡ log
(
A95%(θα, θβ, z)

)
, (5.29)

where we explicitly named the parameters θα and θβ, plus the redshift bin at z. This FoM
illustrates the logarithm of the inverse constraining power of each method. Hence, using the
FoM will allow us to compare the relative sizes of the FM and DALI approximations to the
MCMC-MH regions. We choose the logarithm as it is fairer at ranking relative sizes than
considering the ratio of areas5.

5.4.4 CLASS high precision parameters

In order to compute the DALI tensors, we need to set extremely high precision parameters
for CLASS. This is due to the necessity of having an accurate and densely-valued power
spectrum in k, as the derivatives of the power spectrum had to be numerically robust for
many modes in order to compute an integral in two dimensions. Additionally, the background
quantities need to be interpolated to find accurate values to properly compute the AP effect.

The consideration of the AP effect is very important for the need for high precision pa-
rameters. The integrals for the DALI tensors depend on the reference cosmology, and the
AP effect changes k and µ slightly inside the observed power spectrum. As CLASS produces
a power spectrum in a grid of k values, we need to compute high-density interpolations on k
in order to properly account for the AP effect.

Another cause for needing high precision parameters is the step for the numerical deriva-
tives with respect to the cosmological parameters. In order to obtain adequate Fisher Matrix
regions, we need to set a step which will vary from bin to bin. For high-constraining bins, a

5This is the same argument as for why the logarithmic evidence is used as opposed to the evidence in
Bayesian model comparison.
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more narrow step is better-suited to obtain the FM, going as small as a relative step of 10−4

of the parameters’ reference values.

We provide in the Appendix 5.7 the specific values of precision parameters for the code.

The direct likelihood MCMC sampling, however, did not need such precision optimiza-
tion, since the nature of the sampling ‘averages’ the lack of precision put into the power
spectrum computation, allowing for faster exploration of the parameter space. Nonetheless,
the DALI method was still faster than the MCMC runs, even when the latter was much more
parallelized.

5.5 Results and Discussion

In this section, we report the plots obtained from the analysis. To be brief, we show only
the triangle plots of the redshift bins 1, 4, 7 and the total survey. These plots contain
the parameter confidence regions derived from the three different methods considered. The
choice of showing those redshift bins is important to inspect the different regimes that the
approximations exhibit.

Figs. 5.1 and 5.2 show the behavior of the approximations and the samples of the first
redshift bin. We observe that the FM regions are vastly overestimated in comparison to
the MCMC samples, covering non-physical areas that are forbidden by the prior limits. The
difference between the two plots is the enforcement of the priors on top of the approximations
in Fig. 5.2, which reduces considerably the extent of the confidence regions for the FM
method. It is important to note that deleting the points of the FM-sample that go off
the flat boundaries in one parameter often also constrains other parameters. One notable
example of this is the w parameter, which has a marginalized probability density that goes
down to a value of −8 in the ‘prior-free’ case, while it only goes to −4 with the priors on
other parameters. The DALI approximation also has a larger area covered than the MCMC
samples but to a lesser extent. We can see that DALI tends to have the shape of the samples,
but stretched in a certain direction.

The Fisher matrix method is known (apart from its speed and simplicity) as a way to
obtain the smallest possible covariance for the parameters any estimator can produce, which
translates very roughly to obtaining the smaller confidence regions possible. The Cramer-
Rao inequality is the theorem that represents this limit but, nevertheless, it was proven
on Ref. [55] (in its Appendix B) that this inequality is valid only if the likelihood and its
derivatives exist and are finite for all the parameter combinations. In the case of the first bin
(and also the second which is not shown), this is not fulfilled as the FM spans unphysical
regions, justifying the size of their confidence regions.

Next, Fig. 5.3 shows the regions obtained on the fourth redshift bin. Priors do not affect
the regions noticeably as before. Here we can see that the FM regions are a lot less oversized
than before, and the DALI regions are also much more fit to the sample-derived region. We
do observe a certain running on the parameters, which may be caused by an extra mode in
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Figure 5.1: Confidence regions of the first redshift bin at z = 0.31 without priors.

the distribution that was not properly explored, or was explored only by some of the walkers6
of the chain, as there were 20 of them. The FM regions are slightly larger than the MCMC
samples while not exploring unphysical regions.

We can justify the size of the FM regions on redshift bins 3 through 5 by considering that
there are parameter combinations that make the solver crash. We denominate these parts of
the parameter space as ‘uncomputable regions’, which serve the same purpose as unphysical
regions at proving that the Cramer-Rao inequality does not apply strictly, since the incidence
of these uncomputable parameters is slight, especially on the latter bins.

6A walker in an MCMC run is an individual chain produced by a single core of a computer. The total
chain is obtained by concatenation of each walker chain.
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Figure 5.2: Confidence regions of the first redshift bin at z = 0.31, now including the prior
limits, which act by filtering every sampled point outside of them.

Fig. 5.4 shows the confidence regions of the last bin. We observe that DALI does not
capture the shape or size of the distribution as well as before, while the FM gets closer to
determining the size of the distribution while staying larger than it.

For the last two redshift bins, the constraining power is much stronger and the MCMC
sampler does not explore unphysical nor uncomputable regions. Despite that, the FM regions
are still larger (although slightly) than the MCMC samples. The reason might be unsatisfac-
tory as, up to this stage, we are limited by the precision of the computation. This part of the
analysis became very sensitive to the numerical step for the derivatives with respect to the
parameters, as we could obtain smaller FM regions while sacrificing any orientation detection
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Figure 5.3: Confidence regions of the fourth redshift bin at z = 1.18.

by increasing the derivative’s step. We chose orientation against size for the Fisher matrices,
as this allowed us to obtain better constraints with DALI, which is even more susceptible to
the step of the second-order derivatives, demanding them to be very high in order to retain
its size. When attempting to use a smaller step, the derivatives become unstable, resulting
in regions several times smaller than the ones reported in Fig. 5.4.

One possibility of an explanation for this is that the maximum wavenumber kmax on the
latter bins is larger, and hence includes more of the BAO wiggles and non-linear scales on
the power spectrum, which may be more difficult to take derivatives from, especially if one
considers large numerical steps for it. In addition, different scales might react differently to
the parameters. Hence, a good size for a step on small scales can be very off for larger scales,
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Figure 5.4: Confidence regions of the seventh redshift bin at z = 2.67.

and higher redshift bins have a larger difference between the minimum and maximum k.

In Fig. 5.5 we exhibit a summary of the analysis. It utilizes the FoM defined in 5.4.3. We
observe an omnipresent oversizing of the FM regions, while the DALI regions are much more
close in size to the MCMC samples, evidencing its better performance at forecasting. We can
see that the difference between the FM-FoM and the MCMC-FoM is fairly even-distributed
over the different parameter combinations. On the other hand, we see a clear diminishing of
it for higher redshift bins, while they are more constraining. DALI follows the same trends
just mentioned. It is important to mention that, for the fifth redshift bin, the FM obtains a
closer constraining level to the samples than DALI.
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Figure 5.5: Summary of the FoM results. In order to better compare to the MCMC FoM,
subtracted it. Hence, a larger FoM is bound to a larger area of the confidence region and
less constraining power. In the upper panel, we have a mean over redshift bins, while on the
lower panel we have a mean over the parameter combinations. The black lines delimit the
standard deviation of the averaging over redshift bin or parameter combination, respectively.

Lastly, Fig 5.6 shows the total constraints for the survey. The confidence regions are
similar to those of the last redshift bin, as it is by far the most constraining, which made
the FM method closer in size than DALI to the MCMC samples. To obtain the total Fisher
matrix and DALI-tensors, we summed them up without considering the prior filtering that is
applied to each separate bin. Notice that the Ωb, h region has a small ‘island’ region, which
was not expected. The MCMC chain used for the total survey was several times longer than
the ones per-bin, and so we do not attribute this extra mode to an issue of poor sampling.

5.6 Summary and conclusion

In this work, we performed galaxy clustering forecasts on the constraining power of LSST, a
photometric galaxy clustering survey currently in construction. For this purpose, we utilized
the Fisher Matrix (FM) method along with the DErivative Approximation of LIkelihoods
(DALI) [49, 54], which is a method that extends the FM by including higher-order derivatives
on the log-likelihood of the model. We contrasted both approximations with Metropolis-
Hastings MCMC samples.

DALI is a method conceived to go beyond the FM by capturing a variety of shapes
in the confidence regions of the parameters, shapes other than the ellipses product of a
Fisher forecast, such as the usual boomerangs or bananas. Therefore, our goal was originally
to inspect if there were shapes to capture using the DALI method that would result in
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Figure 5.6: Confidence regions for the overall survey.

an improvement to the FM. However, during the production of the forecasts, we noticed
limitations in terms of the numerical precision required in order to obtain accurate shape
detection with DALI. The greater order derivatives on the likelihood of DALI translates
into derivatives of the power spectrum, which get numerically difficult when considering the
Alcock-Paczynski effect, as this changes the ‘grid’ of the integrals that need to be computed
for the likelihood, forcing us to compute high-density interpolations on the power spectrum.
Consequently, we were forced to augment the numerical step taken for the second-order
derivatives of parameters, restricting us to make more accurate constraints only in terms of
the size of confidence regions, compared to the FM regions.

For low and medium redshifts, this is for z ≤ 1.86, we observed that DALI is closer in size
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and shape to the MCMC samples, especially on the lower redshifts (z ≤ 0.64), where the
FM approximation largely overestimates the size of the regions, considering large portions of
unphysical parameters. We applied a flat prior on top of this likelihood in order to improve
their constraints. As the redshift increases, the regions for both the FM and DALI decrease in
size. For high redshift bins, where z ≥ 1.86, DALI gets considerably smaller than the MCMC
constraints, being even with the FM in terms of our Figure of Merit, which is a logarithmic
measure of confidence region area. This means that the DALI method underestimates the
regions as much as the FM overestimates them.

Our conclusion is that the DALI-extension to the FM is a good tool that enhances the
accuracy of forecasts. Apart from its shape capturing power, we found that it can estimate
sizes of confidence regions better. Nonetheless, numerical difficulties fogged these insights
on higher redshifts, where the appropriate step for second-order numerical derivatives on the
parameter space is smaller than the step allowed by our accuracy.

Appendix

5.7 CLASS precision file

The crucial CLASS precision parameters used for this work were

k_per_decade_for_pk = 50000
k_per_decade_for_bao = 50000
back_integration_stepsize = 1.5e-4

These parameters have the goal of giving a very dense output for both the power spectrum
and the background quantities. This ended in a very high RAM-usage and therefore should
be run in a computer cluster rather than a desktop one.

In addition to the crucial parameters, we used the file pk_ref.pre which comes included
with CLASS. It comprises a set of high fidelity power spectrum precision parameters.
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Chapter 6

The Internal Robustness of Growth
Rate data

This chapter comprehends a work carried in an internship at the IFT-UAM under the guid-
ance of Savvas Nesseris during the months of April and May of 2018, culminating in the
article of Ref. [60], submitted to Physical Review D1.

Abstract

We perform an Internal Robustness analysis (iR) to a compilation of the most recent fσ8(z)
data, using the framework of Ref. [61]. The method analyzes combinations of subsets in
the dataset in a Bayesian model comparison way, potentially finding outliers, subsets of
data affected by systematics or new physics. In order to validate our analysis and assess its
sensitivity we performed several cross-checks, for example by removing some of the data or
by adding artificially contaminated points, while we also generated mock datasets in order
to estimate confidence regions of the iR. Applying this methodology, we found no anomalous
behavior in the fσ8(z) dataset, thus validating its internal robustness.

6.1 Introduction

During the last twenty years a plethora of observations suggests that the Universe is under-
going a phase of accelerated expansion at late times. In order to explain this phenomenon,
the concept of attractive gravity had to be revised either by introducing a new form of matter
dubbed dark energy, see Ref. [19] for a review, or by altering explicitly the laws of gravity
[62]. However, the simplest way to account for a phase of accelerated expansion of the Uni-
verse within the framework of Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology
is to simply introduce a cosmological constant (Λ). While this model gives rise to severe

1https://journals.aps.org/prd/
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coincidence and fine-tuning problems, current cosmological observations are still compatible
with a Universe that is filled by a dark energy component that has the same characteristics
of the cosmological constant [63].

Nonetheless, these cosmological observations are not accurate enough at the moment to
either constrain any potential time evolution of the cosmological constant, which might lead
dark energy to cluster, evolve in time, or any modifications of gravity. Despite the fact that
the two aforementioned classes of theories can in principle be arbitrarily similar [64, 65], it
is still necessary to be able to discriminate between the currently available models.

Future surveys such as Euclid [18] and LSST [66], both of which will gather orders of
magnitude more data than current surveys. Thus, it would be interesting to constrain the
dynamical features of gravity and test our assumptions. One way to do this is via the growth
of matter density perturbations δm = δρm/ρm and its logarithmic derivative the growth
rate f = d ln δm/d ln a. In practice, most of the growth rate measurements are made via
the peculiar velocities obtained from Redshift Space Distortions (RSD) measurements [59]
coming from galaxy redshift surveys. In general, these surveys measure the perturbations of
the galaxy density δg, which can be related to (dark) matter perturbations through the bias
b via δg = b δm. Thus, initial growth rate measurements measured the growth rate f divided
by the bias factor b leading to the parameter β ≡ f/b. This parameter is very sensitive to
the value of the bias which can vary in the range b ∈ [1, 3] (conservatively speaking), thus
making difficult to combine β from different surveys and as a result leading to unreliable
datasets of β(zi).

As a result, a more reliable parameter was sought and this was found in the combination
f(z)σ8(z) ≡ fσ8(z), which can be shown to be independent of the bias, and can be measured
either via weak lensing or RSD observations. Still, the current measurements of fσ8(z) (pre-
sented in later sections) come from a plethora of different surveys with different assumptions
and systematics, thus an approach to study the statistical properties and robustness of the
data is imperative.

One such approach is the so-called “Internal Robustness", pioneered in Ref. [61]. This is
a fully Bayesian approach which is not only sensitive to the local minimum like a standard
χ2 comparison, but also to the entire likelihood and can in principle detect the presence
of systematics in the dataset. The main goal of this approach is to identify systematic-
contaminated data-points, which can then be further analysed and potentially excluded if
they cannot be corrected.

In this work we present an application of the “Internal Robustness" approach to the
currently available growth-rate data in the form of fσ8(z) with the aim to examine the
dataset for systematics and outlier points in a fully automated manner. The layout of our
manuscript is as follows: in Sec. 7.2 we provide the basic elements of FLRW cosmology
related to our models, in Sec. 6.3 we briefly review the “Internal Robustness" method and its
application to the growth data, while in Sec. 7.4 we provide the compilation of growth data
used in our analysis and finally, we discuss our results in Sec. 7.6.
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6.2 Basic equations

In this section we present the basic equations required in our analysis. We begin with the
Hubble parameter in a flat ΛCDM universe (with a constant equation of state parameter for
dark energy w = −1), given by

H(a)2 = H2
0

[
Ωm,0a

−3 + (1− Ωm,0)
]
, (6.1)

where H0 is the Hubble constant, and Ωm,0 is the present day value of the matter density
parameter and a is the scale factor. The matter density can then also be expressed as a
function of the scale factor:

Ωm(a) = Ωm,0a
−3

H(a)2/H2
0
. (6.2)

Under the assumption of flat ΛCDM model, the angular diameter distance takes an analytical
expression, given by:

H0

c

√
Ωm,0

2a dA(a) = 2F1

[
1
2 ,

1
6 ; 1 + 1

6 ;
(

1− 1
Ωm,0

)]

−
√
a · 2F1

[
1
2 ,

1
6 ; 1 + 1

6 ;
(

1− 1
Ωm(a)

)]
, (6.3)

where 2F1 is the hypergeometric function. The matter density perturbations in Fourier space
δm(a, k) depend on the underlying cosmological model; for the ΛCDM scenario, the linear
matter perturbations grow according to

δ′′m(a) +
(

3
a

+ H ′(a)
H(a)

)
δ′m(a)− 3

2
Ωm(a)
a2 δm(a) = 0 . (6.4)

The equation above has an analytical solution for the growing mode, given by [67, 68, 69]

δm(a) = a · 2F1

(
1
3 , 1 ; 11

6 ; a3(1− 1
Ωm,0

)
)
. (6.5)

Note that the dependence on the wave number k disappears because of the assumption of
small scales approximation.

We define the growth rate f and the root mean square (RMS) normalization of the matter
power spectrum σ8 as:

f(a) = d log δm

d log a , (6.6)

σ8(a) = σ8,0
δm(a)
δm(1) . (6.7)

As already mentioned in Sec. 6.1, a more robust and reliable quantity that is measured by
redshift surveys is the combination of the growth rate f(a) and the RMS σ8(a):

fσ8(a) = a
δ′m(a)
δm(1)σ8,0 . (6.8)

Equation (6.8) will be our key quantity, which will be tested with the most recent data
available in the following sections.

65



6.3 Formalism

Here we report the basic equations that will be used to perform our analysis and we refer to
[61] for the details on the derivation of the internal robustness. We can compare two different
models by considering the ratio of their probabilities:

P(M1|x)
P(M2|x) = B12

π(M1)
π(M2) , (6.9)

with P and π symbolizing posterior and prior probabilities, respectively. The Bayes factor is
defined as

B12 = E(x|M1)
E(x|M2) . (6.10)

If we assume that the prior probabilities of having two different models are the same, then
the Bayes factor alone will help us to favor or disfavor a particular model. If B12 > 1 then
the data favors the model M1, if it is less than 1, then M2 is favored.

However, the robustness test needs a further assumption, that is: the data have to come
from two different distributions. The reason is two fold: first the total evidence can be
factorised as the product of the two evidences and, second, which is the underlying meaning
of the robustness test, we would like to prove that data are reliable. If the data is partitioned
into two subsets, say {x1,x2} and we assume that they come from two models, say M1,M2,
then the Bayes factor becomes

B12 = E(x|M1)
E(x1|M1)E(x2|M2) . (6.11)

Finally, we can define the internal robustness as

iR12 = logB12 = log
(

E(x|M1)
E(x1|M1)E(x2|M2)

)
. (6.12)

This approach allows us to detect if a subset of the data follows another cosmological
model or if a specific survey is affected by systematics and hence altering the measurement
itself.

However, the assumption of having two different models is not strictly mandatory and
we will choose the same cosmological model for both subsets. In this work we will set the
cosmological model to be ΛCDM and the parameters for both subsets to θ = (Ωm,0, σ8,0).
Hereinafter, we drop the M superscript and the 1, 2 subscripts, since we only consider one
cosmological model.

Our analysis invokes priors on the parameters, for that we choose a flat prior in the [0, 1]
range for Ωm,0 in order to allow for all physical values possible for the matter density. On
the other hand, the choice of a prior for σ8,0 is less evident; since the prior directly affects
the evidence value, so we are going to consider three priors for σ8,0, to assess the impact of
the prior selection on the internal robustness. We choose the following three cases:
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• Narrow flat prior: this is a typical flat prior in the range [0.3, 1.5].
• Broad flat prior: this is a flat prior in the range [0, 10], which allows for high values

of σ8,0.
• Gaussian prior: the third prior to consider is a Gaussian distribution centered on

0.8150, with a standard deviation of 0.0087, based on the Planck 2015 results (TT, TE,
EE+lowP+lensing [63]).

It is clear that we only allow for positive values of σ8,0 in order to remain physical.

The data considered are fσ8(z) measurements (with z = −1+1/a being the redshift of the
measurement), and we assume a Gaussian likelihood for the data with a covariance matrix
C. We represent the observed data in different redshifts as m = (m(z1), . . . ,m(zn)) and its
theoretical prediction as µ(θ) = (µ(z1), . . . , µ(zn)), which depends on the cosmological model
and parameters. We also take into account the redshift correction of [70], which features a
correction factor of

fac(zi) = H(zi) dA(zi)
Href,i(zi) dref,i

A (zi)
. (6.13)

with the label ref, i stating that the cosmology considered is the reference cosmology used on
the corresponding data point on redshift zi . Hence, the corrected theoretical prediction is

µi
c = µi

fac(zi) . (6.14)

We are now in the position to define the data vector with the corresponding modification:

x = m− µc . (6.15)

Then, the chi-squared is
χ2 = xTC−1x , (6.16)

which is related to the likelihood via L = e−χ2/2/
√

(2π)n|C|.

To speed up the computations, we note that the σ8,0 parameter can be marginalised
theoretically [71, 72]. We rewrite the χ2:

χ2 = mTC−1m− 2mTC−1µc + µT
c C−1µc . (6.17)

The corrected theoretical prediction marginalised over σ8,0 will be ν = µc/σ8,0. Then, the
χ2 can be rewritten as

χ2 = ξmm − 2ξmνσ8,0 + ξννσ
2
8,0 , (6.18)

where the single terms are:

ξmm = mTC−1m ,

ξmν = mTC−1ν , (6.19)
ξνν = νTC−1ν .

The posterior probability distribution marginalised over σ8,0 is

P(Ωm,0) =
∫
L(Ωm,0, σ8,0)π(Ωm,0, σ8,0)dσ8,0 . (6.20)
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We now consider two cases for the prior probability on σ8,0: a flat prior between [a, b] and a
Gaussian prior with mean s and variance ε2. Let us start by considering the flat prior case.
The integration of the posterior is:

Pf (Ωm,0) = 1
(b− a)

√
(2π)n|C|

b∫
a

e−χ2/2dσ8,0

= 1
(b− a)

√
(2π)n|C|

exp
(
−1

2

[
ξmm −

ξ2
mν

ξνν

])
If , (6.21)

where the quantity If is:

If =
b∫
a

e−
ξνν

2 (ξmν/ξνν−σ8)2dσ8 =
√

π

2ξνν
erf
(
ξmν − xξνν√

2ξνν

) ∣∣∣∣∣
b

a
. (6.22)

For the Gaussian prior case we find, by discarding negative values:

πg(σ8,0) = e− 1
2 (s−σ8,0)2/ε2∫∞

0 e− 1
2 (s−σ8,0)2/ε2dσ8,0

= e− 1
2 (s−σ8,0)2/ε2√

πε2/2 [1 + erf(s/
√

2ε2))]
= Ag e− 1

2 (s−σ8,0)2/ε2
, (6.23)

where we implicitly defined the normalization constant Ag.

The posterior probability distribution function then reads:

Pg(Ωm,0) = Ag√
(2π)n|C|

∞∫
0

e−[χ2+(s−σ8,0)2/ε2]/2dσ8,0

= Ag√
(2π)n|C|

exp
(
−1

2

[
ξmm −

ξ2
mν

ξνν

])
Ig , (6.24)

where Ig is equal to:

Ig =
∞∫
0

e−
ξνν

2 (ξmν/ξνν−σ8)2e− 1
2 (s−σ8,0)2/ε2dσ8

=

√√√√ πε2

2(ε2ξνν + 1) exp
(
− (ξmν − ξννs)2

2ξνν(ε2ξνν + 1)

)1 + erf
 ξmνε

2 + s

ε
√

2(ε2ξνν + 1)

 , (6.25)

which is the multiplication of the exponentials of two Gaussians, which is also the exponential
part of a Gaussian distribution.
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6.4 Data Considerations

6.4.1 The Dataset

The growth rate dataset is based on the Gold-2017 compilation from [70], consisting of 18
independent measurements of fσ8(z), obtained from redshift space distortion measurements
from a variety of surveys. Among these surveys, it is important to note that the three
WiggleZ [73] measurements are correlated, and their covariance matrix is

CWiggleZ = 10−3


6.400 2.570 0.000
2.570 3.969 2.540
0.000 2.540 5.184

 . (6.26)

In addition to the Gold-2017 compilation, we update it with 4 recent measurements from
[74]. These points have a covariance matrix given by

CSDSS-IV = 10−2


3.098 0.892 0.329 −0.021
0.892 0.980 0.436 0.076
0.329 0.436 0.490 0.350
−0.021 0.076 0.350 1.124

 . (6.27)

Our final dataset will be constituted of N = 22 data points, shown in Table 6.1, the possible
combinations of subsets from the them is 2N−1 − 1 = 2097151, and we analyze all of the
subsets2. The analysis is possible thanks primarily to the marginalization over σ8,0, as shown
in Sec. 6.3.

6.4.2 Mock Data

An important feature of this work is the comparison of confidence regions for the probabil-
ity distributions of the internal robustness (iR-PDF). To obtain the confidence regions, we
generate mock datasets based on the form

fσmock
8 (zi) = fσ8(zi | θbestfit) +N random , (6.28)

meaning that the mock growth rate data is generated from the best fit parameters θbestfit,
which are obtained using the complete dataset and minimizing the posterior probability
(which takes the prior into account). The N random term is evaluated by assuming a Gaussian
noise with zero mean and standard deviation equal to those given by the data σfσ8(zi).

The main reason of comparing the results obtained by using the data and the mock
catalogues is to compare directly the iR-PDF to the confidence regions. If the iR-PDF from
the data falls off the confidence regions, then we can state that either the data set is not
internally robust, meaning that the dataset could be affected by systematics, or that a better

2Note that we do not count the combination of the full dataset with the empty set ∅.
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Table 6.1: Compilation of the fσ8(z) measurements used in this analysis along with the
reference matter density parameter Ωm0 (needed for the growth correction) and related ref-
erences.

z fσ8(z) σfσ8(z) Ωref
m,0 Ref.

0.02 0.428 0.0465 0.3 [75]
0.02 0.398 0.065 0.3 [76],[77]
0.02 0.314 0.048 0.266 [78],[77]
0.10 0.370 0.130 0.3 [79]
0.15 0.490 0.145 0.31 [80]
0.17 0.510 0.060 0.3 [81]
0.18 0.360 0.090 0.27 [82]
0.38 0.440 0.060 0.27 [82]
0.25 0.3512 0.0583 0.25 [83]
0.37 0.4602 0.0378 0.25 [83]
0.32 0.384 0.095 0.274 [84]
0.59 0.488 0.060 0.307115 [85]
0.44 0.413 0.080 0.27 [73]
0.60 0.390 0.063 0.27 [73]
0.73 0.437 0.072 0.27 [73]
0.60 0.550 0.120 0.3 [86]
0.86 0.400 0.110 0.3 [86]
1.40 0.482 0.116 0.27 [87]
0.978 0.379 0.176 0.31 [74]
1.23 0.385 0.099 0.31 [74]
1.526 0.342 0.070 0.31 [74]
1.944 0.364 0.106 0.31 [74]

physical model is required in order to better describe the data. In other words, the mock
data confidence regions portrait acceptable offset levels from the best fit cosmology obtained
from the complete dataset.

For each choice of the prior on σ8,0, we generate 1000 mock datasets. Then, we sample each
one of these datasets into 14000 subset combinations, distributed as follows: 2000 samples for
subsets in which the smaller subset size (hereinafter SSS) is 11, another 2000 for subsets with
SSS=10, and so on, until SSS=4. We stop at SSS=4 because the number of samples would be
larger than the available combinations. As mentioned, the goal is to explore different subset
sizes in an equal manner, with the further consideration that, for larger SSS value, we have
more possible combinations.

As an ultimate test, we produced mock datasets based on the Planck 2015 best fit
parameters [63], for which the parameters are Ωm,0 = 0.3121 and σ8,0 = 0.815. The
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idea behind this is to check whether the tension on measurements of σ8,0 between Cos-
mic Microwave Background (CMB) surveys like Planck and galaxy clustering surveys, see
Refs. [70, 88, 89, 90, 91, 92, 93, 94, 95], could be due to inconsistencies in the data themselves.

6.4.3 Cross-Checks

In order to ensure that the method is stable and sensitive to the dataset, we decided to opt
for two extra cross-checks on our analysis. In brief, the cross-checks have been done using the
narrow flat prior only, where we expect the method to be more sensitive to the final results.
The cross-checks are:

• Data removal: we select one of the combinations with lowest internal robustness
and SSS. Then, we remove the data points corresponding to the smaller subset, and
evaluate again the complete internal robustness analysis with the new dataset. Clearly
this procedure forces us to generate a new mock dataset with its own best fit. The
SSS value will now range from SSS=4 to the maximum SSS possible. In order to be
consistent with the number of points, each SSS will be constituted of 2000 sample
subsets.
• Data contamination: we deliberately choose to contaminate the first data point of

the dataset in order to have a worse iR-PDF. This contamination has been implemented
by moving the data point by 5σ away from its actual value. In other words, the new
first point is constructed as

fσcont8 (z1) = fσ8(z1) + 5 σfσ8(z1) . (6.29)

By moving one of the point by 5σ away from its actual position, we expect the iR-PDF
to be affected and fall off the confidence regions, clearly the mean iR has to decrease.

6.5 Results and Discussion

The first results are the complete inspection of the dataset, comprising all the possible subset
combinations. In Fig. 6.1 we show the iR-PDF in the form of violin plots, arranged by the
smaller subset size (SSS) of each subset combination. The three figures differ by the prior
used.

From Fig. 6.1 we can see that the internal robustness increases with the SSS. This results
was somehow expected as a larger data subsets are less prone to manifest outliers, if the data
is free of systematic effects. We also see that the broad prior (middle panel in Fig. 6.1) has
much larger iR than the narrow prior (upper panel in Fig. 6.1). The difference in the iR value
is of the order two regardless of the SSS considered. However, the shape of the distributions
changes for SSS<3. We can also see that for the Gaussian prior, the distributions are more
stretched for small SSS (SSS<3) and more clumped up for medium and larger SSS.

In Fig. 6.2 we show the confidence regions of the mock datasets, as reported in Sec. 7.4,
along with the iR-PDF of the corresponding prior. The dataset black lines were obtained
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Figure 6.1: Violin plots of the internal robustness distributions, for each of the smaller subset
sizes of each partition. We employed the narrow flat prior (upper panel), broad flat prior
(middle panel) and Gaussian prior (lower panel). The white dots are the mean value of the
internal robustness, the bold black line is the 1σ region and the thinner black line is the 2σ
region.

from samples that were equal in size in each SSS as the mock data. We observe that, with the
3 types of prior, the data iR-PDF is within the confidence levels obtained in all the ranges
of the internal robustness. This validates the dataset, discarding systematic contamination
and any other irregularities detectable within the iR formalism.

In Fig. 6.3 we have plot the confidence regions with the Planck-based cosmology. We see
that the confidence regions are nearly identical to those of Fig. 6.2, with the exception of the
Gaussian prior case, where the iR-PDF gets closer to the 1σ region with the Planck-based
cosmology mock data. We recall that the Gaussian prior was also chosen based on the Planck
2015 results, so this result is not controversial, although it was not automatically expected,
unless we consider the prior to be more constraining than the likelihood alone.

6.5.1 Cross-checks results

As mentioned in the previous section, we decided to make a cross-check analysis to ensure
that both method and dataset gave sensible results. The first check consisted of removing
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Figure 6.2: Internal Robustness PDF and
confidence regions from mock data based
on the best fit cosmology, using each prior.
They are: narrow flat prior (upper panel),
broad flat prior (medium panel) and Gaus-
sian prior (lower panel).
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Figure 6.3: Same as Fig. 6.2, but the
base parameters for the mock data are from
Planck 2015. Priors used: narrow flat prior
(upper panel), broad flat prior (medium
panel) and Gaussian prior (lower panel).

data points from the subset that gave the lowest robustness. In our analysis we found that
the lowest SSS that gave a negative lowest robustness was constituted of 2 points (hence
SSS=2) and the data points falling into this subset were the second and sixth data in the
table 6.1. We decided to name this subset ‘r26’.

Our second cross-check was to take the first data point3 and move 5 σs away from its
actual position. The new dataset is denominated ‘c1’. In Fig. 6.4 we show the iR-PDFs for
the cross-check datasets. We can see from the figure that, for the ‘r26’ dataset, the iR for

3There is no particular reason of choosing the first point. Since the dataset is statistically robust, we are
allowed to take randomly any point on the list.
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Figure 6.4: Same as Fig. 6.1, but considering the ‘r26’ dataset (upper panel) and the ‘c1’
dataset (lower panel), both with a narrow flat prior.
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Figure 6.5: Same as Fig. 6.2, but considering the ‘r26’ dataset (left panel) and the ‘s1’
dataset (right panel), both with a narrow flat prior. The mock data used to generate the
confidence regions from the upper panel come from the best fit of the ‘r26’ dataset, while the
ones for the lower panel are from the original dataset.

SSS>6 has a higher minimum but the maximum iR is lower, as well as the mean iR values are
smaller with respect to the full dataset. This is probably due to, when improving a dataset
by adding robust points, the iR is expected to increase. On the other hand, the improvement
in the minimum iR indeed comes from choosing to remove the points with lower iR on the
original dataset.

For the second cross-check, i.e. the contamination of one datapoint, we can see immedi-
ately that the internal robustness method detects the inconsistency caused by the contam-
inated datapoint, by exhibiting a bimodal shape and a decrease of the iR value when we
increase the SSS. These are two features that are not proper of a robust dataset.

Finally, in Fig. 6.5 we show the confidence regions for the cross-check datasets. We can
see that the confidence regions for the removal cross-check do not fully contain the iR-PDF.
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The reason is that, by removing some of the data points, the iR for lower SSS is more affected
than those with a higher SSS. This is clear if we consider that the effect of dropping data
points are more significant for a small dataset rather than a large one, assuming they have
the similar weights. The anomaly in the iR-PDF for low SSS can be interpreted as the result
of an artificial forcing to avoid small iR values.

For the ‘c1’ dataset we clearly see that the deviation from the confidence regions from the
mock data confirms the efficacy of the methodology presented.

6.6 Summary and conclusion

In this work we implemented the “Internal Robustness” of Ref. [61] to the currently avail-
able growth-rate data in the form of fσ8(z) shown in Table 6.1, with the aim to examine
the dataset for systematics and outlier points in a fully automated manner. The “Internal
Robustness” is a fully Bayesian approach which is not only sensitive to the local minimum
like a standard χ2 comparison, but also to the entire likelihood and can in principle detect
the presence of systematics in the dataset. The method works by analyzing combinations
of subsets in the dataset in a Bayesian model comparison way, potentially finding groups of
outliers, data affected by systematics or groups that might follow different physics.

The main goal of our approach was to identify systematic-contaminated data-points, which
can then be further analyzed and potentially excluded if they cannot be corrected. Further-
more, in order to validate our analysis and assess its sensitivity we also performed several
cross-checks, for example by removing some of the data points or by artificially contaminating
some points, while we also generated mock datasets in order to estimate confidence regions
of the iR.

We found that, in the first case, when removing the two points with the least robustness
the iR for SSS>6 has a higher minimum but the maximum iR is lower, as well as the mean
iR values are smaller with respect to the full dataset. In the second case, by adding an
artificially contaminated point which was ∼ 5σ away from its actual value, we found that the
internal robustness method indeed detected the inconsistency caused by the contaminated
datapoint.

In conclusion, implementing the iR methodology we found that the fσ8(z) dataset, used
in our analysis and shown in Table 6.1, is internally robust showing no anomalous behavior,
thus ensuring its internal robustness. This is interesting when discussing the tension of the
Planck 15 CMB data and the low redshift measurements coming from galaxy surveys, as we
can make sure that the discrepancy does not originate from inconsistencies in the data.
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Chapter 7

Comparing Dark Energy models with
Hubble versus Growth Rate data

This chapter presents a research work submitted to Physical Review D, which corresponds to
Ref. [96]. This work is a team effort with aid from the student Javier Silva, who mainly devel-
oped the perturbation equations for the different models considered, especially the analytical
ones, plus help with coding extensions.

Abstract

In this work we perform an analysis on the recently proposed conjoined cosmic growth and
cosmic expansion diagram [97] to compare several dark energy models using the Figure
of Merit showed in [98], which consists in the inverse of the 1σ confidence region in the
fσ8(z)−H(z) plot. Our analysis also consists of comparing the models by performing different
statistical criteria: Bayes factor [99], the Bayesian Information Criteria [100] and the Akaike
Information Criterion [101]. We also developed a 3-dimensional Figure of Merit to account
simultaneously for the errors on the growth rate and the Hubble parameter. The main idea
is to consider several cosmological models and compare them with the different statistical
criteria in order to highlight the differences and the accuracies of each single criterion.

7.1 Introduction

Recent observations [13, 14] pointed out that the Universe seems to be in a phase of acceler-
ated expansion. These evidences have led cosmologists to revise the theory of the expansion
of the Universe either by introducing a new form of matter called dark energy [19] or by
modifying directly the laws of gravity [62].

Within the framework of Friedmann-Lemaître-Robertson-Walker (FLRW) cosmologies,
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such accelerated expansion can be generated by adding up a simple cosmological constant Λ
to the total budget of the Universe. Even though the latter gives rise to severe coincidence and
fine-tuning problems, observations seem in agreement with such an explanation [102, 63, 90].
Over the years a series of dark energy models have been considered in order to solve, or at
least alleviate, the theoretical problems related to dark energy.

Alternative theories of gravity came naturally as a consequence of the incapability of
having a self-consistent model of dark energy. This class of models intends to modify Gen-
eral Relativity (GR) and to explain the observed acceleration of the Universe as a purely
geometrical effect due to the weakening of gravity at very large scales.

The important question here is whether the two scenarios can be distinguished. It is well
known that any Hubble expansion can be generated by choosing an appropriate equation of
state for the dark energy, see [103]. Over the years there have been claims that it is possible
to distinguish alternative theories of gravity from dark energy models by using growth data;
however the last assumption is not always true unless the expansion history is fixed, [104].
Nonetheless, recent works have proposed to study the cosmic growth versus cosmic expansion
history conjoined diagram, the fσ8 − H plot, to put constraints on the parameter space of
cosmological models, or to compare different models directly [97]. Model comparison using
this approach has already been investigated in [105, 98]. The advantage of the fσ8 − H
plot over other probes relies on the degeneracy break of the history curves when comparing
different models or the parameter space, since it contrasts a geometrical observable, H(z),
to a non-geometrical one, fσ8(z), which is a pure gravitational effect.

Using this approach, dark energy models were compared using the fσ8 − H plot [98]
through the FoM defined as the inverse area of the 1σ confidence region in the conjoined
diagram. In this work, we follow a similar approach and we compare the models using
different statistical tools: the standard Bayesian evidence [99], the Bayesian Information
Criteria [100] (BIC), the Akaike Information Criterion [106] (AIC) and the FoM. Furthermore,
we considered an extension to the FoM which we define 3-FoM, which considers both errors
on fσ8(z) and H(z).

Anticipating the results, we find that the FoM is a fairly good estimator of the errors,
however, its extension, the 3-FoM, captures simultaneously the growth of matter and the
expansion history making it more stable over different models. The criteria BIC and AICc

penalize substantially models with extra parameters.

The work is structured as follows: in Section 7.2 we report the basic equations that will
be used in our work, whereas in Section 7.3 we list the cosmological models that will be
compared, and the link between H and fσ8 measurements. In Section 7.4 we show the
datasets used in the analysis and the statistical methodology is reported in Section 7.5. In
Section 7.6 we report the results of our analysis and discuss them.
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7.2 Basic equations

By gravitational collapse, matter forms structures in the universe, which are called pertur-
bations δρ(a, k), where k represents the scale in Fourier space. These perturbations grow
over time according to the characteristics of the fluid: EoS, pressure perturbation δp and
anisotropic stress σ.

The growth of perturbations for a general fluid is governed, assuming homogeneity and
isotropy, by the differential equations [38]

δ′ = 3 (1 + w)φ′ − V

H a2 −
3
a

(
δp

ρ
− wδ

)
, (7.1)

V ′ = − (1− 3w) V
a

+ k2

H a2
δp

ρ
+ (1 + w) k2

H a2ψ

− (1 + w) k2

H a2σ , (7.2)

where the primes denote derivatives with respect to a, δ = δρ(a, k)/ρ(a) is the density
contrast, V = i kjT j0 /ρ(a) is the scalar velocity perturbation, and T i

j is the energy-momentum
tensor. The quantities ψ and φ are the gravitational potentials in the Newtonian gauge. These
potentials follow

k2φ = −4πGa2∑
j

ρj

(
δj + 3aH

k2 Vj

)
, (7.3)

k2 (φ− ψ) = 12πGa2∑
j

(ρj + pj)σj , (7.4)

where the sum runs over all the species in the Universe. We will then have sets of equations of
the form of Eqs. (7.1) and (7.2) depending on the number of species present in the Universe.
For non-relativistic particles, i.e. cold dark matter and baryons, we just need to set w =
δp = σ = 0. However, in this work we consider general dark energy models as well. There is
no unique way to parametrize these quantities as they depend directly on the specific model
considered.

For simplicity, in this work, we consider only two components, and they are pressureless
dark matter and a dark energy fluid. In the next section, we describe the different dark
energy models.

Since we want to test our models with observations, we need to obtain a measurable
quantity; the real observable is fσ8(a), defined as the product of the growth rate of matter
perturbations f(a) = d ln δm(a)/d ln a and the root mean square (RMS) of matter density
perturbations measured in a sphere of 8h−1Mpc, defined as σ8(a) = σ8,0δm(a)/δm(a = 1).
We then have:

fσ8(a) = σ8,0 a
δ′m(a)
δ(a = 1) , (7.5)

where σ8,0 is the RMS measured today. This quantity is more reliable than f(a) alone due
its independancy of the bias b, which is the ratio of baryon perturbations to total matter
perturbations, i.e. δb = b δm.
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7.3 Models

Here we list the models considered in the analysis. Throughout this work, we assume that
all the dark models have zero anisotropic stress, σ = 0. Consequently, the two gravitational
potentials are equal φ = ψ.

7.3.1 ΛCDM

This corresponds to the simplest and most accepted cosmological model. It assumes a con-
stant EoS parameter exactly equal to −1. We consider two different cases in the ΛCDM
scenario.

ΛCDM: this model refers to flat ΛCDM (without spatial curvature) where we set the
curvature parameter Ωk,0 = 0, hence the Hubble parameter reads

H2 = H2
0

[
Ωm,0a

−3 + (1− Ωm,0)
]
.

Furthermore, the cosmological constant Λ has zero perturbations, hence the system of equa-
tions simplifies and the gravitational potentials only depend on pressureless matter. For
small scales, Eqs. (7.1) - (7.4) reduce to a single second-order differential equation for mat-
ter density contrast to which an analytical solution1, expressed in terms of hypergeometric
functions, can be found, see Appendix 7.8 for more details.

Consequently, we will have one model with two variants: ΛCDM and ΛCDM-a, using the
numerical and analytic solution, respectively. However, for consistency reasons, we decided
to use the full set of differential equations Eqs. (7.1) - (7.4), leaving to the appendix the
results obtained by using the analytical solutions as a further test.

Finally, the parameters of both models are:

θΛCDM = (Ωm,0, H0, σ8,0) . (7.6)

ΛCDM-nf: this model corresponds to a non-flat (to which we use the label ‘-nf’) ΛCDM
where we allow for the curvature parameter to vary. Then, the Hubble parameter takes the
form:

H2 = H2
0

[
Ωm,0a

−3 + (1− Ωm,0 − Ωde,0)a−2 + Ωde,0
]
.

The cosmological constant still has zero perturbations, however the differential equation
for matter perturbations does not have an analytical solution, hence we solve numerically
Eqs. (7.1) - (7.4).

The parameters of the model are:

θΛCDM-nf = (Ωm,0, Ωde,0, H0, σ8,0) . (7.7)
1We denote analytically-solved models by using the label ‘a’.
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7.3.2 wCDM

This model is an extension of the ΛCDM model in which a constant EoS w is set as a free
parameter. If the EoS parameter of dark energy is no longer constant and equal to −1, then
dark energy may have perturbations and its growth will be fully characterized by the values
of w and cs2. Clearly, if dark energy has perturbations, these will affect the growth of matter
perturbations through the gravitational potential Eqs. (7.3) - (7.4). As a consequence, we
identify four different cases.

wCDM: this model corresponds to flat wCDM where perturbations in the dark energy
sector have been switched off; the Hubble parameter reads:

H2 = H2
0

[
Ωm,0a

−3 + (1− Ωm,0)a−3(1+w)
]
. (7.8)

If we decide to ignore a priori the dark energy perturbations, then the growth of matter
density is still governed by a second order differential equation, and it is still possible to find
an analytical solution to the matter density contrast, see Appendix 7.8 for more details. As
a consequence we have the wCDM and wCDM-a solutions to this model. As for the ΛCDM
case, we also consider the full numerical solutions from Eqs. (7.1) - (7.4) and leaving the
results from the analytical solution to the appendix.

Finally, the parameters of both models are

θwCDM = (Ωm,0, w, H0, σ8,0) . (7.9)

wCDM-nf: this model corresponds to a non-flat wCDM; the Hubble parameter reads

H2 = H2
0

[
Ωm,0a

−3 + (1− Ωm,0 − Ωde,0)a−2 + Ωde,0a
−3(1+w)

]
. (7.10)

Here we set dark energy perturbations to zero. However, due to the complexity of the
Hubble parameter, analytical solutions for the matter density contrast do not exist and we
solve numerically the system of Eqs. (7.1) - (7.4).

We have the following free parameters for the model:

θwCDM-nf = (Ωm,0, Ωde,0, w, H0, σ8,0) . (7.11)

wCDM-p: this model is a flat wCDM for which we allow perturbations (this addition is
symbolized by ‘-p’) in the dark energy sector. The Hubble parameter is given by Eq. (7.8).
However, we now have two sets of equations (7.1) - (7.2), for pressureless matter and for
the dark energy fluid. Analytical solutions can also be found in some special limits, see
Appendix 7.8. However, as for the other cases, we also use the full numerical solutions from
the equation of perturbations.

As mentioned earlier, the growth of the perturbations of one species depends on the
characteristics of the fluid, which are given by w, δp and σ. For pure pressureless matter,

2We remind the reader that we assume the anisotropic stress of any dark energy model to be zero.
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w = δp = σ = 0. For a dark energy fluid, these are not known. In this work we assume zero
anisotropic stress σ = 0, and the pressure perturbation to be given by [64]:

δp = c2
sρδ + 3aH(c2

s − c2
a)

k2 ρV , (7.12)

where c2
a ≡ ṗ/ρ̇ is the adiabatic sound speed of the fluid that can be expressed as

c2
a = w − ẇ

3H(1 + w) = w − w′

3(1 + w) , (7.13)

and for a constant EoS, the adiabatic sound speed yields c2
a = w.

The free parameters of the models (wCDM-p and wCDM-p-a) are

θwCDM-p = (Ωm,0, w, c
2
s, H0, σ8,0) . (7.14)

wCDM-nf-p: this model correspond to non-flat wCDM for which we allow perturbations
in the dark energy sector; the Hubble parameter takes the form in Eq. (7.10) and the per-
turbations will be solved numerically for both matter and dark energy. Thus, the parameter
set of the model is

θwCDM-nf-p = (Ωm,0, Ωde,0, w, c
2
s, H0, σ8,0) . (7.15)

7.3.3 Chevallier-Polarski-Linder (CPL)

This class of models [26, 27] can be considered an extension to wCDM models in which the
equation of state depends on the scale factor. The simplest extension is a Taylor expansion
around the present time a = 1, giving

w(a) = w0 + wa(1− a) . (7.16)

Hence, giving two extra parameters: w0, which is the present time EoS parameter and wa
which represents the variation over time of w(a). We identify four different models using this
parametrization. The quantity ŵ is the effective EoS parameter, given by

ŵ(a) = 1
ln a

a∫
1

w(x)
x

dx . (7.17)

CPL: this corresponds to the simplest scenario where the Hubble parameter does not depend
on curvature and we set dark energy perturbations to zero. Then, the Hubble parameter reads

H2 = H2
0

[
Ωm,0a

−3 + (1− Ωm,0)a−3(1+ŵ(a))
]
. (7.18)

There is no exact analytic expression for the matter density contrast when the EoS parameter
takes the form of Eq. (7.16). Here we solve numerically Eqs. (7.1) - (7.4). This way, the
parameters are

θCPL = (Ωm,0, w0, wa, H0, σ8,0) . (7.19)
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CPL-nf: in this model we allow the curvature parameter to vary. Then, Hubble parameter
becomes

H2 = H2
0

[
Ωm,0a

−3 + (1− Ωm,0 − Ωde,0)a−2 + Ωde,0a
−3(1+ŵ(a))

]
. (7.20)

We set dark energy perturbations to zero and solve numerically the Eqs. (7.1) - (7.4) for pure
pressureless matter only. The free parameters of the model are:

θCPL-nf = (Ωm,0, Ωde,0, w0, wa, H0, σ8,0) . (7.21)

CPL-p: the Hubble parameter is given by Eq. (7.18), the equation of perturbations will
be solved numerically by using Eqs. (7.1) - (7.4). The characteristics of the dark energy fluid
are given by Eq. (7.12), with the further assumption that the adiabatic sound speed c2

a = w;
the former is somehow required in order to stabilize the growth of dark energy perturbations
when it crosses the phantom regime [64]. Thus, the parameters of the model are

θCPL-p = (Ωm,0, w0, wa, c
2
s, H0, σ8,0) . (7.22)

CPL-nf-p: the Hubble parameter takes the form in Eq. (7.20). We solve numerically
Eqs. (7.1) - (7.4) for pressureless matter and dark energy. The characteristic of the dark
energy fluid are given by Eq. (7.12), with the further assumption of c2

a = w and w′ = 0 at
crossing.
The parameter set for the model is

θCPL-nf-p = (Ωm,0, Ωde,0, w0, wa, c
2
s, H0, σ8,0) . (7.23)

7.4 Data

The Hubble parameter data for the analysis are the cosmic chronometers compilation used
in [107], which consists in 31 independent measurements of H(z), obtained from evolving
galaxies at different redshifts [108].

The growth rate dataset is based on the compilation used in [60], which is an updated
version of the ‘Gold-2017’ dataset from [70]. The dataset consists of 22 independent mea-
surements of fσ8(z), obtained through baryon acoustic oscillations and weak lensing sur-
veys. Among these surveys, it is important to note that the three WiggleZ [73] and the
four SDSS-IV [74] measurements are correlated, and their covariance matrices are given by
Eqs. (6.26)-(6.27).

7.5 Methodology

To perform the analysis, both datasets are assumed to have Gaussian likelihood distributions,
this is the probability of the data given a set of parameters. The datasets are assumed to be
independent, thus their conjoined likelihood is the product of each dataset’s likelihood. In
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z H(z) σH(z) Ref. z H(z) σH(z) Ref.
0.07 69.0 19.6 [109] 0.4783 80.9 9.0 [108]
0.09 69.0 12.0 [110] 0.48 97.0 62.0 [111]
0.12 68.6 26.2 [109] 0.593 104.0 13.0 [112]
0.17 83.0 8.0 [110] 0.68 92.0 8.0 [112]
0.179 75.0 4.0 [112] 0.781 105.0 12.0 [112]
0.199 75.0 5.0 [112] 0.875 125.0 17.0 [112]
0.2 72.9 29.6 [109] 0.88 90.0 40.0 [111]
0.27 77.0 14.0 [110] 0.9 117.0 23.0 [110]
0.28 88.8 36.6 [109] 1.037 154.0 20.0 [112]
0.352 83.0 14.0 [112] 1.3 168.0 17.0 [110]
0.3802 83.0 13.5 [108] 1.363 160.0 33.6 [113]
0.4 95.0 17.0 [110] 1.43 177.0 18.0 [110]

0.4004 77.0 10.2 [108] 1.53 140.0 14.0 [110]
0.4247 87.1 11.2 [108] 1.75 202.0 40.0 [110]
0.4497 92.8 12.9 [108] 1.965 186.5 50.4 [113]
0.47 89.0 49.6 [114]

Table 7.1: The 31 cosmic chronometer data points used in this analysis along with their
related references. The H(z) and σH(z) data are in units of km s−1 Mpc−1.

terms of the traditional chi-squared, defined by χ2 ≡ −2 logL, where L is the likelihood of
the current model, it is simply given by the sum of each dataset’s chi-squared, or

χ2 = χ2
H + χ2

fσ8 (7.24)

Where the subscripts ‘fσ8’ and ‘H’ indicate growth and expansion contributions, respectively.

Let us suppose that there are n measurements of H or fσ8, so we represent the observed
data in different redshifts as m = (m(z1), . . . ,m(zn)) and its theoretical prediction as µ(θ) =
(µ(z1), . . . , µ(zn)), which depend on the cosmological model and parameters. We define the
data vector as

xs = ms − µs , (7.25)
with the subscript ‘s’ denoting the data source: H or fσ8. However, in the case of growth mea-
surements, we need to take into account a redshift correction, which is featured in Ref. [70].
This correction consists in the following factor

fac(zi) = H(zi)dA(zi)
Href,i(zi)dref,i

A (zi)
(7.26)

where dA(z) is the angular diameter distance and the superscript ‘ref, i’ indicates that the
reference cosmology is taken on the corresponding data point at redshift zi . With this
procedure, we arrive at the corrected growth theoretical prediction:

µi
c =

µi
fσ8

fac(zi)
. (7.27)
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For all the datapoints, the reference model used is ΛCDM, and one can note that the product
H(z)dA(z) is independent ofH0 and σ8,0 for all models considered. We list the reference values
for Ωm,0 of each datapoint in Table 6.1. Using the corrected prediction, the data vector for
fσ8 is

xfσ8 = mfσ8 − µc . (7.28)
Therefore, the chi-squared are constructed through

χ2
s = xTs C−1

s xs , (7.29)

where C−1
s the inverse of the covariance matrix of the dataset. In the case of cosmic expansion,

the covariance matrix is diagonal and equal to each datapoint’s variance. The total cosmic
growth covariance matrix is given by a diagonal matrix with the measurements’ variance,
with the insertion of the WiggleZ matrix and SDSS-IV matrices, given by Eqs. (6.26) and
(6.27).

Parameter Flat prior limits
Ωm,0 [0, 1]
Ωde,0 [0, 1.7]
w0 [−3.5,−1/3]
wa [−2.5,−1/3− w0]
c2
s [0, 1]

H0 [Mpc/km/s] [35, 110]
σ8,0 [0.3, 1.5]

Table 7.2: Ranges of the flat priors used for each parameter. Note that wa depends on the
value of w0 to define its upper bound. This is to ensure that w(a) < −1/3 in order to have
acceleration on the expansion of the Universe.

We now proceed to present the methods used to compare different dark energy models.
We use five methods in total:

Evidence: The first method is the standard Bayesian model comparison via evidence
computation log(E) [99], where the evidence is defined via

E(m|M) =
∫
L(m|θM ,M) π(θM |M) dθM . (7.30)

The former quantity determines the probability of a given modelM to be true, given the data
m. As already mentioned, the likelihood function L(m|θM ,M) is Gaussian on the data m,
and the prior probability for the parameters, π(θM |M). If we assume the prior probabilities
π(M) to be the same for each model, then the Evidence completely defines the ranking of
the cosmological models.

All throughout the analysis, and specifically for the evidence computation, we adopted
standard flat priors for all the parameters, with boundaries reported in Table 7.2. Despite
that, the only special treatment was made on wa, for which we used an upper bound that
depends on the value of w0 in order to guarantee a phase of accelerated expansion [26].
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Furthermore, we use the same priors for all models that have the free parameter, as we are
more concerned about the statistical methods used.

The computation is performed using the package Nestle [115], a Python implementation of
the MultiNest algorithm [51, 52]. This algorithm is an efficient and robust way of computing
the evidence integral, a numeric task that becomes too large to be grid-integrated. MultiNest
also produces a Markov chain that can be reused as the MCMC-sample for the next method
below.

Figure of Merit: With this method, the models are ranked by their FoM’s defined in [98],
which corresponds to the inverse of the 1σ confidence region area in the conjoined fσ8 −H
plot given a redshift range. The likelihood is used to MCMC-sample in the parameter space
of each model, and this parameter chain is used to get the 1σ range of fσ8(zi) for i ∈ 1, ..., n.
If there are sufficient zi points, a spline can be constructed to connect the points in the
fσ8 − H plane, keeping H(zi) fixed to its mean value. This method is viable because fσ8
is much less constrained than H in all the models tested, and H(z) increases monotonically
with z for each model. The redshift range is, in principle, defined between z = 0 to zmax = 2,
to include the whole redshift data range. We will also show how the FoM varies when zmax
changes.

3-FoM: Here, we propose an extension of the previous method, in which we now consider
the 1σ range of H(zi) (as opposed as in the last method where it was omitted). For a zi
point we obtain the values plus the associated confidence levels of the Hubble parameter and
the growth rate, i.e.

H(zi)
+σH(zi)+
−σH(zi)−

and fσ8(zi)
+σfσ8(zi)+
−σfσ8(zi)−

.

With these values we compute the ellipsoidal area on each redshift point zi , as an approxi-
mation for the 2-dimensional confidence region in the fσ8(zi), H(zi) space

Ae(zi) = π

4
(
σH(zi)+ + σH(zi)−

)(
σfσ8(zi)+ + σfσ8(zi)−

)
. (7.31)

The 3-FoM is defined as the inverse of the ellipsoidal volume quantity in the fσ8, H, σH space.

Ve =
∫
Ae(z)dH(z)

= −
∫ z=2

z=0
Ae(z) H ′(z)

(1 + z)2 dz

' −
∑

i
Ae(zi)

H ′(zi)
(1 + zi)2 ∆z . (7.32)

If there are many equispaced zi points, the previous quantity corresponds to the volume
enclosed in Fig. 7.1.

BIC: The fourth method is the Bayesian Information Criterion [100, 116] which is given
by:

BIC = 2 ln(Ndata)npars − 2 lnLmax . (7.33)

This method still considers the maximum likelihood Lmax, however it tends to penalise models
with several parameters through the direct dependence of npars . Its formulation aims at
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Figure 7.1: 3-FoM plot for a ΛCDM model. This shows the volume to be integrated for the
calculation of the 3-FoM.

approximating the evidence (specifically, −2 log(E)) of the model to be tested, hence the
favored model is the one with the lowest BIC value.

AICc. The last statistical method is the corrected Akaike Information Criterion (AICc)
[101]. This method is similar to the BIC method because it still penalises models with several
parameters, however the penalisation is weighted with the number of data. Contrary to the
BIC test, the AICc tends to favor one model if the data set is large enough. The criterion is
given by:

AICc = 2npars − 2 lnLmax + npars(npars + 1)
Ndata − npars − 1 . (7.34)

This equation, derived in [101], accounts for a correction term when the number of data is
small, unlike the original Akaike Information Criterion [106]. As before, the test should also
be similar to the value of −2 log(E), which means that the lower AICc is, the more favored
is the model.

7.6 Results and Discussion

In this section, we discuss the results found for each model and we compare the values of the
criteria used. As mentioned previously the goal of the work is to accurately test the common
criteria found in literature and to highlight their differences.

In general, we are not interested in the specific value of the criterion found for a particular
model but rather their difference between two models. This difference will tell us which is
the model that is able to better reproduce the data.
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Model log(E) FoM 3-FoM BIC AICc Hmax

ΛCDM -21.87 0.192 0.027 51.35 34.02 201.71
ΛCDM-nf -22.09 0.145 0.012 58.84 35.91 210.06
wCDM -23.50 0.124 0.013 59.31 36.39 204.89
wCDM-p -23.01 0.124 0.014 67.21 38.78 204.47
wCDM-nf -23.33 0.125 0.010 66.57 38.14 207.54
wCDM-nf-p -23.29 0.122 0.010 74.80 40.99 207.36
CPL -24.16 0.129 0.014 67.18 38.75 208.97
CPL-p -24.14 0.127 0.014 74.87 41.05 208.69
CPL-nf -24.53 0.119 0.010 74.51 40.69 204.65
CPL-nf-p -24.53 0.120 0.010 82.62 43.52 204.33

Table 7.3: Results of the different methods for each model. We also show Hmax = H(z = 2)
to compare the extension of the integration in the H-dimension for the FoM and 3-FoM
methods.

For the first criterion, i.e. the evidence E, we use Jeffrey’s scale to assess the difference
of the logarithmic evidences for two particular models.

The other two criteria, i.e. BIC and AICc, are directly connected to the likelihood of the
models and hence they can be used as model selection tests. Since they come from a Taylor
expansion around the maximum likelihood estimator of the likelihood function, they can be
connected to Jeffrey’s scale, however, this interpretation must be taken with care, see [117] for
a detailed discussion. Generally, we can still consider the difference |∆BIC| = |BIC2 − BIC1|,
where the index 2 refers to the model with the higher value of BIC and the index 1 to the
one with the lower, as a good model selection test. Specifically, if |∆BIC| ≤ 2, then there is
no evidence in support of a model, if 2 < |∆BIC| ≤ 6, then there is a positive evidence in
favor of the model with the smaller value, whereas if |∆BIC| > 6, the evidence is considered
to be strong. The same discussion applies to the AICc criterion, where in this case we have:
if the difference is less than 2, then both models are able to reproduce the data with the
same accuracy, if |∆AIC| is between 2 and 4, then there is a positive evidence for the model
with the lower AICc, instead if |∆AIC| > 10, then the model with the larger AICc is strongly
disfavored, see [118].

The last two criteria considered in this work are the FoM, defined as the inverse of the
enclosed area at 1σ level for fσ8(z), and the 3-FoM defined as the inverse of the enclosed
volume at 1σ level in both fσ8(z) and H(z). It is clear the FoM and its extension (3-FoM)
are not criteria able to favor/disfavor a model, but rather they give an estimation on the
sensitivity of the parameters according to the data used. In practice, a larger FoM and/or
3-FoM means that the model is better constrained by the data.

Fig. 7.2 (top panel) shows the reconstruction of the H(z) − fσ8(z) assuming flat and
non-flat ΛCDM as the cosmological model. The shaded areas are obtained directly from the
1σ errors of the parameters given by the MCMC samples. The best fit of the parameters
are reported in Tab. 7.4. For this particular model the addition of an extra parameter,

87



80 100 120 140 160 180 200 220
H(z)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

f
8(

z)

CDM
CDM-nf

Binned data

80 100 120 140 160 180 200 220
H(z)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

f
8(

z)

wCDM
wCDM-nf
Binned data

80 100 120 140 160 180 200 220
H(z)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

f
8(

z)

wCDM-p
wCDM-nf-p
Binned data

Figure 7.2: The conjoined plots of the cosmic growth fσ8(z) versus the cosmic expansion
H(z) for differents models described in the text: (upper panel) ΛCDM with ΛCDM-nf, (lower
left panel) wCDM with wCDM-nf and (lower right panel) wCDM-p with wCDM-nf-p. Also
the 1σ error regions (shaded areas) and the real binned data (gray points) are shown.

Ωde,0, alters the results and the two shaded areas differ, specially at high redshift where
the lower limit of the errors are larger for not flat ΛCDM: as a consequence the FoM and
3-FoM decrease of about 35% and 125%, respectively. The BIC and AICc criteria used in
this analysis increase of about 13% and 5% when the curvature parameter is considered, see
Tab. 7.3.

As for the model comparison, the evidence gives inconclusive results, the AICc criterion
favors positively the flat ΛCDM over the non-flat ΛCDM model, the BIC criterion instead
shows a strong evidence in favor of ΛCDM.

In Fig. 7.2 (lower left panel) are shown the reconstruction of the H(z)− fσ8(z) assuming
flat and non-flat wCDM. These models have one parameter more with respect to the corre-
sponding ΛCDM models discussed above. The addition of w as a free parameter increases
the confidence regions substantially, as it can be seen from the figures and also reported
in Tab. 7.3, where the FoM decreases compared to previous cases. Here the variation is
due to the parameter itself rather than the addition of an extra parameter; in fact, if we
consider the non-flat ΛCDM model, which has the same number of parameters as wCDM

88



model, the FoM reduces from 0.145 to 0.124 which corresponds to almost 15%. However, the
3-FoM manifests an opposite behavior, it increases to about 8%. The reason is that fσ8(z)
is sensitive to the variation of the parameters almost at any redshift, whereas the Hubble
parameter is more sensitive at high redshifts (fixing one value of H0, the variation on H(z)
can only appear when the z is increased). For the non-flat ΛCDM model the area enclosed
by fσ8(z) is smaller than the era enclosed for the wCDM model, hence giving a lager FoM.
However, the maximum value of the Hubble parameter is larger for non-flat ΛCDM model,
210.06 against 204.89 for the wCDM model. This effect is taken into account in the 3-FoM,
where the errors on H(z) are considered. The two effects are counterbalanced, giving almost
the same value in the 3-FoM.

The evidence is weakly in support of the non-flat ΛCDM model over wCDM and the same
is found for the BIC and AICc criteria. Adding curvature to the wCDM model makes the
FoM increase of about 1% meaning that the 1σ errors are almost the same, however, their
best-fits differ. The 3-FoM decreases for the non-flat model showing that their errors are less
constrained. The BIC and AICc supports the flat model but the evidence is inconclusive.

Model Ωm,0 Ωde,0 w0 wa c2
s H0 σ8

ΛCDM 0.286+0.032
−0.038 1−Ωm,0 - - - 69.7± 2.3 0.779± 0.039

ΛCDM-nf 0.37± 0.16 0.83+0.29
−0.24 - - - 70.4± 3.1 0.762+0.044

−0.084

wCDM 0.280+0.045
−0.039 1−Ωm,0 −1.11+0.38

−0.30 - - 70.6+4.2
−4.7 0.782+0.045

−0.11

wCDM-p 0.278+0.044
−0.037 1−Ωm,0 −1.09+0.38

−0.30 - 0.50± 0.29 70.5± 4.4 0.788+0.045
−0.11

wCDM-nf 0.34+0.18
−0.22 0.86+0.34

−0.41 −1.08+0.49
−0.18 - - 69.7± 4.2 0.790+0.045

−0.11

wCDM-nf-p 0.34+0.18
−0.22 0.85+0.34

−0.42 −1.07+0.50
−0.16 - 0.51± 0.29 69.6+3.7

−4.7 0.795+0.048
−0.11

CPL 0.294+0.047
−0.041 1−Ωm,0 −1.20± 0.34 −0.50+0.99

−0.46 - 71.9± 4.5 0.747+0.026
−0.099

CPL-p 0.293+0.046
−0.041 1−Ωm,0 −1.17± 0.33 −0.50+1.0

−0.49 0.50± 0.29 71.7± 4.4 0.751+0.030
−0.10

CPL-nf 0.27+0.12
−0.24 0.72+0.21

−0.45 −1.27+0.63
−0.27 −0.42+1.0

−0.47 - 70.5+4.0
−4.6 0.778+0.048

−0.11

CPL-nf-p 0.27+0.11
−0.26 0.72+0.23

−0.45 −1.28+0.65
−0.27 −0.38+0.98

−0.45 0.50± 0.29 70.4+3.9
−4.5 0.778+0.054

−0.10

Table 7.4: Parameter constraints derived from Nested Sampling to each (non-analytical)
model described in the text.

In Fig. 7.2 (lower right panel) we show the reconstruction of the H(z)− fσ8(z) assuming
flat and non-flat wCDM with the further addition of perturbations in the dark energy sector
parameterized with c2

s as an extra free parameter. If we compare the latest results with the
former case we realize that the FoM does not change from wCDM to wCDM-p, whereas
it decreases of about 2.4% from wCDM-nf to wCDM-nf-p . These negligible variations are
repeated for the 3-FoM that does not change from wCDM-nf to wCDM-nf-p and it increases
of about 7.1% from flat wCDM to wCDM-p. As expected, dark energy perturbations are
weakly constrained with the data available (dark energy perturbations affect only the growth
of matter). This is shown in Tab. 7.4 where the best fits of the models with and without
dark energy perturbations are basically the same. This behavior is shown in all the criteria
used in this work, except for the BIC criterion which indeed favors the model without dark
energy perturbations. However, this is a pure mathematical effect as the BIC criterion always
penalizes the model with extra parameters.

In Fig. 7.3 (left panel) are shown the reconstructions of the H − fσ8(z) assuming flat and
non-flat CPL. If we look at Tab. 7.3, we realized that the FoM constrains better CPL over
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Figure 7.3: The conjoined plots of the cosmic growth fσ8(z) versus the cosmic expansion
H(z) for differents models described in the text: (left panel) CPL with CPL-nf and (right
panel) CPL-p with CPL-p-nf. Also the 1σ error regions (shaded areas) and the real binned
data (gray points) are shown.

wCDM which might sound peculiar because one would naively expect that a model with more
parameters has larger 1σ errors. Here, the difference in the FoM comes from the asymmetric
values of the errors on wa; this asymmetry is due to the choice of the prior for wa, for which
we chose to bind it to w0 in order to guarantee an accelerated expansion. This asymmetry led
to a smaller area in the upper part, reducing the enclosed 1σ area of fσ8(z). The 3-FoM is
more stable and this is again due to the value of the Hubble parameter at high redshifts: for
the wCDM model H(z = 2) = 204.89, whereas for CPL model is 208.97. This 2% difference
is accounted in the final 3-FoM which decreases with respect to its companion. The evidence
gives inconclusive results, manifesting the negligible effects of wa on the two observables; the
same conclusion is obtained with the AICc criterion. However, the BIC criterion strongly
penalizes CPL just because of the extra parameter in the model.

The CPL, wCDM-nf, and wCDM-nf models have the same number of parameters, thus
BIC and AICc criteria change less than 1% between them, showing again that they depend
strongly on the number of parameters. The FoM and 3-FoM show that CPL is better con-
strained but, as mentioned, this is due to the priors on wa used. The evidence weakly favors
the wCDM-p model over CPL but it is inconclusive with respect of wCDM-nf.

The non-flat CPL have the same number of parameters as wCDM-nf-p, but the FoM
shows that CPL is better constrained by the data whereas the 3-FoM does not change. The
BIC and AICc change less than 1% and the evidence weakly favors wCDM-nf-p model.

In Fig. 7.3 (right panel) we show the reconstruction of the H − fσ8(z) assuming flat and
non-flat CPL-p models. The behavior is similar to the previous case (CPL versus CPL-nf).
By adding the curvature parameter the evidence is inconclusive and the other indicators favor
the flat model because it has one parameter less. When we take into account dark energy
perturbations into the CPL models, we obtain a similar behavior as seen for the wCDM
models. Again, with the available data we are not able to constrain c2

s, hence all the criteria
are insensitive to the variation of the sound speed. The only exceptions are BIC and AICc
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criteria, which penalize the addition of the sound speed into the analysis.

For completeness we also performed our analysis using the analytical solutions for the
growth rate of matter, the models are ΛCDM, wCDM and wCDM with dark energy pertur-
bations. The results are reported in the Appendix 7.8 and the results are shown in Tab. 7.6,
whereas the best fit of these three models can be found in Tab. 7.7. All the three analytical
models give results in excellent agreement with the full numerical analysis, demonstrating
that the analytical solutions found in the literature are consistent.

Redshift bin H(z) [km s−1 Mpc−1] fσ8(z)
0 < z ≤ 0.4 76.8 ± 5.8 0.410 ± 0.025
0.4 < z ≤ 0.8 92.0 ± 8.6 0.456 ± 0.037
0.8 < z ≤ 0.12 121.5 ± 13.3 0.390 ± 0.104
0.12 < z ≤ 0.16 161.2 ± 11.0 0.404 ± 0.056
1.16 < z ≤ 1.2 194.2 ± 32.2 0.364 ± 0.106

Table 7.5: Binned measurements of H(z) and fσ8(z) with equispaced redshifts points and
its uncertainties. These are the gray points shown in Figs. 7.2 and 7.3.

7.7 Summary and Conclusion

In our work we implemented the conjoined H(z)− fσ8(z) method in order to test an entire
family of ten dark energy models; we started with the simplest model, ΛCDM which is
described by three parameters only, and we systematically increased the level of complexity of
the model by adding extra parameters, being the non-flat CPL with dark energy perturbation
the most complex model (with seven parameters).

For each model, we first found the best fit using MCMC analysis by combining the most
recent cosmic chronometer and growth data available. Subsequently, we compared the dark
energy models with five different statistical criteria, aiming at highlighting the potentiality
and the weakness of each criterion.

As expected, we found that the evidence is the most accurate statistical test to compare
different models as it takes into account the information of the entire likelihood of the pa-
rameters and it does not always penalize a model with extra parameters. The 3-FoM better
characterizes the sensitivity of the parameters according to the data used. This criterion
takes into account simultaneously the errors from both fσ8(z) and H(z); in particular, we
showed that the errors of the Hubble parameter increase with redshift and this has an im-
portant effect on the constraining power of the test. The FoM instead is limited only to
fσ8(z), hence neglecting the information from H(z), which might be crucial if the analysis is
extended at high redshift. As a complementary test, we performed the same analysis in the
same redshift range as in [98] and we found consistent results.

For the last two criteria, BIC and AICc, we showed that they always penalize the addition
of extra parameters; in fact, if we consider the two extreme models, i.e. ΛCDMwith only three
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parameters and non-flat CPL with dark energy perturbations, which has seven parameters,
we find that ∆BIC ∼ 40 manifesting a very strong evidence in favor of the ΛCDM model.
Similarly, but less decisive is ∆AICc for which we find a value of ∼ 10, which still favors
strongly ΛCDM but more moderately than BIC.
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Figure 7.4: These figures show the percentage difference of FoM (left panel) or 3-FoM (right
panel) between a model and ΛCDM. We only present the models without perturbations in
the dark sector. Here, ∆FoM = FoMΛCDM − FoMmodel and likewise for the 3-FoM.

To demonstrate the power of the 3-FoM, we compute the FoM and 3-FoM at different
redshifts starting from z = 0 up to the zmax. These results are shown in Fig. 7.4 where
we plotted the relative difference of the FoM (left panel) and the 3-FoM (right panel) for
each model with respect to ΛCDM. It is interesting to notice that at low redshifts the FoM
for wCDM, wCDM-nf, CPL, and CPL-nf is larger than ΛCDM, meaning that the former is
better constrained than the latter. This effect is not manifested in the 3-FoM which is always
larger for the ΛCDM model.

Appendix

7.8 Comparison with analytical solutions

Model log(E) FoM 3FoM BIC AICc Hmax

ΛCDM-a -22.07 0.192 0.027 51.34 34.01 202.05
wCDM-a -23.28 0.125 0.014 59.32 36.39 204.80
wCDM-p-a -23.23 0.126 0.014 67.22 38.79 204.66

Table 7.6: Results of the different methods for each analytic model. These are almost equal
to their numerical versions.

The master equation for the matter density constrast in the small scale regime (i.e.
k → ∞) while not considering dark energy perturbations is obtained using only the matter
component in the full set of differential equations Eqs. (7.1) - (7.4). After uncoupling them,
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Model Ωm,0 w0 c2
s H0 σ8

ΛCDM-a 0.286+0.033
−0.038 - - 69.8± 2.4 0.780± 0.040

wCDM-a 0.281+0.044
−0.039 −1.10+0.36

−0.31 - 70.4± 4.4 0.784+0.042
−0.11

wCDM-p-a 0.281± 0.044 −1.10+0.36
−0.30 0.50± 0.29 70.5+4.1

−4.7 0.784+0.044
−0.11

Table 7.7: Parameter constraints derived from Nested Sampling to each analytical model
described in the text.

the result is given by [69]

a2δ′′m + (3− ε(a)) aδ′m −
3
2Ωm(a)δm(a) = 0 , (7.35)

with ε(a) = −d logH(a)/d log a. As we are describing late time solutions we will always take
the growing mode solution given by [69]

δ(a) = a2F1

(
w − 1

2w , − 1
3w, 1− 5

6w, 1− Ω−1
m (a)

)
, (7.36)

where we omitted the integration constant because it will cancel out when we evaluate f(a).
The result to ΛCDM is given by setting w = −1.

The study about perturbations in the dark energy sector is detailed in [119]. There, it is
possible to find an exact solution when c2

s = 0 and an approximated one when c2
s 6= 0. Also,

a joint solution is described in which case the density contrast is given by

δ(a) = a2F1

(1
4 −

5
12w +B,

1
4 −

5
12w −B, 1−

5
6w, 1− Ω−1

m (a)
)
, (7.37)

where B is used as Bjoint in [119], which corresponds to:

B = 1
12w

√√√√(1− 3w)2 + 24 1 + w

1− 3w + 2
3

k2

H2
0 Ωm,0 c

2
s

. (7.38)

Utilizing these equations, it is possible to recover the exact solution when c2
s = 0.
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Conclusion

In this thesis, we studied some applications of Bayesian statistics to large-scale structure-
related observations, such as the growth rate of structure and the clustering of galaxies via the
observed power spectrum. These quantities encapsulate the behavior of matter and galaxies
through gravitation on the largest scales. While being in the era of precision cosmology,
there is a special urge to analyze data as effectively as possible, to keep up with the technical
improvements on observations. We must do this in order to draw trustworthy information, in
hopes of achieving a satisfactory explanation to the mystery of the true nature of gravitation,
the physical phenomenon that shapes the Universe.

To date, almost all cosmological data available points ΛCDM as the best candidate for
explaining the Universe. It has, though, some problems like the fine-tuning problem of Λ
or the coincidence problem of dark energy and matter densities, among others. On top of
that, there are tensions between experiments on the values of its parameters, like H0 [120]
or σ8 [94], or even complete cosmological probes against each other [121], which may or
not be an issue of ΛCDM, as it could be a problem of underestimating error sources (for
which Bayesian methods are tailored to the task of taking external nuisance phenomena
into account) or unknown systematics. There are even new improvements in the statistical
assumptions made at the beginning of the analyses [122].

The first of our projects explored an extension to the traditional Fisher Matrix forecasts
for an LSST-like galaxy clustering survey. We went beyond the Fisher matrix framework
by considering higher order derivatives on the Taylor expansion on the covariance matrix of
the experiment. This extension, called the Derivative Approximation of LIkelihoods (DALI)
is capable of capturing shapes other than Gaussians on the parameter confidence regions,
unveiling parameter degeneracies that are ignored in a Fisher forecast. However, we faced
numerical limitations when calculating accurate derivatives of the observed power spectrum
which needs to be integrated, having to increase the accuracy of the Boltzmann solver and
the step taken for the numerical derivatives respect to the parameters. Nevertheless, we
concluded that DALI is better than the FM not only in its shape capturing aspect but also
at estimating the size of the confidence regions (compared to MCMC samples), which can be
even more important, as this translates into the error bars for the parameters. This behavior
is more important for low redshift bins, where the Fisher regions are several times the size
of the MCMC regions, even when considering physically-motivated flat priors.

Our second project took on another almost unexplored methodology: the Internal Ro-
bustness (iR) test, which exploits the question of whether a dataset might be split into (two)
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subsets that obey different cosmological models, or different parameters of a given model.
The method could also detect systematics or even new physics. The dataset used in the
analysis was a compilation of growth rate measurements from different surveys, in the search
of differences on the treatment of systematics of each experiment. Our work contemplated
the exploration of all the possible subset combinations from the dataset (summing more than
2 million combinations), plus the comparison to mock catalogs, to check if the behavior of
the dataset was in the expectation boundaries. We found that there were no outliers in the
distribution of the Internal Robustness (iR-PDF), and the iR-PDF of the dataset is within
the expected values compared to the mock catalogues, ensuring the iR of the dataset, in-
creasing its fidelity, which could be important in future work that may involve the treatment
of tensions on the σ8 parameter.

Our third and final project involved comparing equation of state dark energy models from
two datasets. The first dataset was the same growth rate compilation used in the second
project whereas the second dataset was a compilation of direct Hubble measurements from
cosmic chronometers. The objective of the work was to use five comparison methods, to see
how they perform at ranking the models. We included the Bayesian evidence comparison
as our cornerstone method, as it is the most accurate and well-cemented method. Thus, we
used the evidence to gauge how well the other criteria performed. The second and third
methods were the (corrected) Akaike Information Criteria (AICc) and the Bayesian Informa-
tion Criterion (BIC), which rank models in terms of the minimum posterior probability and
the number of data and parameters. The fourth method was a Figure of Merit (FoM) based
upon recent findings stating that the conjoined fσ8 versus H plot can be used to discrimi-
nate models, as the probe combination breaks any degeneracy, and the FoM consisted in the
inverse of the area of the 68% confidence region of the plot. We noted that this method only
contains the errors on the cosmic growth part, so we went further and developed an extension
to this FoM that considers the inverse volume of a plot that also contains the errors of cosmic
expansion, hence its name: the ‘3-FoM’. Our analysis resulted in the 3-FoM being the best
comparison method among the four (not including the evidence, of course) and proved to be
a more reliable tool that could be used for forecasts if one relaxes its definition in order to
allow for approximations.

Bayesian methods in cosmology is a rather new field that is growing each day, closely
tied to the new big data paradigm that is the theme for upcoming years of cosmological
surveys. This implies that the frontiers of this field have a great amount of exploration and
refining that needs to be achieved in order to match the level of sophistication of observational
facilities. Especially, upcoming large-scale structure surveys will have the task of mapping
billions of galaxies, and the statistical methodology has the responsibility of giving that data
the best use, in hopes to deliver useful information that might lead to a new paradigm for
the Universe.
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