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Abstract
The capacity of understand the real effects of a public policy intervention in the population has
been for a long time one of the main focus of the economist around the world. At the same time,
the development of different statistical methodologies have deeply helps them to complement the
economic theory with the different types of data. One of the newest developments in this area is the
Machine Learning algorithms for Causal inference, which gives them the possibility of using huge
amounts of data, combined with computational tools for much more precise results. Nevertheless,
these algorithms have not implemented one of the most used methodologies in the public evaluation,
the Difference in Difference methodology. This document proposes an estimator that combines the
Honest Causal Tree of Athey and Imbens (2016) with the Difference in Difference framework, giving
us the opportunity to obtain heterogeneous treatment effect. Although the proposed estimator has
higher levels of Bias, MSE, and Variance in comparison with the OLS, it is able to find significant
results in cases where OLS do not, and instead of estimate an Average Treatment Effect, it is able
to estimate a treatment effect for each individual.
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1 Introduction
Statistical and econometric tools have advanced strongly in recent years thanks to the computa-
tional development and the large amounts of data that are available. In particular, the use of
Machine Learning (ML) algorithms (such as: Neural Networks, Lasso Regression, Support Vector
Machine, Decision Trees, etc.) has generated a leap in the predictive capacity of economic science.

ML involves the use of unsupervised or supervised algorithms for the mining of patterns and for
the prediction of a certain objective. Normally supervised algorithms are used when we predict an
outcome through training samples (Athey & Imbens, 2017). On the other hand, in words of Athey
and Imbens the objective of unsupervised algorithms is to find patterns in the data such as similar
group of items, like clustering images into groups. Therefore, both types of algorithms are not
accompanied by causality, which limits their use as tools to explain the phenomena that surround
us or to see the effectiveness of different government policies.

The literature related to ML and causal effects is still scarce and it has focused in the use of ML to
generate Propensity Score, Matching or Synthetic Controls, in search of the heterogeneous effects
of the programs. In these cases, the ML tools are usually used to define which group of variables
are used for prediction and causality, or which subjects of the sample are used for suitable training
the algorithm. However, the use of ML in more traditional methodologies such as Difference in
Difference (DID) shown in the classic papers of Ashenfelter & Card (1985) and Card & Krueger
(1993) has not yet been discussed in the literature.

This document proposes to investigate what requirements are needed in order to perform DID es-
timations, leveraging the advantages of using ML algorithms. The main motivation of this work,
arises from the relatively few applications of ML in the economics literature, and particularly, in the
DID heterogeneous effects estimation context, which is one of the best established methodologies
in the public policy field. In order to do this we will adapt the Honest Tree algorithms (Athey
and Imbens (2016)) recently proposed in the literature, to be applied in the DID context. We
proposed the adaption to be named Causal-DID-Tree algorithm. This work also shows the gains
of using the proposed methodology for the estimation of heterogeneous treatment effects in the
DID context. To evaluate the gains, the proposed algorithm will be tested using simulated data
and its performance will be compared against the classical OLS estimation of the DID methodology.

This document contributes to the literature in three key dimensions: Firstly, we investigate the
current state of art in the causal ML literature, and summarize the main findings. Secondly, we
propose an adaptation of the current causal ML algorithms to be applicable in the DID heteroge-
neous estimation context, and thirdly, we compare the proposed methodology against the classical
approaches. To best of the author’s knowledge this is the first implementation of a methodology
that takes advantage of the ML algorithms to create an easy and direct way to estimate DID with
heterogeneous effects.

The main results of our simulations indicate that in the presence of an exogenous shock and parallel
trends between the treatment and control groups, the results delivered by the Causal-DID-Tree are
unbiased and present a similar fitness to the one achieved by the traditional OLS estimation. More-
over, by construction, the Causal-DID-Tree algorithm is able to estimate heterogeneous treatment
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effects for each individual in the sample, feat that is not possible with the OLS classical methodol-
ogy, that only estimates average treatment effects.

The implications of being able to estimate the effects of a public policy at the individual level, are
extremely valuable for both the academia and practitioner’s world. In a wide variety of contexts,
public policies do not have the same effect for the entire population, therefore in a world of scarce
resources, the knowledge of the real effect of the policy for each group of individuals, or even bet-
ter, at the individual, can improve the efficiency of public spending of resources and enhanced the
wealth and well-being of the targeted population.

The document is organized as follows. Section 2 perform a literature review of ML algorithms
applications and theoretical contributions in the economic context, and the current state of art of
ML and causal inference. Section 3 discuss what causal inference is, what does the difference in
difference methodology do and why OLS regression can be used for causal inference. Section 4
presents a description of decision trees algorithms, what are the generic changes that have been
proposed to adapt decision trees to be used in the causal inference context, and discussed in de-
tail the proposed Causal-DID-Tree algorithm methodology for heterogeneous effects estimation.
Section 5 shows an experimental application of the proposed methodology, and compare it with
OLS estimation. Several robustness checks are applied, and the performance of the algorithm is
discussed and presented. Finally, Section 6 will concludes this document, highlighting the main
contributions, results, implications, limitations and future work. 1

2 Machine Learning and Causal inference in the literature
2.1 What is a Machine Learning Supervised Algorithm?
The focus of this document is to use Supervised Algorithms for causal inference problems, but first
it is necessary to understand, “What a Supervised Algorithm is”. In simple words, a supervised
Machine Learning algorithm is a computer program that finds patterns in a dataset with the goal
of making accurate predictions of a certain outcome variable, conditional to a set of features or
input variables. To find the corresponding patterns, the humans need to present to the machine
with examples of the problem that it needs to learn. The computer stars from random predictions,
and adjust them comparing the current output of the model with the expected outcome until it
reaches a solution that it is considered to be good enough.

According to Athey & Imbens (2017) “Supervised machine learning focuses primarily on prediction
problems: given a dataset with data on an outcome Yi, which can be discrete or continuous, and
some predictors Xi, the goal is to estimate a model on a subset of the data, given the values of the
predictors Xi. This subset is called the training sample, and it is used for predicting outcomes in
the remaining data, which is called the test sample.” As mentioned, the main goal of supervised
machine learning algorithms is to perform prediction for an outcome, given a set of predictors or
covariates. In contrast, in causal inference, the objective is to test whether a certain treatment have
an effect on the population that receives it, and to quantify this effect if its exist.

1The document also have two other sections (7 and 8) that provide support from the results and the computational
code used.
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Athey & Imbens (2017) emphasize that a key distinction between prediction and causal inference
comes from the fact that supervised machine learning methods typically rely on data-driven model
selection, but in contrast, econometric applications rely on economic theory to define what the
model specification should be. Supervised machine learning algorithms, then, take a more heuristic
approach, and most commonly through cross-validation, find the best specification for the task at
hand. As mentioned, often the main focus on ML is on prediction performance without regard to
the implications for inference.

Figure I shows how a Supervised algorithm usually works. First, it splits the sample into a training
sample and a test sample. Then, for the training sample, the algorithm will create subsamples and
leave a n percent apart. After, the algorithm will start to estimate results from the subsamples
and use them to predict the outcomes of the n percent that it was left aside. Later on, the tuning
parameter is chosen, based on the one that minimizes the loss function, that is normally defined
as the sum of the squared residuals in the cross-validation samples. The final model performance
is assessed by calculating the mean-squared error of model predictions (that is, the sum of squared
residuals) on the held-out test sample, which was not used at all for model estimation or tuning.
Again, Athey & Imbens (2017) express that the predictions using this methodology are not typi-
cally unbiased and estimators may not be asymptotically normal and centered around the estimate.
Then in Section 4 we will explain in more detail how the specific algorithm used in this document
works.

Figure I: Supervised Algorithm Example
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Sub-TS Estimate results
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2.2 What has the literature done so far?
In recent years, the amount of general literature related to ML has increased dramatically. One
of the most common topics is the use of algorithms in controlling large numbers of covariates.
McCaffrey et al. (2004) use Lasso and Random Forest regressions looking to estimate a propensity
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score. In contrast, Wyss et al. (2014) utilize simulations and empirical tests to compare Covariate-
balancing propensity scores with logistic regression, boosted classification and Regression Trees.
These two examples are critized by Athey & Imbens (2017), who suggest that such methods do
not necessarily emphasize the covariates that correlate to both the outcomes and the treatment
indicator.

Athey et al. (2017) suggest better ways for working with ML under the presence of large numbers
of pre-treatment variables. For example, the Approximate Residual Balancing Estimator (ARBE)
is proposed by Athey, Imbens, and Wager (2016) and uses elastic net (or LASSO) to estimate
conditional outcome expectations. This is then put through an approximate balancing approach
to further remove bias, which can come from remaining imbalances in the pre-treatment variables.
Moreover, Belloni et al. (2013) propose the double selection estimator, which uses LASSO as a
covariate selection method. First, the authors select pretreatment variables that are essentials in
explaining the outcome, then they combine the two sets of pre-treatment variables. Also, Van der
Laan and Rubin (2006) propose a closely-related Machine Learning Estimator (MLE) and Cher-
nozhukov et al. (2016) in the context of much more general estimation problem, propose a closely
related Double Machine Learning Estimator (DMLE) that also incorporates sample splitting to
further improve the convergence rates and its robustness.

Another group of researchers has focused on finding weights that can balance covariates or functions
of the covariates, in order to imitate randomized experiment data, once it has been re-weighted.
Some examples of these experiments are in Athey et al. (2017). Similar approaches has also been
developed by Graham, Pinto, and Egel (2016), Zubizarreta (2015) and Imai and Ratkovic (2014).
Another good example of this approach is Hainmueller (2012) proposition of the Entropy Balancing
Method (EBM). The authors methodology relies on a maximum entropy re-weighting scheme, which
calibrates unit weights in order to satisfy a potentially large set of pre-specified balance conditions
that incorporate information about known sample moments in the treatment and control group.

Moving to the development of some of these algorithms, in the paper of Athey and Tibshirani (2017)
the authors generalize the Random Forest method of Breiman (2001) and use that as an alternative
way to estimate non-parametric quantile regression, conditional average partial effect estimation,
and heterogeneous treatment effect estimation via instrumental variables. Moreover, Wager and
Athey (2017) develop a Causal Generalized Random Forest algorithm that is able to use the Ran-
dom Forest methodology to find heterogeneous treatment effects and obtain a causal inference from
the results. They additionally discuss a practical method for constructing asymptotic confidence
intervals for the true treatment effect that are centered at the causal forest estimates.

In the case of the literature related to ML and Causal inferences, this is mostly scarce and in some
cases, the properties of the estimators are not very well defined. Nevertheless, Imai and Ratkovic
(2013), motivated by two well-known randomized evaluation studies in the social sciences, use a
method that adapts Support Vector Machine classifier to estimate the effects of both treatments
and attributes. The key in the authors methodology -that allows them to found treatment effects-,
is the use of different penalty terms for the two types of features. In the same line, Tian et al.
(2014) and Weisberg and Pontes (2015) focus mostly in medical trials, developing methods similar
to Lasso for causal inference in a sparse high-dimensional linear setting. Moveover, Beygelzimer and
Langford (2009) develop an algorithm for optimal treatment policy estimation, using off-the-shelf
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loss minimization methods.

Furthermore, Cicala (2017) and Burlig et al. (2017) using ML algorithms estimated energy use
counterfactuals that then are used in a DID methodology with OLS regression. In addition, Athey
and Imbens (2016) creates the Causal Honest Tree algorithm that is a modification of the Regres-
sion Tree methods but focuses in optimize for the goodness of fit in treatment effects. Lastly, in
the case of Bayesian nonparametric methods Taddy et al. (2016) use them with Dirichlet priors
to flexibly estimate the data-generating process, and then project the estimates of heterogeneous
treatment effects and their measurement in relation to observable covariates.

In summary, although the Machine Learning literature is quite extensive and has been focused
on generating new methodologies, the literature that links Machine Learning and Causal Inference
remain scarce. This literature has been focused mainly on Propensity Score and obtaining heteroge-
neous effects for cross-sectional data in public policy evaluations. However, the properties of these
estimators and whether or not they converge to their real values continue to be studied. Finally, it
is interesting to note that so far in the literature there hasn’t been an article that directly relates
the use of Machine Learning algorithms to the Difference in Difference methodology.

3 Causal Inference and OLS
3.1 What is Causal Inference?
The term “Causal Inference” although it may sound a bit abstract is present everyday in quite
surprising ways. For example, “my neck hurts, because I slept badly” or “today I worked all day,
I’m exhausted”, what we are doing in these examples is giving a causal connotation to a bad night’s
sleep or to work. Although it sounds simple, causal inference is the effect that is attributed to an
action on a unit (object, person, etc) and many academics spend their entire lives looking for or
trying to understand those effects. In a more formal way, what is sought is to obtain the variation
of the variable Yi, when a change in the variable Xi occurs and everything else remains constant,
therefore, ceteris paribus.

The classic document of causal inference was written by Rubin (1974), however he says that the
original concept is from Fisher. Rubin proposes that if we have an individual i, and a treatment
Ti that takes value 1 when the subject is treated and 0 when not, the changes in the results of this
individual Yi will be the causal effect of the treatment Ti, i.e.

Treatment = E[Yi|Ti = 1]− E[Yi|Ti = 0] (1)

Nevertheless, trying to obtain that effect in reality is impossible because it will be involved in what
Holland (1986) called “the fundamental problem of causal inference”, which refers to the fact that a
subject cannot receive and not receive treatment at the same time (the absence of counterfactual).
So, when we are evaluating we must compare subjects who received different levels of treatment,
which under certain conditions can cause bias. But, thanks to one of the most important theorems
of statistic, the Central Limit Theorem (CLT), that established that if we add independent random
variables or observations their properties will tend to a normal distribution. Moreover, if there is
a sufficiently big random sample of the population, the normality property will apply and it will
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be possible to obtain the Average Treatment Effects (ATE), taking two different groups (T and C),
one affected by the treatment and the other not:

ATE = E[Yi|Ti = 1]− E[Yi|Ti = 0] (2)

After all, the reality is not that simple and in the words of Cameron & Trivedi (2005) “random
assignment of treatment is generally not feasible in economics, estimation of ATE-type parameters
must be based on observational data generated under nonrandom treatment assignment. Then the
consistent estimation of ATE will be threatened by several complications that include, for example,
possible correlation between the outcomes and treatment, omitted variables, and endogeneity of the
treatment variable”. A way to solve the problems highlighted by Cameron & Trivedi (2005), is the
Difference in Difference methodology originally used by Ashenfelter & Card (1984) and Card &
Krueger (1993).

The Difference in Difference methodology is useful when we have Panel data (i.e. different units in
different periods of time) or there are two cross-section data sets of two different periods of time
and in sort point of time (in example, between the two data set) a shock affect to one group of the
population and not to the other. Cameron & Trivedi (2005) explain that there are two underlying
assumptions in Difference in Difference (DID). First, it is assumed that a common time trend exists
between groups, i.e. the time effects are common across treated and untreated individuals. The
common trends assumption is needed if either panel or cross-section data is used. Second, if cross-
section data is used then the composition of the treated and untreated groups is assumed to be
stable before and after the change -with panel data difference eliminates the fixed effects-.

DID = (E[Yit+1|T = 1]− E[Yit+1|T = 0])− (E[Yit|T = 1]− E[Yit|T = 0]) (3)

DID methodology is supposed to mitigate the time trend factors and groups invariant characteris-
tics. Some authors say that this helps with the selection bias and with others economic exogenous
factor which could occur. Nevertheless, the DID methodology is not absent of critics. First, the
demonstration of the parallel trends or the idea that the shock was really exogenous for both groups
is more theoretical, rather than a mathematical thing to do. Second, this methodology could also
suffer from reverse causality or omitted variable bias, this mean that the effect that is being ob-
tained is not the real causal effect of the treatment.

Another form of causality in the literature is developed by Granger (1969) and is called Granger’s
Causality. This methodology is mainly used in the time series data, and in Holland (1986) it is
explained in this way “a variable cause another in a Granger’s way if this variable statistically predict
the other one, this is, if the variable is prior than other one”. A more mathematical explanation
from Holland is that if Xi, Wi, Zi denote three variables defined on a population, then Xi and Wi

are conditionally independent given Zi if

Pr(Wi = w|Xi = x,Zi = z) = Pr(Wi = w|Zi = z) (4)

So, in Granger’s time-series setting, the value of Wi is determined at some point s, and the values
of Xi and Zi, are determined at or prior to some other point r<s. It will be said that Xi is not a
Granger cause of Wi (relative to the information of Zi) if Xi and Wi are conditionally independent
given Zi. So Holland continues his explanation, saying that Xi is a Granger cause of Wi if different
values of Xi lead to a predictive distributions of Wi given both Xi and the information in Zi, that
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is, if Xi helps predict Wi even when Zi is taken into consideration. Therefore, Granger’s Causality
helps you to know which variable precedes the other from a statistical point of view, however, this
way of observing causality is not exempt from the problem of reverse causality, or from an econom-
ically spurious relationship, so there is not a pure or perfect method of causality.

In conclusion, Causal Inference is not a simple topic, and in many cases it has philosophical ex-
tensions for what is understood as a cause or an effect. However, for the study of social sciences
such as economics, sociology, psychology or others, in order to find causal effects, it is necessary
to be able to overcome the “Fundamental problem of causal inference” through one of the several
ways that have been developed over the years, and have a theoretical framework on how variables
interact and what mechanisms there are between them. In this way statistics only confirms and
quantifies what theoretically should be causal.

3.2 When and Why OLS is Causal?
Following the guidance of Holland (1986), there are certain assumptions that a process must meet
to bypass the fundamental problem of causality and therefore, that process estimates or treatments
effects would be causal. But how does it works with OLS? To answer this question, we must go back
to the equation (1), which shows us the true effect of the treatment. As previously mentioned, this
effect is impossible to find, but if the assumption of independence is fulfilled, that is, that the units
are randomly assigned between treatment and control, we will arrive at the equation (2). Then,
the treatment effect can be found if the assumption of constant effect is used on the equation (2),
that is, that the effect of the treatment is the same for each of the sample units:

Treatment = E[Yi|Ti = 1]− E[Yi|Ti = 0] (5)

Which can be rewritten as:

E[Yi|Ti = 1] = Treatment+ E[Yi|Ti = 0] (6)

Finally, this could be written in a linear equation form:

Yi = α+ β ∗ Treatmenti + ei (7)

Where Yi is the outcome value of unit i, α is the constant, Treatmenti is a dummy variable that
takes value 1 if the unit was treated or not, β is the treatment effect and ei is the estimation error
that is distributed ei ∼ (0, σ2). Now, the way to estimate this effect, is usually by minimizing a
loss function min

∑
i L(ei), which, for OLS is the sum of squared errors:

min
∑
i

L(ei) = min
∑
i

(ei)
2 = min

∑
i

(Yi − Ŷ )2 = min
∑
i

(Yi − g(xi, β))
2

Where, g(xi, β) is any function, which represents the estimated value of Yi. This estimated value
of Yi, under OLS is linear, therefore:

min
∑
i

(Yi − g(xi, β))
2 = min

∑
i

(Yi − E[Y |X])2 = min
∑
i

(Yi −X ′β̂)2
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That after the minimization and expressing the above in a matrix way2:

β̂ = (X ′X)−1X ′Y = (X ′X)−1X ′Xβ + (X ′X)−1X ′e (8)

This brings us again the independence assumption, where in the case of OLS, it must be fulfilled
that the independent variables (X) are not correlated with the error e (E[e|X] = 0), that is, both
vectors are orthogonal (X ⊥ e). Applied forms to see this, is that there are no relevant variables
omitted, that the treatment is really exogenous to the assignment of the group of treatment and
control, among others. Therefore, if the previous assumption is fulfilled we have that the estimator
fulfills with:

β̂ = β (9)
As can be seen in equation (9), when E[e|X] = 0, the term on the right of equation (8) becomes 0
for a sample with infinite size, and by simple algebra the term on the left becomes the real value of
β, thus the OLS estimator is unbiased. In addition to these results, if the OLS estimator complies to
have at least heteroscedastic errors conditioned in the regressors, the model is well specified and the
vector of regressors xi is possibly stochastic with second finite moment (Mxx = limi→infN

−1X ′X
exist), then the estimator will asymptotically converge to the actual value of the treatment, which,
if the theory supports it, is the causal population effect of the treatment.

4 Causality in Machine Learning
So far we have described what causality is, how to identify if a process is causal and why one of
the most used methodologies of econometric (OLS) is causal - under certain assumptions-. Now
we must begin to analyze the Machine Learning algorithms and their relation to causality. For the
purposes of this document, the Honest Causal Tree algorithm has been chosen, which is part of the
Decision and Regression Tree algorithms family. In the following subsections, we will explain how
decision and regression trees works, what modifications should be made to obtain causal results
and how the proposed methodology is able to combine Honest Causal Trees with DID.

4.1 What is a Decision Tree algorithm? How its work?
A Decision Tree is a non-parametric supervised learning method that assigns probabilities to dif-
ferent outcomes based on a certain context, another way to think of the Decision Trees is like a
decision-making device that is usually used for classification and regression. (Magerman (1995)).
These algorithms, by learning simple decision rules inferred from the characteristics of the data,
create a model that predicts the value of an objective variable. As we can see in the example of
Figure II the tree has Nodes, Edges, and Leaves. The Nodes test for the value of a certain attribute.
The Edges correspond to the outcome of a test and are connected with the next node or leaf and
the Leaves are the terminal nodes that predict the outcome. Moreover, if we take the first leaf
we can see that each of them presents: the number of observations (N=2); the mean of that leaf
outcome (Ȳ = (0.4 + 0.6)/2 = 0.5); and which observations where chosen for that leaf (as a vector
{(X1, X2), Y }) after they go through the different nodes.

Regardless there is a big family of decision trees algorithms all of them work with the same logic,
dividing the problem into different small subproblems -Divide and conquer algorithms-, this means

2Capital letters refer to the matrix of the vectors of the previous variables.
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that: (1) they select a test for the root and create a branch for each possible outcome of the test;
(2) split the observations into subsets (one for each branch extending for the node); (3) repeat the
process recursively for each branch using only observations inside the branch; (4) stop the recursion
of the branch if all the observations of the branch are for the same class. After the creation of a
tree, the best algorithms start a process called pruning, this mean that the algorithms cut some
branches of the tree in the base of some criterion. Hence, almost all tree algorithms have two im-
portant criterion to be defined, one related to the splitting process (Variance, Gini, Entropy, etc.)
and the other one related to pruning (Mean-Squared Error or other numeric error measures).

Figure II: Decision Tree Example

N =6

N = 4

N = 2

N = 2 ; !"= 0.5
Data: {(0.8, 2), 0.4},{(0.6, 1.5),0.6}

N = 2 ; !"= -0.5
Data: {(0.6,0.8),-0.7},{(0.7,0.5),-0.3}

N = 1 ; !"= 1
Data: {(0.4,1.2),1}

N = 1 ; !"= 0.2 
Data: {(0.1,0.5), 0.2}

X1> 0,5

X2> 1

X2> 0,8

X
1 ≤ 0,5

X2 ≤ 1

X2 ≤ 0,8

Note: Diagram created by the author, only for visual purposes, not real data used. N is the number of observation
in that Leaf or Edge. Ȳ is the mean outcome of the observations in that leaf. “Data” show the observations inside
that leaf and are presented as a vector {(X1, X2), Y }

These trees allow us to: (1) create “rankings” of observations according to the intensity with which
they belong to a class; (2) assign a probability to each observation according to the intensity of
belonging to the class; (3) describe historical relationships between the variables and the classes of
the target variable; (4) classify the new observations following the historical rules; (5) automati-
cally select the variables that most help classify the data into groups; (6) organize the explanatory
variables in order of importance; (7) understand why an observation belongs to a class.
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4.2 Regression Trees and CART
Once understood the general framework of a decision tree, it is time to enter into the Regression
Tree. These trees are a type of decision tree and as it has been already mentioned are adaptive,
that is, they use training data to select the models, which leads to a spurious correlation between
the variables and the results, which only decreases as the data increases. So, taking the methodol-
ogy of Athey and Imbens (2016) on “honest” inference the algorithm of CART (Classification and
Regression Tree) will be explained and then transformed from an Adaptive Regression Tree to a
Causal Tree.

For a general setup and following professors Athey and Imbens (2016) explanation, let us define Π
as a partitioning of the feature space χ, with N(Π) the number of element in the partition or tree.
So:

Π = (l1, ..., lN(Π)), with U
N(Π)
j=1 lj = χ (10)

Athey and Imbens (2016) begin by defining Φ as the space of partitions and l(x; Π) the leaf l ∈ Π
such that x ∈ l. Also, they denote S as the space of data samples from a population. So, π : S −→ Φ
is an algorithm that based on a sample F ∈ S constructs a partition. For example, suppose that
χ = {A,B}, so there are two possible partitions Πn = {A,B} or Πs = {{A}, {B}}, where the first
is not split and the second is fully split, thus the space of trees Φ = {{A,B}, {A}, {B}}}. Finally,
given a sample F , the average outcomes in the two subsamples are ȲA and ȲB . A simple algorithm
normally will splits if the difference in average of the outcomes exceeds a threshold m:

Π(F ) =

{
{{A,B}} if ȲA − ȲB ≤ m

{{A}, {B}} if ȲA − ȲB > m

From this simple split of the algorithm it could be seen the potential bias of the adaptive estimation.
Although the unbiased estimator for the difference in the population conditional means E[Yi|Xi =
A] − E[Yi|Xi = B] is ȲA − ȲB , in this case when it is condition on finding ȲA − ȲB > m in a
particular sample, it is expect that ȲA − ȲB is larger than the population analog. Furthermore
given any partition Π, Athey and Imbens (2016) define the conditional mean function (µ(x; Π)) as:

µ(x; Π) ≡ E[Yi|Xi ∈ l(x; Π)] = E[µ(Xi)|Xi ∈ l(x; Π)] (11)

Hence, given a sample F the unbiased estimation for µ(x; Π) is:

µ̂(x;F ; Π) ≡ 1

N(i ∈ F : Xi ∈ l(x; Π))

∑
i∈F :Xi∈l(x;Π)

Yi (12)

Where N is the cardinality of the subsample, so to simplify the algebra N(i ∈ F : Xi ∈ l(x; Π)) =
N(F ). Now, with the conditional mean defined, we can created an expression for the MSE (Mean-
Square-Error) for prediction in the adaptive algorithms:

MSEµ(F
te, F tr,Π) ≡ 1

N(F te)

∑
i∈F te

(Yi − µ̂(Xi;F
tr,Π))2 (13)

Where F te is the test sample and F tr is the training sample. Athey and Imbens (2016) modified
this MSE by subtracting E[Y 2

i ], because this does not depend on the estimator or affect how the
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criterion ranks estimators.

MMSEµ(F
te, F tr,Π) ≡ 1

N(F te)

∑
i∈F te

{(Yi − µ̂(Xi;F
tr,Π))2 − Y 2

i } (14)

Then the expected MMSE (modified Mean Square Error) is:

EMMSEµ(Π) ≡ EF te,F tr [MMSEµ(F
te, F tr,Π)] (15)

Finally, it has to be define the criterion that the algorithms will maximize -or minimize-, following
CART algorithms the target is:

Qc(π) ≡ −EF te,F tr [MMSEµ(F
te, F tr, π(F tr))] (16)

In CART algorithms the training sample is used to construct and estimate the tree. But, How
CART works? Again, Athey and Imbens (2016) have the answer. First, in the tree-creating phase,
the algorithms recursively divide the observations of the training sample. Then, for each leaf the
algorithms evaluates the candidates splits of the leaf using a “Splitting” criterion that is called the
“in-sample goodness-of-fit” criterion (−MMSEµ(F

tr, F tr,Π)). Normally this conventional crite-
rion will lead to overfitting, and to solve this a penalty term in the tree is introduced, so in that case
the criterion doesn’t improve just for additional splitting. Secondly, the training sample will be
repeated separately in two samples to make cross-validation, where F tr,tr sample is used to create
a new tree and used to estimate the conditional mean and the F tr,cv sample is used to evaluate the
estimates.

Third, the tree is pruned using a penalty parameter that represents the cost of a leaf. Through a
process of evaluation of the trees associated with each value of the penalty parameter, the optimal
value of it is chosen. Finally, Athey and Imbens (2016) show that the goodness-of-fit criterion for
the cross-validation can be written as −MMSEµ(F

tr,tr, F tr,cv,Π). It is important to highlight that
smaller leaves lead to noisier estimates of leaf means. To account for this fact, the criterion will lead
to larger average MSE across the cross-validation samples when the estimates are noisier, because
the smaller leaf penalty gives us deeper trees and thus smaller leaves, that as we said before lead
to noisier estimates.

4.3 Honest Approach
The Honest target approach created by Athey and Imbens (2016) differs from the conventional
CART in two main ways. Firstly, use two different samples to be able to separate between the
construction of the partition and estimation of the effects within leaves. (Training sample F tr and
Test sample F te) for the job. This change modifies the cross-validation and splitting criteria, since
F est is treated as a random variable in the tree creation phase, the results of the estimates using
F est are unbiased. Second, it is focused on estimating conditional average treatment effects instead
of predicting outcomes. We can begin by expanding the EMMSEµ(Π) and using the property
EF [µ̂(x;F,Π] = µ(x; Π):

−EMMSEµ(Π) = −E(Yi,Xi),F est [(Yi − µ(Xi; Π))2 − Y 2
i ]

−EXi,F est [(µ̂(Xi;F
est,Π)− µ(Xi; Π))2]
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− EMMSEµ(Π) = EXi [µ
2(Xi; Π)]− EXi,F est [V (µ̂2(Xi;F

est,Π)] (17)
Then, it is necessary to estimate the −EMMSEµ(Π) from the training sample F tr and with the
sample size of the estimation Nest. First, in order to estimate the second term of the equation (17)
Athey and Imbens (2016) explain that within each leaf of the tree there is an unbiased estimator for
the variance of the estimated mean in that leaf. So, the variance estimator on the training sample
of µ̂2(Xi;F

est,Π), will be:

V̂ (µ̂2(Xi;F
est,Π)) ≡

S2
F tr (l(x; Π))

Nest(l(x; Π))
(18)

Where S2
F tr (l) is the within-leaf variance. Then (17) Athey and Imbens (2016) assume that the leaf

shares are approximately equal in both samples, making possible to weight the variance estimator
by the leaf shares pl:

Ê[V (µ̂2(Xi;F
est,Π))|i ∈ F te] ≡ 1

Nest

∑
l∈Π

S2
F tr (l) (19)

Second, for the estimate of the average of the squared outcome - the first term of equation (17)-
Athey and Imbens used the square of the estimated means in the training sample µ̂2(x;F tr,Π),
minus an estimate of its variance,

Ê[µ2(x; Π)] = µ̂2(x;F tr,Π)−
S2
F tr (l(x; Π))

N tr(l(x; Π))
(20)

Combining equations (17) with (19) and (20) we had the following unbiased estimator ofEMMSEµ(Π):

− ̂EMMSEµ(F
tr, Nest,Π) ≡ 1

N tr

∑
i∈F tr

µ̂2(Xi;F
tr,Π)−

(
1

N tr
+

1

Nest

)∑
l∈Π

S2
F tr (l(x; Π)) (21)

Finally, we can define the honest criterion that the algorithm will maximize as

QH ≡ −EF te,F est,F tr [MMSEµ(F
te, F est, π(F tr))] (22)

The difference between the adaptive and the honest approach is in the terms involving the variance.
Because, honest criterion penalizes small leaf size, as show in (17) Athey and Imbens (2016) for a
given x, S2

F tr (l(x; Π)) is proportional to the MMSE within the associated leaf, thus, the difference
came from how the within-leaf MMSE is weighted.

Nevertheless, the unbiased estimator of ̂EMMSEµ(F
tr, Nest,Π), fails when we used it repeatedly

to evaluate splits using recursive partitioning on the training data F tr. This happens because in
each of the splits the observations with extreme outcome tend to group. The latter provokes that
after the training data is divided, the within-leaf sample variance of observations in that data is on
average lower than in a new independent sample. Hence, the way of fix this problem is using only
outcomes for units from the cross-validation sample F tr,cv:

− ̂EMMSEµ(F
tr,cv, Nest,Π) (23)

Now the estimator for the honest criterion is unbiased for fixed Π, despite it could have higher
variance than MMSEµ(F

tr,cv, F tr,tr,Π) due to a small size of the cross-validation sample.
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4.4 The Honest Approach and Treatment Effects
The already developed algorithm is primarily focused on estimating conditional population means,
so it has to be changed to estimate conditional average treatment effects (normally called as “Causal
Tree”). The estimation of those effects has some problems because of the value of the treatment
effect whose conditional mean we wish to estimate, it is not observed. To be able to fix that problem,
we now observe the vectors [Y obs

i , Xi,Wi], hence for each sample F let Ftreat be the subsample of
treated and Fcontrol be the subsample of control. Also, let p = Ntreat/N be the share of treated
units, this means that the population average outcome and the average causal effects are:

µ(w, x; Π) ≡ E[Yi(w)|Xi ∈ l(x; Π)] (24)
t(x; Π) ≡ E[Yi(1)− Yi(0)|Xi ∈ l(x; Π)] = µ(1, x; Π)− µ(0, x; Π) (25)

The estimated counterparts for both equations are:

µ̂(w, x;F,Π) ≡ 1

N({i ∈ Fw : Xi ∈ l(x; Π)}
∑

i∈Fw:Xi∈l(x;Π)

Y obs
i (26)

t̂(x; Π) ≡ µ̂(1, x;F,Π)− µ̂(0, x;F,Π) (27)
Then, the MMSE for the treatment effects will be:

MMSEt(F
te, F est,Π) ≡ 1

N(F te)

∑
i∈F te

{(ti − t̂(Xi;F
est,Π))2 − t2i } (28)

Now EMMSEt(Π) it can be obtained from the expectation over the estimation and test samples:
EMMSEt(Π) ≡ EF te,F est [MMSEt(F

te, F est,Π)] (29)
But, this Honest approach EMMSE, also have to be modified for treatment effects.

− EMMSEt(Π) = EXi [t
2(Xi; Π)]− EF est,Xi

[V (t̂2(Xi;F
est,Π))] (30)

Finally the components of the expectation can be estimated using only the training sample, creating
a criterion that only depends on Str and Nest.

− ̂EMMSEt(F
tr, Nest,Π) ≡ 1

N tr

∑
i∈F tr

t̂2(Xi;F
tr,Π)−

(
1

N tr
+

1

Nest

)∑
l∈Π

(
S2
F tr

treat
(l)

p
+

S2
F tr

control
(l)

1− p

)
Hence for cross-validation the same expression is used, but now with the cross-validation sample:
− ̂EMMSEt(F

tr,cv, Nest,Π). Professors (17) Athey and Imbens (2016), explain that this expression
is similar to the criteria proposed for the Honest version of CART in the previous section. This
criterion is focused on penalizing a partition that generates greater variance in the within-leaves
estimator and promotes a partition that finds strong heterogeneity in the estimator of the treatment
effects. In relation to the above, Athey and Imbens (2016) emphasize that the difference between
the prediction and the estimation of treatment effects is that in the case of prediction the two terms
tend to choose characteristics that predict the heterogeneity of the results. On the other hand, in
the case of treatment effects, the two terms focus on different types of characteristics. There is
the possibility that the variance of the estimator of the treatment effects is reduced when a split is
incorporated, this occurs regardless of whether the following leaves have the same average treatment
effect. All of the above leads to the results that in cases where it is a split, the results obtained
more homogenous leaves and logically lower variance estimates in the means of the treatment and
control groups.

17



University of Groningen | University of Chile
Faculty of Economics and Business

4.5 Implementation of the DID methodology with Causal Honest Tree
The most important contribution of this document is the ability to implement the DID methodology
enhance with machine learning algorithms. As appointed in the equation (3) what DID does
is to study the differences between treatment and control group before and after the shock and
then subtract them, obtaining the final effect of the treatment controlling for observable and for
temporary variations:

TreatmentDID = (E[Yit+1|T = 1]− E[Yit+1|T = 0])− (E[Yit|T = 1]− E[Yit|T = 0]) (31)

On the other hand, the estimator of the Causal Tree is:

TreatmentCausalTree = µ̂(1, x;F,Π)− µ̂(0, x;F,Π) (32)

So, if we assume that µ̂(1, x;F,Π) − µ̂(0, x;F,Π) is equal to E[Yi|T = 1] − E[Yi|T = 0] we can
combine both equations, creating a Causal-DID-Tree estimator:

C −DID − Test =
(E[Yit+1|T = 1]− E[Yit+1|T = 0])− (E[Yit|T = 1]− E[Yit|T = 0]) =
(µ̂t+1(1, x;F,Π)− µ̂t+1(0, x;F,Π))− (µ̂t(1, x;F,Π)− µ̂t(0, x;F,Π)) =

t̂t+1(x; Π)− t̂t(x; Π)

As we can see in the previous equation, the Causal-DID-Tree estimator is could be defined just like
the difference of two Causal Tree (CT) estimator3:

C −DID − Test = CTt+1 − CTt (33)

The use of the previous estimator allows us to obtain a DID treatment effect estimation for each
observation. However, one of the problems with the trees is that they are sensitive to the samples,
that is, what portion of the data was used for the training samples and which was used to obtain
the treatment effect. To solve this problem, the process will be replicated N times - for our main
case will be 1000 times - until enough observations are reached to obtain the normal distribution
properties of the results. The capacity of obtaining confidence intervals for C-DID-T, is still in
process, but it could be assumed that if the results of each CT is statistically significant, the
subtraction of two significant results we still be significant.

5 Data experimentation
In order to know if the proposed methodology really finds the effect of the treatment and if it has
efficiency gains with respect to OLS, different data generating processes will be simulated which
will receive a treatment shock in a certain period of time and then the results will be extracted and
compare. Therefore, this Section is divided into three: Subsection 5.1 will explain the simulations
that were made and what metrics will be extracted from the results; Subsection 5.2 will show and
discuss the results obtained for each data generating process; finally, Subsection 5.3 will check the
robustness of the results - mainly provided by changes in the original data-.

3It is important to note that this method can be used with any causal machine learning algorithm, since we will
be able to obtain each section of the DID and replicate it an amount N times.
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5.1 Simulation Description
To study the behavior of the algorithm along the wide variety of data that usually exist in real
life, three different situations will be simulated for three different amounts of data (1000, 4000 and
9000 observations). So there will be a total of 9 different databases. The three situations chosen
are thought in a complete linear context, in a non-linear heterogeneous effects and in a case of het-
erogeneous treatment effects that are related to other independent variables. In a way of structure,
all models have four independent variables Xk (with K for 1 to 4) that have a standard normal
distribution (Xk ∼ N(0, 1)). In addition, all models have an error r1 ∼ N(0, 1), both heterogeneous
treatment effects models have a white noise error correlated with the treatment r3 ∼ N(0, 2) and
the treatment (T) is randomly assigned with an uniform function that takes value 0 or 1 with 50%
probability. Finally, there is a constant time effect for (Time) that has a value of 1 for all units
and it interacts with a white noise r2 ∼ N(0, 1). 4

The outcome variable before the treatment effect (Y0) has a difference in level between treatment
and control units. Moreover, for the linear model equation (33) represents its base state (Y L

0 ),
while equation (34) represents the base state for the non-linear and heterogeneous treatment effects
model (Y NL−H

0 ):

Y L
0i ≡ 1 + (1/2) ∗X1i + (1/2) ∗X2i + (1/2) ∗X3i + (1/2) ∗X4i + (1/2) ∗ Ti + r1i (34)

Y NL−H
0i ≡ 1 + (1/2) ∗X2

1i + (1/2) ∗X2i + (1/2) ∗X2
3i +X4i + Ti + r1i (35)

Then the post-treatment outcome variables (Y1) contain the previously mentioned time trend and
the effect of the treatment, that is five time the standard deviation (σ) of the base state, this means:

1.- Linear Model: Y L
1i ≡ Y L

0i + 5 ∗ σY L
oi
∗ Ti + (Timei ∗ r2i + 1)

2.- Non-Linear Model: Y NL
1i ≡ Y NL−H

0i + 5 ∗ σY NL−H
oi

∗ (Ti ∗ r3)2 + (Timei ∗ r2i + 1)

3.- Heterogeneous Treatment Model: Y H
1i ≡ Y NL−H

0i +5∗σY NL−H
oi

∗((1/2)∗X1i ∗Ti+(1/2)∗
r3i ∗ Ti) + (Timei ∗ r2i + 1)

Finally, the treatment effect for the DID methodology in each of the models is as follows:

1.- Treatment in the Linear Model: ZL
i ≡ 5 ∗ σYoi

∗ Ti

2.- Treatment in the Non-Linear Model: ZNL
i ≡ 5 ∗ σY NL−H

oi
∗ (Ti ∗ r3)2

3.- Treatment in the Heterogeneous Treatment Model: ZH
i ≡ 5 ∗ σY NL−H

oi
∗ ((1/2) ∗X1i ∗

Ti + (1/2) ∗ r3i ∗ Ti)

The Table I shows the mean, median, standard deviation, minimum and maximum for the out-
come variables before (Y0i) and after (Y1i) treatment and for the treatment effect variable (Zi). It
can be seen that for all models there is an increase in the standard deviation once the treatment
has occurred. Along with this, it can be observed that the treatment is distributed as mentioned
above, that means that since it is assigned with a probability of 50%, it does not necessarily have
perfectly equal groups between treatment and control, making the means and median vary a little

4The simulation process was made in Stata, for more details refer to appendix section 7.1
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bit depending on which group has a greater number of units. Finally, it is important to say that
for the case of heterogeneous effects the treatment average is near to zero since the effects of the
treatment come from two processes (X1i and r3i) that have this mean.

Table I: Descriptive statistics of the simulations

Mean Median Std.
Desv. Min Max

Linear
Model

1000
Y0 1,2090 1,2606 1,4719 -4,5489 4,9888
Y1 2,3322 2,3811 1,8247 -4,2129 7,4362
Z 0,1122 0,0000 0,1163 0,0000 0,2327

4000
Y0 1,2413 1,2425 1,4749 -3,8552 6,1565
Y1 2,2914 2,3083 1,7763 -4,4516 8,3556
Z 0,0567 0,0000 0,0583 0,0000 0,1166

9000
Y0 1,2554 1,2676 1,4424 -4,3257 7,0051
Y1 2,2916 2,3121 1,7525 -3,6572 9,7705
Z 0,0381 0,0760 0,0380 0,0000 0,0760

Non
Linear

1000
Y0 2,4591 2,2890 1,9095 -4,3268 8,9617
Y1 4,0448 3,8397 2,6494 -4,1496 17,048
Z 0,5747 0,0000 1,3097 0,0000 11,557

4000
Y0 2,5256 2,4541 1,9325 -4,0641 11,502
Y1 3,8173 3,6866 2,3406 -3,7463 13,252
Z 0,2983 0,0000 0,6746 0,0000 8,2629

9000
Y0 2,5353 2,4422 1,9043 -3,9606 1,2800
Y1 3,7408 3,6670 2,2386 -3,7839 14,537
Z 0,2073 0,0000 0,4642 0,0000 5,8973

Heterogeneous
Treatment

1000
Y0 2,4591 2,2890 1,9095 -4,3268 8,9617
Y1 3,4656 3,3941 2,1856 -4,1496 10,778
Z -0,0045 0,0000 0,2359 -1,1061 0,9294

4000
Y0 2,5256 2,4541 1,9325 -4,0641 11,502
Y1 3,5221 3,4373 2,1728 -4,5872 12,827
Z 0,0031 0,0000 0,1197 -0,6846 0,6229

9000
Y0 2,5353 2,4422 1,9043 -3,9606 12,800
Y1 3,5328 3,4733 2,1411 -3,7839 14,537
Z -0,0007 0,0000 0,0806 -0,3898 0,4289

Note: All the results were made by the author with simulated data.

After the explanation about the data generating process and how the distribution of the different
dataset are, now it has to be understood how the results are going to be compared between the
OLS and the C-DID-T. In order to be able to compare the different estimates the Mean quadratic
error (MSE) is going to be used, and its two components, the variance and the squared bias. In the
case of OLS, the extraction of this metrics it is really simple because it is a linear estimation model
and the real value of the treatment is known, so the MSE is just take the variance of the estimator
and added to the quadratic Bias of the estimator:

MSE(Ẑ) = V ariance(Ẑ) +Bias(Ẑ)2 = EẐ [(Ẑ − EẐ [Ẑ])2] + (EẐ [Ẑ]− Z)2 (36)
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Where the left part of the equation (the variance) is already computed by Stata and the right side
(the bias) for any OLS estimation is the square difference between the estimator and the real value.

On the other hand, in the case of the C-DID-T obtaining the variance for the MSE is somewhat
more complex. This is because, when estimating heterogeneous treatment effects for each leaf of the
tree, any global variance for the estimator will be biased. Therefore, one way to solve it is by taking
the 1000 replications that our C-DID-T estimator generates for each observation and obtain the
global variance of the estimator through the variances of each observation. However, this generates
a computational problem given that for a dataset of N observations with 1000 replications, there
would be N variables with 1000 observations to which it must not only calculate the variance but
also the covariance of the system. To address this problem, the Principal Components Analysis
(PCA) will be use and it will simplify the large number of variables to a small group which rep-
resents a percentage X of the total variance. The latter, will eliminate the problem of covariances
since the resulting vectors will be orthogonal by construction, this means that by the Law of Total
Variance our final variance will be just the sum of all the individual variances.

Briefly, the PCA uses orthogonal transformations to change or convert a dataset of correlated
variables into its “principal components”, i.e. a set of linearly uncorrelated variables. In example, if
there is a dataset with N variables and 1000 observations each, the number of principal components
will be the min(N - 1, 1000). The transformation creates a first component that has the largest
part of the variance of the dataset, and then the next components will be orthogonal to the first
and will have another part of the variance. In the case of this document, the number of PCA is
the minimum that has at least the 95% of the variance. It is important to highlight that the PCA
is sensible to the relative scaling of the original variables. In the case of our simulation, the base
variables and the errors are all distributed normal standard so the scaling should not be a problem.

5.2 Simulation Results
Once the variance is obtained with the PCA, and given that the the real value of the treatment is
known, the MSE can be estimated following equation (36). The Table II shows the results of the
methodology followed until this moment, the number of replication of each of the models in the
C-DID-T methodology was 1000. The left part of the table show the different metrics that are used
to compare each model. On the other hand the right panel shows if the value of the C-DID-Tree is
lower than the value of the OLS methodology, also in the case of the P value not only shows if the
value is smaller or not, but also shows if the OLS results were significant.

First, from a general point of view it can be seen that the C-DID-T has worse aggregated results
than the OLS methodology, this means that our C-DID-T have bigger MSE, Bias and Variance.
Nevertheless, the algorithm is capable of finding a treatment in cases where OLS is not able. For
example, if the data is normalized and have a heterogeneous process with correlation with other
variable treatment, this means that the effect of the treatment is different depending your level of
X, OLS will not be able to found a Treatment.

Second, even when it can be seen that as expected OLS Bias and Variance go down when the data
get bigger, for Causal-DID-Tree this is not correct, because with bigger amounts of data its get
smaller bias but larger variance, these strange results occur because of the way that the variance
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is calculated. As mentioned in the last section the variance in our model is calculated through the
variance of the replication for each observation, then these original observations in the dataset are
variables which covariate between each other, so if there are more original observations there will
be more variables and then more variance.

Table II: Results of the simulations
Obs. Variance P value Square

Bias Bias MSE MSE
Winning

Bias
WinningOrdinary Least Squares

Linear
1000 0,0132 0,0197 0,0012 0,0351 0,0144 No No
4000 0,0030 0,0291 0,0000 0,0026 0,0030 No No
9000 0,0013 0,0141 0,0002 0,0129 0,0015 No No

Non
Linear

1000 0,0268 0,0000 2,1396 1,4628 2,1664 No No
4000 0,0056 0,0000 0,5558 0,7455 0,5614 No No
9000 0,0023 0,0000 0,2637 0,5135 0,2660 No No

Heterogeneous
Treatment

1000 0,0214 0,8604 0,0565 0,2377 0,0780 No No
4000 0,0052 0,9011 0,0144 0,1198 0,0196 No No
9000 0,0023 0,8089 0,0067 0,0816 0,0089 No No

Causal - DID - Tree Variance
Winning

P value
Winning

Linear
1000 0,3889 0,0000 0,4016 0,6337 0,7905 No Yes
4000 0,7809 0,0000 0,3302 0,5746 1,1111 No Yes
9000 0,8700 0,0000 0,2680 0,5177 1,1380 No Yes

Non
Linear

1000 0,3879 0,0000 2,6289 1,6214 3,0169 No No
4000 0,7789 0,0000 1,1579 1,0760 1,9368 No Yes
9000 0,8669 0,0000 0,7657 0,8751 1,6327 No Yes

Heterogeneous
Treatment

1000 0,3889 0,0000 0,6947 0,8335 1,0837 No OLS - NST
4000 0,7809 0,0000 0,6764 0,8225 1,4574 No OLS - NST
9000 0,8660 0,0000 0,5614 0,7493 1,4274 No OLS - NST

Note: All the results were made by the author with simulated data. The left panel shows the results of the different
metrics calculated by the previous methodologies. The right panel shows if the value of the algorithm is lower than
the value of the OLS methodology. The first column (Obs.) is the number of observation of the dataset. The answer
“OLS - NST” means that the OLS treatment parameter for that case was not statistically significant.

A more deep analysis is possible to perform on these results, since our Square Bias is calculated as
the average of the Square Bias of each repetition, it can be obtained the confidence interval and see
if the results found between OLS and C-DID-T are statistically different. The Table III, shows for
each model the confidence interval of the C-DID-T Square Bias and the values of that metric in the
case of OLS and the algorithm. The results demonstrated that the OLS and C-DID-T values are
statistically different with a 99% probability for all models and all sample sizes, confirming what
was found previously.
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Table III: Confident Intervals
Square Bias Confidence Interval

Obs. Inf. 1% Sup. 1% Inf. 10% Sup. 10% C-DID-T Mean OLS Value

Linear
1000 0,3839 0,4193 0,3903 0,4129 0,4016 0,0012
4000 0,3206 0,3397 0,3240 0,3363 0,3302 0,0000
9000 0,2606 0,2755 0,2633 0,2728 0,2680 0,0002

Non
Linear

1000 2,5915 2,6664 2,6050 2,6528 2,6289 2,1396
4000 1,1409 1,1748 1,1471 1,1687 1,1579 0,5558
9000 0,7513 0,7802 0,7565 0,7750 0,7657 0,2637

Heterogeneous
Treatment

1000 0,6686 0,7209 0,6780 0,7114 0,6947 0,0565
4000 0,6607 0,6922 0,6664 0,6865 0,6764 0,0144
9000 0,5483 0,5746 0,5530 0,5698 0,5614 0,0067

Note: All the results were made by the author with simulated data. The table shows the confidence interval of the
C-DID-T Square Bias and the values of that metric in the case of OLS and the algorithm. The first column (Obs.)
is the number of observation of the dataset.

Finally, the Table IV compare the relative efficiency of the C-DID-T with respect to OLS. The
results in the table are calculated as the results of the C-DID-T divided by the results of OLS
minus one. From this table, three main ideas can be concluded. First, as previously mentioned, the
variance is increasing in a explosive way; this is most likely due to the way in which the variance
is calculated. Second, it is observed that the bias of this algorithm is quite close in the Non-Linear
model (11% less efficient) but if the data increase OLS is getting more efficient faster than the
C-DID-T, that is really strange because it is supposed that ML algorithms have big rates of im-
provement with bigger amounts of data. Third, for the case of heterogeneous effect related to other
independent variables the algorithm has quite big deficiency.

Table IV: Comparison Summary
Obs. Variance Square Bias Bias MSE

1000 Repetitions - X ∼ N(0,1) Model

No - Linear
1000 1349% 23% 11% 39%
4000 13823% 108% 44% 245%
9000 36916% 190% 70% 514%

Heterogeneous
Treatment

1000 1715% 1129% 251% 1290%
4000 14858% 4611% 586% 7344%
9000 38189% 8342% 819% 15916%

Note: All the results were made by the author with simulated data. Each of the results were calculate by the
previous methodologies. The first column (Obs.) is the number of observation of the dataset. The numbers of the
table were calculated as the results of the Causal-DID-Tree divided by the results of OLS minus one.

Looking at these first results, it is clear that there is no gain in the case of linear effects, because the
main use of the Causal-DID-Tree algorithms is to find treatment in more complex environment of
data and the fact that it has specific treatment effects for the different groups of subjects inside our
data. The latter, is demonstrated for the case of the Non linear heterogeneous effects where as show
in Table I the treatment goes from 0 to 11 in the case of 1000 observations and the OLS estimator
is 1,2 for all individuals what it is a really big difference from 11, instead the Causal-DID-tree have
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a different value for each of the individuals of the sample. The next subsection will change the
structure of the data and the number of replication, waiting for find situations where the C-DID-T
algorithm improve its results.

5.3 Robustness checks
This section is going to replicate the Non-linear and the heterogeneous effect models but with some
changes. First, we are going to change the distribution of the Xk from N(0,1) to a N(5,1), because
there is the possibility that OLS rejects the effects of the treatment if the mean of the processes
is zero. The second modification is to re-run the dataset with distribution of mean zero and mean
five but instead of 1000 replications in the DID, it will have 3000 replications. The summary of
the results are presented in Table V, the rest of the results are in Tables VII-XII in the Results
Appendix.

Table V: Results Summary

Obs. MSE
Winning

Bias
Winning

Statistically
different

(1) (2) (3) (1) (2) (3) (1) (2)

Non
Linear

1000 No No No No No No Yes Yes
4000 No No No No No No Yes Yes
9000 No No No No No No Yes Yes

Heterogeneous
Treatment

1000 No No No No No No Yes Yes
4000 No No No No No No Yes Yes
9000 No No No No No No Yes Yes

Variance
Winning

P value
Winning

(1) (2) (3) (1) (2) (3) (3) -

Non
Linear

1000 No No No No No No Yes -
4000 No No No No Yes No Yes -
9000 No No No No Yes No Yes -

Heterogeneous
Treatment

1000 No No No No OLS - NST No Yes -
4000 No No No No OLS - NST No Yes -
9000 No No No No OLS - NST No Yes -

Note: All the results were made by the author with simulated data. Each of the results were calculated by the
previous methodologies. For the left panel the table shows if the value of the algorithm is smaller than the value of
OLS. For the right panel the table shows if the results of OLS are different statistically from the ones of the C-DID-T.
The first column (Obs.) is the number of observation of the dataset. Model (1) is with 1000 replication and Xk

distributed N(5,1). Model (2) is with 3000 replication and Xk distributed N(0,1). Model (3) is with 3000 replication
and Xk distributed N(5,1). The answer “OLS - NST” means that the OLS treatment parameter for that case was
not statistically significant.

The results behave in the same way as those in the previous subsection, the algorithm of Causal-
DID-Tree is still less efficient regardless of the form of distribution of the data or the number of
repetitions that are used for the algorithm. In addition, the results show that with a higher number
of repetitions the MSE falls, both on the side of the variance and on the side of the bias. However,
this fall is not strong enough to be more efficient than OLS. Another point to highlight is the fact
that for processes with a mean of zero or with standardized data the heterogeneous treatment in
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OLS is not significant but changing the mean of the distribution changes this fact. Therefore, the
fact that C-DID-T finds significant results for the treatment regardless of the distribution of data
used is maintained. Finally, confidence intervals continue to show that the value of OLS is not only
minor, but it is statistically different from that of C-DID-T.

Table VI: Efficiency comparison of the models
Obs. Variance Square Bias Bias MSE

1000 Repetitions - X ∼ N(5,1) Model

Non
Linear

1000 279% 24% 11% 25%
4000 7164% 69% 30% 78%
9000 25146% 117% 47% 139%

Heterogeneous
Treatment

1000 1481% 139% 55% 146%
4000 14266% 358% 114% 412%
9000 37689% 760% 193% 906%

3000 Repetitions - X ∼ N(0,1) Model

Non
Linear

1000 450% 22% 11% 27%
4000 8984% 107% 44% 196%
9000 30726% 191% 71% 460%

Heterogeneous
Treatment

1000 587% 1114% 248% 969%
4000 9118% 4564% 583% 5778%
9000 31823% 8124% 807% 14138%

3000 Repetitions - X ∼ N(5,1) Model

Non
Linear

1000 44% 25% 12% 25%
4000 4538% 68% 30% 74%
9000 20875% 27% 13% 46%

Heterogeneous
Treatment

1000 497% 141% 55% 143%
4000 8882% 361% 115% 395%
9000 31297% 760% 193% 880%

Note: All the results were made by the author with simulated data. Each of the results were calculated by the pre-
vious methodologies for each of the different types of datasets. The first column (Obs.) is the number of observation
of the dataset. The numbers of the table were calculated as the results of the Causal-DID-Tree divided by the results
of OLS minus one.

In the same manner that as in the previous section, Table VI displays the difference in efficiency
between the estimators for the different groups of dataset. The results maintain the previous
conclusions but with some small changes. First, for the models with distributions of mean different
from zero the C-DID-T is more effective relative to OLS that the case of mean zero. Nevertheless,
the algorithms never get a difference in efficiency lower than 11%. Second, even with the problem
of the explosion in variance, with 3000 replications and with a mean different from zero, the MSE of
the Non-linear model is only a 46% less efficient than the case of OLS. Finally, when it is compared
the results of the dataset of distribution with mean zero and 9000 observations, for the cases of
1000 and 3000 replications there is not much gain from the side of the bias, but from the side of
the variance there is difference of almost 6190% between the first and the second results. Moreover,
the previous conclusion remains when it is analyzed with the mean different from zero.
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Graph I: Behavior of Bias for dataset N(5,1) Obs. 1000
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Note: All the results were made by the author with simulated data. The results were calculated for the datasets
N(5,1) with 1000 observations. The numbers of the graph were calculated as the results of the Bias of the Causal-
DID-Tree divided by the bias of OLS minus one.

Graph II: Behavior of Bias for dataset N(0,1) Obs. 1000

Note: All the results were made by the author with simulated data. The results were calculated for the datasets
N(0,1) with 1000 observations. The numbers of the graph were calculated as the results of the Bias of the Causal-
DID-Tree divided by the bias of OLS minus one.

The final analysis, that we are able to do is to see how the algorithm behaves along the different
number of replications. To do so, the Graph I and II, show the movement of the Bias relative to OLS
from 50 to 5000 replications for the two dataset where the bias was more close to the OLS results
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-N(0,1) and N(5,1) with 1000 replications each- 5. The Graph I shows the number of replications
doesn’t make that the algorithm behave better related to bias -because the trend line is flat-, but
it is possible to observe that the bias converges to its true value when the number of replications
goes up. In the same line, Graph II supports the results of Graph I, showing a big convergence
from the first number of replications (50) until the last one (5000). Also, the trend line of the
Graph II has a negative slope, this means that the bias is getting smaller through the number of
replications. Finally, for the case of N(5,1) and 9000 observations (Graph III), the trend goes up
instead of down in the case of bias, but the conclusion related with convergence remains. There-
fore, we can conclude that with a bigger number of replications the algorithm converges to its real
value, but in relation with the improvement of the results related to OLS the results are inconclusive.

Having in consideration the results and the robustness checks that we did in the last two section,
there is a key question to answer, Why the algorithm is not having better results than the OLS?
First, in consideration of the variance we are not able to really obtain a correct measure of it for the
C-DID-T, so the results of OLS and C-DID-T in the variance and the MSE (because the variance
is part of the MSE) are not comparable. Second, from the bias point of view, we can observe that
the results are different between both methodologies, and one explanation for this is the fact the
each CT give us mean leaf estimator, and the C-DID-T use the leaves estimator from the CT and
subtracts them, creating a big amount of noise that came from the fact the depending the iteration
of the CT the observation could be concentrate in different leaves, provoking that sometimes the
difference between the leaves average of one tree and the other is considerably big. A way to
solve this problem is to restructure our approach so it is able to create leaf estimator instead of
individuals, minimizing the noise and of course the bias.

6 Conclusion
In recent years, the use of machine learning algorithms in the debate of the social sciences and spe-
cially in economics has been taking an increasingly important relevance. In a first stage, these tools
were viewed with distrust or with little use for economists given that they have a high predictive
capacity but a poor capacity to explain the processes that guide the results that are found. Thanks
to the efforts of a series of academics, the use of Machine Learning tools to obtain causal effects
has opened a new door in the incorporation of ML algorithms in economics. As already discussed
in the previous sections, studies that use ML algorithms to obtain causal effects have been related
in three fields of action. The first is the use of ML algorithms to reduce the number of covariates in
the models. The second has been in the line of creating counterfactuals through matching processes
or others methodologies. The third application of ML algorithms has been in the modification of
them to obtain causal effects in cross-sectional data, this means, a causal effect in the classical logic
of Rubin (1974). Therefore, the application of ML algorithms in Panel type data, that is, using
ML algorithms to control for temporary effects and find causal effects is quite scarce and is still in
a development stage.

Based on the above, this document was immersed in the study of causality and how the ML algo-
rithms have managed to be modified to obtain causal effects, proposing the use of the algorithm of
Honest Causal Tree by Athey and Imbens (2016) to estimate causal effects from the Difference in

5Also in the appendix, we present the results for the dataset N(5,1) with 9000 observations.
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Difference methodology. To achieve the latter, we use two Honest Causal Trees to estimate each
area of the DID estimator (pre and post treatment) and then we subtract the results from each
tree, obtaining the causal effect of the treatment for each individual. Then, we repeat the process
N times to eliminate the bias coming from the random selection of the training and estimation
samples. Once the Causal-DID-Tree algorithm was developed, we compared its behavior with the
classic results of OLS, with different types of data generating processes and different extensions of
them (number of observations).

The results related to the algorithm are quite varied. First, the Causal-DID-Tree allows us to find
an effect of the policy for each of the individuals, that is, unlike OLS that we have an average
treatment effect with the C-DID-T we can understand how the treatment behaves to throughout
the different groups of individuals of the population. Second, we see that when we have data dis-
tributions with heterogeneous treatments with zero mean and dependent of other variables of the
model - the existence of collinearity between the treatment and some covariables-, OLS says that
the policy is not statistically significant instead C-DID-T finds a significant result -under some
assumptions-. Third, for cases of non-linear effects, the bias depending on the amount of data can
vary from 11% to 71% more than that of OLS, that is very good for a first attempt. Fourth, the
algorithm improves its results slower than OLS before the increase in data, the reason why this
happens should still be investigated. Moreover, it can be seen that the behavior of the algorithm
with a higher number of repetitions, does not lead to an improvement in its bias with respect to
OLS, but more repetitions make the bias converges to its real value.Therefore, we believe that some
changes in the algorithm must be done, e.g. moving from individual to leaves results could improve
the performance of the algorithm.

The usual measure to compare how good is a methodology is the quadratic mean error (MSE),
which is composed of the squared bias and the variance. Throughout this document, it was not
possible to find a representative measure of the variance for the C-DID-T, since, using the PCA to
obtain the variance, the value of it instead of decreasing with the number of observations it grows
explosively. Therefore, the MSE is not representative or comparable, only the bias is. In addition to
the problem with the variance estimator, the algorithm takes large amounts of time to be executed
with high repetitions and observations, for example, for the case of 9000 observations and 3000
repetitions, it takes about 1 hour to be executed on a external server of 64 cores. Therefore, until
having improvements in the efficiency of the algorithm code, it is quite difficult to see its behavior
before large amounts of data. One way to fix this issue is by using different causal algorithms with
the same methodology (e.g. Causal Tree, Causal Random Forest, among others.) and choosing the
more effective one.

A final issue to comment is the use of different types of data, since throughout this document we
only used three fairly simple models with variables that had normal distributions in most cases.
Therefore, it would be interesting to review other types of treatment, such as Non-Linear hetero-
geneous effects correlated with some independent variable included in the model. The latter is
necessary to be able to see the behavior of the algorithm with more realistic data. In this same
line, we could test the algorithm through the replication of previous studies that use DID and see
how effective it is in understanding public policies. However, it is important to point out that to
apply this algorithm one must have highly balanced panels and therefore, prior to the use of the
algorithm it is necessary to do some Matching process or another methodology that allows to create
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counterfactuals.

The analysis of public policies through average effects have limited their understanding, among
the diversity of individuals within a society. Added to this, the increase in government databases
and the development of Machine Learning algorithms have made possible the beginning of the
understanding of the effects of treatment in a much more heterogeneous way. It is in this line, that
this document sought to continue developing the existing algorithms of ML and creates a way to
use those in conjunction with the DID methodology. As Sir Isaac Newton (1675) expressed, “If I
have seen further it is by standing on the shoulders of the Giants”, so if any scientist, student or
thinker wants to understand the world around him and generate change, he must be aware that it
would not be possible without those who came before him and that any idea or research he does is
just a little grain of sand on the beach of the scientific advance.

7 Results Appendix
Table VII: Results Model N(5,1) - Repetitions 1000

Obs. Variance P value Square
Bias Bias MSE MSE

Winning
Bias

Winning
Ordinary Least Squares

Non
Linear

1000 0,1026 0,0000 31,131 5,5796 31,234 No No
4000 0,0108 0,0000 8,3222 2,8848 8,3330 No No
9000 0,0034 0,0000 3,9198 1,9798 3,9232 No No

Heterogeneous
Treatment

1000 0,0247 0,0000 5,1815 2,2763 5,2061 No No
4000 0,0054 0,0000 1,3806 1,1750 1,3861 No No
9000 0,0023 0,0000 0,5803 0,7618 0,5826 No No

Causal - DID - Tree Variance
Winning

P value
Winning

Non
Linear

1000 0,3889 0,0000 38,632 6,2155 39,021 No No
4000 0,7809 0,0000 14,064 3,7503 14,845 No No
9000 0,8690 0,0000 8,4979 2,9151 9,3669 No No

Heterogeneous
Treatment

1000 0,3899 0,0000 12,403 3,5219 12,793 No No
4000 0,7800 0,0000 6,3218 2,5143 7,1017 No No
9000 0,8690 0,0000 4,9905 2,2339 5,8595 No No

Note: All the results were made by the author with simulated data. The left panel shows the results of the different
metrics calculated by the previous methodologies. The right panel shows if the value of the algorithm is lower than
the value of the OLS methodology. The first column (Obs.) is the number of observation of the dataset. The answer
“OLS - NST” means that the OLS treatment parameter for that case was not statistically significant.
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Table VIII: Confident Intervals Model N(5,1) - Repetitions 1000
Square Bias Confidence Interval

Obs. Inf. 1% Sup. 1% Inf. 10% Sup. 10% C-DID-T Mean OLS Value

Non
Linear

1000 38,137 39,128 38,316 38,949 38,632 31,131
4000 13,906 14,223 13,963 14,166 14,065 8,3222
9000 8,3873 8,6085 8,4272 8,5686 8,4979 3,9198

Heterogeneous
Treatment

1000 12,131 12,677 12,229 12,578 12,404 5,1815
4000 6,1888 6,4548 6,2368 6,4067 6,3218 1,3806
9000 4,8844 5,0967 4,9227 5,0583 4,9905 0,5803

Note: All the results were made by the author with simulated data. The table show the the confidence interval
of the C-DID-T Square Bias and the values of that metric in the case of OLS and the algorithm. The first column
(Obs.) is the number of observation of the dataset.

Table IX: Confident Intervals Model N(0,1) - Repetitions 3000
Square Bias Confidence Interval

Obs. Inf. 1% Sup. 1% Inf. 10% Sup. 10% C-DID-T Mean OLS Value

Non
Linear

1000 2,5932 2,6365 2,6011 2,6287 2,6149 2,1396
4000 1,1412 1,1620 1,1450 1,1583 1,1516 0,5558
9000 0,7605 0,7767 0,7634 0,7737 0,7686 0,2637

Heterogeneous
Treatment

1000 0,6709 0,7011 0,6764 0,6957 0,6860 0,0565
4000 0,6607 0,6785 0,6639 0,6753 0,6696 0,0144
9000 0,5393 0,5547 0,5420 0,5519 0,5470 0,0067

All the results were made by the author with simulated data. The table show the the confidence interval of the
C-DID-T Square Bias and the values of that metric in the case of OLS and the algorithm. The first column (Obs.)
is the number of observation of the dataset.

Table X: Results Model N(0,1) - Repetitions 3000

Variance P value Square
Bias Bias MSE MSE

Winning
Bias

Winning
Ordinary Least Squares

Non
Linear

1000 0,0268 0,0000 2,1396 1,4628 2,1664 No No
4000 0,0056 0,0000 0,5558 0,7455 0,5614 No No
9000 0,0023 0,0000 0,2637 0,5135 0,2660 No No

Heterogeneous
Treatment

1000 0,0214 0,8604 0,0565 0,2377 0,0780 No No
4000 0,0052 0,9011 0,0144 0,1198 0,0196 No No
9000 0,0023 0,8089 0,0067 0,0816 0,0089 No No

Causal - DID - Tree Variance
Winning

P value
Winning

Non
Linear

1000 0,1473 0,0000 2,6149 1,6171 2,7621 No No
4000 0,5082 0,0000 1,1516 1,0731 1,6598 No Yes
9000 0,7220 0,0000 0,7686 0,8767 1,4905 No Yes

Heterogeneous
Treatment

1000 0,1473 0,0000 0,6860 0,8283 0,8333 No OLS - NST
4000 0,4813 0,0000 0,6696 0,8183 1,1509 No OLS - NST
9000 0,7220 0,0000 0,5470 0,7396 1,2689 No OLS - NST

All the results were made by the author with simulated data. The left panel shows the results of the different metrics
calculated by the previous methodologies. The right panel shows if the value of the algorithm is lower than the value
of the OLS methodology. The first column (Obs.) is the number of observation of the dataset. The answer “OLS -
NST” means that the OLS treatment parameter for that case was not statistically significant.
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Table XI: Confident Intervals Model N(5,1) - Repetitions 3000
Square Bias Confidence Interval

Obs. Inf. 1% Sup. 1% Inf. 10% Sup. 10% C-DID-T Mean OLS Value

Non
Linear

1000 38,635 39,202 38,737 39,100 38,765 31,131
4000 13,919 14,097 13,951 14,065 14,008 8,3222
9000 4,9281 5,0475 4,9496 5,0259 4,9878 3,9198

Heterogeneous
Treatment

1000 12,338 12,670 12,398 12,610 12,504 5,1810
4000 6,2915 6,4465 6,3195 6,4185 6,3690 1,3806
9000 4,9281 5,0475 4,9496 5,0259 4,9878 0,5803

All the results were made by the author with simulated data. The table show the the confidence interval of the
C-DID-T Square Bias and the values of that metric in the case of OLS and the algorithm. The first column (Obs.)
is the number of observation of the dataset.

Table XII: Results Model N(5,1) - Repetitions 3000

Variance P value Square
Bias Bias MSE MSE

Winning
Bias

Winning
Ordinary Least Squares

Non
Linear

1000 0,1026 0,0000 31,131 5,5796 31,234 No No
4000 0,0108 0,0000 8,3222 2,8848 8,3330 No No
9000 0,0034 0,0000 3,9198 1,9798 3,9232 No No

Heterogeneous
Treatment

1000 0,0247 0,0000 5,1815 2,2763 5,2061 No No
4000 0,0054 0,0000 1,3806 1,1750 1,3861 No No
9000 0,0023 0,0000 0,5803 0,7618 0,5826 No No

Causal - DID - Tree Variance
Winning

P value
Winning

Non
Linear

1000 0,1473 0,0000 38,764 6,2261 38,911 No No
4000 0,4986 0,0000 14,008 3,7428 14,506 No No
9000 0,7220 0,0000 4,9878 2,2333 5,7098 No No

Heterogeneous
Treatment

1000 0,1473 0,0000 12,503 3,5361 12,651 No No
4000 0,4877 0,0000 6,3690 2,5237 6,8567 No No
9000 0,7220 0,0000 4,9878 2,2333 5,7098 No No

Note: All the results were made by the author with simulated data. The left panel shows the results of the different
metrics calculated by the previous methodologies. The right panel shows if the value of the algorithm is lower than
the value of the OLS methodology. The first column (Obs.) is the number of observation of the dataset. The answer
“OLS - NST” means that the OLS treatment parameter for that case was not statistically significant.
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Graph III: Behavior of Bias for dataset N(5,1) Obs. 9000
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All the results were made by the author with simulated data. The results were calculated for the datasets N(5,1)
with 9000 observations. The first column (Obs.) is the number of observation of the dataset. The numbers of the
graph were calculated as the results of the Bias of the Causal-DID-Tree divided by the bias of OLS minus one.

8 R and Stata Code Appendix
The following appendix was prepared based on the code used during the construction processes of
this document. Probably, a user with more advanced knowledge in R, could have carried out all
the processes under the same umbrella, without using stata.

8.1 Simulation Code
The Stata code that is presented below contains the process by which the different dataset that
were used in the initial results were created. The code is quite simple, a loop that generates three
sizes of dataset for each type of configuration. Comments on what is being done are with “*”.
********

cd "/Volumes/Macintosh HD/Users/Juanjo/Desktop/Universidad/Groningen/Tesis/Simulacion"

*Simulations

*1.- N=1000-4000-9000, lineal model, lineal treatment ,
* white noise effect on time trend
forval x=1(1)3 {
set seed 1
local i=1000*(`x')^2
set obs `i'
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*Treatment and Time
gen treatment = ceil(runiform()*2)
replace treatment=0 if treatment==2
gen time=1

*Independent variables
gen x1 = rnormal(0, 1)
gen x2 = rnormal(0, 1)
gen x3 = rnormal(0, 1)
gen x4 = rnormal(0, 1)
gen r = rnormal(0,1)
gen r2= rnormal(0,1)

*Dependent variable pre and post time

gen y_t0 = 1 + (1/2)*x1 + (1/2)*x2 + (1/2)*x3 + (1/2)*x4 + (1/2)*treatment + r

mean y_t0
matrix b=e(V)
local p= b[1,1]

gen y_t1 = y_t0 + 5*(`p'^(1/2))*treatment + (time*r2 + 1)

gen treat_effect = 5*(`p'^(1/2))*treatment
save DataA`x'

clear all
}
*

*2.- N=1000-4000-9000, no-lineal model, No-lineal-hetero-treatment ,
* white noise effect on time trend
forval x=1(1)3 {
set seed 1
local i=1000*(`x')^2
set obs `i'

*Treatment and Time
gen treatment = ceil(runiform()*2)
replace treatment=0 if treatment==2
gen time=1

*Independent variables
gen x1 = rnormal(0, 1)
gen x2 = rnormal(0, 1)
gen x3 = rnormal(0, 1)
gen x4 = rnormal(0, 1)
gen r = rnormal(0,1)
gen r2= rnormal(0,1)
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gen r3= rnormal(0,2)

*Dependent variable pre and post time

gen y_t0 = 1 + (1/2)*x1^2 + (1/2)*x2 + (1/2)*x3^2 + x4 + treatment + r

mean y_t0
matrix b=e(V)
local p= b[1,1]

gen y_t1 = y_t0 + 5*(`p'^(1/2))*(treatment*r3)^2 + (time*r2 + 1)

gen treat_effect = 5*(`p'^(1/2))*(treatment*r3)^2

save DataB`x'

clear all
}
*

*3.- N=1000-4000-9000, no-lineal model, Lineal-hetero-treatment ,
* white noise effect on time trend
forval x=1(1)3 {
set seed 1
local i=1000*(`x')^2
set obs `i'

*Treatment and Time
gen treatment = ceil(runiform()*2)
replace treatment=0 if treatment==2
gen time=1

*Independent variables
gen x1 = rnormal(0, 1)
gen x2 = rnormal(0, 1)
gen x3 = rnormal(0, 1)
gen x4 = rnormal(0, 1)
gen r = rnormal(0,1)
gen r2= rnormal(0,1)
gen r3= rnormal(0,2)

*Dependent variable pre and post time

gen y_t0 = 1 + (1/2)*x1^2 + (1/2)*x2 + (1/2)*x3^2 + x4 + treatment + r

mean y_t0
matrix b=e(V)
local p= b[1,1]

gen y_t1 = y_t0 + 5*(`p'^(1/2))*((1/2)*x1*treatment + (1/2)*r3*treatment) + (time*r2 + 1)
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gen treat_effect = 5*(`p'^(1/2))*((1/2)*x1*treatment + (1/2)*r3*treatment)

save DataC`x'

clear all
}
*

8.2 Regression Tree Code
The code of the regression tree is based mainly on the R code of Athey and Imbens (2016) along
with some modifications made by the author in order to reach the DID estimator.
#Usefull packages "foreign", "haven", "rpart", "rpart.plot", "causalTree", "iterators" #
# "doParallel" , "Cluster" #
Data <- read_dta("/Users/macbookpro/Dropbox/Simulacion/Data2B1.dta")

## Function creation:
DID = function() {

n = nrow(Data)
trIdx = which(Data$treatment == 1)
conIdx = which(Data$treatment == 0)
train_idx = c(sample(trIdx, length(trIdx) / 2),

sample(conIdx, length(conIdx) / 2))
train_data = Data[train_idx, ]
est_data = Data[-train_idx, ]
Ht <- data.frame(row(est_data[1]))
results <- data.frame(row(est_data[1]))
Htt <- data.frame(row(est_data[1]))
SB <-data.frame(1)
honestTree <- honest.causalTree(y_t0 ~ x1 + x2 + x3 + x4,

data = train_data,
treatment = train_data$treatment ,
est_data = est_data,
est_treatment = est_data$treatment ,
split.Rule = "CT", split.Honest = T,
HonestSampleSize = nrow(est_data),
split.Bucket = T, cv.option = "fit",
cv.Honest = F)

opcp = honestTree$cptable[,1][which.min(honestTree$cptable[,4])]
opTree = prune(honestTree , opcp)
Ht = data.frame(predict(opTree, newdata=est_data, type="vector"))
honestTreet <- honest.causalTree(y_t1 ~ x1 + x2 + x3 + x4,

data = train_data,
treatment = train_data$treatment ,
est_data = est_data,
est_treatment = est_data$treatment ,
split.Rule = "CT", split.Honest = T,
HonestSampleSize = nrow(est_data),
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split.Bucket = T, cv.option = "fit",
cv.Honest = F)

opcp = honestTreet$cptable[,1][which.min(honestTreet$cptable[,4])]
opTree = prune(honestTreet , opcp)
Htt = predict(opTree, newdata=est_data, type="vector")
results = data.frame(Htt - Ht)
SB = data.frame(mean((results - est_data$treat_effect)^2))

return(list(SB,results))
}

## Running the Algorithm
eachTrees = 10
iters = iter(rep(eachTrees , 3000))

cl = makeCluster(3)
registerDoParallel(cl)
result = foreach(ntree=iters, .combine=c, .multicombine=TRUE, .packages="causalTree") %dopar%

DID()
stopCluster(cl)

## Extracting the data

r = seq(3, 6000, by=2)
SB <- data.frame(1)
for (i in r) {

SB[(i-1)/2] = result[[ i ]]
}

trIdx = which(Data$treatment == 1)
conIdx = which(Data$treatment == 0)
train_idx = c(sample(trIdx, length(trIdx) / 2),

sample(conIdx, length(conIdx) / 2))
train_data = Data[train_idx, ]
est_data = Data[-train_idx, ]

results <- data.frame(row(est_data[1]))

for (i in 1:3000) {
results[i] = result[[ (i)*2 ]]

}

write.csv(SB, "/Users/macbookpro/Dropbox/Simulacion/SB4B1.csv")
write.csv(results, "/Users/macbookpro/Dropbox/Simulacion/results4B1.csv")
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8.3 OLS Regression Code
This final section of the code is the one used to obtain the OLS results in Stata. Mainly it panelized
the data that it had been previously created where the Xik is kept constant by individual and only
the Yi change over time. The results are extracted and stored in a matrix.
*****

*Regression Model

*First we create a Panel from the database and then regress
matrix resultsA=J(3,3,0)
matrix resultsB=J(3,3,0)
matrix resultsC=J(3,3,0)

foreach z in A B C{
forval x=1(1)3{

use Data`z'`x'
gen id=_n
expand 2
gen id2=_n
egen aux1=count(id2)
gen time2=0 if id2<=aux1/2
replace time2=1 if time2==.

replace y_t0=y_t1 if time2==1

xtset id time2
gen did=treatment*time2
quietly reg y_t0 x1 x2 x3 x4 time2 treatment did
matrix b=e(b)
matrix c=e(V)
matrix d=r(table)
return list
matrix results`z'[1,`x']=b[1,7]
matrix results`z'[2,`x']=c[7,7]
matrix results`z'[3,`x']=d[4,7]
clear
}
}
*
svmat resultsA
svmat resultsB
svmat resultsC
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