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One of the important aspects pertaining the mining industry is the use of territory. This is especially
important when part of the operations are meant to cross regions outside the boundaries of mines or
processing plants. In Chile and other countries there are many long distance pipelines (carrying water,
ore concentrate or tailings), connecting locations dozens of kilometers apart. In this paper, the focus is
placed on a methodological comparison between two different implementations of the lowest cost route
for this kind of system. One is Ant Colony Optimization (ACO), a metaheuristic approach belonging to the
particle swarm family of algorithms, and the other one is the widely used Dijkstra method. Although
both methods converge to solutions in reasonable time, ACO can yield slightly suboptimal paths; how-
ever, it offers the potential to find good solutions to some problems that might be prohibitive using the
Dijkstra approach in cases where the cost function must be dyamically calculated. The two optimization
approaches are compared in terms of their computational cost and accuracy in a routing problem
including costs for the length and local slopes of the route. In particular, penalizing routes with either
steep slopes in the direction of the trajectory or high cross-slopes yields to optimal routes that depart
from traditional shortest path solutions. The accuracy of using ACO in this kind of setting, compared to

Dijkstra, are discussed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Today, dozens of slurry pipelines longer than 100 km are
running in the world. They mostly serve the mining, energy and
dredging industries (Abulnaga, 2002), and feature a solid and liquid
phase, the latter being the vehicle to transport the former. In Chile,
most of these correspond to concentrate or tailings pipelines, and a
significant part operates near either agricultural or populated areas.
In most countries, including Chile, it is required to submit an
environmental impact assessment to the environmental authority.
However, this is done after the formulation of the project, where
crucial aspects such as the route have been already decided to
maximize operational smoothness, as commented in the context of
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bauxite and copper concentrate transport in Gandhi et al. (2006)
and Betinol and Navarro (2009), respectively. The lack of concur-
rency between project and stakeholder feedback and expectations
precludes, in general, the opportunity to look at an optimal solution
for the long distance pipeline design problem in a broad sense. This
can be phrased equivalently as to look at the shortest possible
pipeline given a set of constraints (Dey, 2002), to cope with a
myriad of restrictions. In particular, there is a number of elements
combining socio-environmental, operational and investment as-
pects that define, in addition to the route, the way the system
should be operated not only for cost minimization, but also to
potentially promote cleaner production practices including the
identification of safer routes and lower carbon footprint opera-
tional points. Integrated frameworks using decision support sys-
tems have been used to analyze this kind of infrastructure
problems.

In particular, the analytic hierarchy process (AHP), developed by
Saaty in the seventies (Bhushan and Rai, 2004, and references
therein) has been extensively used. Here, hierarchy assignment,
prioritization and calculation steps need to be applied. After a set of
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desirable characteristics the outcomes of the project should have,
the AHP methodology is used to assign a weight to both objective
and subjective elements such as length, operability, maintain-
ability, potential of failures and impacts to the communities during
planning, construction and operation. A critical aspect of this
decision-making algorithm is the need to defining a finite set of
possibilities to select from. It is thus required to count on an expert
advise to pre-select a few of them out of a potentially large amount
of possibilities. For instance, following this procedure as a case
study of a pipeline project in India, Dey (2002, 2006) have obtained
optimal routes between 6% and 7% longer than the shortest possible
ones but with total NPV values between 4% and 5% lower than those
corresponding to the shortest route.

The use of decision support systems to identify a finite number
of routing options is a convenient choice in grid-like environments
where the number of possible paths is relatively straightforward to
identify. An example is the computation of lowest cost paths in
urban routing problems of water pipelines (Simpson et al., 1994;
Luettinger and Clark, 2005), where blocks and the existing infra-
structure become hard restrictions to the routing. Differently from
such configurations, cross-country pipelines offer enormous
amounts of possibilities, and thus are best tackled with combina-
torial optimization schemes. In cross-country pipelines, the routing
options are given by the possibilities offered by the topography:
civil works allow for the construction on virtually any possible hilly
condition, bringing a feasibility problem to a cost one. However,
many applications can still be found where the decision is made
based on an expert's assessment of feasible routes, instead of
through combinatorial optimization. This usual approach to pipe-
line routing is shown for example in Fookes et al. (2001) in Algeria,
where land type classification is performed as a first step to later
determine by expert knowledge possible paths for the pipeline,
without an exhaustive determination of the best route. The paper
focusses mostly in the important subject of land characterization
for the purpose of costing and constraining the route. Humber and
Eng (2004) focus on pipeline route selection (field based versus
desk based) through proper data collection, dynamic routing
consideration and the use of information from multiple sources.
They do not clearly state an approach for finding the optimum path
and they rely on a combination of expert knowledge supported by
GIS technologies for handling and utilizing the field data available.

Additionally, routing decisions will also depend on the fluid or
slurry being conveyed in the pipeline. In particular, an important
difference between water and slurry pipelines is the impact of high
amounts of solids —commonly exceeding 28% by volume in min-
eral processing operations (Abulnaga, 2002)—, which causes that
their route is additionally constrained by flow-related features such
as slope- and slurry-dependent energy consumption along with
solids accumulation at bottom sections (Wilson et al., 2006). Also,
operational- and planning-related issues including the implications
of the pipeline route on system restarts after recent shutdowns
(Thle, 2013, 2014) are major issues to consider when a solid phase
with the potential of settling is present. Different routes impact the
selection of critical equipment including the number of pumps, the
characteristics of energy dissipation stations (often required to
keep pressure above the vapor value in the system), the pipeline
diameter, its overall length and the operational sequence. In
particular, higher average slopes and the presence of low points
tend to reduce the maximum allowable shutdown times while the
system is laden with solids.

Equally important is the final routing and the potential impact of
leaks on the environment, as it is a source of conflict between the
pipeline operator, communities and the environmental authorities
(TIhle et al., 2014). Thus, a natural related issue is to solve the
problem of minimizing environmental damage and, at the same

time coping with production goals, instead of posing the ex-post
question regarding the effect of an already designed or existing
pipeline. The solution to the problem of the best route for a slurry
cross-country pipeline is far from being a one-size-fits-all type.
Although in common engineering practice, the route is chosen by
an experienced engineer based on capital and operational cost
considerations (Gandhi et al.,, 2006), similarly as in submarine
pipelines (de Lucena et al., 2014), so far there is not a quantitative
tool able to handle the general problem of optimizing a generalized
definition of capital, operational, environmental and social cost of
pipelines, explicitly including the hundreds or even thousands of
routing possibilities.

Research has been published to conceptualize the routing of
cross-country pipelines discretizing the topography as a grid. In the
oil and gas sector, Shamir (1971) posed a route optimization
problem considering both infrastructure and the energy con-
sumption through a measure of the pressure difference that the
pumping system would need to supply. To this purpose, he pro-
posed a dynamic programming algorithm to obtain the least cost
route in a territory corridor. Here, operational costs have been
interpreted in light of the energy required for pumping. Middleton
and Bielicki (2009) proposed an integrated algorithm featuring a
modified version of the Dijkstra approach (Dijkstra, 1959) for car-
bon capture and storage network planning. In their set of con-
straints they considered sensitive areas as part of the criteria to find
the best pipeline array. More recently, Marcoulaki et al. (2012) have
studied the problem of pipeline route optimization in terms of the
effect of route perturbations on infrastructure, operation and
maintenance costs, from a predefined set of options. The same
group of authors later extended their single-objective-function
framework to a broader space of pipeline configurations to
include the effect of corrosion (Marcoulaki et al., 2014). In both
cases, they use simulated annealing for the solution of the iterative
optimization problem. Applications to oil and gas are similar, but
constraints are linked to slope stability and the associated risk of
failure of the pipe, or physical obstacles to the route, due to other
existing pipelines or some other submarine obstacles. de Lucena
et al. (2014) discusses an application of genetic algorithms to the
selection of submarine pipeline routes for oil and gas, considering
aspects related to the parametrization of possible routes, imple-
mentation of these constraints in the genetic algorithm (see also
Fernandes et al., 2009), and the definition of the objective function
that incorporates these constraints. Constraint-handling tech-
niques has also been the focus of other publications (Mezura-
Montes and Coello, 2011; Takahama et al., 2005). Genetic algo-
rithms and other nature inspired algorithms have also been
developed for these kinds of applications. In particular, Vieira et al.
(2008) develop an optimization based on artificial immune sys-
tems, while de Pina et al. (2011) develop a particle swarm
optimization.

The work of de Lucena et al. (2014) indicates that selection has
been traditionally manually performed. It also defines hard and soft
constraints, that make the solution infeasible in the first case, or
inconvenient in the second. It should be pointed out that in our
case, these criteria can be input either by eliminating areas from the
solution space where ants can move, or by weighting their cost in
the cost function. Interesting techniques are presented to handle
and determine the weight assigned to each constraint.

The present work is within the framework of an ongoing project
devoted to integrating the aforementioned cost dimensions to the
pipeline design problem including route operation and environ-
mental impact. The objective is two-fold. First, to show that when
including the topography as a cost element, the optimal routing
may differ from the shortest one, thus moving away from the
paradigm ‘shorter is better’. Second, to compare the results of the
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present implementation, using an ant colony optimization
approach (also referred to herein as ACO, Dorigo, 1992), with an
exhaustive method, namely Dijkstra, and thence to show its suit-
ability for tackling least cost problems applied to pipeline routing
that exhaustive algorithms might not handle properly in some
situations. In particular, in a broad pipeline routing optimization
framework the Dijkstra approach may become unsuitable. Exam-
ples are when tunnels or bridges may be required and, on the other
hand, when curvature restrictions on the construction need to be
fulfilled. In the first case, the cost function is not a direct result of
the distance, but indicator variables must be added to the decision
rule (namely, building or not a tunnel or bridge). This implies that
the possibilities to be explored grow exponentially, making the
exploration of all solutions unfeasible in practice. On the other
hand, the curvature in long distance pipelines represents a limita-
tion to the constructibility. It is common practice in long distance
cross-country pipeline construction to avoid the use of elbows to
change the direction of the route in 45° or 90° when required, thus
avoiding accelerated wear and enhanced hydraulic energy losses
due to the presence of such singular points. Instead, the pipeline is
slightly bent in the field, creating smooth changes in direction.
From the point of view of the least cost problem implementation,
this implies the need to define a cost function that is dynamically
computed, which depends on the various feasible routing possi-
bilities (Dorigo et al., 2006) to account for a curvature restriction.
This dynamic definition cannot be implemented using Dijkstra but
is, however easy to implement in ACO.

Differently from the Dijkstra algorithm, the ACO approach is not
exhaustive and reaching the global optimum is not always ensured
(Gutjahr, 2000, 2002; Stutzle and Dorigo, 2002). Furthermore, even
when convergence is guaranteed, the speed at which it occurs may
be too slow for practical purposes, hence a potentially suboptimal,
albeit good solution is often accepted in a reasonable timeframe for
practical applications.

By analogy with the construction of motorways, building slurry
pipelines on hilly topographies requires, directly or indirectly, to
decide on the slope distribution along and perpendicular to the
trajectory. While the former impacts the ease of transportability of
the slurry (Wilson et al., 2006), the latter has direct implications on
the constructibility and the cost required to build the pipeline. In
particular, the volume of material required to be removed is an
increasing function of the cross slope. In the present paper, the
effect of the relation between the route and the topography, as a
pre-requisite to the implementation of a more complete framework
for slurry pipeline optimization, is analyzed.

2. Optimization algorithm description

Long distance pipeline routes span distances that may reach
several hundred kilometers (see Jacobs, 1991; Abulnaga, 2002; for
reviews), and relevant changes on the topography, including slope,
curvature, diameter, the presence of an intermediate pumping and/
or energy dissipation station, tunnels, etc., might occur in distances
as small as dozens meters. Therefore, when facing a node-arc
scheme when setting a minimum cost problem, it is not uncom-
mon to require the definition of more of than one thousand nodes
and arcs in two-dimensional routes and perhaps millions of them
in three-dimensional problems when tunnels and bridges are
considered a priori. To date, the most common approach to solve
shortest path problems is Dijkstra or variants such as the A*
algorithm.

The Dijkstra method, which progressively selects the least cost
route by comparing among all the possibilities ensures, by con-
struction, an optimal solution. However, its computational cost on

the order of O(N?2), or O(E + NlogN), with N and E the number of
nodes and edges, respectively (Fredman and Tarjan, 1987), may
easily become prohibitively high in a multi-kilometer routing
problem. Furthermore, during this process, the cost function needs
to be already fixed to allow evaluation and subsequent comparison.
The A" search algorithm is an extension of Dijkstra that optimizes
the search by choosing paths that are estimated to be shorter
through an auxiliary function that provides a bound of the actual
cost (Zeng and Church, 2009). Although the A* algorithm is in many
cases more efficient than Dijkstra, we have decided to consider
Dijkstra as our base case, since both algorithms suffer similar lim-
itations in terms of computational cost and flexibility to consider a
dynamically calculated cost function, while Dijkstra is more widely
known.

Among the most popular metaheuristic frameworks to solve
problems with large combinatorial solution spaces are those based
on genetic algorithms, simulated annealing, ant colony optimiza-
tion, iterated local search, and tabu search. A good taxonomy of
these methods and their description can be found in Trabelsi et al.
(2010). In this section, we describe the exhaustive approach pro-
vided by Dijkstra's algorithm and the alternative metaheuristic of
ant colony optimization, which is suited to solve this problem and
has the potential of handling additional complexities in the cost
function.

2.1. Dijkstra's algorithm

The shortest path problem, as described in Korte and Vygen
(2007), is defined by the minimum distance between two nodes
over a connected graph and a set of edges with conservative and
non-negative weights. Dijkstra provides a way to find the optimal
path between two points in a graph. Algorithm 1 in Appendix A
shows a schematic description of Dijkstra logic and Fig. A.12
shows the meaning of each parameter of Dijkstra in the real
problem.

2.2. Ant colony optimization method

The ACO algorithm (Dorigo, 1992; Dorigo et al., 2006) is inspired
on the ant colony behavior to find food and take it to the nest,
where there is a random component on the trajectory of the ants
looking for food prior to finding it. When successful in finding the
food, the ants deposit a pheromone on the ground, which biases the
path decision of other ants of the colony as a hint to obtain food
from the same source. The evolution of the routes to reach an op-
timum (shortest or safest route) is performed by combining the
effect of adding pheromone when successful ants return to the nest
and wearing of the pheromone as a function of time. As ants use
previously visited paths to the food, the stronger the pheromone
footprint is, the more successful ants are to come back to the nest
with the food. The imposed random walk to increase the proba-
bility of finding food along with the balance between pheromone
decay and enhancement in various routes allows the colony to
change paths until convergence is obtained. Differently from Dijk-
stra, ACO does not look at every possible route, and thus may
converge to a sub-optimal solution. However, for large scale prob-
lems, ACO could be a better option than Dijkstra, considering that it
is not an exhaustive method and does not need to evaluate all the
possible paths.

The method is implemented considering the following steps:

1. Initialization: relevant parameters are set for the subsequent
iterations.
(a) Reading of surface: z;; = f(x;;, yy)-
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(b) Defining the cost function parameters: here, three param-
eters Cg >0, ¢; >0, ¢ >0, are considered to account for the
length of the pipeline, and the costs related to the slope
(parallel to the trajectory of the pipeline) p;, which is
linked to maximum shutdown times, and to the cross slope
P2k which has implications during the construction and
maintenance requirements.

(c) Constructing a graph to compute the cost of moving from a
node to any of the eight adjacent ones in the regular lattice.
For each arc in the graph, a cost is associated.

(d) Defining the size of the ant colony and the number of iter-
ations of the algorithm.

2. Iterations: each iteration represents one time step, where ants
move from their current location to a new one. Initially all ants
leave the nest.

(a) Move from current location one step, that is, to one of the
allowable adjacent nodes of the graph. Higher pheromone
arcs have a higher probability of being used.

i. Ifan ant has already found food, it will go back to the nest,
taking the successful route and leaving pheromones to
notify other ants.

ii. If an ant has not found food yet, a new arch is randomly
chosen with a probability that depends on the phero-
mone footprint. The probability that the ant k takes the
edge (i,j) is given by the following equation:

T‘-X--n@.
UTU;; if (if) is a feasible edge
PTOb;{J- = ZTiWniw (1)
w
0 if (if) is not a feasible edge,

where 7 is the pheromone available at the edge (ij), « is a free
parameter, n; is the inverse of the edge cost and § is a free
parameter. The parameters « and § are adjustable and control the
relative importance between the pheromone variable and the
heuristic information, i.e., the cost function value for each edge.
Additionally, to get a better convergence, free parameter Qg is
introduced. For each iteration, the ants can choose between
following the best possible edge or other (sub-optimal) feasible
edges. This is done through a random number g with uniform
distribution between 0 and 1. This number is generated in every
decision taken for each ant. If q is greater than Qp, then the ant
chooses the best possible edge. If q is lower than Qg, the ant follows
the edge obtained by Equation (1). This allows to move away from
local minima and increase the chances of exploring a larger set of
possible solutions.
(b) Update pheromone footprint:
i. If the ant has already found food and is returning to the
nest, pheromone is added to the arc.

TU(_(l 7p)TU+Agn,t<bad<6Tfj’ (2)

where p is a free parameter related with the evaporation of the
footprint, between 0 and 1, and Agn’t‘ba[k is an aging parameter. The
latter is used to impose the pheromone footprint decay as it ap-
proaches to the nest, marking more intensely the nodes close to the
food. The parameter 675 is the pheromone contribution for the ant k
in the edge ij.
ii. If the ant has not found food, the pheromone is wore out
of the arc by a given amount. For every graph edge (i,j)
the pheromone will be reduced at a rate of ¢ as:

Tij<—(l—¢)'T,‘j+¢'T0, (3)

where 7 is the pheromone of the edge i,j and corresponds to the
minimum value that the pheromone can take and ¢ is a free
parameter related to the wearing of the pheromone footprint
produced by the passage of the ant through the edge ij.

(c) Stopping criteria:

i. If the maximum number of iterations has been reached,
stop and keep the current route as optimum, provided the
food has been found.

ii. If not, continue.

Algorithm 2 in Appendix B shows a schematic description of the
ant colony optimization algorithm. Fig. B.13, in the same appendix,
shows a complementary flowchart.

2.3. Implementation

In the present work, the solution and a visual interface, to
display the colony behavior and the pheromone evolution in time
have been implemented in C code and the open source visualiza-
tion toolkit OpenFrameworks (Perevalov, 2013). This allows
assessing different cost function components and their conse-
quences in the final optimum path.

3. Problem description
3.1. Cost function

A cost function based on parallel and cross-slope components is
considered as in Baeza et al. (2015). A (x;,y;j, Z;j) mapping is used to
allow for potential routes, discretized by the index sets i, and j
(ke{0,...,N —1}). The elevation corresponding to the topography
is mapped as a scalar function of (x;,y;) as z; = f(x;,y;). The
pipeline is allowed to take any possible triad set (x,y,z). The slope
parallel to the trajectory affects the slurry flow both during oper-
ation and also after system shutdown (Ihle, 2014). Fig. 1 shows a
schematic of the comparative effect of a hilly and a flat topography
on the parallel slope. In the hilly case, depicted in Fig. 1a, the ups
and downs of the topography create differences between the par-
ticle and the fluid velocity during the operation, affecting opera-
tional costs (Doron et al., 1997) and, on the other hand, may induce
the formation of solid plugs at low points when the pipeline is shut

Fig. 1. A comparison between parallel slopes: (a) hilly topography and (b) flat
topography. Parallel slopes have significant implications for operation of the pipeline.
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down (Ihle, 2014). In contrast, the flat topography (Fig. 1b) is
neutral from the perspective of the particle buoyancy effect on the
axial direction of the flow and, upon system shutdown, leaves a
particle-free cross section that enables a smooth restarting, trig-
gered by a top-down particle resuspension mechanism. Although it
is beyond the scope of the present work to use a model to account
for the complexities of the particle migration mechanism in a
resuspension model, a cost component proportional to the parallel
slope is considered.

A schematic of the cross-slope component is shown in Fig. 2,
both for the effect of a high slope and nil cross-slope (Fig. 2a and b,
respectively). It is shown that, in the first case, a considerable
amount of material needs to be removed in comparison to the case
of Fig. 2b, with the obvious implications in capital costs and system
constructibility. Other less evident implications are the risk of
failure due to landslides, caused by seismicity (Keefer, 2000) or rain
(Iverson, 2000), and the potential for limited accessibility for
maintenance purposes, depending on the route characteristics.

The aforementioned elements configure a non-trivial problem
for the pipeline route. The optimization problem to be solved is:

Q" =minQ (4)
ij

Q=cC1l, (5)

where the dot represents the inner product operation between two

A B

(a) (b)

Fig. 2. A comparison between cross slopes: (a) high slope and (b) nil slope. Cross slope
has significant implications during construction and maintenance.

vectors and (i,j) are possible sequences of indices of the pipeline
trajectory. The components of the arc vector, [, are ||x, — Xx,_1]],
with k{0, ...,N — 1}. The components of the cost function vector,
C, are given in terms of the various arcs connecting the nodes of a
given path as Cy=Co+Cipyy+CoPag With ke0,... ,N-1.
Dividing the cost function by ¢y >0 the following dimensionless
cost function is obtained:
Ck:1+c'lp1_,k+c2p2_,k kEO,A..,N—‘l, (6)
where the dimensionless cost components c¢; and c, are positive.
The dimensionless components p; ; and p, ; represent the parallel
and the cross-slopes, respectively, for a given path, as described in
Appendix C.

It is noted that, if ¢; and c; are zero, the problem reduces to the
shortest path problem, since the cost to be minimized is just the
total length, whose unit cost is cy.

3.2. Topographies

To test the accuracy and convergence of ACO in this particular
kind of problem, besides the components of the cost function as a
comparing element, the topography plays, in principle, a major role
on the assessment of the present heuristic method. In particular,
while Dijkstra considers every possible path regardless how intri-
cate is the topography, this is not the case when using an algorithm
based on a particle swarm approach, where convergence is rather
given by a particular organization of the population.

In the present work, a Gaussian obstacle (Fig. 3a) and a natural
topography have been considered. The latter has been obtained
from a digital elevation model of a image extracted from a catalog of
NASA images. This area is located in the southeast of San Martin de
Los Andes, Argentina and its name is Corral de Piedra (Fig. 3b).
While the effect of the cost components is fairly simple to antici-
pate in the Gaussian obstacle, it is not so in the natural topography
example, as expected in many real-world applications.

4. Results and discussion
4.1. The relevance of the cost components

The dimensionless cost components ¢; and ¢, may combine in
different ways to signify the relative impact of the cost on the

specific path in terms of the slope parallel and perpendicular to the
trajectory. In particular, the matrix of combinations shown in

(a) Gaussian hill

(b) natural topography

Fig. 3. Topographies considered in the analysis. (a) Gaussian hill, (b) natural topography, obtained from a digital elevation model. A and B are the starting and ending point,

respectively.
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Table 1
Combination matrix for ¢; = ¢j/Co, with j&€{1,2} to be used in both the Gaussian
obstacle an the natural topography.

Case 1 Case 2 Case 3 Case 4
c 0 0 2 2
Cy 0 2 0 1

Table 1, with values of ¢c; and ¢, between 0 and 2, will be analyzed
herein, for both the Gaussian obstacle and the natural topography.

When the parallel and perpendicular slope components are 0,
i.e., ¢ =c; =0 (case 1G), the only relevant driver of the cost
function is the cost of the Euclidean norm of the path or, equiva-
lently, the cost vector Csuch as C;, = 1 for ke {1, ..., N}. The optimal
solution for the best path starting on a nearly horizontal location
and ending on a symmetrical location is given by Fig. 4. This
optimal solution is significantly different to that obtained when the
parallel slope cost is important compared to that of the cross slope.
Fig. 5 shows the optimal solution for c; = 0 and ¢, = 2 (case 2G).
This result is somewhat more intuitive: as there is no incentive for
taking paths with a cross-slope component, the best route is the
shortest possible with no cross-slope component, with the total
cost corresponding to the sum of the effect of the parallel slope and
the overall length. If the start and the end points are symmetric to
the origin, then the solution is a route whose plan projection is a
straight line. In real systems this route may prove unfeasible if the
parallel slopes are too high (e.g. precluding vehicle inspection if too
high).

In contrast with case 2G, shown in Fig. 5, where c¢;/c; =0, in
case 3G (Fig. 6b) c;/cq =0, which will make parallel slopes a
comparatively expensive option. The corresponding outcome is a
route through relatively low altitudes, running through the skirt of

(a) Route value = 0.102 (b) Route Value = 0.116

Fig. 4. Optimal solution, corresponding to ¢; = ¢; = 0 (case 1G). (a) Route obtained
using the Dijkstra algorithm (b) Route obtained using the ACO algorithm.

(a) Route value = 0.113

(b) Route value = 0.116

Fig. 5. Least cost path, corresponding to ¢; = 0 and ¢, = 2 (case 2G). (a) Route ob-
tained using the Dijkstra algorithm (b) Route obtained using the ACO algorithm.

(a) Route value = 0.158 (b) Route value = 0.158

Fig. 6. Least cost path, corresponding to ¢c; =2 and ¢, = 0 (case 3G). (a) Route ob-
tained using the Dijkstra algorithm (b) Route obtained using the ACO algorithm.

the hill.

A less obvious optimal route corresponds to non-trivial combi-
nations of the cost dimensions, as in case 4G. Here, there is a
competition between the cost components given by ¢; = 2 and
¢ = 1. Differently from case 2G (¢; =0 and c, = 2), there is a
positive cost for routing in the direction of the slope. However, the
cost due to cross-slopes along the route somewhat pushes the
routes away from the summit, leading to the use of the skirt of the
hill instead of the stronger parallel-slope section. Fig. 7 clearly
shows that this increase in the cross-slope component makes more
attractive a longer option compared to case 3G (c; = 2 and ¢; = 0).

The examples shown above show that accounting for additional
cost components leads to switching the problem from a classic
shortest path problem to a minimum cost one. The resulting costs
will change depending on the unit costs assigned to the parallel and
cross slopes, as shown in Table 2.

In slurry pipelines, the dimensionless cost vector C may be
interpreted in terms of potentially feasible values of the parallel and
cross slope components p; and p,, respectively. In the case of
D2k there are no restrictions to the values it may take, and may
thus exceed the unity if slopes greater than 45° are cut in hills. Thus,
restrictions often come due to higher earthwork costs for

(a) Route value = 0.191 (b) Route value = 0.202

Fig. 7. Least cost path, corresponding to ¢; =2 and ¢, = 1 (case 4G). (a) Route ob-
tained using the Dijkstra algorithm (b) Route obtained using the ACO algorithm.

Table 2
Optimal path costs and associated lengths for the Gaussian obstacle, obtained from
each case (arbitrary units).

Case 1G Case 2G Case 3G Case 4G
ACO costs 0.116 0.116 0.158 0.202
Dijkstra costs 0.102 0.113 0.156 0.191
ACO number of nodes 87 52 86 104
Dijkstra number of nodes 74 50 85 99
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maintenance track construction, associated to higher cross-slopes.
In the parallel slope component a common practice is to limit pq
to about 0.18.

4.2. Natural topography

In this case, the importance of each cost function component is
tested over a natural topography, represented by a graph of
135 x 192 nodes with 407573 edges. In addition, Dijkstra is used to
measure the accuracy of the solutions given by ACO.

The first experiment only uses a Euclidean cost component, that
is, c; = ¢ = 0. The result of this experiment is shown in Fig. 8. In
this case, Dijkstra and ACO found routes that go through the
shortest path connecting A and B, regardless the presence of valleys
and hills.

The second experiment exposes the relevance of the parallel
cost component. The cost function is configured as ¢c; = 2 and ¢; =

(a) Dijkstra

0 for this case. Fig. 9 shows the impact of the parallel cost over the
least cost route. In this case Dijkstra and ACO try to avoid steep
slopes, taking a significant part of the route through a naturally
formed plateau between A and B. The final portion of the path is
almost perpendicular to the plateau section, which is the shortest,
albeit predominantly flat section along the route. This route goes,
however near the skirt of the same hill range, implying the lack of
importance of the cross slope.

The next case shows the impact of the cross slope component of
the cost function, set as ¢; = 0 and ¢, = 2. Fig. 10 shows the best
route founded by Dijkstra and ACO algorithms. Although the choice
of the best route found using ACO and Dijkstra shares with that
shown in Fig. 9 a significant portion on top of the plateau, the
second section is developed differently. In particular, the route
through the skirt of the hill range is avoided and and s-shaped path
on the flat section of the terrain is preferred. This choice implies a
longer route but, overall, the lowest cost.

(b) ACO

Fig. 8. Least cost path over a natural topography, corresponding to ¢; = ¢, = 0. (a) Route obtained using the Dijkstra algorithm (b) Route obtained using the ACO algorithm.

(a) Dijkstra

(b) ACO

Fig. 9. Least cost path over a natural topography, corresponding to ¢; = 2 and ¢, = 0. (a) Route obtained using the Dijkstra algorithm (b) Route obtained using the ACO algorithm.

(a) Dijkstra

(b) ACO

Fig. 10. Least cost path over a natural topography, corresponding to ¢; = 0, c; = 2. (a) Route obtained using the Dijkstra algorithm (b) Route obtained using the ACO algorithm.
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(a) Dijkstra

(b) ACO

Fig. 11. Least cost path over a natural topography, corresponding to ¢c; = 2 and ¢, = 1. (a) Route obtained using the Dijkstra algorithm (b) Route obtained using the ACO algorithm.

Finally, we consider the case when the three components of the
cost function are assumed non-zero, ¢c; = 2 and ¢, = 1, implying
that both the parallel and cross-sectional components of the cost
function are equally important. As in the previous cases, both
Dijkstra and ACO methods found similar routes (Fig. 11a and b,
respectively) with a small difference near the end of the route.
Comparing with the shortest path problem (Fig. 8), the optimal
solution in this case was considerably different, as it took most of
the route on top of the topography plateau.

4.2.1. Comments on the ACO solution accuracy

In general, convergence between ACO and the optimal solution
requires a few thousand iterations of the algorithm. This is equiv-
alent to refer to a few thousand configurations of the ants position
and the pheromone field. In spite of the apparently large time
required for convergence, in the present system, containing on the
order of 25,000 nodes, it was required around a minute to achieve
convergence. It is noted, however, that using the same machine
(Intel Xeon E5, 3.3 GHz CPU frequency, 10 MB, 16 MB RAM and 1 TB
HDD) and solving the same problem in a grid of the same size,
Dijkstra required considerably less computational effort, it is
virtually instantaneous (less than 0.5 s). The point of testing ACO in
this section is not to look for a more efficient way to solve the
present problem, but to test its accuracy in this kind of problem.
Table 3 summarizes the differences between ACO and the (optimal)
Dijkstra solution in the natural topography case.

5. Conclusions

Several factors need to be considered to define a good pipeline
route. Construction, maintenance and operational costs are among
the main issues in the evaluation of this kind of project. In this
work, a cost function has been presented to consider these aspects
for optimization purposes, understanding a broad sense of the
variables to be optimized. It is clear from the present results that
adding such additional elements would not necessarily yield the
shortest path, but is likely to yield a better one, in the sense of an
ad-hoc cost formulation. In the present, simple approach, the
definition of the cost function considers, in addition to the

Table 3
Summary of the convergence using ACO, compared to Dijkstra, for the case of the
natural topography.

Case 1IN Case 2N Case 3N Case 4N
ACO costs 0.43 3.98 5.53 15.63
Dijkstra costs 0.36 3.68 5.12 15.47
ACO number of nodes 159 205 241 241
Dijkstra number of nodes 128 189 210 200

infrastructure, a cost proportional to the route length, penalizing
functions for along-slope and cross-slope routes through the cost
components ¢; and c,. The intent of such a definition is precisely to
expose the implications of operations and constructibility in route
planning, and the need to put together operation and engineering
in a unified approach. The cost function has been tested using the
Dijkstra algorithm, widely used for this kind of problem, which is
able to find the shortest path between two points, and ACO.
Although in the present set of simulations Dijkstra was faster and
more accurate than ACO, it has been proven in the context of the
simulations that ACO yields very reasonable results. The real
advantage of ACO does not actually come with the present appli-
cation, but one step ahead of it, where a dynamic cost function
would be required to consider and when the solution is required in
larger problems. This kind of problem would add a degree of
complexity and computational cost that would deem unfeasible the
use of Dijkstra. Importantly, this will make optimization viable in
large scale, real pipeline routing problems. A mature pipeline
routing system including operation, capital costs, environmental
and communitary aspects, and thus embracing the concept of
cleaner production, would encourage the improvement of a regu-
latory framework for long distance pipeline routing, where the best
practice will be implemented in the form of a set of cost restrictions
(or even hard restrictions when required). Such regulations, to be
imprinted on an optimization routine, will also create debate and
involvement of operators and stakeholders on the definition of a
broader cost function. On the other hand, an open methodology for
pipeline cost optimization will enable replication and improvement
in time. From this point of view, the present research is also devoted
to implementation of a reasonably accurate, highly flexible
computational approach, based on known principles, to put
together designers, operators and communities in front of local
authorities to set routing rules. In particular, both the decisions that
a consultant needs to make to solve for a specific pipeline route and
how to weight a specific cost dimension have in common the need
to define a criterion. An optimization approach like this one offers
the possibility to make it objective and repeatable. This is, perhaps,
its most powerful feature.
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Appendix A. Dijkstra algorithm

10

11

Input: Graph bidirected G with weights ¢ : E(G) — Ry and a vertex s € V(G)
Output: Lengths of shortest path from s to all v € V(G). All I(v) and p(v) for all

v € V(QG) are calculated. Where [(v) is the length of a shortest s — v — path .

If v is not accessible from s, then I(v) = co and the edge p(v) is undefined.

Set I(s) :== 0. Set l(v) := co for all v € V(G)\{s}. Set R :=0;

Find a vertex v € V(G)\R such that [(v) = min [(w);
w EV(G)\R

Set R:=R U {v};
for all w € V(G)\R such that (v,w) € E(G) do
if l(w) > I(v) + ¢((v,w)) then
Set 1(w)) = (1) + (v, w)) and p(w) = v
end
end
if R# V(G) then
go to line 2

end

Algorithm 1: Dijkstra's algorithm. Transcription from Korte and
Vygen (2007). A visual explanation of the algorithm is shown in

Fig. A.12.

PRI

X
PSS
XXX

g: E(G) — %4_

Fig. A.12: Visual explanation of notations in Dijkstra and ACO.

@

Appendix B. Details of ACO algorithm and its implementation

Algorithm 2 shows the ACO algorithm used in the present set of
runs. Fig. B.13 shows the flow chart that summarizes the present
computational implementation.

157



Input: A digraph G, weights ¢ : E(G) — R4, Nest node index and Food node index.
Output: Shortest path from Nest node to Food found by the colony after achieved the
stop criteria.
1 Set pheromone parameters;
2 Set Nest node and Food node;
3 while !stopCriterialsReached do
a for all Ants of the Colony do
5 if /GoBackToTheNest then
6 SelectFeasibleEdges();
7 ChooseNextNode();
8 MoveToTheNextNode();
9 if foodFound then
10 ‘ UpdateBestRoute();
11 end
12 else
13 ‘ MoveBackToTheNest();
14 end
15 UpdatePheromone();
16 end
17 end

Algorithm 2: ACO algorithm.

g initialize update
+++++
ACO best route

yes
for each
update p o find food?
ant
move back
go back to
one node update ¢

the nest?
to the nest

move

select
choose the forward

feasible

next node to the

edges
next node

Fig. B.13: Flow chart of ACO implementation.
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Appendix C. Parallel and cross slope components

To compute the parallel and cross-slope components (p ; and
P2 respectively), two cases (labelled herein as a and b) have to be
considered. The first, labelled herein as case a, corresponds to the
computation of the components when the trajectory is parallel to
the grid while in the second (named to herein as case b) the trajec-
toryis diagonal. Both are depicted in Fig. C.14 and they are defined as:

c—b
Z2 z - (a)
V(e —bo? + (¢~ by)
D1k = f—b, " (C.1)
2 2 .
(e = bx)" + (fy_bY)
On the other hand, the cross-slope, p, x, is expressed as:
d;+a; _fz +Cz
2 . 2 : @)
dx+ax7fx+cx n dy"‘ayffy"'cy
Dok = 2 2 2 2
S (b)
2 2 ’
\/(ex —Cx)" + (ey - Cy)
(C2)

The definitions for a to f are given in Fig. C.14.

(b) Moving diagonally in the grid

Fig. C.14: Slope calculations. The black nodes are used to compute the parallel slope
and the gray nodes are used to compute the perpendicular slope.
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