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Abstract This paper presents a new family of solutions to the singularly perturbed
Allen-Cahn equation α2Δu + u(1 − u2) = 0 in a smooth bounded domain Ω ⊂ R

3, with
Neumann boundary condition and α > 0 a small parameter. These solutions have the
property that as α → 0, their level sets collapse onto a bounded portion of a complete
embedded minimal surface with finite total curvature intersecting ∂Ω orthogonally and
that is non-degenerate respect to ∂Ω. The authors provide explicit examples of surfaces
to which the result applies.
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1 Introduction

1.1 Preliminary discussion

In this paper, we study the singularly perturbed boundary value problem

α2Δu + u(1 − u2) = 0 in Ω,
∂u

∂n
= 0 on ∂Ω, (1.1)

where α > 0 is a small parameter, Ω ⊂ R
N is a smooth bounded domain and n is the inner

unit normal vector to ∂Ω.
Solutions to (1.1) correspond exactly to the critical points of the Allen-Cahn energy

Jα(u) :=
∫

Ω

α

2
|∇u|2 +

1
4α

(1 − u2)2, u ∈ H1(Ω).

Equation (1.1) arises for instance in the gradient theory of phase transition when modelling
the phase of a material placed in Ω or when studying stationary solutions for bistable reaction
kinetics (see [2]).
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Observe that u = ±1 are global minimizers of Jα, representing stable phases of two different
materials in Ω.

We are interested in solutions u connecting the stable phases ±1. As described in [29],
solutions of this type are expected to have a narrow transtition layer from −1 to +1 with a
nodal set that is asymptotically locally stationary for the perimeter functional. To be more
precise, in [29] the author showed that a family of local minimizers {uα}α of Jα with uniformly
bounded energy must converge in L1(Ω), up to a subsequence, to a function u∗ of the form

u∗ = χΛ − χΩ−Λ,

where χE is the characteristic function of a set E and Λ ⊂ Ω minimizes perimeter. In this case,
as α→ 0

Jα(uα) → Per(Λ)
(∫

R

1
2
|w′|2 +

1
4
(1 − w2)2dt

)
, (1.2)

where w(t) = tanh( t√
2
) is the solution of

w′′ + w(1 − w2) = 0 in R, w(0) = 0, w′ > 0, w(±∞) = ±1. (1.3)

The above assertion means that for any c ∈ (−1, 1), the level sets {uα = c} converge to ∂Λ
as α → 0. This result provided the intuition that ultimately led to important developments
in the theory of Γ-convergence and put into light a deep connection between the Allen-Cahn
equation and the theory of minimal surfaces. We refer reader to [4–5, 23, 31, 33] for related
results and stronger notions of convergence.

The connection between the Allen-Cahn equation and the theory of minimal surfaces has
been explored in order to produce nontrivial solutions of equation (1.1), but the general under-
standing of solutions to this equation is far from being complete. In this regard, it is natural
to ask for existence and asymptotic behavior of solutions to (1.1) in general smooth domains.
For the case of minimizers, we refer the reader to [3, 18, 31, 35] and references therein. We
also refer the reader to [6, 28], where it is established that the only local minimizers in convex
domains are the constants ±1.

The authors in [25], used a measure theoretical approach and the aforementioned intuition
in dimension N = 2, to construct local minimizers uα to (1.1) with interfaces collapsing onto a
fixed minimizing segment Γ0 inside Ω that cuts ∂Ω perpendicularly.

In [26], the author considers a situation similar to that one described in [25], but where Γ0 is
a non-degenerate segment, instead of a stable one. Non-degeneracy of Γ0 respect to Ω is stated
as

K0 +K1 − |Γ0|K0K1 �= 0,

where K0,K1 are the curvatures of ∂Ω at the points where Γ0 cuts ∂Ω orthogonally and |Γ0|
corresponds to the length of the segment.

This geometric condition is equivalent to the fact that the eigenvalue problem

h′′ = λh in (0, l), K0h(0) + h′(0) = 0, K1h(l) − h′(l) = 0, l = |Γ0|

does not have λ = 0 as an eigenvalue. The author also provides information about the Morse
index of these solutions, which is either one or two, depending on the sign of K0 and K1.

The previous construction was generalized in [9] under the same geometrical setting des-
cribed in [26]. Solutions in [9] have multiple interfaces that in the limit collapse onto the
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segment Γ0. Also, at main order, the transition layers interact exponentially respect to their
mutual distances giving rise to the Toda system of ODEs.

In dimension N = 3, Sakamoto [34] constructed solutions to (1.1) having a narrow transition
through a planar disk orthogonal to the boundary of the domain and being non-degenerate in
a suitable sense. The author also provides a characterization for this non-degeneracy in terms
of the spectrum of the Dirichlet to Neumann map of the planar disk. As for higher dimensions
in the setting of manifolds, Pacard and Ritoré [30] constructed solutions having one transition
along a codimension one non-degenerate minimal submanifold.

In the spirit of the results mentioned above, we also want to refer the reader to [11–14]
dealing with similar results for the inhomogeneous Allen-Cahn equation and [19, 36–37] for
semilinear elliptic problems, where resonance phenomena are present.

The underlying geometric problem when constructing solutions to (1.1) with narrow inter-
faces is the existence of minimal surfaces inside the domain Ω intersecting the boundary ∂Ω
orthogonally. This problem, in a general three dimensional compact Riemannian manifold, has
been completely settled in a recent paper by Li [27]. For earlier results in this direction, we
refer to [15–16]. One instance is the critical catenoid in a ball whose uniqueness was established
by Fraser and Schoen [17].

1.2 Main result

Our goal in this paper is to generalize the results in [26, 34] by taking N = 3 and a more
general class of minimal surfaces for limiting nodal set.

Let M be a complete embedded minimal surface of finite total curvature in R
3. For over

a century, there were known only two examples of such surfaces, namely the plane and the
catenoid. In [7–8], Costa gave the first nontrivial example of such a surface with genus one,
being properly embedded and having two catenoidal connected components outside a large ball
sharing an axis of symmetry and another planar component perpendicular to this axis. Later
this construction was generalized in [21–22] to surfaces having the same look as the Costa’s
surface far away but with arbitrary genus. We refer the interested reader to [24, 32] and
references therein, for related results and further generalizations.

For y = (y1, y2, y3) ∈ R
3, let us denote

y′ = (y1, y2), r = r(y) :=
√
y2
1 + y2

2 .

It is known that for some large but fixed R0 > 0, outside the cylinder {y ∈ R
3 : r(y) > R0},

M decomposes into finite connected components, say M1, · · · ,Mm, which from now on we will
refer to as the ends of M .

For every k = 1, · · · ,m, there exists a smooth function Fk = Fk(y′) with

Mk = {(y′, y3) ∈ R
3 : r(y′, y3) > R0, y3 = Fk(y′)},

and there exist constants ak, bk, bik satisfying

a1 ≤ a2 ≤ · · · ≤ ak,

m∑
k=1

ak = 0,

such that

Fk(y′) = ak log(r) + bk + bik
yi

r2
+ O(r−3), as r → ∞, (1.4)
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and relation (1.4) can be differentiated.
It is also known that M is orientable and R

3 −M has exactly two connected components
namely S+ and S− (see [20]). Let S+ be the connected component of R

3 −M containing the
axis x3 which corresponds to the axis of symmetry of the ends M1, · · · ,Mk.

Let ν : M → S2 be the unit normal vector to M pointing towards S+ and consider Fermi
coordinates near M

x = y + zν(y) for y ∈M, |z| < η + δ log(2 + r(y)),

where η, δ > 0 are small but fixed. Observe that z corresponds to the signed distance to M ,
i.e.,

|z| = dist(x,M) for x = y + zν(y)

for every y ∈M and z small.
Next, consider a smooth bounded domain Ω, such that
(i) Ω contains a portion of the surface M , denoted by M, i.e., M := Ω ∩M is non-empty.
(ii) Ω−M has two connected components which, abusing the notation, we denote by S+, S−

with the same convention as above.
(iii) For every k = 1, · · · ,m, Ck := Mk ∩ ∂Ω is a smooth simple closed curve and

∂Ω ∩M =
m⋃

k=1

Ck.

Observe that ∂Ω ∩M consists of m non-intersecting closed curves.
Following [9, 25, 26], in order to produce solutions to (1.1), M must be critical and non-

degenerate in a suitable sense respect to ∂Ω. To make this concepts precise, let us introduce
ΔM and |AM| the Laplace-Beltrami operator and the norm of the second fundamental form
of M, respectively. The fact that M is a minimal surface is equivalent to saying that its mean
curvature HM = 0. This implies that |AM|2 = −2KM, where KM is the Gaussian curvature
of M.

Recall that n is the inner unit normal vector to ∂Ω and consider the eigenvalue problem

ΔMh+ |AM|2h = λh in M,
∂h

∂τ
+ I(y)h = 0 on ∂M, (1.5)

where τ represents the inward unit normal direction to ∂M respect to M and I(y) is given by

I(y) :=
〈∂n
∂ν

(y); ν(y)
〉

for y ∈ ∂M.

Our crucial assumptions on M are the following:
(I) M cuts orthogonally ∂Ω along the curve Ck for every k = 1, · · · ,m.
(II) λ = 0 is not an eigenvalue for the problem (1.5) in H1(M).
As stated in [19], assumption (I) implies that τ and n must coincide along every curve Ck

and consequently these curves are geodesics in ∂Ω in the direction of ν since their normal vectors
in ∂Ω are parallel to n. Therefore, the quantity I(y) corresponds to the geodesic curvature of
∂Ω in the direction ν(y) for y ∈ Ck.

Our main result is the following.

Theorem 1.1 Assume conditions (i)–(iii) and (I)–(II). Then for every α > 0 small enough,
there exists a solution uα to (1.1), such that for every x ∈ {dist(·,M) < η} ∩ Ω,

uα(x) = w
(z − h(y)

α

)
+ OH1(Ω)(α), x = y + zν(y),
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where w(t) is determined by (1.3) and at main order h solves the boundary value problem

ΔMh+ |AM|2h = OLp(M)(α) in M,
∂h

∂τ
+ I(y)h = OLp(∂M)(α) on ∂M, p > 3. (1.6)

Even more, in the set Ω − {dist(·,M) < η}, as α→ 0,

uα(x) →
{

+1, x ∈ S+,
−1, x ∈ S−. (1.7)

Theorem 1.1 provides us with solutions having limiting nodal with multiple catenoidal ends
intersecting ∂Ω orthogonally. We also remark that in the case that the surface M and the
domain Ω enjoy axial symmetry, our developments can be carry out in this setting and condition
(II) for problem (1.5) is required only in the space in H1

axial(M).
The paper is organized as follows. In Section 2, we present the invertibility theory of the

operator described in (1.6) with Robin boundary conditions and discuss some examples, where
our result applies. In Section 3, we present the geometric framework, which we will use to set
up the proof of Theorem 1.1. In Section 4, we construct an accurate approximation of the
solution to problem (1.1) and Section 5 presents the proof of our main result. The final sections
are devoted to provide detailed proofs of lemmas and propositions used in Section 5.

2 Jacobi Operator with Robin Boundary Conditions and Examples

In this part, we consider the equation

ΔMh+ |AM|2h = f,
∂h

∂τ
+ I(y)h = g on ∂M (2.1)

for given functions f ∈ Lp(M) and g ∈ Lp(∂M).
Let us assume hypothesis (II) from the introduction. In the case g = 0, using the Fourier

decomposition method, it is straight-forward to verify that for any f ∈ L2(M), there exists a
unique solution h ∈W 2,2(M) satisfying

‖h‖W 2,2(M) ≤ C‖f‖L2(M).

By standard regularity theory, still assuming that g = 0, if p > 2 and f ∈ Lp(M), then
problem (2.1) has a unique solution h ∈ W 2,p(M) satisfying

‖h‖∗ := ‖D2h‖Lp(M) + ‖∇h‖L∞(M) + ‖h‖L∞(M) ≤ C‖f‖Lp(M).

From the previous discussion, it follows that for any p > 2, there exists C > 0 such that
given arbitrary functions f ∈ Lp(M), g ∈ Lp(∂M), problem (2.1) has a unique solution h ∈
W 2,p(M) ∩ C1,1− 2

p (M) satisfying

‖h‖∗ ≤ C(‖f‖Lp(M) + ‖g‖Lp(∂M)).

2.1 Comments about conditions (I)–(II)

We comment first on conditions (I)–(II) in a particular case.
Let M be the catenoid in R

3 parameterized by the mapping

Y (y, θ) := (
√

1 + y2 cos θ,
√

1 + y2 sin θ, log(y +
√

1 + y2)), y ∈ R, θ ∈ (0, 2π),



18 O. Agudelo, M. Del Pino and J. C. Wei

which provides coordinates on M in terms of the signed arch-length of the profile curve and the
rotation around the x3-axis, which in our setting corresponds to the axis of symmetry of M .

Since S+ is the connected component of R
3 −M containing the x3-axis, the unit normal

vector to M pointing towards S+ is given by

ν(y, θ) =
1√

1 + y2
(− cos θ,− sin θ, y), y ∈ R, θ ∈ (0, 2π).

Consider the Fermi coordinates

X̃(y, θ, z) = Y (y, θ) + zν(y, θ), (2.2)

which define a change of variables for instance on the neighborhood of M

{Y (y, θ) + zν(y, θ) : |z| < η} (2.3)

for some fixed and small η > 0.
Let Ω be an axially symmetric domain and recall that M = Ω ∩M . Since M has two ends

and ∂Ω∩M is axially symmetric, ∂Ω∩M = C1∪C2, where C1, C2 are parallel, non-intersecting
circles. C1, C2 are parameterized respectively by

Yi(θ) := Y (yi, θ), θ ∈ (0, 2π), i = 1, 2

for some fixed y1 < y2.
To describe ∂Ω close to the circles Yi(θ), we assume the existence of two smooth functions

G1, G2 : (−η, η) → R, Gi(0) := yi, i = 1, 2

and also that the systems of coordinates

Xi(θ, z) := Y (Gi(z), θ) + zν(Gi(z), θ), θ ∈ (0, 2π), |z| < η, i = 1, 2 (2.4)

describe the set

{x ∈ ∂Ω : x = Xi(θ, z), |z| < η, θ ∈ (0, 2π), i = 0, 1} ⊂ ∂Ω.

Normal deformations of M within Ω can be described by

Ỹh(y, θ) := Y (y(y, θ), θ) + h(y, θ) ν(y(y, θ), θ), (2.5)

where ‖h‖C2(M) < η and

y(y, θ) :=
G2(h(y, θ)) −G1(h(y, θ))

y2 − y1

(y − y1) +G1(h(y, θ))

for y1 < y < y2, θ ∈ (0, 2π).
Take any arbitrary h ∈ C2(M) ∩ C1(M) with ‖h‖C2M < η. Denote

Mh := Ỹh([y1, y2] × (0, 2π)),

and let gh be its respective induced metric, with the convention that g0 is the induced metric
of M.
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The area functional of Mh is computed as

A(Mh) :=
∫
Mh

1 dAgh
=

∫ 2π

0

∫ y2

y1

√
det ghdydθ. (2.6)

This area functional is of class C2 and its first variation around M is given by

DA(M)[h] = −
2∑

i=1

∫
Ci

(∂zG2(0) − ∂zG1(0)
y2 − y1

(yi − y1) + ∂zG1(0)
)
h(yi, θ)dsg0

+
∫
M
HM h dAg0 , (2.7)

where we recall that HM is the mean curvature of M.
From (2.7), we conclude that M is critical for the area functional (2.6) if and only if

HM = 0, ∂zG1(0) = ∂zG2(0) = 0. (2.8)

Since M is a minimal surface, automatically HM = 0. Therefore, (2.8) states that condi-
tion (I) is equivalent to the fact that M is critical for the functional (2.6) respect to normal
perturbations of M.

Assuming condition (I), the second variation of the area functional around M is given by
the quadratic form

D2A(M)[h, h] := (−1)i+1

∫
Ci

∂zzGi(0)h2(y)dsg0 +
∫
M

(|∇Mh|2 − |AM|2h)dAg0

and stability properties of M respect to Ω are analyzed through the linear eigenvalue problem

ΔMh+ |AM|2h = λh in M,
∂h

∂τi
+ ∂zzGi(0)h = 0 on ∂M.

A similar analysis, but with more careful computations, can be carry out for a more general
geometric setting, leading to the same interpretation.

2.2 Examples

In the entire catenoid, the linear equation,

ΔMZ + |AM |2Z = 0 in M (2.9)

has two axially symmetric entire solutions, namely

Z1(y) = y · e3, Z2(y) = y · ν(y), y ∈M

corresponding respectively to the invariances of M under translations along the vertical axis
and dilations. We refer the reader to Section 4 in [1, 10] for full details.

In the coordinates y = Y (y, θ) ∈M , we have that

Z1(y) =
y√

1 + y2
, Z2(y) =

y√
1 + y2

log(y +
√

1 + y2) − 1, y ∈ R,

from where we observe that Z1 is odd and Z2 is even.
Observe also that in (0,∞), Z1 is positive and Z1(0) = 0, while Z2 changes sign only at one

point y = y0 > 0 and −1 < Z2(y) < 0 for 0 < y < y0.
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Since

∂yZ1(y) =
1

(1 + y2)
3
2
, ∂yZ2(y) =

y
1 + y2

+
log(y +

√
1 + y2)

(1 + y2)
3
2

, y ∈ R,

we notice that ∂yZi > 0 in (0,∞) for i = 1, 2. Therefore, Z1, Z2 are strictly increasing in (0,∞).
Observe that assumption (I) implies that along the circles Ci, n = τi, where τi is the inward

unit tangent vector of the profile curve of the catenoid M along the circles Ci, i = 1, 2.
Also Ki := (−1)i+1∂zzGi(0) corresponds to the curvature of the integral curve of ∂Ω in the

direction of ν along the circle Ci.
The axially symmetric framework and computations similar to those carried out in [1], yield

that in the coordinates y = Y (y, θ),

ΔM = ∂yy +
y

1 + y2
∂y, |AM|2 =

2
(1 + y2)2

.

Hence, non-degeneracy of M respect to ∂Ω is equivalent to saying that the only solution to

∂yyZ +
y

1 + y2
∂yZ +

2
(1 + y2)2

Z = 0, y1 < y < y2,
∂Z

∂y
(yi) + (−1)iKi Z(yi) = 0 (2.10)

is the trivial one.
Basic theory of ODEs and the developments from Section 4 in [1] imply that λ = 0 is not

an eigenvalue of (2.10) if and only if

det
[
∂yZ1(y1) +K1Z1(y1) ∂yZ2(y1) +K1Z2(y1)
∂yZ1(y2) −K2Z1(y2) ∂yZ2(y2) −K2Z2(y2)

]
�= 0. (2.11)

Observe that condition (2.11) is clearly invariant under dilations.

2.2.1 Example 1

If in addition to the axial symmetry of Ω, we assume that ∂Ω is almost flat along the circles
C1, C2 in the direction of the normal ν, i.e., K1 = K2 = 0, then M is non-degenerate respect
to Ω.

To verify this claim, we notice that in this case, condition (2.11) is equivalent to

∂yZ2(y1)
∂yZ1(y1)

�= ∂yZ2(y2)
∂yZ1(y2)

,

which holds true since the function y �→ ∂yZ2(y)
∂yZ1(y) is strictly increasing and y1 < y2.

2.2.2 Example 2

Assume now that the catenoidal portion M is even respect to the vertical axis, i.e., −y1 =
y2 =: y > 0. Let

Ω :=
{
x = (x1, x2, x3) :

x2
1

a2
+
x2

2

a2
+
x2

3

b2
= 1

}
be an ellipsoid of revolution, where a, b > 0.

Using the coordinates Xi(θ, z) from (2.4) with G = G2(z) = −G1(z) such that G(0) = y,
∂Ω near M is described by the implicit relation

1
a2

(√
1 +G2(z) − z√

1 +G2(z)

)2

+
1
b2

(
log(G(z) +

√
1 +G2(z)) + z

G(z)√
1 +G2(z)

)2

= 1.
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Implicit function theorem yields that

∂zG2(0) = −∂zG1(0) =
− 1

a2 + 1
b2

y√
1+y2

log(y +
√

1 + y2)

y
a2 + 1

b2
1√

1+y2
log(y +

√
1 + y2)

,

so that M is critical respect to the ellipsoid Ω if a, b satisfy

Z2(y) =
1
a2

− 1
b2
, (2.12)

and since min{Z2(y) : y ∈ R} = −1, this imposes a restriction on a and b that

1
a2

>
1
b2

− 1. (2.13)

The monotonicity of Z2(y) allows the following interpretation of the criticality of M: Once
the ellipsoid has been fixed satisfying (2.13), there is exactly one catenoid that cuts the boundary
of the ellipsoid perpendicularly.

Next, assume that R = a = b, so that Ω = BR(0). In this case, M corresponds to the
so-called critical catenoid. This situation was treated in [16], where M is the solution of a
maximization problem for the first Steklov eigenvalue of the Dirichlet to Neumann mapping in
bounded domains.

Using the same notation as above, one can verify that for the critical catenoid M, K1 =
K2 = y

1+y2 = 1
R . From the determinant in (2.11) and relation (2.12), the non-degeneracy of

the critical catenoid respect to the sphere ∂BR(0) is equivalent to the expression

2∂yZ2(y)(∂yZ1(y) +KZ1(y)) �= 0,

which holds true since all the quantities involved are positive.

2.2.3 Example 3

Concerning stability issues let us consider the quadratic form in

Q(h, h) := −
∫

∂M
I(y)h2dsg0 +

∫
M

(|∇h|2 − |AM|2h2)dAg0 , h ∈ H1(M).

We first establish conditions on M to be minimizer of the area functional.

Proposition 2.1 Assume that Z is a smooth positive solution to the linear equation (2.9)
in an open set of the catenoid M , containing the portion M = Ω ∩ M . For every smooth
function ϕ in M it holds that

Q(ϕ,ϕ) = −
∫

∂M

(∂log(Z)
∂τ

+ I(y)
)
ϕ2dsg0 +

∫
M

∣∣∣∇ϕ− ϕ

Z
∇Z

∣∣∣2dAg0 ,

where τ is the inner normal vector to ∂M. Consequently, if

I(y) <
∂ log(Z)
∂(−τ) , y ∈ ∂M,

then M is minimizer for the area functional.
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Proof The proof follows directly testing equation (2.9) against ψ = ϕ2

Z and integrating by
parts.

Assume that K1,K2 < 0, so that Ω is a non-convex domain. If in addition M is an even
catenoidal portion with small area, then M is a local minimizer for the area functional (2.6).
To see this, it suffices to consider M an even piece of catenoid contained in an open set of M
where Z = −Z2 > 0, where we also have that

∂ log(Z)
∂(−τ) > 0.

The claim follows by a direct application of the previous proposition.
On the other hand, if the area of M is large enough, M resembles the entire catenoid M ,

which has Morse index 1. Cutting off an eigenfunction of ΔM + |AM |2 associated to its positive
eigenvalue, in a way that the boundary condition plays no role at infinity, we obtain a direction
in H1(M) where the second variation of surface area is negative and therefore a catenoidal
portion M with large area would be unstable.

The former situation ocurrs also in a general complete embedded minimal surface with finite
total curvature for which the Morse index is also finite.

3 Geometric Computations

Let M be a complete embedded minimal surface with finite total curvature. In this part,
we compute the Euclidean Laplacian in an open neighborhood of M inside Ω and the normal
derivate ∂

∂n in ∂Ω near ∂M in suitable systems of coordinates.
First we compute the Euclidean Laplacian well inside the set Ω close to M. Following the

developments from [10], denote by M0 the part of M inside the cylinder {y : r(y) < R0 + 1}.
To parameterize M0, we take an open set U ⊂ R

2 and a mapping y ∈ U → y := Y0(y) with
associated induced metric given by g := (gij)2×2. The Laplace-Beltrami operator of M inside
the cylinder can be computed as the elliptic operator

ΔM =
1√

det(g)
∂i(

√
det(g)gij ∂j) = a0

ij∂ij + b0i ∂i, (3.1)

where g−1 = (gij)2×2 is the inverse of the metric g, and the coefficients a0
ij , b

0
i are smooth.

Next, consider the set

D := {y = (y1, y2) ∈ R
2 : r(y) > R0}.

For k = 1, · · · ,m, we parameterize Mk, the k-th end of M with the mapping

y ∈ D �→ Yk(y) := yiei + Fk(y)e3.

Notice that the unit normal vector to M at a point y ∈Mk has the expression in coordinates

ν(y) :=
(−1)k√

1 + |∇Fk(y)|2
(∂iFkei − e3)

= (−1)ke3 + ak
yi

r2
+ O(r−2), y = Yk(y),

so that ∂iν = O(r−2) and |AM |2 = O(r−4) as r → ∞.
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In coordinates Yk(y) on Mk, the metric g := (gij)2×2 satistisfies

gij = δij + O(r−2), i, j = 1, 2, as r → ∞,

and this relations can be differentiated.
We compute the Laplace-Beltrami operator on Mk, using again formula (3.1) to find that

ΔM = Δy + O(r−2)∂ij + O(r−3)∂i, on Mk. (3.2)

The surface M is parameterized completely by the m+ 1 local coordinates described above
and we observe that expression (3.1) holds in the entire M , where for k = 1, · · · ,m the coeffi-
cients on Mk satisfy

a0
ij(y) = δij + O(r−2), bi(y) = O(r−3) for k = 1, · · · ,m, as r → ∞.

Fermi coordinates given by the mapping X(y, z) := y + zν(y) provide a change of variables
in the neighborhood of M

N := {x = y + zν(y) : |z| < η}.

In the set N , the formula

ΔX = ∂zz + ΔM − z|AM |2 ∂z + D (3.3)

is valid, where ΔM is computed in (3.1) for N ∩M0 and (3.2) for N ∩Mk and

D = z a1
ij(y, z) ∂ij + z b1i (y, z) ∂i + z3 b13(y, z) ∂z.

On the ends of M , the smooth functions aij(y, z), bi(y, z) satisfy

|a1
ij | + |r∇a1

ij | = O(r−2), |b1i | + |r∇b1i | = O(r−3),

|b13| + |r∇b13| = O(r−8), (3.4)

as r → ∞, uniformly on z in the neighborhood N of M (see [10, Lemma 2.1]).
Let us comment further on expression (3.3). For fixed and small z, the mean curvature of

the normally translated surface

Mz := {y + zν(y) : y ∈M} ⊂ N

is given by

HMz := HM − z|AM |2 + z2(k3
1 + k3

2) + z3(k4
1 + k4

2) + O(z4 r−10),

where k1, k2 are the principal curvatures ofM . Since M is a minimal surface, HM = k1+k2 = 0.
It follows that k3

1 + k3
2 = 0 and so

HMz := −z|AM |2 + z3b13(y, z).

From the asymptotics of ∇Mν, we have that ki = O(r−2), and thus we obtain the expansion
for b13 in (3.4) follows.

In what follows, we consider a large dilation of M, denoted by Mα := α−1M for α > 0
small. Let us denote the dilated ends of M by Mk,α := α−1Mk for k = 1, · · · ,m.
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For a smooth function h defined in M, we consider dilated and translated Fermi coordinates

Xα,h(y, t) := X(ỹ, z), ỹ = αy, z = α(t+ h(αy))

for y ∈ Mα and |t+ h(αy)| < η
α .

Scaling and translating expression (3.3), we obtain

α2ΔX = ΔXα,h
= ∂tt + ΔMα − α2{ΔMh+ |AM|2h}∂t − α2|AM|2t∂t

− 2αa0
ij∂ih ∂jt + α2 a0

ij∂ih∂j h∂tt +Dα,h, (3.5)

where

Dα,h = α(t + h)a1
ij(αy, α(t+ h)) (∂ij − 2α∂ih ∂it − α2∂ijh∂t + α2∂ih ∂jh ∂tt)

+ α2(t+ h)b1i (αy, α(t+ h)) (∂i − α∂ih ∂t)

+ α4(t+ h)3b13(αy, α(t+ h)) ∂t. (3.6)

Expression (3.5) holds true in the region

Nα,h :=
{
y + (t+ h(αy))ν(αy) : y ∈ Mα, |t+ h| < η

α
+

}
, (3.7)

and we will use it to handle equation (1.1) well inside the region α−1(Ω ∩N ).
The previous geometric considerations above do not take into account the effect of ∂Ω∩N .
To handle boundary computations, we use that the surface M is orthogonal to ∂Ω. Let us

fix k = 1, · · · ,m. From assumption (iii) in the introduction, we may assume that the closed
simple curve Ck := Mk ∩ Ω is parameterized by

υ ∈ (0, lk) �→ γk := γk(υ).

The mapping γk has a smooth orthogonal extension to an open neighborhood of Ck in Mk.
Abusing the notation, we write this extension as

(ρ, υ) �→ γk = γk(ρ, υ), ρ ∈ (−δ, δ), υ ∈ (0, lk), (3.8)

which satisfies
γk(0, υ) = γk(υ), ∂υγk(0, υ) = ∂υγk(υ), ∂ργk ⊥ ∂υγk

and γk([0, δ) × (0, lk)) ⊂ Mk ∩ Ω. The coordinates (ρ, υ) can be thought as polar coordinates
in Mk near Ck.

Using formula (3.1) and coordinates γk(ρ, υ) and omitting the depedence on k, the Laplace-
Beltrami operator of M close to Ck, takes the form

ΔM = a0
ij∂ij + b0i ∂j , i, j = ρ, υ, (3.9)

where

a0
ρρ(ρ, υ) = |∂ργk|−2, a0

υυ(ρ, υ) = |∂υγk|−2, a0
ρυ = a0

υρ = 0,

b0ρ(ρ, υ) = |∂ργk|−2|∂υγk|−2〈∂ρυγk; ∂υγk〉 + |∂ργk|−4〈∂ρργk; ∂ργk〉,
b0υ(ρ, υ) = |∂ργk|−2|∂υγk|−2〈∂ρυγk; ∂ργk〉 + |∂ργk|−4〈∂υυγk; ∂υγk〉.

Associated to the coordinate system y = γk(ρ, υ), we consider Fermi coordinates

Xk(ρ, υ, z) := γk(ρ, υ) + zν(ρ, υ)
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in the neighborhood of Mk

Nk := {γk(ρ, υ) + zν(ρ, υ) : |z| < η, |ρ| < δ, υ ∈ (0, lk)}.

To described Ω ∩Nk near Ck, we assume the existence of a smooth function Gk = Gk(υ, z)
with Gk(υ, 0) = 0 and such that

∂Ω ∩ Nk := {γk(0, Gk(υ, z)) + zνk(0, Gk(υ, z)) : υ ∈ (0, lk), |z| < η}.

A translation along the integral lines of Mk associated to the parameterization γk(ρ, υ), is
given by

ρ(s, υ, z) := s+Gk(υ, z), |s| < δ, υ ∈ (0, lk), |z| < η

taking δ > 0 smaller if necessary.
Modified Fermi coordinates

X̃(s, υ, z) := γk(ρ(s, υ, z), υ) + zν(ρ(s, υ, z), υ)

describe also the set

Ω ∩ Nk := {x = X̃(s, υ, z) ∈ Ω : |z| < η, |s| < δ, υ ∈ (0, lk)}.

Observe that
∂zX̃(0, υ, 0) = ν(0, υ) + ∂ργk(0, υ) · ∂zGk(υ, 0)

and
∂υX̃(0, υ, 0) = ∂υγk(0, υ), ∂sX̃(0, υ, 0) = ∂ργk(0, υ),

so that, assumption (I) is equivalent to saying that ∂zX̃(0, υ, 0) and ∂sX̃(0, υ, 0) are orthogonal
vectors, and hence ∂zGk(υ, 0) = 0.

Summarizing, the function Gk(υ, z) satisfies

Gk(υ, 0) = 0, ∂zGk(υ, 0) = 0, υ ∈ (0, lk). (3.10)

From (3.10), the asymptotic expansion in powers of z of X̃(s, υ, z) reads as

X̃(s, υ, z) := γk(s, υ) + zν(s, υ) +
z2

2
q1(s, υ) +

z3

6
q2(s, υ) + O(z4), (3.11)

where q1, q2 ⊥ ν with expressions given by

q1(s, υ) := ∂ργk(s, υ) · ∂zzGk(υ, 0), q2(s, υ) = ∂ργk · ∂(3)
z Gk(υ, 0) + 3∂ρν · ∂zzGk(υ, 0).

Taking derivatives in expression (3.11) and omitting the dependence on k, we compute the
induced metric on Ω ∩ Nk, which takes the form

g̃ =

⎛
⎝ |∂ργ|2 0 0

0 |∂υγ|2| 0
0 0 1

⎞
⎠ + z

⎛
⎝ −2M̃ −2Ñ 〈∂ργ; q1〉

−2Ñ −2R̃ 〈∂υγ; q1〉
〈∂ργ; q1〉 〈∂υγ; q1〉 0

⎞
⎠ + O(z2), (3.12)

where
−M̃ = 〈∂ργ; ∂ρν〉, −R̃ = 〈∂υγ; ∂υν〉, −2Ñ = 〈∂ργ; ∂υν〉 + 〈∂υγ; ∂ρν〉,

where all the entries of the matrices above are evaluated at (s, υ).
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The inverse of the metric g̃, g̃−1 = (g̃ij)3×3, has the asymptotic expression

g̃−1 =

⎛
⎝ |∂ργ|−2 0 0

0 |∂υγ|−2| 0
0 0 1

⎞
⎠

+ z

⎛
⎝ 2|∂ργ|−4M̃ 2|∂ργ|−2|∂υγ|−2Ñ −|∂ργ|−2〈∂ργ; q1〉

2|∂ργ|−2|∂υγ|−2Ñ 2|∂υγ|−4R̃ −|∂υγ|−2〈∂υγ; q1〉
−|∂ργ|−2〈∂ργ; q1〉 −|∂υγ|−2〈∂υγ; q1〉 0

⎞
⎠ + O(z2). (3.13)

Following [19], we denote

l1(υ) = |∂υγ(0, υ)| > 0, l2(υ) = |∂ργ(0, υ)| > 0, I(υ) = l2(υ)2 ∂zzGk(υ, 0),

A(υ) = 〈∂ρργ(0, υ); ∂ργ(0, υ)〉, C(υ) = 〈∂ρυγ(0, υ); ∂υγ(0, υ)〉,
R(υ) = 〈∂υυγ(0, υ); ∂υγ(0, υ)〉, E(υ) = 〈∂ρυγ(0, υ); ∂ργ(0, υ)〉.

Consider again the function h ∈ C2(M), written in the coordinates (3.8) as h = h(ρ, υ).
Taking dilated and translated modified Fermi coordinates

X̃α,h(s, θ, t) = α−1X̃(αs, αθ, α(t + h(αs, αθ)))

for

0 < s <
δ

α
, θ ∈

(
0,
lk
α

)
, |z| < η

α
,

and after a series of lengthy, but necessary computations, we arrive to the expressions

ΔMα =
1

l21(αθ)
∂θθ +

1
l22(αθ)

∂ss − 2αs
A(αθ)
l42(αθ)

∂ss + α
( C(αθ)
l21(αθ)l22(αθ)

− A(αθ)
l42(αθ)

)
∂s

+ α
( E(αθ)
l21(αθ)l

2
2(αθ)

− R(αθ)
l41(αθ)

)
∂θ + O(α2) in α−1Nk ∩Mk,α, (3.14)

and in the coordinates X̃α,h in the set α−1(Ω ∩ Nk),

α2ΔX̃ = ΔX̃α,h
= ∂tt + ΔMα − α2|AM|2 t∂t − α2{ΔMh+ |A2

Mh}∂t +D0 + D̃α,h. (3.15)

The asymptotic expressions for D0, D̃α,h read as follows:

D̃0 = −2α
I(αθ)

l1(αθ)l2(αθ)
(t+ h)(∂st − α∂ρh∂tt) − αl−2

1 (αθ)∂υυh∂θt − αl−2
2 (αθ)∂ρρh∂st

+ α2l−2
1 (αθ)|∂υh|2∂tt + α2l−2

2 (αθ)|∂ρh|2∂tt − 2α3sl−4
2 (αθ)A(αθ)|∂ρh|2∂tt (3.16)

and

D̃α,h = α2ã1(∂θt − α∂υh∂tt) + α2ã2(∂st − α∂ρh∂tt)

+ α2b̃1(∂θ − α∂υh∂t) + α2b̃2(∂s − α∂ρh∂t)

+ α3(t+ h)2b̃3(αs, αθ, α(t + h))∂t + α4R̃α, (3.17)

where the functions ã1, ã2, b̃1, b̃2, b̃3 are smooth with bounded derivatives, and R̃α is a differen-
tial operator having C1 dependence on h and its derivatives.
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Next, we turn our attention to the boundary condition. Since at ∂Ω ∩ Nk, the vectors ∂X̃
∂υ ,

∂X̃
∂z span the tangent space of ∂Ω and

〈∂X̃
∂υ

;n
〉

= 0,
〈∂X̃
∂z

;n
〉

= 0, 〈n;n〉 = 1

along the curve Ck, we can write

n =
√
g̃11

∂X̃

∂s
+

g̃12√
g̃11

∂X̃

∂υ
+

g̃13√
g̃11

∂X̃

∂z
.

It can be check directly from (3.12)–(3.13) that the boundary condition reads as

∂

∂n
=

√
g̃11∂s +

g̃12√
g̃11

∂υ +
g̃13√
g̃11

∂z,

so that, after dilating and translating with the coordinates X̃α,h(s, θ, t), we find that the bound-
ary condition becomes

∂

∂n
= −∂s + αI(αθ)t∂t + α{∂ρh+ I(αθ)h}∂t − [2α(t+ h)m1(αθ) + α2(t+ h)2d̃1(αθ)]∂s

+ [α(t+ h)m2(αθ) + α2d̃2(αθ, α(t + h))]∂θ[α2(t+ h)2I(αθ)m1(αθ)

+ 2α2m1(αθ)∂ρh(t+ h) − α2m2(θ)∂υh(t+ h) + α3B̃α]∂t, (3.18)

where

m1(υ) = |l2(υ)|−2 < 〈∂ρν(0, υ); ∂ργ(0, υ)〉,
m2(υ) = |l1(υ)|−2(〈∂υν(0, υ); ∂ργ(0, υ)〉 + 〈∂ρν(0, υ); ∂υγ(0, υ)〉)

and d̃1(υ), d̃2(υ, z), B̃α = B̃α(θ, t, h,∇Mh) has C1 dependence on its variables.
We remark that in the case that M is the catenoid and Ω is an axially symmetric domain

containing a catenoidal portion, following the scheme in [9, 26], one can parameterize with only
one set of coordinates and the calculations reduce considerably.

4 Approximation of the Solution

The proof of our main result relies on a Lyapunov-Schmidt procedure near an almost solution
of equation (1.1). This section is devoted to find an accurate global approximation to perform
this reduction.

For this, denote f(u) := u(1 − u2) and we consider

w(t) = tanh
( t√

2

)
, s ∈ R,

the solution of the ordinary differential equation (ODE for short)

w′′(s) + w(1 − w2) = 0, s ∈ R, w(0) = 0, w′ > 0, w(±∞) = ±1,

which has the asymptotics

w(t) = 1 − 2 e−
√

2 t + O(e−2
√

2|t|), t > 1,

w(t) = −1 + 2 e
√

2 t + O(e−2
√

2|t|), t < −1,

w′(t) = 2
√

2 e−
√

2 |t| + O(e−2
√

2|t|), |t| > 1.

(4.1)
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Set Ωα := α−1Ω, ∂Ωα = α−1∂Ω and recall that Mα = α−1M. After a rescaling, we are led
to consider the problem

Δu+ f(u) = 0 in Ωα,
∂u

∂nα
= 0 on ∂Ωα, (4.2)

where nα stands for the inward unit normal vector to ∂Ωα.
In what follows for a function U = U(x), we denote

S(U) := ΔU + f(U).

4.1 The inner approximation

Let p > 2 and take h ∈W 2,p(M) satisfying the a priori estimate

‖D2h‖Lp(M) + ‖∇h‖L∞(M) + ‖h‖L∞(M) ≤ Kα, (4.3)

where the constant K is going to be chosen large but independent of α > 0.
Using the coordinates Xα,h in the set Nα,h described in (3.7), we set as first local approxi-

mation
u0(x) = w(t), x = Xα,h(y, θ, t) ∈ α−1(Ω ∩ N ).

When computing the error created by u0 using (3.5)–(3.6), in α−1(Ω ∩ N ), we find that

S(u0) = −α2{ΔMh+ |AM|2h}w′(t) − α2|AM|2tw′(t) + α2∂ih∂jhw
′′(t)

− α3(t+ h)a1
ij(αy, α(t+ h))(∂ijhw

′(t) − ∂ih∂jhw
′′(t))

− α3b1i (αy, α(t + h))∂ihw
′(t) − α4(t+ h)b13(αy, α(t+ h))w′(t), (4.4)

where |AM|, h, ∂ih, ∂ijh are evaluated at αy.
Observe that if we take h = 0, the size and behavior of the error in expression (4.4) is given

by
−α2|AM|2tw′(t) + α4b13(αy, αt)t

3w′(t).

As in [10], due to the presence of the O(α2) term, we need to improve this approximation.
Hence we consider the function ψ1(t) solving the ODE

∂ttψ1(t) + F ′(w(t))ψ1(t) = tw′(t), t ∈ R. (4.5)

Using variations of parameters formula and the fact that∫
R

t(w′(t))2dt = 0,

we obtain that ψ1(t) given by the formula

ψ1(t) = −w(t)
∫ t

0

w′(s)−2

∫ ∞

s

ξw′(ξ)2 dξds,

from where it follows that for any σ ∈ (0,
√

2),

‖eσ|t|∂(j)
t ψ1‖L∞(R) ≤ Cj , j ∈ N.

So, we consider as a second approximation in the region α−1(Ω ∩ N ) the function

u1(x) = w(t) + φ1(y, t), (4.6)
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where in the coordinates Xα,h

φ1(y, t) = α2|AM(αy)|2 ψ1(t).

Computing the inner error of this new approximation, we find that

S(u1) = Δφ1 + f(w(t))φ1 + S(u0) + f(w(t) + φ1) − f(w(t)) − f ′(w(t))φ1

= −α2{ΔMh+ |AM|2h}w′(t) + α2∂ih∂jhw
′′(t)

− α3(t+ h)a1
ij(αy, α(t+ h))(∂ijhw

′(t) − ∂ih∂jhw
′′(t))

− α3b1i (αy, α(t + h))∂ihw
′(t) − α4(t+ h)b13(αy, α(t + h))w′(t)

+ α4ΔM(|AM|2)ψ1(t) − α4{ΔMh+ |AM|2h}|AM|2ψ(t) + α4|AM|4t∂tψ1(t)

− 2α4a0
ij(αy)∂ih∂j(|AM|2)∂tψ1(t) + α4a0

ij(αy)∂ih∂jh|AM|2∂ttψ1(t)N(φ1)

+ α5R1,α(αy, t, h,∇Mh,D2
Mh), (4.7)

where

N(φ1) = f(w(t))φ1 + S(u0) + f(w(t) + φ1) − f(w(t)) − f ′(w(t))φ1 ∼ O(α4e−σ|t|),

and the differential operator R1,α has C1 dependence on all of its variables with

|∇R1,α| + |R1,α| ≤ Ce−σ|t|, for 0 < σ <
√

2.

From the error (4.7), we see that in the open neighborhood of M, α−1(Ω ∩ N )

|S(u1) + α2{ΔMh+ |AM|2h}w′(t)| ≤ Cα4e−σ|t|. (4.8)

4.2 Boundary correction

It is clear that our approximation u1 can be defined in the set α−1(Ω ∩ N ), but u1 does
not satisfy in general the boundary condition. In this regard, we need to make a further
improvement of the approximation u1 by adding boundary correction terms.

Let us consider a smooth cut-off function β such that

β(ρ) =

⎧⎨
⎩1, 0 ≤ ρ <

δ

2
,

0, ρ > δ,

where δ > 0 is the constant in (3.8).
For the k-th end of α−1M , Mk,α, we consider a cut-off function βα = βk,α(x) = β(αs) for

x = X̃α,h(s, θ, t).
Near the boundary, we consider an approximation of the form

u2(x) = u1(x) +
m∑

k=1

(βα,kφ2,k(x) + βα,kφ3,k(x)),

where φ2,k, φ3,k(x) are defined in α−1(Ω ∩ Nk) and will be chosen of order O(α) and O(α2)
respectively.

We first compute the error of the boundary condition created by the approximation u2

using the coordinates X̃α,h and expression (3.18) for a fixed end Mk. We again omit the
explicit dependence of k, but noticing that the developments in this part hold true regardless of
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the end we are working with, since the supports of the cut-off functions βα,k within the region
Nα,h close to every end Mk,α are far away from each other.

From (4.3), we know that h = OW 2,p(M)(α). Splitting the boundary error in powers of α,
we find from (3.18),

B̃(u2) = −∂sφ2 + αI(αθ)tw′(t) − ∂sφ3 + α(∂ρh1 + I(αθ)h1)w′(t)

− α2I(αθ)m1(αθ)t2w′(t) + αI(αθ)t∂tφ2 − 2αm1(αθ)t∂sφ2

− α3∂ρ(|AM|2)ψ1(t) + α3I(αθ)|AM|2∂tψ1(t)

+ α{∂ρh+ I(αθ)h}∂tφ2 − 2m1(αθ)h∂sφ2 − α2(t+ h)2d̃1(αθ)∂sφ2

− 2α2I(αθ)m1(αθ)hw′(t) − α2I(αθ)m1(αθ)t2∂tφ2 + α4B̃0,α, (4.9)

where the term B̃0,α satisfies that

|∇B̃0,α| + |B̃0,α| ≤ Ce−σ|t|.

Our goal is to get a boundary error of order O(α3e−σ|t|) by choosing h, φ2, φ3 satisfying

− ∂sφ2 + αI(αθ)tw′(t) + α(∂ρh1 + I(αθ)h1)w′(t) − ∂sφ3

− α2I(αθ)m1(αθ)t2w′(t) + αI(αθ)t∂tφ2 − 2αm1(αθ)t∂sφ2 = 0.

We do this step by step. First, let us choose φ2 solving the equation

∂ttφ2 + ΔMαφ2 + f ′(w(t))φ2 = 0 in Mα × R,

∂sφ2 = αI(αθ)tw′(t),

from where we obtain that φ2(·, t) is odd in the variable t, and from Proposition 6.1 it follows
that in the norms described in (5.2)–(5.3) and for p > 3 and σ ∈ (0,

√
2), there exists C > 0

such that
‖D2φ2‖p,σ + ‖eσ|t|∇φ2‖L∞(Mα×R) + ‖eσ|t|φ2‖L∞(Mα×R) ≤ Cα.

To choose φ3, we make the decomposition

t2w′(t) = c1 w
′(t) + g1(t), c1 = ‖w′‖−2

L2(R)

∫
R

t2(w′(t))2dt,

t∂sφ2(·, t) = c2(·)w′(t) + g2(·, t),
∫

R

g2(·, t)w′(t)dt = 0, (4.10)

and we write the second line in (4.9) as

+ α(∂ρh+ I(αθ)h)w′(t) − α2c1I(αθ)m1(αθ)w′(t) − 2αm1(αθ)c2(θ)w′(t)

− α2I(αθ)m1(αθ)g1(t) − 2αm1(αθ)g2(θ, t) + αI(αθ)t∂tφ2.

Hence, let φ3 satisfy the boundary condition on ∂Mα×R written in coordinates X̃α,h(s, θ, t)

∂sφ3(0, θ, t) = −α2I(αθ)m1(αθ)g1(t) − 2αm1(αθ)g2(θ, t) + αI(αθ)t∂tφ2. (4.11)

Next we compute the error of the approximation u2 near the boundary. Denote

Sout(u2) := S(u1) + Δφ2 + f ′(w(t))φ2 + Δφ3 + f ′(w(t))φ3 +
1
2
f ′′(w(t))(φ2 + φ3)2

+ [f ′(u1) − f ′(w(t))](φ2 + φ3) +
1
2
[f ′′(u1) − f ′′(w(t))](φ2 + φ3)2

+
[
f(u1 + φ2 + φ3) − f(u1) − f ′(u1)(φ2 + φ3) −

1
2
f ′′(u1)(φ2 + φ3)2

]
.
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Using our choice for φ2 and expression (3.15), in coordinates X̃α,h(s, θ, t) this error is written
as

Sout(u2) = S(u1) + ∂ttφ3 + ΔMαφ3 + f ′(w(t))φ3 − α2|AM|2t∂tφ2

+
1
2
f ′′(w(t))φ2

2 − 2α
I(αθ)

l1(αθ)l2(αθ)
t∂stφ2

− α2{ΔMh+ |AM|2h}∂tφ2 − 2α
I(αθ)

l1(αθ)l2(αθ)
h∂stφ2

+ 2α2 I(αθ)
l1(αθ)l2(αθ)

(t+ h)∂ρh∂ttφ2

− αl−2
1 (αθ)∂υυh

2∂θtφ2 − αl−2
2 (αθ)∂ρρh∂stφ2 + α2l−2

1 (αθ)|∂υh|2∂ttφ2

+ α2l−2
2 (αθ)|∂ρρh|2∂ttφ2 − 2α3sl−4

2 (αθ)A(αθ)|∂ρh|2∂ttφ2

+ α2ã1(αs, αθ, α(t + h)) {∂θtφ2 − α∂υh∂ttφ2}
+ α2ã2(αs, αθ, α(t + h)) {∂stφ2 − α∂ρh∂ttφ2}
+ α2b̃1(αs, αθ, α(t + h)) {∂θφ2 − α∂υh∂tφ2}
+ α2b̃2(αs, αθ, α(t + h)) {∂sφ2 − α∂ρh∂tφ2}

+ f ′(w(t))(φ2 · φ3 +
1
2
φ2

3) + [f ′(u1) − f ′(w(t))](φ2 + φ3)

+ α3(t+ h)̃b3(αs, αθ, α(t + h))∂tφ2 + R̃2,α, (4.12)

where R̃2,α = R̃2,α(αs, αθ, t, h,∇Mh,D2
Mh) = O(α4) and

|DR̃2,α| + |R̃2,α| ≤ Cα4.

Notice that

S(u2) = (1 − βα)S(u1) + βαSout(u2) + 2∇βα · ∇φ2 + 2∇βα · ∇φ3

+ (φ2 + φ3)Δβαf(u1 + βα(φ2 + φ3)) − f(u1)

− βαf(u1 + φ2 + φ3) − (1 − βα)f(u1)

and

∇βα · ∇φ2 = α∂sβ(αs)∂sφ2 = O(α2e−σ|t|)

f(u1 + βα(φ2 + φ3)) − f(u1) − βαf(u1 + φ2 + φ3) (4.13)

− (1 − βα)f(u1) = O(α4e−σ|t|).

Hence in order to improve the approximation, we need to get rid of the terms in the first
line of (4.12) and the term in (4.13). Let φ3 solve the linear problem

∂ttφ3 + ΔMαφ3 + f ′(w(t))φ3 = α2|AM|2t∂tφ2 −
1
2
f ′′(w(t))φ2

2 + 2α
I(αθ)

l1(αθ)l2(αθ)
t∂stφ2

− α∂sβ(αs)∂sφ2 in Mα × R,

∂sφ3(0, θ, t) = −α2I(αθ)m1(αθ)g1(t) − 2αm1(αθ)g2(θ, t) + αI(αθ)t∂tφ2,∫
R

φ3(·, t)w′(t)dt = 0 in Mα.
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From Proposition 6.1, φ3 satisfies

‖D2φ3‖p,σ + ‖eσ|t|∇φ3‖L∞(Mα×R) + ‖eσ|t|φ3‖L∞(Mα×R) ≤ Cα2.

From expression (4.12), we directly check that

S(u2) = S(u1) + E0,α + E1,α, (4.14)

where Ei,α = Ei,α(αs, αθ, t, h,∇Mh,D2
Mh) = O(α3+i) and

|DEi,α| + |Ei,α| ≤ Cα3+i, i = 0, 1.

From (4.9) and (4.11), the boundary error takes the form

B̃(u2) = α(∂ρh1 + I(αθ)h1)w′(t) − α2c1I(αθ)m1(αθ)w′(t) − 2αm1(αθ)c2(θ)w′(t)

+ B̃1,α + B̃2,α, (4.15)

where c1, c2 are described in (4.10), ‖c2‖L∞(∂Mα) ≤ Cα and

B̃i,α = B̃i,α(αs, αθ, t, h,∇Mh) = O(α2+i), i = 1, 2.

Finally, to get the right size of the boundary error in (4.9), we impose on h the boundary
condition

∂ρh+ I(υ)h = αc1I(υ)m1(υ) + 2m1(υ)c2
(υ
α

)
,

and pulling back the rescaling in α > 0,∥∥∥αc1Im1 + 2m1c2

( ·
α

)∥∥∥
L∞(∂M)

≤ Cα.

4.3 Global approximation

Observe that so far, our approximation is defined only in the open set α−1(Ω ∩ N ).
The idea to get a global approximation is to interpolate the approximation u2 well inside

Nα,h, with the function

H(x) :=
{

+1, x ∈ α−1S+,
−1, x ∈ α−1S− (4.16)

outside Nα,h.
Let us take a non-negative function β̂ ∈ C∞(R) such that

β̂(s) =
{

1, |s| ≤ 1,
0, |s| ≥ 2,

and consider the following cut-off function in Nα,h given by

βη(x) = β̂
(
|t+ h(αy)| − η

α
+ 2

)
, x = Xα,h(y, t) ∈ Nα,h.

With the aid of this, we set up as approximation in Ωα the function

U(x) = βη(x)u2(x) + (1 − βη(x)H(x), x ∈ Ωα. (4.17)
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We compute the new error created by this approximation as follows:

S(U) = ΔU + f(U) = βηS(u2) + E,

where
E := f(βηU) − βηf(U) + 2∇βη · ∇u + uΔβη.

Using z = |t+ h(αy)|, we see that the derivatives of βη do not depend on the derivatives of h.
On the other hand, due to the choice of βη and the explicit form of E, the error created only
takes into account the values of βη in the set

x = Xα,h(y, θ, t) ∈ Nα,h, |t+ h(αy)| ≥ η

α
+ 4 ln(r(αy)) − 2,

so we get the following estimate for the error E:

|E| ≤ Ce−
η
α .

5 The Proof of Theorem 1.1

The proof of Theorem 1.1 is fairly technical. To keep the presentation as clear as possible,
we sketch the steps of the proof, and in the next sections, we give the detailed proofs of the
lemmas and propositions mentioned here.

We introduce suitable norms to set up an appropriate functional analytic scheme for the
proof of Theorem 1.1. For α > 0, 1 < p ≤ ∞ and a function f(x), defined in Ωα, we set

‖f‖p,∼ := sup
x∈R3

‖f‖Lp(B1(x)). (5.1)

We also consider for functions g = g(y, t), φ = φ(y, t), defined in the whole Mα × R, the
norms

‖g‖p,σ := sup
(y,t)∈Mα×R

eσ|t|‖g‖Lp(B1(y,t);dVα), (5.2)

‖φ‖2,p,σ := ‖D2φ‖p,σ + ‖Dφ‖∞,σ + ‖φ‖∞,σ, (5.3)

where dVα := dygMα
dt. In the case p = +∞, we have that L∞(B1(y, t), dVα) = L∞(B1(y, t)).

For a function G defined in ∂Mα × R, we set

‖G‖p,σ := ‖eσ|t|G‖Lp(∂Mα×R),

and we recall the norm for the parameter function h

‖h‖∗ = ‖D2h‖Lp(M) + ‖∇h‖L∞(M) + ‖h‖L∞(M). (5.4)

We look for a solution to equation (1.1) of the form

uα(x) = U(x) + ϕ(x),

where U(x) is the global approximation defined in (4.17) and ϕ is going to be chosen small in
some appropriate sense. Thus, we need to solve the problem

Δϕ+ f ′(U)ϕ+ S(U) +N(ϕ) = 0,

or equivalently

Δϕ+ f(U)ϕ = −S(W ) −N(ϕ) = −βηS(u2) − E −N(ϕ), (5.5)

where
N(ϕ) = f(U + ϕ) − f(U) − f ′(U)ϕ.
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5.1 Gluing procedure

To solve problem (5.5), we consider again the cut-off function β̂ from Subsection 4.3, to
define for every n ∈ N

ζn(x) :=
{
β̂(|t+ h(αy)| − η

α + n), if x = Xα,h(y1, y2, t) ∈ Nα,h,
0, if x ∈ Nα,h.

(5.6)

We look for a solution ϕ(x) to (5.5) of the form

ϕ(x) = ζ2(x)φ(y, t) + ψ(x),

where φ(y, t) is defined for every (y, t) ∈ Mα × R and ψ(x) is defined in the whole Ωα. So, we
find from equation (5.5) that

ζ2[ΔNα,h
φ+ f ′(U)φ + ζ1Uψ + S(U) + ζ2N(φ+ ψ)]

+ Δψ − [2 − (1 − ζ2)[f ′(U) + 2]]ψ + (1 − ζ2)S(U)

+ 2∇ζ2 · ∇Nα,h
φ+ φΔζ2 + (1 − ζ2)N [ζ2φ+ ψ] = 0.

Hence, we will have constructed a solution to equation (5.5), if solve the system

ΔNα,h
φ+ f ′(U)φ+ ζ2Uψ + S(U) + ζ2N(φ+ ψ) = 0 in |t+ h(αy)| < η

α
− 1, (5.7)

Δψ − [2 − (1 − ζ2)[f ′(U) + 2]]ψ + (1 − ζ2)S(U)

+ 2∇ζ2 · ∇Nα,h
φ + φΔζ2 + (1 − ζ2)N [ζ2φ+ ψ] = 0 in Ωα. (5.8)

As for the boundary conditions, we compute

βη
∂u2

∂nα
+ ζ2

∂φ

∂nα
+ (u2 − H(x))

∂βη

∂nα
+ φ

∂ζ2
∂nα

+
∂ψ

∂nα
= 0.

Therefore, the boundary condition is reduced to the boundary system

βη
∂u2

∂nα
+ ζ2

∂φ

∂nα
= 0, (5.9)

∂ψ

∂nα
+ (u2 − H(x))

∂βη

∂nα
+ φ

∂ζ2
∂nα

= 0. (5.10)

We solve first (5.8)–(5.10), using the fact that the potential 2−(1−ζ2)[f ′(U)+2] is uniformly
positive, so that the linear operator behaves like Δ−2. A solution ψ = Ψ(φ) is then found from
the contraction mapping principle. We collect this discussion in the following lemma, that will
be proven in detail in Subsection 7.1.

Proposition 5.1 Let 3 < p ≤ ∞ and α > 0 be sufficiently small. For every h satisfying
(4.3) and every φ such that ‖φ‖2,p,σ ≤ 1, problem (5.8)–(5.10) has a unique solution ψ = Ψ(φ)
and the operator Ψ(φ) is Lipschitz in φ. More precisely, Ψ(φ) satisfies that

‖ψ‖X := ‖D2ψ‖p,∼ + ‖Dψ‖∞ + ‖ψ‖∞ ≤ Ce−
cη
α , (5.11)

‖Ψ(φ1) − Ψ(φ2)‖X ≤ Ce−
cη
α ‖φ1 − φ2‖2,p,σ, (5.12)

and the constant C > 0 depends only on p.
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Next, we extend (5.7)–(5.9) to a qualitatively similar equation in Mα × R. Let us set

R(φ) := ζ4[ΔNα,h
− ∂tt − ΔMα ].

Observe that R(φ) is understood to be zero for |t+ h(αy)| > η
α + 2, and so we consider the

equation

∂ttφ+ ΔMαφ+ f ′(w(t))φ

= −S̃(u2) −R(φ) − (f ′(u2) − f ′(w(t)))φ − ζ2u2ψ − ζ2N(φ+ ψ) in Mα × R, (5.13)

where from expression (4.12) and omitting the depedence on k, we have on the k-th end Mk,α

that

S̃(u2) = S̃(u1) − α2{ΔMh+ |AM|2h}∂tφ2 − 2α
I(αθ)

l1(αθ)l2(αθ)
h∂stφ2

+ 2α2 I(αθ)
l1(αθ)l2(αθ)

(t+ h)∂ρh∂ttφ2 + 2α∂ρβ(αs)∂sφ3 + α2∂ρρβ(αs)(φ2 + φ3)

− αl−2
1 (αθ)∂υυh

2∂θtφ2 − αl−2
2 (αθ)∂ρρh∂stφ2 + α2l−2

1 (αθ)|∂υh|2∂ttφ2

+ α2l−2
2 (αθ)|∂ρρh|2∂ttφ2 − 2α3sl−4

2 (αθ)A(αθ)|∂ρh|2∂ttφ2 + f ′(w(t))
(
φ2 · φ3 +

1
2
φ2

3

)
+ [f ′(u1) − f ′(w(t))](φ2 + φ3) + α2ζ4ã1(αs, αθ, α(t + h)) {∂θtφ2 − α∂υh∂ttφ2}
+ α2ζ4ã2(αs, αθ, α(t + h)) {∂stφ2 − α∂ρh∂ttφ2}
+ α2ζ4b̃1(αs, αθ, α(t + h)) {∂θφ2 − α∂υh∂tφ2}
+ α2ζ4b̃2(αs, αθ, α(t + h)) {∂sφ2 − α∂ρh∂tφ2}
+ α3ζ4(t+ h)̃b3(αs, αθ, α(t + h))∂tφ2 + ζ4R̃2,α, (5.14)

and from expression (4.7), we write

S̃(u1) = −α2{ΔMh+ |AM|2h}w′(t) + α2∂ih∂jhw
′′(t) + α4ΔM(|AM|2)ψ1(t)

− α4{ΔMh+ |AM|2h}|AM|2ψ(t) + α4|AM|4t∂tψ1(t)

− 2α4a0
ij(αy)∂ih∂j(|AM|2)∂tψ1(t) + α4a0

ij(αy)∂ih∂jh|AM|2∂ttψ1(t)

− α3ζ4(t+ h)a1
ij(αy, α(t + h))(∂ijhw

′(t) − ∂ih∂jhw
′′(t))

− α3ζ4b
1
i (αy, α(t+ h))∂ihw

′(t) − α4(t+ h)ζ4b13(αy, α(t + h))w′(t)N(φ1)

+ α5ζ4R1,α(αy, t, h,∇Mh,D2
Mh). (5.15)

Observe that S̃(u1) and S̃(u2) coincide with S(u1), S(u2) but the parts that are not defined
for all t ∈ R are cut-off outside the support of ζ4.

As for the boundary condition, we proceed in the same fashion by writing

B = ζ4

[√
g̃11

∂

∂nα
− ∂s

]
.

It suffices to consider φ satisfying

∂ταφ+ B(φ) = B̃(u2),
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where τα = s is the normal inward direction to ∂Mα, and in expression (4.9), we cut-off the
parts that are not defined for every t. We write also for further purposes

B̃(u2) = −α3∂ρ(|AM|2)ψ1(t) + α3I(αθ)|AM|2∂tψ1(t)

+ α{∂ρh+ I(αθ)h}∂tφ2 − 2αm1(αθ)h∂sφ2 − α2(t+ h)2ζ4d̃1(αθ)∂sφ2

− 2α2I(αθ)m1(αθ)hw′(t) − α2I(αθ)m1(αθ)t2∂tφ2 + α4ζ4B̃0,α. (5.16)

Observing that again, we have omitted the depedence on the end Mk,α for notational con-
venience.

Next, using Proposition 5.1, we solve equation (5.13) with ψ = Ψ(φ). Let us set

N(φ) := R(φ) + (f ′(u2) − f ′(w(t))φ + ζ2(u2 − H(x))Ψ(φ) + ζ2N(φ+ Ψ(φ)) in Mα × R.

So, we only need to solve

∂ttφ+ ΔMαφ+ f ′(w(t))φ = − S̃(u2) − N(φ) + c(y)w′(t) in Mα × R, (5.17)

∂ταφ+ B(φ) = B̃(u2) on ∂Mα × R, (5.18)∫
R

φ(·, t)w′(t)dt = 0 in Mα. (5.19)

To solve problem (5.17)–(5.19), we solve a nonlinear problem in φ, that basically eliminates
the parts of the error, that do not contribute to the projections.

The linear theory we develop to solve problem (5.17)–(5.19), considers right-hand sides and
boundary data with a behavior similar to that of the error S̃(u2) and B̃(u2), that as we have
seen, are basically of the form O(α3e−σ|t|).

Using the fact that N(φ) is Lipschitz with small Lipschitz constant and contraction mapping
principle in a ball of radius O(α3) in the norm ‖ · ‖2,p,σ, we solve problem (5.17)–(5.19). This
solution φ, defines a Lipschitz operator φ = Φ(h). This information is collected in the following
proposition.

Proposition 5.2 Assume that 3 < p ≤ ∞ and σ > 0 is small. For every α > 0 small,
problem (5.17)–(5.19) has a unique solution φ = Φ(h), satisfying

‖φ‖2,p,σ ≤ Cα3

and
‖Φ(h1) − Φ(h2)‖2,p,σ ≤ Cα2‖h1 − h2‖∗,

where the constant C > 0 depends only on p.

5.2 Adjusting h, to make the projection equal zero

We denote c0 = ‖w′‖2
L2(R). To conclude the proof of Theorem 1.1, we adjust h so that

c(y) =
∫

R

[S̃(u2) + N(φ)]w′(t)dt = 0.

Integrating (5.17) against w′(t) and using that the function βα defined in Subsection 4.2
does not depend on the variable t, we compute∫

R

S̃(u2)w′(t)dt = (1 − βα)
∫

R

S̃(u1)w′(t)dt︸ ︷︷ ︸
A

+ βα

∫
R

S̃(u2)w′(t)dt︸ ︷︷ ︸
B

+OL∞(Mα)(α4).
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From (5.15), we compute∫
R

S̃(u1)w′(t)dt = −α2 c0{ΔMh+ |AM|2h}

− α3

∫
R

ζ4(t+ h)a1
ij(αy, α(α(t + h))){∂ijhw

′(t) − ∂ih∂jhw
′′(t)}w′(t)dt

− α3

∫
R

ζ4(t+ h)b11(αy, α(t + h))∂ih(w′(t))2dt

+ α4

∫
R

(t+ h)3ζ4b13(αy, α(t+ h))(w′(t))2dt

+ α4|AM|2
∫

R

t∂tψ1(t)w′(t)dt+ α5P1(αy, h,∇Mh,D2
Mh).

On the other hand, from (5.14), the reduced error near the boundary reads as∫
R

S̃(u2) =
∫

R

S̃(u1) − α2|AM|2
∫

R

t∂tφ2w
′(t)dt− 2α

I(αθ)
l1(αθ)l2(αθ)

h

∫
R

∂stφ2w
′(t)dt

+ 2α2 I(αθ)
l1(αθ)l2(αθ)

∂ρh

∫
R

(t+ h)∂ttφ2w
′(t)dt

− αl−2
1 (αθ)∂υυh

∫
R

∂θtφ2w
′(t)dt− αl−2

2 (αθ)∂ρρh

∫
R

∂stφ2w
′(t)dt

+ α2

∫
R

ζ4ã1(αs, αθ, t){∂θtφ2 − α∂υh∂ttφ2}w′(t)dt

+ α2

∫
R

ζ4ã2(αs, αθ, t){∂stφ2 − α∂ρh∂ttφ2}w′(t)dt

+ α2

∫
R

ζ4b̃1(αs, αθ, t){∂θφ2 − α∂υh∂tφ2}w′(t)dt

+ α2

∫
R

ζ4b̃2(αs, αθ, t){∂sφ2 − α∂ρh∂tφ2}w′(t)dt

+ α3

∫
R

ζ4(t+ h)̃b13(αs, αθ, α(t + h))∂tφ2w
′(t)dt

− 2α2 I(αθ)
l1(αθ)l2(αθ)

(t+ h)
∫

R

{∂stφ3 − α∂ρρh∂ttφ3}w′(t)dt

+
∫

R

[f ′(u1) − f ′(w(t))](φ2 + φ3)w′(t)dt+ α3R̃0,α(αs, αθ)

+ α4

∫
R

R̃α(αs, αθ, h,∇Mh,D2
Mh)w′(t)dt.

From assumption (4.3), and the estimates in Section 7 for the nonlocal terms, we have

Q(αy, h,∇Mh,D2
Mh) :=

∫
R

N(φ)w′(t)dt, ‖Q(·, h,∇Mh,D2
Mh)‖LM ≤ Cα4− 2

p .

Therefore,

α−2

∫
R

(S̃(u2) + N(φ))w′(t)dt = −c0{ΔMh+ |AM|2h} + αP0(y, h,∇Mh,D2
Mh)

+ α2− 2
pP1(y, h,∇Mh,D2

Mh), (5.20)
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where
|P0| + |P1| ≤ C, |DP0| + |DP1| ≤ C.

As for the boundary condition, directly from (5.16) we ask h to satisfy

∂ρh+ I(υ)h = αc1I(υ)m1(υ) + 2m1(υ)c2
(υ
α

)
, (5.21)

where we recall that
‖c2‖L∞(∂Mα) ≤ Cα

and the right-hand side in (5.21) does not depend on h.
We solve then

c0{ΔMh+ |AM|2h} = αP0(y, h,∇Mh,D2
Mh) + α2− 2

pP1(y, h,∇Mh,D2
Mh) (5.22)

with the boundary condition (5.21) by a direct application of the theory developed in Section 2
and a fixed point argument for h in a ball or order O(α) in the topology induced by the norm
‖ · ‖∗ described in (4.3). This completes the proof of our theorem.

6 Projected Linear Problem

In this part, we provide the linear theory for the problem

∂ttφ+ ΔMαφ+ f(w(t))φ = g + c(y)w′(t) in Mα × R, (6.1)
∂φ

∂τα
= G on ∂Mα × R, (6.2)

which relies strongly on the fact that solutions to

∂ttφ+ ΔMαφ+ f(w(t))φ = 0 in Mα × R,

∂φ

∂τα
= 0 on ∂Mα × R

are the scalar multiples of w′(t). The proof follows the same lines of Lemma 5.1 in [10]. We
simply remark that when decomposing the solution φ as

φ = c(y)w′(t) + φ⊥

from maximum principle one obtains that |φ⊥(y, t)| ≤ Ce−σ|t| for some 0 < σ <
√

2. Defining

ψ(y) =
∫

R

|φ(y, t)⊥|2dt,

it follows that for certain positive constant λ

−ΔMαψ + λψ ≤ 0,
∂ψ

∂τα
= 0,

where τα is the inward unit normal to ∂Mα in Mα. Clearly it follows that ψ = 0 and

ΔMαc = 0 in Mα,
∂c

∂τα
= 0 on ∂Mα.

Consequently, c(y) is a constant function.
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Proceeding as in [9, Section 3], it suffices to solve the case G = 0 and
∫

R
g(·, t) ·w′(t)dt = 0.

To prove existence, we set

〈φ, ψ〉 :=
∫
Mα×R

∇φ · ∇ψ + 2φ · ψ,

and we consider the space H of function φ ∈ H1(Mα × R), such that∫
Mα×R

φ · w′ = 0.

Since f ′(w(t)) = −2 + O(e−
√

2|t|) as |t| → ∞, the equation can be put into the setting

(I +K)φ = g in H,

where K : H → H is a compact operator. From Fredholm alternative, we obtain a solution φ,
such that

‖φ‖L2(Mα×R) ≤ C‖g‖L2(Mα×R).

As for the a priori estimates, we can proceed using a blow up argument following the same
lines as in the local elliptic regularity developed in [10]. In our case, we also need to consider
two limiting blow up situations: The case of R

2 × R when taking limit well inside Mα × R

and the case of the half space R+ ×R
2 when taking the limit in coordinates close to ∂Mα ×R

inside one of the sets Mk,α × R. The former case is reduced to the case of R
2 × R as limiting

situation by using an odd reflection respect to the boundary of R+ × R
2.

Thus we have proven the following proposition.

Proposition 6.1 For every p > 3 and for every α > 0 small enough and given functions g
defined in Mα × R and G defined in ∂Mα × R such that

‖g‖p,σ + ‖G‖p,σ <∞,

there exists a unique pair (φ, c) solving problem (6.1)–(6.2) satisfying the a priori estimate

‖D2φ‖p,σ + ‖Dφ‖∞,σ + ‖φ‖∞,σ ≤ C(‖g‖p,σ + ‖G‖p,σ),

where the constant C dependens only on p.

7 Gluing Reduction and Solution to the Projected Problem

In this section, we prove Lemma 5.1 and then we solve the nonlocal projected problem
(5.17)–(5.19). The notations we use in this section have been set up in Sections 4–5.

7.1 Solving the gluing system

Given a fixed φ such that ‖φ‖2,p,σ ≤ 1, we solve problem (5.8) with boundary condition
(5.10). To begin with, we observe that there exist constants a < b, independent of α, such that

0 < a ≤ Qα(x) ≤ b for every x ∈ R
3,

where Qα(x) = 2 − (1 − ζ2)[f ′(U) + 2]. Using this remark, we study the problem

Δψ −Qα(x)ψ = ĝ(x) x ∈ Ωα,

∂ψ

∂nα
= Ĝ(x) on ∂Ωα, (7.1)

for given ĝ, Ĝ. Concerning solvability of this linear problem, we have the following lemma.
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Lemma 7.1 Assume 3 < p ≤ ∞ and α > 0 is small. For any given ĝ, Ĝ with

‖ĝ‖Lp(Ωα) + ‖Ĝ‖Lp(∂Ωα) <∞,

equation (7.1) has a unique solution ψ = ψ(g), satisfying the a priori estimate

‖ψ‖X ≤ C(‖ĝ‖Lp(Ωα) + ‖Ĝ‖Lp(∂Ωα)).

The proof of this lemma is standard, and we refer the reader to [9, Section 2] for details.
Now we prove Proposition 5.1. Denote by X , the space of functions ψ ∈ W 2,p(Ωα) such

that ‖ψ‖X < ∞ and let us denote by Γ(ĝ, Ĝ) = ψ the solution to the equation (7.1), from the
previous lemma. We see that the bilinear map Γ is continuous, i.e.,

‖Γ(ĝ, Ĝ)‖X ≤ C(‖ĝ‖Lp(Ωα) + ‖Ĝ‖Lp(∂Ωα)).

Thus, (5.8) is restated as a fixed point problem

ψ = −Γ
(
(1 − ζ2)S(U) + (1 − ζ2)N [ζ2φ+ ψ], (u2 − H(x))

∂βη

∂nα
+ φ

∂ζ2
∂nα

)
. (7.2)

Using the norms described in (5.3) and (5.4), let us take φ and h satisfying

‖φ‖2,p,σ ≤ 1, ‖h‖∗ ≤ Kα.

We next estimate the size of the right-hand side in (7.2). Recall that S(U) = ζ2S̃(u2) + E,
so that

|(1 − ζ2)S̃(u2)| ≤ Cα2e−σ|t|(1 − ζ2) ≤ Cα2e−σ η
α .

This means that
|(1 − ζ2)S̃(u2)| ≤ Cα2e−σ η

α ,

and so ‖(1 − ζ2)S̃(U)‖Lp(Ωα) ≤ Cα2e−σ η
α .

As for the second term in the right-hand side of (7.2), the following holds true:

|2∇ζ2 · ∇φ+ φΔζ2| ≤ C(1 − ζ2)e−σ|t|‖φ‖2,pσ

≤ Ce−σ η
α ‖φ‖2,p,σ.

This implies that
‖2∇ζ2 · ∇φ + φΔζ2‖∞ ≤ Ce−c η

α .

Proceeding in the same fashion, we obtain the estimate for the boundary condition∥∥∥(u2 − H(x))
∂βη

∂nα
+ φ

∂ζ2
∂nα

∥∥∥
∞

≤ Ce−
ση
α .

Finally, we check the Lipschitz character on ψ of the term (1−ζ2)N [ζ2φ+ψ]. Take ψ1, ψ2 ∈ X

and notice that

|(1 − ζ2)N [ζ2φ+ ψ1] − (1 − ζ2)N [ζ2φ+ ψ2]|
≤ (1 − ζ2)|f(U + ζ2φ+ ψ1)

− f(U + ζ2φ+ ψ2) − f ′(U)(ψ1 − ψ2)|
≤ Ce−σ η

α (1 − ζ2) sup
t∈[0,1]

|ζ1φ+ tψ1 + (1 − t)ψ2||ψ1 − ψ2|

≤ Ce−σ η
α (‖φ‖∞,σ + ‖ψ1‖∞ + ‖ψ2‖∞)|ψ1 − ψ2|,
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from where it follows that

‖(1 − ζ2)N [ζ2φ+ ψ1] − (1 − ζ2)N [ζ2φ+ ψ1]‖∞ ≤ Ce−σ η
α ‖ψ1 − ψ2‖∞,

and in particular we see that ‖(1 − ζ2)N(ζ2φ)‖∞ ≤ Ce−σ η
α .

Consider Γ̃ : X → X , Γ̃ = Γ̃(ψ) the operator given by the right-hand side of (7.2). From
the previous remarks, we have that Γ̃ is a contraction provided that α is small enough, and so
we have found ψ = Γ̃(ψ) the solution to (5.8).

We can check directly that Ψ(φ) = ψ is Lipschitz in φ, i.e.,

‖Ψ(φ1) − Ψ(φ2)‖X ≤ C‖(1 − ζ2)[N(ζ1φ1 + Ψ(φ1)) −N(ζ1φ2 + Ψ(φ2))]‖∞,μ

+ C−σ ση
α ‖φ1 − φ2‖2,p,σ

≤ Ce−c η
α (‖Ψ(φ1) − Ψ(φ2)‖X + ‖φ1 − φ2‖2,p,σ)

Hence, for α small, we conclude

‖Ψ(φ1) − Ψ(φ2)‖X ≤ Ce−c η
α ‖φ1 − φ2‖2,p,σ.

7.2 Solving the projected problem

Now we solve problem (5.17)–(5.19) using the linear theory developed in Section 6, together
with a fixed point argument. From the discussion in Subsection 7.1, we have a nonlocal operator
ψ = Ψ(φ).

Recall that

N(φ) := R(φ) + (f ′(u2) − f ′(w(t)))φ + ζ2(u2 − H(x))Ψ(φ) + ζ2N(φ+ Ψ(φ)) in Mα × R.

Let us denote

N1(φ) := R(φ) + [f ′(u2) − f ′(w(t))]φ,

N2(φ) := ζ2(u2 − H(x))Ψ(φ),

N3(φ) := ζ2N(φ+ Ψ(φ)).

We need to investigate the Lipschitz character of Ni, i = 1, 2, 3. We see that

|N3(φ1) −N3(φ2)| = ζ2|N(φ1 + Ψ(φ1)) −N(φ2 + Ψ(φ2))|
≤ Cζ2 sup

τ∈[0,1]

|τ(φ1 + Ψ(φ1)) + (1 − τ)(φ2 + Ψ(φ2))|

· |φ1 − φ2 + Ψ(φ1) − Ψ(φ2)|
≤ C[|Ψ(φ2)| + |φ1 − φ2| + |Ψ(φ1) − Ψ(φ2)| + |φ2|]
· [|φ1 − φ2| + |Ψ(φ1) − Ψ(φ2)|].

Using the norm described in (5.2), we find that

‖N3(φ1) −N3(φ2)‖p,σ ≤ C[e−σ η
α + ‖φ1‖p,σ + ‖φ2‖p,σ] · ‖φ1 − φ2‖p,σ.

As for the term N1(φ), we just have to pay attention to the term R(φ). Notice that R(φ) is
linear on φ and

R(φ) = −α2{ΔMh+ |AM|2(t+ h)}∂tφ− 2α∇Mh∂t∇Mαφ+ α2|∇Mh|2∂ttφ+Dα,h(φ).
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Hence, from the assumptions made on h, we have

‖N1(φ1) −N1(φ2)‖p,σ ≤ Cα‖φ1 − φ2‖2,p,σ.

Observe also that under the assumption made on h we have

‖S̃(u2) + α2{ΔMh+ |AM|2h}w′(t)‖p,σ ≤ Cα3.

Hence, for ‖φ‖2,p,σ ≤ Aα2, we have that ‖N(φ)‖p,σ ≤ Cα4.
As for the boundary condition, we check directly from expressions (3.18), (5.16) and (5.18)

that on every end Mk,α the following estimates hold:

‖B̃(u2)‖∞,σ ≤ Cα3, ‖B(φ)‖∞,σ ≤ Cα(‖∇φ‖∞,σ + ‖φ‖∞,σ)

with B(φ) linear in φ.
Setting T (g,G) = φ the bilinear operator given from Proposition 6.1, we recast problem

(5.17)–(5.19) as the fixed point problem

φ = T (−S̃(u2) − N(φ), B̃(u2) − B(φ)) =: T (φ)

in the ball
BX

α := {φ ∈ X/‖φ‖2,p,σ ≤ Aα3},

where X is the space of function φ ∈ W 2,p
loc (Mα × R) with the norm ‖φ‖2,p,σ. Observe that

‖T (φ1) − T (φ2)‖X ≤ C‖N(φ1) − N(φ2)‖p,σ + Cα‖φ1 − φ2‖2,p,σ ≤ Cα‖φ1 − φ2‖X , φ ∈ BX
α .

On the other hand, because C and A do not depend on α > 0, we take A large enough, so
that

‖T (φ)‖X ≤ C(‖S̃(u2)‖p,σ + ‖N(φ)‖p,σ + ‖B̃(u2)‖∞,σ + ‖B(φ)‖∞,σ) ≤ Aα3, φ ∈ BX
α .

Hence, the mapping T is a contraction from the ball BX
α onto itself. From the contraction

mapping principle, we get a unique solution φ as required. We denote the solution to (5.17)–
(5.19) for h fixed.

As for the Lipschitz character of Φ(h), it comes from a lengthy by direct computation. We
left to the reader to check on the details of the proof of the following estimate:

‖Φ(h1) − Φ(h2)‖2,p,σ ≤ Cα2‖h1 − h2‖∗,

and this completes the proof of Proposition 5.2.
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