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Abstract

We present a methodology for addressing the problem of deciding
the location of a third ore crusher to be installed at Chile’s Chuquica-
mata mine, the largest open pit copper mine in the world. This ap-
proach evaluates a complex trade-off between minimizing operational
cost and assuring production goal when the probability of equipment
failure is considered. The heart of the methodology is a Markov chain
model that incorporates failure as a randomness factor in determining
the productivity of the crusher systems. We evaluate two alternative
location configurations using stationary probabilities of a Markov chain
model and the results were validated with a discrete-time simulation
model. Goodness-of-fit indicators demonstrate the model’s suitability
for replacing the simulation model for calculating configuration produc-
tivity levels. In addition to successfully solving the decision problem,
the Markov model generates insights into the relationships between the
relevant variables which the discrete-time simulation is unable to pro-
vide, and does so without the latter’s greater costs and complexities
of modeling, solving and calibration. The methodology was applied
at Chuquicamata in 2010 to choose the optimal location configuration
based on the then-existing crusher system configuration and company
data.
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1 Introduction

The Chuquicamata copper mine, a division of Chile’s state-owned CODELCO
mining company, is an open-pit operation located in the far north of the
country that has been worked continuously since 1915. The natural growth
of extraction operations at the mine has driven the evolution of a mixed sys-
tem of material transport that currently consists of 15 loading units (power
shovels and front loaders), 96 high-payload haul trucks, 2 primary (gyratory)
crushers and 4 conveyor belt systems.

The material extracted at the property is separated into waste rock,
which has no economic value and is hauled away to waste dumps, and ore,
which contains the valuable minerals and is sent to the first in a series of
processing plants whose final output is copper metal. In the initial process
the ore is crushed and the output is transported to the concentrator plant
on conveyor belts.

When the problem considered in this study arose, the configuration of
the mine included two crusher units of equal capacity, one installed inside
the pit and the other outside of it (see Figure 1). Both of them fed their
output to the concentrator plant through 2 conveyor belts. Since crushers
and belts, like any other equipment, are subject to failure, it was resolved
that a third crusher should be installed to improve reliability.

Figure 1: Current Chuquicamata operating configuration showing relative
locations of equipment
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For reasons beyond the scope of our enquiry, the new unit would have to
be built alongside one of the existing crushers where the 2 units would share
the same 2 conveyor belts. This posed a major decision problem defined
by a complex interplay of factors including the failure rates of the belts and
crushers, the operating costs of truck haulage versus conveyor belt transport,
the capital costs of truck acquisition and the much greater expense involved
in an in-pit (inside) crusher installation compared to an ex-pit (outside) one.

In broad terms, the decision problem was fundamentally one of evaluat-
ing the trade-off between cost and reliability, a decidedly non-trivial exercise
that required a methodology which could take proper account of the element
of randomness in the belt and crusher failures. The most commonly used
method for studying the productivity of mine systems incorporating ran-
domness is simulation. The first applications of the technique in this con-
text date back to the 1960’s in cases mainly involving underground mines
(Rist [1962], Falkie and Mitchell [1963], Harvey [1964], Elbrond [1964] and
Redmon [1964]). In the 1980’s, with the growing use of dispatching systems
in open-pit operations, simulation was employed to investigate the benefits
of different computational algorithms (Chatterjee and Brake [1981], Wilke
and Heck [1982], Tu and Hucka [1985] y Sturgul and Harrison [1987]). Sub-
sequent advances in computer technology enabled the design of the first
simulation model with graphical animations, which was used in the study of
stockpiling strategies for minimizing costs at an iron mine [Baunach et al.,
1989]. More recently, simulation has been applied to analyses of open-pit
mine productivity under operating constraints [Awuah-Offei et al., 2003],
new truck dispatching algorithms in real time [Wang et al., 2006] and au-
tonomous vehicle dispatch algorithms [Saayman et al., 2006].

Yet despite its widespread application to stochastic mining problems,
simulation is costly in time and resources spent on modeling, solving and
calibration. Furthermore, it provides no insights into the problems it is used
to study or the implications of the factors and parameters involved in them.
Finally, practice, conclusions based on simulation are in practice based on
the numerical results of multiple realizations. Solving mine operating prob-
lems analytically, on the other hand, affords a clearer understanding of the
production system and how its configuration and operation can be opti-
mized. The present article aims to demonstrate that Markov chains can
contribute to the solution of complex problems, and in particular to the
study of the productivity of a materials handling system as a function of its
operating configuration. Thus, the proposed approach offers an alternative
to the simulation of discrete events.

The theory behind Markov chains first appeared in a paper by Andréi
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Markov in 1907, but attracted wider attention only after 1923 when the
article was cited by Bernstein in his work extending the central limit theo-
rem of probability theory [Basharin et al., 2004]. Since that time, Markov
chains have been used to solve problems in a variety of fields. For exam-
ple, the significant expansion of personal loans in the United States in the
post-World War II era prompted Cyert and Thompson [1968] to develop a
methodology for determining customer credit risk in the retail trade. Their
approach was based on customers’ historical behavior (ability to pay). The
model they proposed divides the portfolio of a retail firm into multiple risk
categories across which varying proportions of its customers are distributed.
Another early application of Markov chains was a model proposed by Judge
and Swanson [1962] for analyzing the evolution of the pig producer sector
starting from a set of initial conditions. The study used data for 83 firms
in Illinois over a period of 13 years. The strong simplifying assumptions of
the model facilitated the paper’s main purpose, which was to demonstrate
the usefulness of the Markov chain concept for future studies in agricultural
economics.

A paper by Burnham [1973] furthered the development of Markov chain
models in agriculture. The author’s model analyzed the effects of various
policies in the southern Mississippi alluvial valley. In an application to
manufacturing, given that perfectly reliable production systems are virtu-
ally non-existent, Abboud [2001] analyzed production and inventory in a
system consisting of one machine producing a single good that is subject to
breakdown. Output and demand rates were assumed constant while failure
and repair rates were considered to be random. The author compared the
Markov chain model to a simulation-based formulation, demonstrating that
the two are strongly correlated.

The present article develops two stochastic models for solving the above-
described problem of determining the best location for a third crusher. The
first model uses discrete-time Markov chains while the second one uses a
continuous-time formulation. Both versions are validated with a discrete-
event simulation model.

2 The Problem

The production system at the Chuquicamata mine consists for present
purposes of the following main items of equipment:

a) Power shovels. Used to load haul trucks inside the pit, these units
are highly specialized pieces of equipment with a capacity of 100 met-
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ric tons and can load 5,000 metric tons per hour. Each shovel costs
approximately US$20 million.

b) Haul trucks. These vehicles are designed for operation exclusively in
mining applications and have a load capacity of 330 metric tons. They
are built to order and sell for about US$4 million. The trucks are at
their slowest when climbing fully loaded, and at their fastest when
running empty on level ground.

c) Crushers. These are specialized units used to reduce the size of the
ore-bearing rocks extracted from the pit. They are built to order and
designed to fit the characteristics of a specific mine. Each crusher can
process 6,200 metric tons per hour. Their basic selling price is US$15
million but to this must be added another $35 million for installa-
tion, mainly involving construction of the foundations. It is precisely
this high installation cost that explains the significance of the present
study.

d) Conveyor belts. The output of the crushers is transported by con-
veyor belts. Although more efficient than truck haulage, this method
can only be used with ore that has already been crushed. At Chuquica-
mata, the in-pit and ex-pit crushers are each connected to the concen-
trator plant by a pair of parallel belts. The capacity of each belt is
enough to carry the output of a crusher. A belt costs about US$2,500
per meter, but the final amount for in-pit belts is higher due to the
tunnel construction costs.

e) Concentrator plant. This is a major installation and a strategic unit
in the mining process, and is thus also a limiting factor in the mine’s
installed capacity. Concentrators consume huge quantities of energy
and water, which in some cases constrains their construction and oper-
ation. A plant such as the one at Chuquicamata can today cost some
US$ 8 million.

The problem we propose to solve covers the following mine processes:

P1: Loading of truck inside the pit by a shovel. There are about 15 loading
units located at 4 different points around the pit.

P2: Transport of material with no economic value to the waste dump. This
operation is carried out by about 80 trucks.

5



P3a: Transport of material with economic value to the in-pit crusher. After
crushing it will be processed by the concentrator.

P3b: Transport of material to the ex-pit crusher, analogously to process P3a
above. Processes P3a and P3b together use about 15 trucks.

P4: Transport of crushed material from the in-pit and ex-pit crushers to
the concentrator plant by the conveyor belts.

As noted in the introduction, the original configuration includes 1 in-
pit and 1 ex-pit crusher, each served by a pair of belts. The concentrator
plant capacity is equal to the combined capacities of the two crushers and
is therefore one-half that of the four belts combined. Since each belt has a
capacity equal to that of a crusher, the crushers’ individual capacities are the
limiting factor on the capacity of each of the 2 crusher-conveyor “systems”.
A flow chart depicting the operating configuration of the equipment and
processes described above is shown in Figure 2.

Figure 2: Operating configuration flow chart

The central elements in the third crusher decision problem are the ran-
domness in the possibility of equipment failure and the cost considerations.
Since the new crusher project did not contemplate additional conveyor belts,
this meant that with two crushers installed at a single location, either inside
or outside the pit, a belt failure would idle one of them. Originally, with just
one crusher at each location, the failure of one belt did not affect production
since the other belt could handle the unit’s entire output.
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If the crusher location alternatives are evaluated using the equipment’s
average availability rates, the optimal solution is to install the third crusher
inside the pit. This is the case because the capacity of the two belts is
sufficient to carry the output of the 2 crushers and belt transport is much
cheaper than truck transport, the cost relationship being 1 to 5. Further-
more, if there were only 1 inside crusher, its failure would mean additional
trucks would be needed to maintain production. With 2 in-pit units the
number of trucks could be reduced.

On the other hand, a logistic factor that must be taken into account
points to the opposite solution. The inside crusher location is 400 meters
down into the 1,000-metre deep pit. For safety reasons, the trucks cannot
descend when loaded so that material extracted by shovels operating above
the 400-metre level could only be sent to the ex-pit crusher. This implies
that a failure of a single outside crusher would cause a major interruption
in global output. Thus, despite the greater operating expense, installing the
third crusher outside the pit would ensure feed to the concentrator is more
reliable.

In reality, however, there is significant variability in both crusher and belt
failure rates, and this considerably complicates the third crusher location
decision if average values are used. In what follows, therefore, we develop a
methodology for addressing the problem of locating the third crusher that
incorporates the randomness in the failure factors just described as well as
the cost and logistic considerations.

3 The Methodology and the Model

Consider two production system configurations that include a third crusher.
In the first configuration, denoted C1, there are two ex-pit crushers and one
in-pit crusher while in the second configuration, called C2, there are two
in-pit crushers and one ex-pit crusher.

At the location with two crushers, whether inside or outside the pit,
each crusher will be uniquely associated with one of the two belts. There
are thus two crushing systems, each one composed of a belt and a crusher.
A system will be said to be operative if both crusher and belt are operating
normally. If either component fails, the system it belongs to will be said to
be inoperative.

At the location with just one crusher, whether inside or outside the pit,
the crusher will be associated with both belts. In this case there is a single
crushing system consisting of two belts and a crusher. The system will be
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said to be operative if its crusher and at least one of its belts are operating
normally. If either the crusher or both belts fail, the system will be said to
be inoperative.

From the foregoing it is immediately evident that the mechanical re-
liability of the crushing systems depends on two factors: the mechanical
reliability of the crushers and belts and the number of belts associated with
each crusher.

An analysis of the mechanical performance of each crusher and belt at
Chuquicamata over a period of a year revealed that the distributions of both
the times between failures and the repair times follow a negative exponential
function. Under these conditions, standard mechanical reliability theory
(Dhillon [2002]) allows us to represent a set of equipment connected in series
or in parallel can be represented as a single mechanical system. In our case,
the crushing systems consist of one crusher and either one or two belts,
depending on the configuration. Letting λ be the failure rate and µ the repair
rate for each system, the actual rates calculated for the two configurations
C1 and C2 are set out in Table 1, where I1 and I2 are the in-pit systems
and E1 and E2 the ex-pit systems.

C1 C2

Parameter I1 E1 E2 I1 I2 E1

λ [1/hr] 0.081 0.079 0.079 0.085 0.102 0.073
µ [1/hr] 0.850 0.250 0.250 0.690 0.230 0.630

Table 1: Parameter values for time between failures (λ) and repair time (µ)

3.1 Discrete-time Markov chains

Based on foregoing, we can model the two configurations using Markov
chains. In each case there will be 8 states representing all possible com-
binations of the 3 crushing systems and their 2 possible states, operative
and inoperative (see Table 2). Variable I1(t) is defined as 1 if crusher I1
is operative at time t and 0 otherwise; the other variables I2(t), E1(t) and
E2(t) are defined analogously.

A schematic of the Markov chain for C1 and C2 with the possible tran-
sitions for a given period is shown in Figure 3. In the depicted case, the
graph is complete because all of the transitions between states are possible,
although as we will see later when discussing the infinitesimal period case,
some of them are very unlikely.

We now want to determine the percentage of time in a steady state that
a production system configuration is in each state. Let P be the transition
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C1 C2

State I1 E1 E2 I1 I2 E1

S1 1 1 1 1 1 1
S2 1 1 0 1 0 1
S3 1 0 1 0 1 1
S4 0 1 1 1 1 0
S5 0 0 1 0 1 0
S6 0 1 0 1 0 0
S7 1 0 0 0 0 1
S8 0 0 0 0 0 0

Table 2: State definitions by operational configuration

S1

S2

S3

S4

S5

S6

S7

S8

Figure 3: Discrete-time Markov chain graph

matrix whose elements pij are the probabilities of passing from state Si to
state Sj at time instant δt. If the Markov chain is irreducible and aperiodic,
then π = π ·P where

∑
j πj = 1.

Now let P1 be the transition matrix for configuration C1 and P2 the
transition matrix for configuration C2. To calculate the transition proba-
bilities pij we use the failure and repair rates of each crushing system. For
example, the value of p12 for configuration C1 is calculated as follows:

p12 = P{I1(t+δt) = 1, E1(t+δt) = 1, E2(t+δt) = 0|I1(t) = 1, E1(t) = 1, E2(t) = 1}

Since the crushing systems’ respective failure probabilities are indepen-
dent of each other,
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p12 = P{I1(t+δt) = 1|I1(t) = 1}·P{E1(t+δt) = 1|E1(t) = 1}·P{E2(t+δt) = 0|E2(t) = 1}
(1)

where

P{I1(t+ δt) = 1|I1(t) = 1} = e−λI1δt (2)

P{E1(t+ δt) = 1|E1(t) = 1} = e−λE1δt (3)

P{E2(t+ δt) = 0|E2(t) = 1} = 1− e−λE2δt (4)

Substituting (2), (3) and (4) into (1), we have

p12 = e−λI1δt · e−λE1δt · (1− e−λE2δt) (5)

If we chose a small value for δt of 1/13 of an hour, p12 = 0.60% and the
rest of the pij can be calculated in a similar manner for the two configura-
tions. Transition matrix P1 is given in Table 3 and transition matrix P2

in Table 4. Note that the 0% entries in the matrices represent probabilities
that are small but non-zero.

P1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

98.18% 0.60% 0.60% 0.61% 0.00% 0.00% 0.00% 0.00%
1.86% 96.92% 0.01% 0.01% 0.00% 0.60% 0.59% 0.00%
1.86% 0.01% 96.92% 0.01% 0.60% 0.00% 0.59% 0.00%
6.29% 0.04% 0.04% 92.50% 0.56% 0.56% 0.00% 0.00%
0.12% 0.00% 6.21% 1.75% 91.32% 0.01% 0.04% 0.56%
0.12% 6.21% 0.00% 1.75% 0.01% 91.32% 0.04% 0.56%
0.04% 1.83% 1.83% 0.00% 0.01% 0.01% 95.68% 0.60%
0.00% 0.12% 0.12% 0.03% 1.73% 1.73% 6.13% 90.15%

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Table 3: Transition matrix for configuration C1

P2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

98.02% 0.77% 0.64% 0.55% 0.00% 0.00% 0.01% 0.00%
1.77% 97.03% 0.01% 0.01% 0.00% 0.54% 0.64% 0.00%
5.14% 0.04% 93.53% 0.03% 0.52% 0.00% 0.74% 0.00%
4.69% 0.04% 0.03% 93.88% 0.62% 0.74% 0.00% 0.00%
0.25% 0.00% 4.47% 4.92% 89.58% 0.04% 0.04% 0.71%
0.08% 4.64% 0.00% 1.69% 0.01% 92.93% 0.03% 0.61%
0.09% 5.09% 1.68% 0.00% 0.01% 0.03% 92.58% 0.52%
0.00% 0.24% 0.08% 0.09% 1.61% 4.87% 4.43% 88.67%

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Table 4: Transition matrix for configuration C2

Clearly both Markov chains have the ergodic property (aperiodic and
connected). We can then solve the equation π = π ·P for each configuration.
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The time percentages πC1 for configuration 1 and πC2 for configuration 2
are given in Table 5.

States πC1 πC2

S1 52.1% 55.3%
S2 16.8% 24.3%
S3 16.8% 6.9%
S4 5.1% 6.5%
S5 1.6% 0.8%
S6 1.6% 2.8%
S7 5.4% 3.0%
S8 0.5% 0.4%

Table 5: Steady-state probabilities for discrete-time Markov chain, by con-
figuration

3.2 Continuous-time Markov chains

If we assume δt is an infinitesimal time interval, the probability that two
or three crushing systems change state in any one interval is negligible. The
problem can then be modeled as a continuous-time Markov chain.

In analogous fashion to the discrete-time model, we define the 8 possible
states of each production system configuration as a function of the 3 crushing
systems’ 2 operating states, operative (1) and inoperative (0). Simplifying
the notation, the failure rate and the repair rate of crushing system i are
denoted λi and µi, respectively. The continuous-time Markov chain can then
be graphed as in Figure 4. Each node in the graph must be in equilibrium,
that is, the inflow to any node must be equal to the outflow from it. The
flow conservation equations for each node in the steady state are given in
the following system:

π(1,1,1) · (λ1 + λ2 + λ3) = π(0,1,1) · µ1 + π(1,0,1) · µ2 + π(1,1,0) · µ3
π(1,1,0) · (λ1 + λ2 + µ3) = π(0,1,0) · µ1 + π(1,0,0) · µ2 + π(1,1,1) · λ3
π(1,0,1) · (λ1 + µ2 + λ3) = π(0,0,1) · µ1 + π(1,1,1) · λ2 + π(1,0,0) · µ3
π(0,1,1) · (µ1 + λ2 + λ3) = π(1,1,1) · λ1 + π(0,0,1) · µ2 + π(0,1,0) · µ3
π(0,0,1) · (µ1 + µ2 + λ3) = π(1,0,1) · λ1 + π(0,1,1) · λ2 + π(0,0,0) · µ3
π(0,1,0) · (µ1 + λ2 + µ3) = π(1,1,0) · λ1 + π(0,0,0) · µ2 + π(0,1,1) · λ3
π(1,0,0) · (λ1 + µ2 + µ3) = π(0,0,0) · µ1 + π(1,1,0) · λ2 + π(1,0,1) · λ3
π(0,0,0) · (µ1 + µ2 + µ3) = π(1,0,0) · λ1 + π(0,1,0) · λ2 + π(0,0,1) · λ3.

(6)

If we then add the condition that the πj values are a probability dis-
tribution, so that

∑
j πj = 1, we obtain a system of 8 linearly independent
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Figure 4: Continuous-time Markov chain graph

equations in 8 unknowns. The π value for each state represents the fraction
of time the system is in the corresponding state over the long term. Solving
the system yields the following π values:

π(1,1,1) = µ1·µ2·µ3
(λ1+µ1)(λ2+µ2)(λ3+µ3)

π(1,1,0) = µ1·µ2·λ3
(λ1+µ1)(λ2+µ2)(λ3+µ3)

π(1,0,1) = µ1·λ2·µ3
(λ1+µ1)(λ2+µ2)(λ3+µ3)

π(0,1,1) = λ1·µ2·µ3
(λ1+µ1)(λ2+µ2)(λ3+µ3)

π(0,0,1) = λ1·λ2·µ3
(λ1+µ1)(λ2+µ2)(λ3+µ3)

π(0,1,0) = λ1·µ2·λ3
(λ1+µ1)(λ2+µ2)(λ3+µ3)

π(1,0,0) = µ1·λ2·λ3
(λ1+µ1)(λ2+µ2)(λ3+µ3)

π(0,0,0) = λ1·λ2·λ3
(λ1+µ1)(λ2+µ2)(λ3+µ3)

.

(7)

From these results we derive the πC1 values for configuration C1 and
the πC2 values for configuration C2, set out in Table 6. Since the transition
period defined for the discrete-time Markov chain is relatively short, the

12



solutions for the steady-state probabilities in the two cases are similar.

States πC1 πC2

S1 52.4% 55.6%
S2 16.8% 24.3%
S3 16.8% 6.8%
S4 4.9% 6.4%
S5 1.6% 0.8%
S6 1.6% 2.8%
S7 5.4% 3.0%
S8 0.5% 0.3%

Table 6: Steady-state probabilities for continuous-time Markov Chain, by
configuration

More generally, for a system of n components where each component is
subject to failure at a rate λi and can be repaired at a rate µi, the probability
of being in state (k1, k2, . . . , kn) with ki ∈ {0, 1} is given by the following
formula:

π(k1,k2,...,kn) =
n∏

i=1

λ1−kii · µkii
(λ1−kii µkii + λkii µ

1−ki
i )

.

4 Model Validation

To validate our results we modeled configurations C1 and C2 using the
discrete-event simulation software Promodel. The simulation period was one
year, consisting of 8,610 hours discretized into intervals of 1/13 of an hour.
For each configuration, 100 realizations were simulated.

The results of the simulations were contrasted with those obtained by
the Markov model in Figure 5 for C1 and in Figure 6 for C2. The bars in the
figures represent the ranges of the realizations while the markers indicate
their expected values.

The goodness of fit between the value predicted by our Markov model
and the average simulated realization value was calculated using the well-
known coefficient of determination indicator R2 (Draper and Smith [1981]).
For C1, the result was R2 = 0.990 while for C2 it was R2 = 0.981.

5 Results

In our specification of the problem, the truck transport distance depends
on three factors: first, the location of the shovels; second, the location of
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Figure 5: Markov versus discrete-event simulation, configuration 1
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Figure 6: Markov versus discrete-event simulation, configuration 2

the crushers; and third, the crushers’ mechanical availability. Thus, we
associated a transport distance dS with each state S. Since the shovels
must be relocated periodically as ore extraction advances, dS will vary over
time.

To evaluate the best location of the planned third crusher, we defined a
time horizon of 4 years. For each year, the distances associated with each
state were calculated. The values so computed for each configuration are
summarized in Table 7.

The average distance d is a function of the time percentage π and the
distances dS . This relationship determines the productivity of the system as
a function of the operating configuration, the failure rates and the crushing
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Distance(m) Distance(m)

States πC1 dyear1S dyear2S dyear3S dyear4S πC2 dyear1S dyear2S dyear3S dyear4S

S1 52.1% 4,310 3,207 3,666 3,366 55.3% 4,295 3,173 3,663 3,364
S2 16.8% 4,310 3,207 3,666 3,366 24.3% 4,295 3,173 3,663 3,364
S3 16.8% 4,310 3,207 3,666 3,366 6.9% 4,295 3,173 3,663 3,364
S4 5.1% 6,328 5,203 6,094 4,395 6.5% 4,513 4,579 3,987 4,910
S5 1.6% 6,328 5,203 6,094 4,395 0.8% 4,513 4,579 3,987 4,910
S6 1.6% 6,328 5,203 6,094 4,395 2.8% 4,513 4,579 3,987 4,910
S7 5.4% 4,910 4,677 3,990 4,912 3.0% 6,924 5,306 6,094 4,395
S8 0.5% 6,928 6,673 6,418 5,941 0.4% 7,143 6,713 6,419 5,941

Table 7: Distance associated with states, by configuration and year

system repair rates. Therefore, using the continuous-time Markov chain
solution π and the distance vector dS , we calculated the average distance
with the following formula:

d =
µ1 · µ2 · µ3 · d(1,1,1) + µ1 · µ2 · λ3 · d(1,1,0) + µ1 · λ2 · µ3 · d(1,0,1) + λ1 · µ2 · µ3 · d(0,1,1)

(λ1 + µ1)(λ2 + µ2)(λ3 + µ3)

+
λ1 · λ2 · µ3 · d(0,0,1) + λ1 · µ2 · λ3 · d(0,1,0) + µ1 · λ2 · λ3 · d(1,0,0) + λ1 · λ2 · λ3 · d(0,0,0)

(λ1 + µ1)(λ2 + µ2)(λ3 + µ3)
.

The truck cycle time was then identified from the values for the transport
distance and the average velocity, the latter computed for each of the 4
years. The productivity of the transport system was defined as the average
hourly tonnage per truck transported to the crusher. The truck requirement
(number of trucks) was determined by two factors: first, the tonnage to be
transported; and second, the transport system productivity as just defined.
For a given tonnage, the greater the productivity the smaller the truck
requirement, and vice versa. The truck requirement for each configuration
and period along with the transport distance, cycle time and productivity
are set forth in Table 8.

Config.C1 Config.C2
Year Tonnage distance cycle time productivity trucks distance cycle time productivity trucks

[kton] [meters] [min] [ton/hr] [unit] [meters] [min] [ton/hr] [unit]
Y1 44,816 4,524 36.24 497 19 4,408 34.03 529 17
Y2 44,941 3,471 29.76 605 15 3,393 28.71 627 15
Y3 44,817 3,900 30.57 589 15 3,779 29.69 606 15
Y4 44,569 3,549 28.80 625 15 3,561 28.81 625 15

Table 8: Truck requirement by operational configuration and year

As regards the economic evaluation, the operating cost items included
wages, maintenance, fuel and truck tires, all of which are directly related to
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the truck requirement. Capital costs were also taken into account, although
they are not affected by randomness and are therefore not directly incorpo-
rated into our model. These items included crusher installation and truck
acquisition. Note particularly that installing a crusher inside the pit costs
US$20 million more than doing so outside it. The operating costs were cal-
culated for a 4-year time horizon and both cost categories were discounted
at a rate of 8% following CODELCO’s accounting practices. The resulting
present values were MUS$ -123.953 for C1 and MUS$ -129.949 for C2 and
are shown in Table 9, broken down by individual cost item. On the basis of
these results, configuration C1 was recommended.

Economic Config.C1 Config.C2
Breakdown [MUS$] [MUS$]

Manpower -12.193 -11.776
Fuel -37.380 -35.011
Tires -11.678 -11.440
Maintenance -40.686 -39.314
Truck CAPEX -7.407 0.000
Crusher Installation -13.889 -32.407

Total NPV (8%) -123.233 -129.949

Table 9: Economic evaluation by cost item and configuration

6 Conclusions

This paper presented a solution methodology for the decision problem
faced by Chile’s Chuquicamata open pit copper mine regarding the location
of a third crusher. The two available alternatives were to situate it next
to either one of the two existing units, one installed inside the pit and the
other outside it. The alternatives posed a complex trade-off between the
acquisition and operating costs of the crushers and associated equipment
and their reliability or probability of failure.

The proposed methodology was built around a Markov chain model that
incorporated failure as a randomness factor in determining the productivity
of the crusher systems. Two different configurations, one each for the two
location alternatives just described, were modelled using discrete-time sim-
ulation and the results were compared with those derived from the Markov
chains approach. The goodness-of-fit measurements found that the coeffi-
cient of determination for the inside and outside installation configurations
were 0.990 and 0.981, respectively, demonstrating that the Markov chain
model could replace the simulation model for productivity calculations.
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A continuous-time Markov model was then employed to determine how
each relevant variable affected the behaviour of the crusher systems in the
two configurations so that an economic evaluation determining which of
the configurations was more cost effective could be made and one of the
configurations recommended. This model also showed how the different
variables interacted and was thus able to deliver insights into the dynamics
of the crusher systems that a simulation could not provide, despite the latter
approach’s greater cost in terms of a series of factors relating to the many
complexities of modeling, solving and calibrating discrete-time formulations.

Finally, the methodology was successfully applied to the Chuquicamata
case in 2010 and the optimal of the two configurations was implemented at
the mine. Some of the specific data presented in this study were changed
for reasons of confidentiality.

Acknowledgements

The authors would like to thank to Enrique Chacón (R.I.P.) and
Sergio Jarpa for their valuable collaboration. Research support of
the second author was provided by FONDECYT under gran number
1120475.

References

NE Abboud. A discrete-time markov production-inventory model with ma-
chine breakdowns. Computers & Industrial Engineering, 39(1):95–107,
2001.

K. Awuah-Offei, V. A. Temeng, and S. Al-Hassan. Predicting equipment
requirements using siman simulation a case study. Mining Technology,
112(3):180–184, Dec. 2003.

Gely P. Basharin, Amy N. Langville, and Valeriy A. Naumov. The life
and work of a.a. markov. Linear Algebra and its Applications, 386(0):3
– 26, 2004. ISSN 0024-3795. doi: http://dx.doi.org/10.1016/j.laa.2003.
12.041. URL http://www.sciencedirect.com/science/article/pii/

S0024379504000357. Special Issue on the Conference on the Numerical
Solution of Markov Chains 2003.

G. R. Baunach, D. N. Brown, and G. C. Jones. Computer simulation of
ore handling operations port hedland, wa. In E. Baafi, editor, Computer
Systems in the Australian Mining Industry, Sym., pages 79–83. Univ. of
Wollongong, 1989.

17

http://www.sciencedirect.com/science/article/pii/S0024379504000357
http://www.sciencedirect.com/science/article/pii/S0024379504000357


Bruce O Burnham. Markov intertemporal land use simulation model. South-
ern Journal of Agricultural Economics, 5(1):253–258, 1973.

P. K. Chatterjee and D. J. Brake. Dispatching and simulation methods in
open-pit operations. CIM Bulletin, 74(835):102–107, 1981.

Richard Michael Cyert and Gerald L Thompson. Selecting a portfolio of
credit risks by markov chains. Journal of Business, pages 39–46, 1968.

Balbir S Dhillon. Engineering maintenance: a modern approach. CRC Press,
2002.

Norman Richard Draper and Harry Smith. Applied regression analysis 2nd
ed. 1981.

Jorgen Elbrond. Capacity calculations at klab, kiruna. In Proceedings of the
4th APCOM Symposium 1964 - Application of Computers and Operations
Research in the Mineral Industry, volume 59, pages 683–690. Colorado
School of Mines. Quartely, 1964.

T. V. Falkie and D. R. Mitchell. Probability simulation for mine haulage
systems. Soc of Min. Engr., 266:467–473, Dec. 1963.

P. R. Harvey. Analysis of production capabilities. In Proceedings of the 4th
APCOM Symposium 1964 - Application of Computers and Operations
Research in the Mineral Industry, volume 59, pages 713–726. Colorado
School of Mines. Quartely, 1964.

George G Judge and Earl Raymond Swanson. Markov chains: basic con-
cepts and suggested uses in agricultural economics. Australian Journal of
Agricultural and Resource Economics, 6(2):49–61, 1962.

Donald Redmon. Solving mine haulage problems by system simulation. In
Proceedings of the 4th APCOM Symposium 1964 - Application of Com-
puters and Operations Research in the Mineral Industry, volume 59, pages
887–913. Colorado School of Mines. Quartely, 1964.

Karsten Rist. The solution of a transportation problem by use of a monte
carlo technique. In Proceedings of the 2th APCOM Symposium 1962 - Ap-
plication of Computers and Operations Research in the Mineral Industry,
pages L2–1 to L2–25. University of Arizona, March 1962.

P. Saayman, I.K. Craig, and F.R. Camisani-Calzolari. Optimization of an
autonomous vehicle dispatch system in an underground mine. The Journal

18



of The South African Institute of Mining and Metallurgy, 106:77–86, Feb.
2006.

J. R. Sturgul and J. Harrison. Simulation models for surface mines. Inter.
Jour. of Surf. Min., (1):187–198, 1987.

J. H. Tu and V. J. Hucka. Analysis of open-pit truck haulage system by use
of a computer model. CIM Bulletin, pages 53–59, 1985.

Q. Wang, Y. Zhang, C. Chen, and W. Xu. Open-pit mine truck real-time
dispatching principle under macroscopic control. In First International
Conference on Innovative Computing, Information and Control, volume 1,
pages 702–705, Beijing, 2006. IEEE Computer Society.

F. L. Wilke and K. Heck. Simulation studies on truck dispatching. In
T. B. Johnson and R. J. Barnes, editors, Proceedings of the 17th APCOM
Symposium 1982 - Application of Computers and Operations Research in
the Mineral Industry, pages 620–626, New York, 1982. SME of AIME.

19


	Introduction
	The Problem
	The Methodology and the Model
	Discrete-time Markov chains
	Continuous-time Markov chains

	Model Validation
	Results
	Conclusions

