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A B S T R A C T

The q-Weibull model is based on the Tsallis non-extensive entropy [22] and is able to model various behaviors
of the hazard rate function, including bathtub curves, by using a single set of parameters. Despite its flexibility,
the q-Weibull has not been widely used in reliability applications partly because of the complicated parameters
estimation. In this work, the parameters of the q-Weibull are estimated by the maximum likelihood (ML)
method. Due to the intricate system of nonlinear equations, derivative-based optimization methods may fail to
converge. Thus, the heuristic optimization method of artificial bee colony (ABC) is used instead. To deal with the
slow convergence of ABC, it is proposed an adaptive hybrid ABC (AHABC) algorithm that dynamically combines
Nelder-Mead simplex search method with ABC for the ML estimation of the q-Weibull parameters. Interval
estimates for the q-Weibull parameters, including confidence intervals based on the ML asymptotic theory and
on bootstrap methods, are also developed. The AHABC is validated via numerical experiments involving the q-
Weibull ML for reliability applications and results show that it produces faster and more accurate convergence
when compared to ABC and similar approaches. The estimation procedure is applied to real reliability failure
data characterized by a bathtub-shaped hazard rate.

1. Introduction

The Weibull distribution, frequently used in reliability engineering,
has been generalized to a q-Weibull distribution by Picoli et al. [1] in
the context of non-extensive statistical mechanics. The q-Weibull
distribution can be used to describe complex systems with long-range
interactions and long-term memory [2]. Compared to the Weibull
distribution, which can only describe monotonic hazard rate functions,
the q-Weibull is able to model various behaviors of the hazard rate,
including the unimodal, bathtub-shaped, monotonic (monotonically
decreasing, monotonically increasing) and constant. Indeed, Assis et al.
[2] provided the ranges of the shape parameters q and β related to each
type of curve.

Thus, the q-Weibull probabilistic model unifies monotonic and
non-monotonic hazard rate functions by using one general formula,
which is flexible and elegant for failure data fitting. For example, the
well-known bathtub-shaped hazard rate function is reproduced by the
q-Weibull distribution using a single set of three parameters for its
three characteristic regions. Such a flexibility is important to accurately
perform reliability analyses when failure data are characterized by non-
monotonic hazard rates. Additionally, q-Weibull model is able to

reproduce both short and long tailed distributions.
The Weibull distribution has been modified or generalized in

different ways to allow for non-monotonic hazard rate functions. For
instance, Murthy et al. [4] provide a taxonomy to integrate the different
Weibull models. There are some recent Weibull distribution extensions
in the reliability engineering literature. Pham and Lai [5], and Almalki
and Nadarajah [6] reviewed the generalizations and modifications of
the Weibull distribution. These models are capable of modeling a
bathtub-shaped hazard rate functions and can be classified into two
categories: (i) methods that add parameters to an existing distribution
to obtain classes of more flexible distributions as introduced by Olkin
[7], and (ii) methods that combine two or more distributions with one
or more being Weibull. Examples include the IDB model [8], the
exponentiated Weibull (EW) distribution [9], the generalized Weibull
(GW) [10], the additive Weibull (AW) distribution [11], the extended
Weibull distribution [12], the modified Weibull (MW) distribution
[13], the modified Weibull extension (MWE) [14], the beta Weibull
(BW) distribution [15], the flexible Weibull extension (FWE) [16], the
generalized modified Weibull (GMW) distribution [17], the ENH
distribution [18], the additive modified Weibull (AMW) distribution
[19], and the generalized modified Weibull power series (GMWPS)
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distribution [20]. There are also models involving two or more Weibull
distributions, for example, sectional method, competing risk approach
and multiplicative model introduced by Jiang and Murthy [21].

In this paper, the q-Weibull distribution arises in the context of
reliability. It has the advantage of containing only three parameters
with flexibility to model various shapes of the hazard rate function,
thus positioning itself as an alternative to the existing life distributions
in modeling reliability data. Indeed, the q-Weibull distribution has
been successfully applied to model lifetime data in the context of
reliability engineering. For example, Costa et al. [23] used q-Weibull
distribution to properly describe time-to-breakdown data of electronic
devices; Sartori et al. [24] considered a q-Weibull distribution to
describe the failure rate of a compression unit in a typical natural
gas recovery plant based on time-to-failure data.

In these papers, the q-Weibull distribution parameters have been
estimated via the least squares estimation (LSE) procedure (see Picoli
et al. [1]) or through square correlation coefficient R2 maximization (in
Sartori et al. [24] and Assis et al. [2]). Jose and Naik [25] provided the
likelihood function, but claimed that it is very difficult to obtain the
maximum likelihood (ML) estimates of the parameters due to the
nonlinear set of equations. Alternatively, Jose and Naik [25] employed
the method of moments stating, however, that the moment estimates
are not easy to evaluate when all the parameters are unknown.

Extensive simulation studies have shown the ML method is better
than the LSE in reliability applications when data sets are typically
small or moderate in size [26]. Since the distribution of ML parameter
estimates are more accurate with smaller variance, we here adopt the
ML method. However, the application of ML on q-Weibull distribution
presents some challenges: the first derivative equations of the related
log-likelihood function are highly nonlinear, and the equations do not
have analytical solutions for the parameters' estimators. Such a
difficulty can explain the limited number of applications based on the
q-Weibull model given that parameter estimation and data fitting are
crucial steps for reliability analyses.

In this context, a numerical approach can be adopted to solve the q-
Weibull ML problem. In this work, we employ an artificial bee colony
(ABC) algorithm [27], which is a nature-based heuristic method that
does not require derivative information to solve the q-Weibull dis-
tribution ML problem.

However, the convergence performance of ABC for local search is
slow due to its solution search method, which is good at exploration but
poor at exploitation [32]. In order to improve its performance, some
modified versions of ABC have been proposed in the literature. For
instance, inspired by Particle Swarm Optimization (PSO), Zhu and
Kwong [32] developed an improved ABC algorithm named gbest-
guided ABC (GABC) by incorporating the information of global best
solution into the solution search equation to improve exploitation.
Kang et al. [33] proposed a Hooke-Jeeves ABC (HABC) algorithm that
combines Hooke-Jeeves pattern search with ABC algorithm. In the
HABC, the exploration phase is performed by ABC and the exploitation
stage is completed by pattern search. Karaboga and Gorkemli [34]
adopted the quick ABC (qABC), which models the behavior of onlooker
bees more accurately and improves the performance of standard ABC
in terms of local search ability. In order to achieve an optimization
performance with higher convergence speed and an improved exploita-
tion capacity, Shan et al. [35] used a self-adaptive hybrid artificial bee
colony (SAHABC) algorithm inspired by self-adaptive mechanism,
differential evolution (DE), and PSO algorithm. In the SAHABC, the
search equation for employed bees is modified based on the self-
adaptive mechanism, which is used to balance the exploration ability
and the convergence speed of ABC, and DE mutation strategy, which
uses the best solution to improve convergence performance. The search
equation for onlooker bees is modified based on PSO to improve the
exploitation ability. Kang et al. [36] proposed a hybrid simplex ABC
algorithm (HSABCA) that combines Nelder-Mead simplex method with
artificial bee colony algorithm for inverse analysis problems. The

HSABCA was applied to parameter identification of concrete dam-
foundation systems. The Nelder-Mead simplex algorithm proposed by
Nelder and Mead [37] is an efficient local search method. It was also
combined with other heuristic to improve the convergence accuracy
and speed. For example, Fan and Zahara [38] proposed the hybrid NM-
PSO algorithm based on the Nelder-Mead simplex search method and
PSO for unconstrained optimization.

A method that does not depend on derivative, but also presents fast
convergence is necessary in the q-Weibull distribution ML optimization
problem. In this direction, this paper proposes an Adaptive Hybrid
ABC (AHABC) algorithm, which combines a local Nelder-Mead simplex
search method with ABC to enhance the local search capability of ABC.
Differently from HSABCA proposed by Kang et al. [36], AHABC
dynamically controls the exploration and exploitation, given that the
parameter for Nelder-Mead local search is adaptively tuned according
to the search status. AHABC is also different from SAHABC [35] in
terms of the hybrid strategy and adaptive mechanism.

The proposed AHABC is an efficient manner to tackle the difficult
ML problem related to the q-Weibull distribution comprising different
behaviors of the hazard rate function. The efficiency of the new
algorithm is proved by comparison with the standard ABC and with
SAHABC.

The rest of this paper is organized as follows. In Section 2, the ML
constrained problem related to the q-Weibull distribution is developed.
In Section 3, AHABC algorithm is proposed. Section 4 presents
numerical experiments for the validation of the proposed AHABC
algorithm to obtain ML estimates for the q-Weibull parameters.
Section 5 presents an application example involving ML estimates of
the q-Weibull parameters for reliability-related lifetime data via the
proposed AHABC. Concluding remarks are given in Section 6. The
Appendix contains the development of the asymptotic intervals based
on the ML theory [39], as well as parametric and non-parametric
bootstrap methods [40] are developed and combined with the proposed
AHABC to provide bootstrap confidence intervals for the q-Weibull
parameters estimated via ML.

2. q-Weibull maximum likelihood constrained problem

2.1. Characterization of q-Weibull distribution

The probability density function (PDF) of the q-Weibull distribu-
tion is as follows:
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Therefore, the q-Weibull PDF can be rewritten as:
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In the limit q → 1, f t( )q reduces to the Weibull PDF, for β = 1 it
corresponds to the q-Exponential PDF, and when q → 1 and β = 1 it
becomes the Exponential distribution [3].

The q-Weibull cumulative distribution (CDF) and reliability func-
tions are as follows:
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Then, the hazard rate function is defined as:
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Equation (7) is able to represent different types of hazard rate
functions according to the values of the shape parameters [2]. Indeed,
h t( )q is monotonically decreasing for q1 < < 2 and β0 < < 1, mono-
tonically increasing for q < 1 and β > 1, unimodal for q1 < < 2 and
β > 1, and bathtub-shaped for q < 1 and β0 < < 1.

Fig. 1 illustrates the different behaviors of h t( )q for η = 5 and
specific values of the shape parameters q and β. Note that for
q q= 0.5( < 1), h t( )q – as well as f t( )q , F t( )q and R t( )q – has a limited
support. For the cases β = 0.5 with q = 0.5 and β = 1.5 with q = 0.5
depicted in Fig. 1, tmax is 20 and 7.937, respectively.

Moreover, random samples may be generated according to the q-
Weibull distribution by inverting F t( )q . Indeed, the q-Weibull random
number generator is obtained as:
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where U is a uniform random number in [0,1].
Suppose that an item has survived to time t0, then the q-Weibull

conditional reliability function is given by:
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2.2. Maximum likelihood constrained problem

In this section, the parameters of the q-Weibull distribution are
estimated via the ML method. Let t t t t= ( , , …, )n1 2 be an n-dimen-

sional vector of observed failure times t i n, = 1,…,i , independently
drawn from a q-Weibull distribution. The likelihood function is given
by:
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The log-likelihood function is as follows:

⎛
⎝⎜

⎞
⎠⎟

∑

∑

t η β q nln q nln β nβ η β t

q
q t

η

( | , , ) = (2 − ) + ( ) − ln( ) + ( − 1) ln( )

+ 1
1 −

ln [1 − (1 − ) ]

i

n

i

i

n
i

β
=1

=1 (11)

Considering the constraints of parameters and the support, the
constrained optimization problem is:
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The first derivatives of the log-likelihood function w.r.t. parameters
are nonlinear, and analytical solutions are very difficult to be obtained.
A heuristic based constrained optimization method can be applied to
tackle this problem. In this paper, the ML estimates η βˆ, ˆ and q̂ are
obtained by means of an adaptive hybrid artificial bee colony (AHABC)
algorithm developed in the next section.

3. Proposed adaptive hybrid artificial bee colony algorithm

In the ABC algorithm, while onlookers and employed bees carry out
the exploitation process in the search space, the scouts control the
exploration process [27]. However, the original ABC is good at
exploration but bad at exploitation for numerical benchmark functions
optimization [32]. From our simulation experiments for ML estimation
of the q-Weibull parameters by ABC (see Section 4.2), we also observe
similar results: although ABC could find the global optimum, the
estimates’ variability is large due to the slow convergence speed of ABC
for local search.

Thus, in order to make full use of ABC’s exploration, and avoid its
drawbacks, an adaptive hybrid ABC is proposed that incorporates a
local search stage. The main idea of AHABC is that through adaptively
tuning the parameters of hybrid ABC according to the search process,
the hybrid ABC will gradually change from global ABC search pattern
to local search pattern. The general AHABC framework is shown in
Fig. 2. The details of the proposed AHABC algorithm are presented in
the following subsections.

3.1. Hybrid strategy

“Hybrid Strategy” is the method to combine ABC with a local search
algorithm. There are two common types of hybrid strategies: (i)
selectively applying either ABC or local search, which means that for
a certain population, the next generation is given by ABC or local
search method; (ii) merging the local search into ABC, which means
that the local search is incorporated into ABC as an operation or a
phase.

Fig. 1. Behaviors of the q-Weibull hazard rate function for η = 5 and different values of

the shape parameters q and β.
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In the proposed algorithm, we adopt the second hybrid strategy.
Nelder-Mead simplex search is chosen as the local search method and
is added to ABC as an additional step after the original three phases
and within every iteration. This method rescales the simplex by four
procedures: reflection, expansion, contraction and shrinkage. The
input of local search phase is the best D + 1 solutions in the population,
where D is the dimension of the optimization problem, as shown in
Fig. 3. Then, three candidate solutions are generated and evaluated. If
the best of these new solutions can outperform the worst solution in
current simplex, this new solution replaces the worst one (see Fig. 3).
Otherwise, the current simplex shrinks towards the best solution in the
current simplex (see Fig. 3). These solutions will be exploited by the
Nelder-Mead simplex local search for a number of function evaluations
NS.

3.2. Adaptive switch mechanism

“Adaptive switch mechanism” determines how the hybrid algorithm
changes from global exploration to local exploitation. Basically, the
principle of “adaptive switch mechanism” is to gradually increase the
use of local search by tuning algorithm parameters according to the
search process. These tunable parameters are search space-related, i.e.,

changing their values will modify the search property (more global or
more local).

In this paper, we adaptively increase the number of simplex search,
and the searching process becomes more local. The remaining chal-
lenge is how to determine the number of simplex searches NS. We
propose the following formula:

NS C= *limit*total number of scout bees. (17)

Firstly, since the total number of scout bees increases over ABC
iterations, this definition of NS will guarantee that NS is non-decreas-
ing, which means the search process will become more and more local.
Secondly, the total number of scout bees is a symbol of search status. A
large number of scout bees indicates that a significant portion of the
solution space has been explored, that the exploration is becoming
inefficient and a local exploitation is becoming urgent. Also, the “limit”
is also an important ABC parameter, which controls the scout bee
generation frequency. C is a coefficient that controls the amount of
local search. For the q-Weibull distribution ML optimization problem,
C = 1 provided an acceptable convergence speed (shown in Section
4.1). Thus, we use the product of limit and the total number of scout
bees as the number of function evaluations within the local search
phase of the AHABC. In summary, NS dynamically increases along the
search process and it gradually changes from global to local.

Fig. 2. Framework of adaptive hybrid ABC.

Fig. 3. Scheme of simplex search.
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3.3. Constraints

For the constraints (13–16) related to the q-Weibull ML problem,
we adopt the “throw away” approach, which means that if the
generated solution is not feasible, we throw it away and keep the
current solution. This is a simplified Deb’s rule [46] that involves
domination rules between solutions. In our proposed algorithm, we do
not allow infeasible solutions in the population, and once an infeasible
one is generated, we consider it as inferior to its previous solution and
throw it away.

3.4. Proposed algorithm

The pseudo-code of the proposed AHABC algorithm is given in
Fig. 4.

There are three commonly used control parameters in the standard
ABC: the number of food sources, which is equal to the number of
employed or onlooker bees (SN ); the value of limit , which can be
obtained from the formula limit SN D= * [27], where D is dimension of
the optimization problem; and the maximum cycle number (MCN ).

In the AHABC algorithm, one iteration cycle incorporates iterations
of the Nelder-Mead local search. Instead of separately setting the
iteration numbers for ABC and Nelder-Mead local search, we use only
one parameter of maximum number of function evaluations (MFE),
totaling all the ABC and Nelder-Mead local search function evaluations.
The number of function evaluations for Nelder-Mead local search is set
by Eq. (17), which is adaptively tuned according to the search process.

There are three stop criteria employed in the AHABC algorithm:

1) Maximum number of function evaluations (MFE).
2) The global best solution is the same for maxBestTrial times. In this

case, the iteration number in which the best solution has been
found is used.

3) The global best objective function value in two consecutive itera-
tions are different, but such a difference is less than a predefined
tolerance ε.

4. Numerical experiments

The proposed AHABC was coded in MATLAB environment and
simulation experiments were conducted to evaluate its performance.
The experimental settings (ES) cover different behaviors of the q-
Weibull hazard rate for reliability applications, as they involve different
value combinations of the shape parameters q and β. Note that for all
ES, η = 5. Table 1 shows the ES, the q and β values as well as the
corresponding hazard rate function behavior.

Sample sizes of 100, 500 and 1000 are taken into consideration.
Samples for ES-A, B, D and E were generated by Eq. (8), whereas ES-C
samples were directly drawn from the inverse transform of the
Exponential cumulative distribution [47]. The parameters' values used
in the AHABC simulation experiments are shown in Table 2.

The initial intervals for q, β and η are set to [−10, 1.9], [0.1, 10],
[0.1,tmean], respectively, where tmean is the mean of the sample. The
initial population of SN solutions is randomly generated between these

Fig. 4. Pseudo-code of AHABC.
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intervals. In the initialization, we also adopt the "throw away" method
to ensure that all the initial solutions are feasible.

4.1. Effect of parameter C on AHABC

The effect of parameter C on AHABC is tested on ES-A with sample
size n=100. ParameterC is set to 0, 0.5, 1, 1.5, 2, 25, and 125. To assess
the convergence performance of AHABC, we take the difference
between the objective function value t η β q( | ˆ, ˆ, ˆ) and the true optimum
value as the convergence performance. Since the true parameters of the
sample are unknown, we take the best objective function value

t η β qmax { ( | ˆ, ˆ, ˆ)} found among 30 replication runs as the true
optimum value. The mean and the standard deviations of this
difference for 30 replication runs are shown in Fig. 5 and Fig. 6,
respectively.

The results reveal that a proper value of C can improve the
performance of AHABC by providing faster convergence and more
accurate solutions. It is observed that both for C = 1 and C = 125,
satisfactory convergence can be obtained. For the sake of simplicity,
C = 1 is adopted in the subsequent experiments. Thus, Eq. (17) for the

number of function evaluations for local search can be simplified to
NS s= limit*total number of cout bees.

4.2. Comparison with ABC and SAHABC

The proposed AHABC algorithm is compared with the standard
ABC and with SAHABC for the q-Weibull ML problem in terms of
variability and convergence speed. AHABC uses the same parameters
given in Table 2, ABC is fed with the parameters’ values of the ABC part
also shown in Table 2 and SAHABC uses the parameters provided in
Table 3. The algorithms are replicated 30 times for each sample (with
n = 100,500,1000) and ES (A, B, C, D, E), which yields 15 different
scenarios. The mean and standard deviations of ML estimates for
parameters q β η, , , as well as log-likelihood function over 30 runs are
shown in Table 4.

For a given sample size and an ES, AHABC can provide accurate
estimates for the parameters and for the log-likelihood. Indeed, as we
can see in Table 4, all the standard deviations for parameters estimates
are in the order of10−6 or less, and for the log-likelihood in the order of
10−12 or less. The mean values of the parameter estimates are close to
the true values of the q-Weibull distribution shown in Table 1.

By comparing the results from AHABC, ABC and SAHABC in
Table 4, the best result for each scenario is highlighted in bold, and
it is clear that most of the standard deviations for parameters and for
the log-likelihood by AHABC are smaller than those provided by ABC
and SAHABC algorithms. These results indicate that AHABC can give
more accurate estimates than both ABC and SAHABC. We also
compare the convergence speed, for ES-A and E (see Fig. 7 and
Fig. 8). AHABC converges faster than ABC and SAHABC in both cases.
Therefore, one can expect the proposed AHABC to be more efficient
and to provide better solutions than ABC and SAHABC for the q-
Weibull ML optimization problem.

Table 1
Experimental settings.

ES q β Behavior of hazard rate function

A 0.5 0.5 Bathtub-shaped
B 1.5 0.5 Decreasing
C 1 1 Constant
D 0.5 1.5 Increasing
E 1.5 1.5 Unimodal

Table 2
AHABC parameters.

Part of AHABC approach Parameter Value

ABC SN 50
limit 150
MFE 200,000
maxBestTrial 1000
ε 1e−16

Nelder-Mead simplex method α 1
γ 2
ρ −0.5
δ 0.5

Adaptive hybrid coefficient C 1

Fig. 5. Effect of C on convergence speed.

Fig. 6. Effect of C on convergence variability.

Table 3
SAHABC parameters.

Parameters Values

SN 50
limit 150
MCN 2000
maxBestTrial 1000
ε 1e−16
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Table 4
ML estimates for 30 replications of AHABC, ABC and SAHABC.

AHABC ABC SAHABC

Sample size ES Statistic Mean Std. Mean Std. Mean Std.

n=100 A q̂ 0.4700 4.65E−08 0.5616 0.0471 0.4681 0.0112

β̂ 0.5497 7.96E−09 0.5642 0.0069 0.5494 0.0017

η̂ 5.4926 5.16E−07 4.5407 0.5390 5.5153 0.1304

−158.2313 2.42E−14 −158.2537 0.0066 −158.2317 0.0004
B q̂ 1.4236 1.36E−08 1.4236 4.58E−08 1.4236 2.8624e−08

β̂ 0.4556 6.83E−09 0.4556 2.39E−08 0.4556 1.8592e−08

η̂ 5.9228 5.95E−07 5.9229 1.62E−06 5.9228 1.2351e−06

−531.0407 3.00E−13 −531.0407 3.17E−13 −531.0407 1.3352e−13
C q̂ 0.9926 2.27E−08 0.9928 4.47E−05 0.9942 0.0041

β̂ 0.9735 1.46E−08 0.9736 2.86E−05 0.9743 0.0026

η̂ 4.9522 2.01E−07 4.9508 0.0004 4.9376 0.0393

−259.5912 4.95E−14 −259.5912 1.98E−07 −259.5916 0.0005
D q̂ 0.5583 2.65E−08 0.5711 0.0060 0.5549 0.0186

β̂ 1.4949 1.96E−08 1.5013 0.0035 1.4932 0.0101

η̂ 4.8668 1.03E−07 4.8141 0.0253 4.8817 0.0782

−186.6367 1.11E−13 −186.6379 0.0004 −186.6394 0.0050
E q̂ 1.5853 9.78E−09 1.5853 4.38E−08 1.5853 2.4355e−06

β̂ 1.6157 3.21E−08 1.6157 1.31E−07 1.6157 6.4441e−06

η̂ 4.4819 1.16E−07 4.4819 5.02E−07 4.4819 2.6417e−05

−387.1655 6.06E−14 −387.1655 2.05E−13 −387.1655 1.9181e−09

n=500 A q̂ 0.5338 3.35E−08 0.5474 0.0021 0.5328 0.0148

β̂ 0.5115 7.43E−09 0.5139 0.0004 0.5114 0.0028

η̂ 4.2319 3.58E−07 4.0921 0.0193 4.2467 0.1491

−677.2932 1.48E−13 −677.2990 0.0014 −677.3011 0.0083
B q̂ 1.4665 2.08E−08 1.4665 4.90E−08 1.4665 4.0271e−08

β̂ 0.4790 1.79E−08 0.4790 3.71E−08 0.4790 3.1588e−08

η̂ 5.9459 8.30E−07 5.9459 2.11E−06 5.9459 1.2849e−06

−2807.6055 6.03E−13 −2807.6055 2.57E−12 −2807.6055 1.3695e−12
C q̂ 1.0429 1.06E−07 1.0429 5.65E−07 1.0427 0.0011

β̂ 1.0509 6.27E−08 1.0509 4.61E−07 1.0508 0.0009

η̂ 4.6741 9.26E−07 4.6741 4.93E−06 4.6767 0.0089

−1302.9980 7.24E−12 −1302.9980 2.40E−10 −1302.9982 0.0004
D q̂ 0.4999 3.44E−08 0.5072 0.0009 0.4972 0.0222

β̂ 1.5091 2.66E−08 1.5131 0.0005 1.5081 0.0120

η̂ 5.0255 1.34E−07 4.9949 0.0038 5.0391 0.0929

−924.4560 5.39E−13 −924.4581 0.0005 −924.4776 0.0236
E q̂ 1.5044 1.38E−08 1.5044 1.34E−07 1.5043 9.2122e−05

β̂ 1.5687 3.98E−08 1.5687 3.01E−07 1.5687 0.0002

η̂ 5.2296 1.80E−07 5.2296 1.51E−06 5.2298 0.0008

−1831.8860 9.76E−13 −1831.8860 3.19E−12 −1831.8860 1.5732e−05

n=1000 A q̂ 0.5519 3.31E−08 0.5582 0.0020 0.5509 0.0109

β̂ 0.5048 7.87E−09 0.5059 0.0004 0.5045 0.0024

η̂ 4.5260 4.09E−07 4.4546 0.0224 4.5408 0.1242

−1438.8339 7.67E−13 −1438.8371 0.0009 −1438.8471 0.0208
B q̂ 1.5040 2.31E−08 1.5040 4.07E−08 1.5040 4.7864e−08

β̂ 0.5035 2.28E−08 0.5035 3.28E−08 0.5035 4.7886e−08

η̂ 4.5311 7.36E−07 4.5311 1.22E−06 4.5311 1.4466e−06

−5616.3389 1.51E−12 −5616.3389 6.27E−12 −5616.3389 5.8845e−12
C q̂ 0.9919 8.42E−07 0.9919 2.85E−06 0.9915 0.0027

β̂ 0.9442 5.25E−07 0.9442 1.72E−06 0.9441 0.0014

η̂ 4.5989 7.78E−06 4.5989 2.52E−05 4.6028 0.0234

−2532.4055 8.50E−10 −2532.4055 8.82E−09 −2532.4074 0.0032
D q̂ 0.5062 3.18E−08 0.5132 0.0008 0.5100 0.0193

β̂ 1.5061 2.57E−08 1.5099 0.0004 1.5083 0.0099

η̂ 4.9962 1.39E−07 4.9669 0.0031 4.9793 0.0814

−1848.9886 1.17E−12 −1848.9924 0.0008 −1849.0244 0.0532
E q̂ 1.5134 1.64E−08 1.5134 1.09E−07 1.5134 3.0101e−05

β̂ 1.5076 4.18E−08 1.5076 2.66E−07 1.5077 9.6409e−05

η̂ 4.7017 2.32E−07 4.7017 1.08E−06 4.7016 0.0002

−3657.4987 9.67E−13 −3657.4987 3.71E−12 −3657.4987 4.5104e−06
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4.3. Bias and mean squared error

We also used the bias and MSE as additional criteria to evaluate the
quality of the ML estimators via AHABC. For this purpose, we generate
1000 samples for each ES-A, B, C, D and E for each sample size
n = 100,500,1000. Then, AHABC algorithm was executed once for each
sample. For each scenario, we have 1000 estimates for parameters
q β η, , . Bias and MSE are computed according to the following
equations:

∑bias θ θ
m

θ θ( ˆ, )= 1 ( ˆ ) − ,
i

m
i=1

MSE θ var θ bias θ θ( ˆ)= ( ˆ)+[ ( ˆ, )] ,2

with m = 1000, θ q β ηˆ= ˆ, ˆor ˆ, and var θ( ˆ) as the variance of the 1000
estimates.

Results of bias and MSE are shown in Table 5 and Table 6
respectively. From these results, for larger sample sizes n=500, and
1000, bias and MSE are very small for the q-Weibull parameters'
estimates. Thus, AHABC is able to provide accurate and precise
estimates for the q-Weibull parameters.

4.4. Confidence intervals

In order to construct confidence intervals for the parameters of the
q-Weibull distribution, asymptotic confidence intervals (ACI), para-
metric bootstrap confidence intervals (BCI-P) and non-parametric
bootstrap confidence intervals (BCI-NP) are developed (see
Appendix). Once again, n = 100,500,1000 and ES-A, B, C, D and E.
For all bootstrap experiments, B = 999. For BCI-P sampling, the
estimates obtained from the first sample are used as q-Weibull
parameters to generate B bootstrap samples by Eq. (8). For BCI-NP
sampling, in turn, the first sample is used to generate B bootstrap
samples by resampling with replacement. Then, AHABC is applied to
each sample to compute ML estimates. The 5th and 95th percentiles
are obtained to construct the corresponding 90% confidence interval.
The resulting confidence intervals for parameters η, β, q are presented
in Table 7–9 for sample sizes n = 100,500,1000 respectively. The values
in parentheses are the corresponding interval lengths.

From the results, it can be observed that all intervals contain the
true values of parameters η, β, q. For larger sample sizes, asymptotic
and bootstrap approaches tend to provide similar and more accurate
interval estimates for the q-Weibull parameters. Note also that for the
experimental settings A and B with n =100 (Table 7), ACI provided
negative lower bounds related to parameter eta. In spite of being
infeasible values for this parameter, the asymptotic approach does not
guarantee valid bounds and their results become more accurate and
precise as the sample size increases.

Fig. 7. Convergence comparison of AHABC, ABC and SAHABC for ES-A, n=100.

Fig. 8. Convergence comparison of AHABC, ABC and SAHABC for ES-E, n=100.

Table 5
Bias of ML estimates for q-Weibull parameters.

ES Statistic n=100 n=500 n=1000

A q̂ −0.2802 −0.0431 −0.0227

β̂ −0.0059 −0.0018 −0.0010

η̂ 11.6693 0.7646 0.3583

B q̂ −0.0087 −0.0035 −0.0036

β̂ 0.0173 0.0021 0.0002

η̂ 1.9045 0.3734 0.2226

C q̂ −0.0812 −0.0157 −0.0086

β̂ 0.0044 −0.0018 −0.0023

η̂ 1.0719 0.1756 0.0909

D q̂ −0.2689 −0.0496 −0.0278

β̂ −0.0171 −0.0080 −0.0046

η̂ 1.1526 0.2032 0.1161

E q̂ −0.0078 0.0003 −0.0026

β̂ 0.0518 0.0159 0.0016

η̂ 0.2154 0.0420 0.0452

Table 6
MSE of ML estimates for q-Weibull parameters.

ES Statistic n=100 n=500 n=1000

A q̂ 0.4205 0.0214 0.0086

β̂ 0.0046 0.0008 0.0004

η̂ 1771.1883 5.1727 1.6128

B q̂ 0.0099 0.0017 0.0010

β̂ 0.0079 0.0012 0.0007

η̂ 42.7344 2.6959 1.4148

C q̂ 0.0689 0.0064 0.0029

β̂ 0.0208 0.0032 0.0016

η̂ 10.4633 0.6140 0.2621

D q̂ 0.4851 0.0226 0.0085

β̂ 0.0383 0.0071 0.0031

η̂ 9.8914 0.3953 0.1515

E q̂ 0.0105 0.0018 0.0009

β̂ 0.0770 0.0119 0.0058

η̂ 1.7203 0.2723 0.1409
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Based on the validation results presented in this section, the
AHABC can provide accurate estimates for the q-Weibull parameters
for all the ES-A, B, C, D and E covering different behaviors of the q-
Weibull hazard rate. Therefore, with the proposed AHABC, the q-
Weibull distribution is used to tackle a real reliability problem in the
next section.

5. Application example

In this section, the proposed procedure to obtain the ML estimates
of the q-Weibull parameters is illustrated by means of one application
example involving lifetime data of engineering devices in reliability
studies. The example deals with a data set of the time to first failure of
500 MW generators [48] that results in a bathtub-shaped hazard rate.
For the data with non-monotonic hazard rate, commonly used dis-
tributions like Weibull are barely suitable to fit the failure data. Thus,
the use of the q-Weibull illustrates the ability of this distribution in
dealing with non-monotonic hazard rate function, which encompasses
a set of problems with relevant applications in the reliability context
[49,50].

Table 10 shows the time to first failure for a group of 36 generators
of 500 MW [48]. The AHABC is replicated 30 times and the estimated
ML parameters and the associated standard deviations are shown in
Table 11.

To check the goodness-of-fit, we use the Kolmogorov-Smirnov (KS)

test, which compares the empirical and the cumulative distribution
function (CDF). However, the traditional KS test is not applicable to
our situation, where the parameters of the theoretical distribution have
been estimated from the same data used to apply this goodness-of-fit
test [51]. Therefore, a bootstrapped version of the KS test [52] has been
developed and applied in this paper. The KS test statistic is computed
as follows:

D max F t F t q β η F t F t q β η= { ( ) − ( ˆ, ˆ, ˆ)) , ( ) − ( ˆ, ˆ, ˆ) },n i i n i 1 i
0

−

where F t i n( )= /n i is the empirical CDF and F t( )=00 , F t q β η( ˆ, ˆ, ˆ)i is the
theoretical CDF with estimated parameters. B bootstrap samples
t t t t j B= { , , …, }, = 1, 2,…,j j j

n
j

1 2 are generated using Eq. (8) with

q β ηˆ, ˆ, ˆ. The ML estimates q β ηˆ , ˆ , ˆj j j for the jth sample are obtained by
the proposed AHABC. The test statistic D j is computed with
F t q β η( ˆ , ˆ , ˆ )i

j j j j in place of F t q β η( ˆ, ˆ, ˆ)i . Then, we get B+1 observations
of the KS test statistic D. The p-value is computed as the number of
observations where D j exceeds D0divided by B+1.

For comparison purpose, we consider the standard Weibull and
some alternative bathtub-shaped hazard rate models: the modified
Weibull extension [14] and the ENH [18] models, as shown in
Table 12. We then apply the proposed AHABC procedure to obtain
the ML estimates of the parameters not only for the q-Weibull but also
for the modified Weibull extension and the ENH models. The fitted
parameters and log-likelihoods are given in Table 13, which also gives
the KS test statistic D0 and p-value. Fig. 9 presents the empirical and

Table 7
Interval estimates for the parameters, n=100.

ES True values of parameters η β q

ACI BCI-P BCI-NP ACI BCI-P BCI-NP ACI BCI-P BCI-NP

A η = 5 −4.240 2.413 1.200 0.406 0.431 0.396 −0.378 −1.028 −4.782

β = 0.5 15.226 55.818 837.669 0.693 0.676 0.734 1.318 0.819 1.066

q = 0.5 (19.466) (53.405) (836.469) (0.287) (0.245) (0.338) (1.696) (1.846) (5.849)
B η = 5 −0.607 2.148 2.207 0.353 0.358 0.377 1.267 1.189 1.241

β = 0.5 12.453 23.876 19.314 0.558 0.607 0.565 1.580 1.575 1.550
q = 1.5 (13.060) (21.728) (17.107) (0.205) (0.249) (0.188) (0.313) (0.386) (0.309)

C η = 5 1.967 3.092 2.863 0.749 0.777 0.741 0.669 0.461 0.525

β = 1 7.938 11.048 10.877 1.198 1.222 1.342 1.316 1.218 1.278

q = 1 (5.971) (7.956) (8.014) (0.450) (0.445) (0.601) (0.646) (0.757) (0.752)
D η = 5 2.871 3.555 3.392 1.184 1.202 1.209 0.077 −0.523 −0.871

β = 1.5 6.863 9.793 11.176 1.805 1.827 1.813 1.040 0.893 0.907

q = 0.5 (3.992) (6.238) (7.784) (0.621) (0.625) (0.604) (0.962) (1.415) (1.777)
E η = 5 2.910 3.158 3.194 1.191 1.268 1.277 1.457 1.428 1.417

β = 1.5 6.054 6.665 6.811 2.041 2.284 2.170 1.714 1.718 1.699

q = 1.5 (3.144) (3.507) (3.617) (0.850) (1.017) (0.893) (0.257) (0.290) (0.283)

Table 8
Interval estimates for the parameters, n=500.

ES True values of parameters η β q

ACI BCI-P BCI-NP ACI BCI-P BCI-NP ACI BCI-P BCI-NP

A η = 5 2.002 2.853 2.376 0.464 0.467 0.462 0.320 0.269 0.250

β = 0.5 6.462 7.701 8.090 0.559 0.556 0.570 0.748 0.683 `0.746

q = 0.5 (4.460) (4.848 (5.715) (0.095) (0.090) (0.108) (0.429) (0.414) (0.496)
B η = 5 3.074 3.712 3.642 0.428 0.429 0.437 1.401 1.381 1.393

β = 0.5 8.817 10.403 9.736 0.530 0.535 0.535 1.534 1.529 1.529

q = 1.5 (5.744) (6.691 (6.094) (0.102) (0.107) (0.098) (0.135) (0.148) (0.136)
C η = 5 3.727 3.889 3.862 0.955 0.953 0.952 0.933 0.906 0.892

β = 1 5.622 6.003 6.075 1.147 1.152 1.155 1.152 1.136 1.143
q = 1 (1.895) (2.115) (2.213) (0.192) (0.199) (0.203) (0.219) (0.230) (0.252)

D η = 5 4.243 4.347 4.371 1.377 1.365 1.373 0.314 0.196 0.249

β = 1.5 5.809 6.293 6.084 1.641 1.655 1.642 0.686 0.664 0.656

q = 0.5 (1.566) (1.946) (1.712) (0.264) (0.289) (0.269) (0.373) (0.467) (0.406)
E η = 5 4.385 4.515 4.450 1.387 1.409 1.404 1.435 1.433 1.430

β = 1.5 6.074 6.186 6.255 1.751 1.777 1.785 1.574 1.569 1.573

q = 1.5 (1.689) (1.671) (1.805) (0.364) (0.367) (0.381) (0.139) (0.136) (0.143)
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fitted CDFs for the example and Fig. 10 shows the hazard rate
functions. Note that except for the standard Weibull that models the
data as decreasing hazard rate, all the other models result in a bathtub-
shaped hazard rate, which has been also observed by Bebbington et al.
[49].

Table 9
Interval estimates for the parameters, n=1000.

ES True values of parameters η β q

ACI BCI-P BCI-NP ACI BCI-P BCI-NP ACI BCI-P BCI-NP

A η = 5 2.951 3.456 3.167 0.473 0.472 0.467 0.416 0.390 0.389

β = 0.5 6.101 6.750 6.869 0.537 0.537 0.546 0.688 0.654 0.682

q = 0.5 (3.150) (3.294) (3.702) (0.064) (0.065) (0.079) (0.272) (0.265) (0.293)
B η = 5 2.957 3.215 3.341 0.463 0.466 0.464 1.456 1.452 1.455

β = 0.5 6.105 6.650 6.423 0.544 0.547 0.549 1.552 1.550 1.549
q = 1.5 (3.148) (3.436) (3.082) (0.082) (0.081) (0.085) (0.096) (0.098) (0.093)

C η = 5 3.855 3.932 3.933 0.884 0.883 0.882 0.909 0.891 0.877

β = 1 5.343 5.549 5.707 1.005 1.008 1.010 1.074 1.070 1.070

q = 1 (1.488) (1.617) (1.774) (0.121) (0.126) (0.129) (0.165) (0.179) (0.193)
D η = 5 4.435 4.530 4.556 1.412 1.406 1.413 0.372 0.328 0.379

β = 1.5 5.557 5.729 5.536 1.600 1.604 1.595 0.640 0.619 0.614

q = 0.5 (1.121) (1.199) (0.981) (0.188) (0.199) (0.182) (0.268) (0.292) (0.235)
E η = 5 4.154 4.229 4.159 1.386 1.397 1.391 1.466 1.467 1.462

β = 1.5 5.250 5.235 5.349 1.629 1.637 1.639 1.560 1.555 1.562

q = 1.5 (1.096) (1.005) (1.190) (0.243) (0.240) (0.248) (0.094) (0.088) (0.0998)

Table 10
Time to first failure (1000′s of hours) of 500 MW generators.

0.058 0.070 0.090 0.105 0.113 0.121 0.153 0.159
0.224 0.421 0.570 0.596 0.618 0.834 1.019 1.104
1.497 2.027 2.234 2.372 2.433 2.505 2.690 2.877
2.879 3.166 3.455 3.551 4.378 4.872 5.085 5.272
5.341 8.952 9.188 11.399

Table 11
ML estimates for 30 replications of AHABC.

Mean Std.

q̂ 0.4318 2.5555e−08

β̂ 0.6697 4.8570e−09

η̂ 6.6087 2.9609e−07

−68.0595 1.4211e−14

Table 12
Some bathtub-shaped hazard rate models.

Model h t( ) Parameters

Modified
Weibull
Extension

λβ t α t α( / ) exp [( / ) ]β β( −1) α β λ, , > 0

ENH
αβλ λt α λt α λt α β

λt α β
(1 + ) −1exp[1 − (1 + ) ]{1 − exp[1 − (1 + ) ]} −1

1 − {1 − exp [1 − (1 + ) ]}

α , β , λ > 0

Table 13
Results for the example.

Model ML estimates logL D0 p

q-Weibull q β ηˆ=0. 4318, ˆ=0. 6697, ˆ=6. 6087 −68.0595 0.0983 0.5080

Weibull β ηˆ=0.8156, ˆ=2. 3118 −68.6906 0.1219 0.1880

Modified
Weibull
Extension

α β λˆ=10. 0923, ˆ=0. 6920, ˆ=0. 2130 −68.2628 0.1046 0.2900

ENH α β λˆ=1. 6347, ˆ=0. 6415, ˆ=0. 1430 −68.3560 0.1021 0.3330

Fig. 9. Empirical and fitted CDFs.

Fig. 10. Hazard rate functions.
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Compared to the standard Weibull, q-Weibull is more flexible to
perform reliability analyses when failure data are characterized by non-
monotonic hazard rates. Moreover, with the low KS test statistic and
high p-value (see Table 13), the q-Weibull distribution is a good
alternative to the other bathtub-shaped hazard rate models, namely the
modified Weibull extension and the ENH.

For the sake of comparison, the estimates of q-Weibull and Weibull
parameters shown in Table 13 are used for obtaining the conditional
reliability (Eq. (9)) as shown in Fig. 11. Note that as t0 increases, the
Weibull provides higher conditional reliability, which is in accordance
with the decreasing behavior of the hazard rate resulting from the
application of the Weibull to this data set. On the other hand, the q-
Weibull conditional reliability decreases more rapidly as t0 increases.
Given the nature of the reliability data set in Table 10, one can argue
that the Weibull model results in an optimistic performance of the
generators when compared to the q-Weibull distribution.

Note that these results are representative of the failure data set in
Table 10, and different outcomes might be obtained for different sets of
reliability data. However, based on the experimental results discussed
in the previous section and the ones from this application example, the
q-Weibull distribution is a flexible and capable model that might be
considered as one more alternative distribution when engineers are
faced with modeling of reliability data sets.

6. Conclusion

The q-Weibull distribution is able to describe various behaviors of
the hazard rate - monotonically decreasing, monotonically increasing,

constant, unimodal and bathtub-shaped - with a single set of para-
meters. This flexibility provided by the q-Weibull probabilistic model is
important to describe accurately failure data characterized by both
monotonic and non-monotonic hazard rate functions. Although there
are other 3-parameter distributions with that flexibility (e.g. modified
Weibull extension [14], ENH [18]), the q-Weibull distribution consti-
tutes another alternative to the arsenal of options available for the
reliability analyst.

However, it is impractical to analytically obtain the ML estimates
for the q-Weibull parameters, and also the classic numerical optimiza-
tion approach fails to efficiently find the global solution for the
associated ML problem. Thus, the q-Weibull distribution is a flexible
and useful distribution in the context of reliability engineering as it
allows for the modeling and analysis of a variety of failure data
behaviors, in particular data with non-monotonic hazard rate func-
tions. However, its intricate likelihood function imposes significant
numerical difficulties in estimating its parameters, which has limited
the number of applications of this distribution so far.

In this paper, an adaptive hybrid artificial bee colony (AHABC)
algorithm has been proposed to tackle this problem, which combines
the global exploration of ABC and the local exploitation of Nelder-Mead
simplex search. The exploitation ability of Nelder-Mead improves the
local search performance of ABC.

Numerical results show that the proposed AHABC algorithm
efficiently finds the optimal solution for the q-Weibull ML problem,
comprising different behaviors of the hazard rate and sample sizes. The
ML estimates of the q-Weibull parameters obtained via AHABC are
accurate and precise with small bias and MSE. Using the proposed
AHABC algorithm, intervals estimates for the q-Weibull parameters are
provided, including asymptotic intervals based on the ML theory,
parametric and non-parametric bootstrapped confidence intervals.
Based on the results presented in Section 4, the proposed AHABC
outperformed both ABC and similar algorithm in terms of accuracy and
convergence speed in the context of the maximum likelihood problem
for the q-Weibull distribution. The proposed method for the ML
constrained q-Weibull problem was also applied to an example
involving failure data characterized by bathtub-shaped hazard rate
function.

To conclude, the proposed AHABC for parameter estimation
showed that the q-Weibull is a promising alternative distribution for
reliability modeling and constitutes in another distribution model in
the reliability engineers’ toolbox. With AHABC in hand, a wider range
of reliability problems can incorporate the q-Weibull model such as
stress-strength analysis [41], optimal preventive maintenance policies
[42,43], optimal system design [44], competitive risks [45].
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Appendix

Confidence intervals for the q-Weibull distribution parameters, including asymptotic confidence intervals (ACI), parametric bootstrap
confidence intervals (BCI-P) and non-parametric bootstrap confidence intervals (BCI-NP) are developed as follows.

Asymptotic confidence intervals

The related covariance matrix associated to the ML estimators for the q-Weibull distribution parameters can be estimated by the inverse of the
observed information matrix I t η β q( | ˆ, ˆ, ˆ)

Fig. 11. Conditional reliability of q-Weibull and Weibull.
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asymptotic confidence intervals could be constructed for the q-Weibull distribution parameters. The asymptotic confidence intervals with
α(1 − )100% confidence for η β, and q are given below:

⎡
⎣⎢

⎤
⎦⎥η η z η zCI[ :(1 − α)100%]= ˆ+ varˆ , ˆ+ varˆ ,α

2 11 1− α
2 11

⎡
⎣⎢

⎤
⎦⎥β β z β zCI[ :(1 − α)100%]= ˆ+ varˆ , ˆ+ varˆ ,α

2 22 1− α
2 22

⎡
⎣⎢

⎤
⎦⎥q q z q zCI[ :(1 − α)100%]= ˆ+ varˆ , ˆ+ varˆ ,α

2 33 1− α
2 33

in which zα
2
and z1− α

2
are the α

2
and 1 − α

2 quantiles of the standard normal distribution, and varˆ , varˆ11 22 and varˆ 33 are the diagonal elements of the

covariance matrix.

Parametric and non-parametric bootstrapped confidence intervals

The bootstrap is a computer-based method for assigning measures of accuracy to sample estimates [40]. This technique allows us to generate
confidence intervals for the parameters of the q-Weibull distribution by using simple sampling methods so as to infer the precision of the ML
estimators.

The bootstrap approaches are classified as parametric and non-parametric depending on how the samples are generated [54]. Given the original
data set and the estimates of the parameters obtained from it, parametric and non-parametric bootstrap samples can be generated. For parametric
bootstrap, the q-Weibull distribution uses the estimates to generate other B new samples by Eq. (8). For the non-parametric bootstrap, B samples
are generated by resampling with replacement from the original data set. Along with the original sample, a total of B + 1 samples are obtained and
we apply the ML method via AHABC to these samples. By sorting the B + 1 resulting estimates, the 100%α

2 and (1 − )100%α
2 percentiles are set as the

lower and upper bounds to construct the confidence intervals with α level of significance.
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