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a b s t r a c t

We show that for any 2-local colouring of the edges of the balanced
complete bipartite graph Kn,n, its vertices can be covered with at
most 3 disjoint monochromatic paths. And, we can cover almost all
vertices of any complete or balanced complete bipartite r-locally
coloured graph with O(r2) disjoint monochromatic cycles. We also
determine the 2-local bipartite Ramsey number of a path almost
exactly: Every 2-local colouring of the edges of Kn,n contains a
monochromatic path on n vertices.

© 2016 Published by Elsevier Ltd.

1. Introduction

The problem of partitioning a graph into few monochromatic paths or cycles, first formulated
explicitly in the beginning of the 80s [11], has lately received a fair amount of attention. Its origin lies in
Ramsey theory and its subject is complete graphs (later substitutedwith other types of graphs), whose
edges are coloured with r colours. Call such a colouring an r-colouring; note that this need not be a
proper edge-colouring. The challenge is now to find a small number of disjoint monochromatic paths,
which together cover the vertex set of the underlying graph. Or, instead of disjoint monochromatic
paths, we might ask for disjoint monochromatic cycles. Here, single vertices and edges count as
cycles. Such a cover is called a monochromatic path partition, or a monochromatic cycle partition,
respectively. It is not difficult to construct r-colourings that do not allow for partitions into less than
r paths, or cycles.1

At first, the problem was studied mostly for r = 2, and the complete graph Kn as the host graph.
In this situation, a partition into two disjoint paths always exists [10], regardless of the size of n.

E-mail addresses: rlang@dim.uchile.cl (R. Lang), mstein@dim.uchile.cl (M. Stein).
1 For instance, take vertex sets V1, . . . , Vr with |Vi| = 2i , and for i ≤ j give all Vi − Vj edges colour i.
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Moreover, we can require these paths to have different colours. An extension of this fact, namely
that every 2-colouring of Kn has a partition into two monochromatic cycles of different colours was
conjectured by Lehel, and verified by Bessy and Thomassé [3], after preliminarywork for large n [1,22].

A generalisation of these two results for other values of r , i.e. that any r-coloured Kn can
be partitioned into r monochromatic paths, or into r monochromatic cycles, was conjectured by
Gyárfás [12] and by Erdős, Gyárfás and Pyber [7], respectively. The conjecture for cycles was recently
disproved by Pokrovskiy [24]. He gave counterexamples for all r ≥ 3, but he also showed that the
conjecture for paths is true for r = 3. Gyárfás, Ruszinkó, Sárközy and Szemerédi [16] showed that any
r-coloured Kn can be partitioned into O(r log r) monochromatic cycles, improving an earlier bound
from [7].

Monochromatic path/cycle partitions have also been studied for bipartite graphs, mainly for r = 2.
A 2-colouring of Kn,n is called a split colouring if there is a colour-preserving homomorphism from
the edge-coloured Kn,n to a properly edge-coloured K2,2. Note that any split colouring allows for a
partition into three paths, but not always into two.However, split colourings are the only ‘problematic’
colourings, as the following result shows.

Theorem 1.1 (Pokrovskiy [24]). Let the edges of Kn,n be coloured with 2 colours; then Kn,n can be
partitioned into two paths of distinct colours or the colouring is split.

Split colourings can be generalised to more colours [24]. This gives a lower bound of 2r − 1 on
the path/cycle partition number for Kn,n. For r = 3, this bound is asymptotically correct [20]. For an
upper bound, Peng, Rödl and Ruciński [23] showed that any r-coloured Kn,n can be partitioned into
O(r2 log r) monochromatic cycles, improving a result of Haxell [19]. We improve this bound to O(r2).

Theorem 1.2. For every r ≥ 1 there is an n0 such that for n ≥ n0, for any r-locally coloured Kn,n, we need
at most 4r2 disjoint monochromatic cycles to cover all its vertices.

Theorem 1.2 follows immediately from Theorem 1.3(b). Let us mention that the monochromatic
cycle partition problem has also been studied for multipartite graphs [29], and for arbitrary graphs
[2,26], or replacing paths or cycles with other graphs [9,27,28].

Ourmain focus in this paper is onmonochromatic cycle partitions for local colourings (Theorem 1.2
being only a side-product of our local colouring results). Local colourings are a natural way to
generalise r-colourings. A colouring is r-local if no vertex is adjacent to more than r edges of distinct
colours. Local colourings have appeared mostly in the context of Ramsey theory [4,5,14,15,25,30–32].

With respect to monochromatic path or cycle partitions, Conlon and Stein [6] recently generalised
some of the above mentioned results to r-local colourings. They show that for any r-local colouring
of Kn, there is a partition into O(r2 log r) monochromatic cycles, and, if r = 2, then two cycles
suffice. In this paper we improve their general bound for complete graphs, and give the first bound
for monochromatic cycle partitions in bipartite graphs. In both cases, O(r2) cycles suffice.

Theorem 1.3. For every r ≥ 1 there is an n0 such that for n ≥ n0 the following holds.

(a) If Kn is r-locally coloured, then its vertices can be covered with at most 2r2 disjoint monochromatic
cycles.

(b) If Kn,n is r-locally coloured, then its vertices can be covered with at most 4r2 disjoint monochromatic
cycles.

We do not believe our results are best possible, but suspect that in both cases (Kn and Kn,n), the
number of cycles needed should be linear in r .

Conjecture 1.4. There is a c such that for every r, every r-local colouring of Kn admits a covering with cr
disjoint cycles. The same should hold replacing Kn with Kn,n.

Our second result is a generalisation of Theorem 1.1 to local colourings:

Theorem 1.5. Let the edges of Kn,n be coloured 2-locally. Then Kn,n can be partitioned into 3 or less
monochromatic paths.
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So, in terms of monochromatic path partitions, it does not matter whether our graph is 2-locally
coloured, or if the total number of colours is 2. For more colours this might be different, but we have
not been able to construct r-local colourings of Kn,n which need more than 2r − 1 monochromatic
paths for covering the vertices.

We prove Theorem 1.3 in Section 2 and Theorem 1.5 in Section 3. These proofs are totally
independent of each other.

Theorem 1.5 relies on a structural lemma for 2-local colourings, Lemma 3.1. This lemma has a
second application in local Ramsey theory. As mentioned above, some effort has gone into extending
Ramsey theory to local colourings. In particular, in [15], Gyárfás et al. determine the 2-local Ramsey
number of the path Pn. This number is defined as the smallest number m such that in any 2-local
colouring of Km a monochromatic path of length n is present. In [15], it is shown that the 2-local
Ramsey number of the path Pn is ⌈

3
2n − 1⌉. Thus the usual 2-colour Ramsey number of the path,

which is ⌊
3
2n − 1⌋ and the 2-local Ramsey number of the path Pn only differ by at most 1 (depending

on the parity of n).
The bipartite 2-colour Ramsey number of the path Pn is defined as a pair (m1,m2), with m1 ≥ m2

such that for any pair m′

1,m
′

2 we have that m′

i ≥ mi for both i = 1, 2 if and only if every 2-colouring
of Km′

1,m
′
2
contains a monochromatic path Pn. Gyárfás and Lehel [13] and, independently, Faudree and

Schelp [8] determined the bipartite 2-colour Ramsey number of P2m to be (2m − 1, 2m − 1). The
authors of [8] also show that for the odd path P2m+1 this number is (2m + 1, 2m − 1). Observe that
suitable split colourings can be used to see the sharpness of these Ramsey numbers.

We use our auxiliary structural result, Lemma 3.1, and the result of [13] to determine the 2-local
bipartite Ramsey number for the even path P2m. As for complete host graphs, it turns out this number
coincides with its non-local pendant.

Theorem 1.6. Let K2m−1,2m−1 be coloured 2-locally. Then there is a monochromatic path on 2m vertices.

It is likely that similar arguments can be applied to obtain an analogous result for odd paths (but
such an analogue is not straightforward). Clearly, the result from [8] together with Theorem 1.6
(for m + 1) implies that the 2-local bipartite Ramsey number for the odd path P2m+1 is one of
(2m + 1, 2m − 1), (2m + 1, 2m), (2m + 1, 2m + 1).

In view of the results from [6] and our Theorems 1.3, 1.5 and 1.6, it might seem that in terms of
path- or cycle-partitions, r-local colourings are not very different from r-colourings. Let us give an
example where they do behave differently, even for r = 2.

It is shown in [29] that any 2-coloured complete tripartite graph can be partitioned into at most 2
monochromatic paths, provided that no part of the tripartition containsmore than half of the vertices.
This is not true for 2-local colourings: Let G be a complete tripartite graph with triparts U , V and W
such that |U| = 2|V | = 2|W | ≥ 6. Pick vertices u ∈ U , v ∈ V and w ∈ W and write U ′

= U \ {u},
V ′

= V \ {v} and W ′
= W \ {w}. Now colour the edges of [W ′

∪ {v},U ′
] red, [V ′

∪ {w},U ′
] green

and the remaining edges blue. This is a 2-local colouring. However, since no monochromatic path can
cover all vertices of U ′, we need at least 3 monochromatic paths to cover all of G.

Note that in our example, the graph G contains a 2-locally coloured balanced complete bipartite
graph. This shows that in the situation of Theorem 1.5, we might need 3 paths even if the 2-local
colouring is not a split colouring (and thus a 2-colouring). Blowing this example up, and adding some
smaller sets of vertices seeing new colours, one obtains examples of r-local colourings of balanced
complete bipartite graphs requiring 2r − 1 monochromatic paths.

2. Proof of Theorem 1.3

In this sectionwewill prove our bounds formonochromatic cycle partitions, given by Theorem 1.3.
The heart of this section is Lemma 2.1. This lemma enables us to use induction on r , in order to prove
newbounds for the number ofmonochromaticmatchings needed to cover an r-locally coloured graph.
In particular, we find these bounds for the complete and the complete bipartite graph. All of this is
the topic of Section 2.1.
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To get from monochromatic cycles to the promised cycle cover, we use a nowadays standard
approach, which was first introduced in [21]. We find a large robust hamiltonian graph, regularise
the rest, find monochromatic matchings covering almost all, blow them up to cycles, and then absorb
the remainder with the robust hamiltonian graph. The interested reader may find a sketch of this
well-known method in Section 2.2.

2.1. Monochromatic matchings

Given a graph G with an edge colouring, a monochromatic connected matching is a matching in a
connected component of the subgraph that is induced by the edges of a single colour.

Lemma 2.1. For k ≥ 2, let the edges of a graph G be coloured k-locally. Suppose there are m
monochromatic components that together cover V (G), of colours c1, . . . , cm.

Then there are m vertex-disjoint monochromatic connected matchings M1, . . . ,Mm, of colours
c1, . . . , cm, such that the inherited colouring of G \ V (

m
i=1 Mi) is a (k − 1)-local colouring.

Proof. Let G be covered by m monochromatic components C1, . . . , Cm of colours c1, . . . , cm. Let
M1 ⊆ C1 be amaximummatching in colour c1. For 2 ≤ i ≤ mwe iteratively pickmaximummatchings
Mi ⊆ Ci \ V (


j<i Mj) in colour ci. SetM :=


j≤m Mj.

Now let v be any vertex in H := G \V (M). Say v ∈ V (Ci \V (M)). In particular, vertex v sees colour
ci in G. However, by maximality of Mi, vertex v does not see the colour ci in H . Thus in H , vertex v
sees at most k − 1 colours. Hence, the inherited colouring of H is a (k − 1)-local colouring, which is
as desired. �

Corollary 2.2. If Kn is r-locally edge coloured, and H is obtained from Kn by deleting o(n2) edges, then

(a) V (Kn) can be covered with at most r(r + 1)/2monochromatic connected matchings, and
(b) all but o(n) vertices of H can be coveredwith atmost r(r+1)/2monochromatic connectedmatchings.

Note that the matchings from (b) are connected in H.

Proof. The proof is based on the following easy observation. In any colouring of Kn, the closed
monochromatic neighbourhoods of any vertex v together cover Kn. Since the colouring is a k-local
colouring, we can cover all of V (Kn) with k components. Now apply Lemma 2.1 successively to obtain
the bound from (a).

For (b), it suffices to observe that we can choose at each step a vertex v that has o(n) non-
neighbours in the current graph. For, if at some step, there is no such vertex, then a simple calculation
shows we have already covered all but o(n) of V (Kn), and can hence abort the procedure. �

Corollary 2.3. If Kn,n is r-locally edge coloured, and H is obtained from Kn,n by deleting o(n2) edges, then

(a) V (Kn,n) can be covered with at most (2r − 1)r monochromatic connected matchings, and
(b) all but o(n) vertices of H can be covered with at most (2r−1)r monochromatic connected matchings.

Note that the matchings from (b) are connected in H.

Proof. Theproof is very similar to the proof Corollary 2.2.Weonly note that in any colouring ofKn,n the
two closedmonochromatic neighbourhoods of any edge form a vertex cover of size atmost 2r−1. �

2.2. From matchings to cycles

2.2.1. Regularity
Regularity is the key for expanding our partition of an r-locally coloured Kn or Kn,n into monochro-

matic connectedmatchings to a partition of almost all vertices into monochromatic cycles. We follow
an approach introduced by Łuczak [21], which has become a standardmethod for cycle embeddings in
large graphs.Wewill focus on the partswhere our proof differs from other applications of thismethod
(see [16,18,20]).
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The main result of this section is:

Lemma 2.4. If Kn and Kn,n are r-locally edge coloured, then

(a) all but o(n) vertices of Kn can be covered with at most r(r + 1)/2monochromatic cycles
(b) all but o(n) vertices of Kn,n can be covered with at most (2r − 1)r monochromatic cycles.

Before we start, we need a couple of regularity preliminaries. For a graph G and disjoint subsets
of vertices A, B ⊆ V (G) we denote by [A, B] the bipartite subgraph with biparts A and B and edge set
{ab ∈ E(G) : a ∈ A, b ∈ B}. We write degG(A, B) for the number of edges in [A, B]. If A = {a} we write
shorthand degG(a, B).

The subgraph [A, B] is (ε,G)-regular if

| degG(X, Y ) − degG(A, B)| < ε

for all X ⊆ A, Y ⊆ B with |X | > ε|A|, |Y | > ε|B|. Moreover, [A, B] is (ε, δ,G)-super-regular if it is
(ε,G)-regular and

degG(a, B) > δ|B| for each a ∈ A and degG(b, A) > δ|A| for each b ∈ B.

A vertex-partition {V0, V1, . . . , Vl} of the vertex set of a graph G into l + 1 clusters is called (ε,G)-
regular, if

(i) |V1| = |V2| = · · · = |Vl|;
(ii) |V0| < εn;
(iii) apart from at most ε

 l
2


exceptional pairs, the graphs [Vi, Vj] are (ε,G)-regular.

The following version of Szemerédi’s regularity lemma is well-known. The given prepartition will
only be used for the bipartition of the graph Kn,n in Lemma 2.4(b). The colours on the edges are
represented by the graphs Gi.

Lemma 2.5 (Regularity Lemma with Prepartition and Colours). For every ε > 0 and m, t ∈ N there are
M, n0 ∈ N such that for all n ≥ n0 the following holds.

For all graphs G0,G1,G2, . . . ,Gt with V (G0) = V (G1) = · · · = V (Gt) = V and a partition
A1 ∪ · · · ∪As = V , where r ≥ 2 and |V | = n, there is a partition V0 ∪V1 ∪ · · · ∪Vl of V into l+ 1 clusters
such that

(a) m ≤ l ≤ M;
(b) for each 1 ≤ i ≤ l there is a 1 ≤ j ≤ s such that Vi ⊆ Aj;
(c) V0 ∪ V1 ∪ · · · ∪ Vl is (ε,Gi)-regular for each 0 ≤ i ≤ t.

Observe that the regularity lemma provides regularity only for a number of colours bounded by
the input parameter t . However, the total number of colours of an r-local colouring is not bounded by
any function of r (for an example, see Section 3.1). Luckily, it turns out that it suffices to focus on the t
colours of largest density, where t depends only on r and ε. This is guaranteed by the following result
from [14].

Lemma 2.6. Let a graph Gwith average degree a be r-locally coloured. Then one colour has at least a2/2r2
edges.

Corollary 2.7. For all ε > 0 and r ∈ N there is a t = t(ε, r) such that for any r-local colouring of Kn or
Kn,n, there are t colours such that all but at most εn2 edges use these colours.

Proof. We only prove the corollary for Kn,n, as the proof for Kn is very similar. Let t := ⌈−
2r2
ε

log ε⌉.
We iteratively take out the edges of the colours with the largest number of edges. We stop either after
t steps, or before, if the remaining graph has density less than ε. At each step Lemma 2.6 ensures that
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at least a fraction of ε

2r2
of the remaining edges has the same colour.2Hence we can bound the number

of edges of the remaining graph by
1 −

ε

2r2

t
n2

≤ e−εt/2r2n2
≤ εn2. �

2.2.2. Proof of Lemma 2.4
We only prove part (b) of Lemma 2.4, since the proof of part (a) is very similar and actually simpler.

For the sake of readability, we assume that n0 ≫ 0 is sufficiently large and 0 < ε ≪ 1 is sufficiently
small without calculating exact values.

Let the edges of Kn,n with biparts A1 and A2 be coloured r-locally and encode the colouring by edge-
disjoint graphs G1, . . . ,Gs on the vertex set of Kn,n. By Corollary 2.7, there is a t = t(ε, r) such that
the union of G1, . . . ,Gt covers all but at most εn2/8r2 edges of Kn,n. We merge the remaining edges
into G0 :=

s
i=t+1 Gi. Note that the colouring remains r-local and by the choice of t , we have

|E(G0)| ≤ εn2/8r2. (1)

For ε, t and m := 1/ε, the regularity lemma (Lemma 2.5) provides n0 and M such for all n ≥ n0
there is a vertex-partition V0, V1, . . . , Vl of Kn,n satisfying Lemma 2.5(a)–(c) for G0,G1, . . . ,Gt .

As usual, we define the reduced graph Rwhich has a vertex vi for each cluster Vi for 1 ≤ i ≤ l. We
place an edge between vertices vi and vj if the subgraph [Vi, Vj] of the respective clusters is non-empty
and forms an (ε,Gq)-regular subgraph for all 0 ≤ q ≤ t . Thus, R is a balanced bipartite graph with at
least (1 − ε)

 l
2


edges.

Finally, the colouring of the edges of Kn,n, induces a majority colouring of the edges of R. More
precisely, we colour each edge vivj of R with the colour from {0, 1, . . . , t} that appears most on the
edges of the subgraph [Vi, Vj] ⊆ G (in case of a tie, pick any of the densest colours). Note that if vivj is
coloured i then by Lemma 2.6,

[Vi, Vj] has at least
1
2r2

 n
2l

2
edges of colour i. (2)

Our next step is to verify that the majority colouring is an r-local colouring of R. To this end we
need the following easy and well-known fact about regular graphs.

Fact 2.8. Let [A, B] be an ε-regular graph of density d > ε. Then at most ε|A| vertices from A have no
neighbours in B.

Claim 2.9. The colouring of the reduced graph R is r-local.

Proof. Assume otherwise. Then there is a vertex vi ∈ V (R) that sees r + 1 different colours in R. By
Fact 2.8, all but at most (r + 1)ε|Vi| < |Vi| of the vertices in Vi see r + 1 different colours in Kn,n,
contradicting the r-locality of our colouring. �

By (1), and by (2), we know that R has at most |E(G0)|
4l2·2r2

n2
≤ εl2 edges of colour 0. Delete

these edges and use Corollary 2.3 to cover all but o(l) vertices of R with (2r − 1)r vertex-disjoint
monochromatic matchingsM1, . . . ,M(2r−1)r of spectrum 1, . . . , t .

We finish by applying Łuczak’s technique for blowing up matching to cycles [21]. This is done by
using the following (by now well-known) lemma.

Lemma 2.10. Let t ≥ 1 and γ > 0 be fixed. Suppose R is the edge-coloured reduced graph of an edge-
coloured graph H, for some γ -regular partition, such that each edge vw of R corresponds to a γ -regular
pair of density at least

√
γ in the colour of vw.

2 Here we use that in a balanced bipartite graph H with 2n vertices, m edges, average degree a and density d we have
a2 =

4m2

4n2
= dm.
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If all but at most γ |V (R)| vertices of R can be covered with t disjoint connected monochromatic
matchings, then there is a set of at most t monochromatic disjoint cycles in H, which together cover all
but at most 10

√
γ |V (H)| vertices of H.

For completeness, let us give an outline of the proof of Lemma 2.10.

Sketch of a proof of Lemma 2.10. We start by connecting in H the pairs corresponding to matching
edges with monochromatic paths of the respective colour, following their connections in R. We do
this in a cyclic manner, that is, if vi1vj1 , . . . , visvjs form the matching, then we take paths P1, . . . , Ps in
a way that Pℓ connects Vjℓ and Viℓ+1 (modulo ℓ). The end-vertex of each Pℓ can be taken as a typical
vertex of the graph [Viℓ , Vjℓ ] or [Viℓ+1 , Vjℓ+1 ] (this is important as we later have to ‘fill up’ thematching
edges accordingly). We find the connecting paths simultaneously for all matchings.

Note that, as t is fixed, the paths chosen above together consumeonly a constant number of vertices
ofH . So we canwe connect themonochromatic paths using thematching edges, blowing up the edges
to long paths, where regularity and density ensure that we can fill up all but a small fraction of the
corresponding pairs. This gives the desired cycles.

A more detailed explanation of this argument can be found in the proof of the main result
of [17]. �

2.3. The absorbing method

In this subsection we prove Theorem 1.3. We apply a well known absorbing argument introduced
in [7]. To this end we need a few tools.

Call a balanced bipartite subgraph H of a 2n-vertex graph ε-hamiltonian, if any balanced bipartite
subgraph of H with at least 2(1 − ε)n vertices is hamiltonian. The next lemma is a combination of
results from [19,23] and can be found in [20] in the following explicit form.

Lemma 2.11. For any 1 > γ > 0, there is an n0 ∈ N such that any balanced bipartite graph on 2n ≥ 2n0
vertices and of edge density at least γ has a γ /4-hamiltonian subgraph of size at least γ 3024/γ n/3.

The following lemma is taken from [6].

Lemma 2.12. Suppose that A and B are vertex sets with |B| ≤ |A|/r r+3 and the edges of the complete
bipartite graph between A and B are r-locally coloured. Then all vertices of B can be covered with at most
r2 disjoint monochromatic cycles.

Sketch of a proof of Theorem 1.3. Here we only prove part (b) of Theorem 1.3, since the proof of (a)
is almost identical. The differences are discussed at the end of the section.

Let A and B be the two partition classes of the r-locally edge coloured Kn,n. We assume that n ≥ n0,
where we specify n0 later. Pick subsets A1 ⊆ A and B1 ⊆ B of size ⌈n/2⌉ each. Say red is the majority
colour of [A1, B1]. Then by Lemma 2.6, there are at least n2/8r2 red edges in [A1, B1].

Lemma 2.11 applied with γ = 1/10r2 yields a red γ /4-hamiltonian subgraph [A2, B2] of [A1, B1]

with

|A2| = |B2| ≥ γ 3024/γ
|A1|/3 ≥ γ 3024/γ n/7.

Set H := G − (A2 ∪ B2), and note that each bipart of H has order at least ⌊n/2⌋. Let δ := γ 4000/γ .
Assuming n0 is large enough, Lemma 2.4(b) provides (2r − 1)r monochromatic vertex-disjoint cycles
covering all but at most 2δn vertices of H . Let XA ⊆ A (resp. XB ⊆ B) be the set of uncovered vertices
in A (resp. B). Since we may assume none of the monochromatic cycles is an isolated vertex, we have
|XA| = |XB| ≤ δn.

By the choice of δ, and since we assume n0 to be sufficiently large, we can apply Lemma 2.12 to
the bipartite graphs [A2, XB] and [B2, XA]. This gives 2r2 vertex-disjoint monochromatic cycles that
together cover XA ∪XB. Again, we assume none of these cycles is trivial. As |XA| = |XB| ≤ δn, we know
that the remainder of [A2, B2] contains a red Hamilton cycle. Thus, in total, we found a cover of Gwith
at most (2r − 1)r + 2r2 + 1 ≤ 4r2 vertex-disjoint monochromatic cycles.
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Fig. 1. The four colour case of Lemma 3.1.

As claimed above, the proof of Theorem 1.3(a) is very similar. The main difference is that instead
of an ε-hamiltonian subgraph we use a large red triangle cycle. A triangle cycle Tk consists of a cycle
on k vertices {v1, . . . , vk} and k additional vertices A = {a1, . . . , ak}, where ai is joined to vi and
vi+1 (modulo k). Note that Tk remains hamiltonian after the deletion of any subset of vertices of A.
We use some classic Ramsey theory to find a large monochromatic triangle cycle Tk in an r-locally
coloured Kn, as shown in [6]. Next, Lemma 2.4(a) guarantees we can covermost vertices of Kn \Tk with
r(r + 1)/2 monochromatic cycles. We finish by absorbing the remaining vertices B into A with only
one application of Lemma 2.12, thus producing r2 additional cycles. As noted above, the remaining
part of Tk is hamiltonian and sowe have partitioned Kn into r(r +1)/2+ r2 +1 ≤ 2r2 monochromatic
cycles. �

3. Bipartite graphs with 2-local colourings

In this section we prove Theorems 1.5 and 1.6. We start by specifying the structure of 2-local
colourings of Kn,n. Let G be any graph, and let the edges of G be coloured arbitrarily with colours in
N. We denote by Ci the subgraph of G induced by vertices that are adjacent to any edge of colour i.
Note that Ci can contain edges of colours other than i. If for colours i, j the intersection V (Ci) ∩ V (Cj)
is empty, we can merge i and j as we are only interested in monochromatic paths. We call an edge
colouring simple, if V (Ci) ∩ V (Cj) ≠ ∅ for all colours i, j that appear on an edge.

In [15] it was shown that the number of colours in a simple 2-local colouring of Kn is bounded by
3. In the next lemma we will see that for Kn,n the number of colours in a simple 2-local colouring is
bounded by 4. For r ≥ 3, however, simple r-local colourings can have an arbitrary large number of
colours: take a t × t grid G and colour the edges of the column i and row iwith colour i for 1 ≤ i ≤ t .
Then add edges of a new colour t + 1 until G is complete (or complete bipartite) and observe that G is
3-locally edge coloured and simple, but the total number of colours is t + 1.

In what follows, we denote partition classes of a bipartite graphH (which we imagine as either top
and bottom) by H and H .

Lemma 3.1. Let Kn,n have a simple 2-local colouring. Then the total number of colours is at most four. In
particular, if there are (edges of) colours 1, 2, 3 and 4, then
• Kn,n = C1 ∩ C2 ∪ C3 ∩ C4 and
• Kn,n = C1 ∩ C3 ∪ C1 ∩ C4 ∪ C2 ∩ C3 ∪ C2 ∩ C4

as shown in Fig. 1 (modulo swapping colours and swapping Kn,n with Kn,n).

Proof of Lemma 3.1. We can assume there are at least four colours in total, as otherwise there is
nothing to show. We start by observing that for any four distinct colours i, j, k, ℓ, if v ∈ V (Ci ∩ Cj)
and w ∈ V (Ck ∩ Cℓ), then, by 2-locality, v and w cannot lie in opposite classes of Kn,n. Thus either
V (Ci ∩ Cj) ∪ V (Ck ∩ Cℓ) ⊆ Kn,n or V (Ci ∩ Cj) ∪ V (Ck ∩ Cℓ) ⊆ Kn,n. Fixing four colours 1, 2, 3, 4, and
considering their six (by simplicity non-empty) intersections, the pigeon–hole principle gives that
(after possibly swapping colours and/or top and bottom class of Kn,n),

V (C1 ∩ C3) ∪ V (C2 ∩ C4) ∪ V (C1 ∩ C4) ∪ V (C2 ∩ C3) ⊆ Kn,n. (3)



50 R. Lang, M. Stein / European Journal of Combinatorics 60 (2017) 42–54

As every colour must see both top and bottom of Kn,n, we have that V (C1 ∩ C2) ∪ V (C3 ∩ C4) ⊆ Kn,n.
By 2-locality there are no other colours. �

3.1. Partitioning into paths

In this subsection we prove Theorem 1.5. For the sake of contradiction, assume that Kn,n is
2-locally edge-coloured such that there is no partition into three monochromatic paths. Since we are
not interested in the actual colours of the pathwe can assume the colouring to be simple. Furthermore
Theorem 1.1 implies that there are at least three colours.

A path is even if it has an even number of vertices.

Claim 3.2. There is no even monochromatic path P such that Kn,n \ P is contained in Ci ∩ Cj for distinct
colours i, j.

Proof. Suppose the contrary and let P be as described in the claim and of maximum length. Since the
colouring is 2-local and Kn,n \ P ⊆ Ci ∩ Cj, the graph on Kn,n \ P is 2-coloured. Using Theorem 1.1, we
are done unless the colouring on Kn,n \ P is split.

In that case, let p be the endpoint of P in Kn,n. Since Kn,n \ P ⊆ Ci ∩ Cj, the edges between p and
Kn,n \ P have colours i or j. So P has colour k ∉ {i, j}, as otherwise we could use the splitness of Kn,n \ P
to extend P with two extra vertices. But then, p can only see one more colour apart from k, so we may
assume that all the edges between p and Kn,n \ P have colour i. Now cover Kn,n \P by two paths P1 and
P2 of the colour i and one path of the colour j. The paths P1 and P2 can be joined using the vertex p to
give the three required paths. �

Now the case of four colours of Lemma 3.1 is easily solved: without loss of generality suppose that
|C1 ∩ C2| ≤ n/2. By symmetry between colours 1 and 2 we can assume that |C2| ≤ |C2|. So there
exists an even colour 2 path P covering C2 = C1 ∩ C2 and we are done by Claim 3.2. This proves the
following claim.

Claim 3.3. The total number of colours is three.

Our next aim is to show that the colouring looks like in Fig. 2, that is, that every vertex sees two
colours. For this, we need the next claim and the following definition. We say that a subgraph of
H ⊆ Kn,n is connected in colour i, if every two vertices of H are connected by a path of colour i in H .

Claim 3.4. There is no even monochromatic path P such that Kn,n \ P is connected in some colour i.

Proof. Assume the opposite and let P be as described in the claim. Simplify the colouring of Kn,n\V (P)
to a 2-colouring by merging all colours distinct from i. (Note that since all vertices see i, by 2-locality
no vertex can see more than one of the merged colours.) The new colouring is not a split colouring by
the assumption on i. Hence Theorem 1.1 applies, and we are done. �

Claim 3.5. Each vertex sees two colours.

Proof. Suppose that there is a vertex in Kn,n that sees only colour, 1 say. Then by 2-locality C2 ∩ C3 =

∅. Since the colouring is simple we know that C2 ∩ C3 ≠ ∅. Therefore Kn,n ⊆ (C1 ∩ C2) ∪ (C1 ∩ C3).
If |C2 ∩ C3| > |C1 ∩ C3|, we can choose an even path of colour 3 that contains all vertices of C1 ∩ C3

and apply Claim 3.2. Otherwise, let P be an even path of colour 3 between |C2 ∩ C3| and |C1 ∩ C3| that
covers all vertices of C2 ∩ C3. Since all remaining vertices lie in C1, the subgraph Kn,n \ P is connected
in colour 1 and we are done by Claim 3.4. �

Claims 3.3 and 3.5 ensure that for the rest of the proof we can assume that the colouring is exactly
as shown in Fig. 2 (with some of the sets possibly being empty). Now, let us see how Claim 3.2 implies
that we easily find the three paths if one of the Ci is complete bipartite in colour i.

Claim 3.6. For i ∈ {1, 2, 3}, the graph Ci is not complete bipartite in colour i.
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Fig. 2. There are three colours and each vertex sees exactly two colours.

Proof. Suppose the contrary and let Ci contain only edges of colour i. Take out a longest even path of
colour i in Ci. This leaves us either with only Cj ∩ Ck in the bottom partition class, or with only Cj ∩ Ck

in the top partition class (where j and k are the other two colours). We may thus finish by applying
Claim 3.2, after possibly switching top and bottom parts. �

Claim 3.7. For i ∈ {1, 2, 3}, the graph Ci is connected in colour i.

Proof. For contradiction, suppose that C3 is not connected in colour 3 (the other colours are
symmetric). Then there are two edges e, f of colour 3 belonging to C3 that are not joined by a path
of colour 3. First assume we can choose e in E(C2 ∩ C3). Since all edges between C1 ∩ C3 and C2 ∩ C3
have colour 3, we get f ∈ E(C2 ∩ C3), and C1 ∩ C3 has no vertices. But this contradicts our assumption
that the colouring is simple. Therefore, C2∩C3 and, by symmetry, C1∩C3 contains no edges of colour 3.

By symmetry (between the top and bottom partition) we can assume that |C1 ∩ C3| ≥ |C1 ∩ C3|.
Further, we have |C1 ∩ C3| < |C1 ∩ C2| + |C1 ∩ C3|, since otherwise we could find an even path of
colour 1 that covers all of C1 ∩ C2 ∪ C1 ∩ C3 and use Claim 3.2. So we can choose an even path P of
colour 1, alternating between C1 ∩ C3 and C1 ∩ C2 ∪ C1 ∩ C3, that contains both C1 ∩ C3 and C1 ∩ C3.
Thus Kn,n \ P is connected in colour 2 and Claim 3.4 applies. �

Let us now show that for pairwise distinct i, j, k ∈ {1, 2, 3} we have

at least one of Ci ∩ Cj, Ci ∩ Ck is not empty. (4)

To see this, note that the edges between Ci ∩ Cj and Ci ∩ Ck are of colour i. Thus if (4) does not hold,
we can find a colour i (possibly trivial) path P that covers one of these two sets. Hence either in the
top or in the bottom part of Kn,n, the path P covers all but Cj ∩ Ck. We can thus finish with Claim 3.2.

Together with the fact that every colour must see both top and bottom class, (4) immediately
implies that for pairwise distinct i, j, k ∈ {1, 2, 3} we have

at least one of Ci ∩ Cj, Ci ∩ Ck meets both Kn,n and Kn,n. (5)

So, of the three bipartite graphs Ci∩Cj, two have non-empty tops and bottoms. Hence, after possibly
swapping colours, we know that the four sets C1 ∩ Ci, C1 ∩ Ci, i = 2, 3, are non-empty. Observe that
after possibly swapping colours 2 and 3, and/or switching partition classes of Kn,n, we have one of the
following situations:

(i) |C1 ∩ C2| ≥ |C1 ∩ C3| and |C1 ∩ C2| ≥ |C1 ∩ C3|, or
(ii) |C1 ∩ C2| ≥ |C1 ∩ C3| and |C1 ∩ C2| ≤ |C1 ∩ C3|.

In either of these situations, note that as all involved sets are non-empty, by Claim 3.7 there is an
edge e1 of colour 1 in E(C1 ∩ C2) ∪ E(C1 ∩ C3). So if we are in situation (ii), we can find an even path
of colour 1 covering all of C1 ∩ C3 ∪ C1 ∩ C2. Now Claim 3.2 applies, and we are done. So assume from
now on we are in situation (i).
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Similarly as above, by (5), there is an edge e2 of colour 2 in E(C3 ∩ C2) ∪ E(C1 ∩ C2). By Claim 3.6,
C3 is not complete bipartite in colour 3. So we can assume that at least one of e1 or e2 is chosen in C3
and hence the two edges are not incident.

Extend e1 to an even colour 1 path P covering all of C1 ∩ C3, using (apart from e1) only edges from
[C1 ∩ C3, C1 ∩ C2] and from [C1 ∩ C2, C1 ∩ C3], while avoiding the endvertices of e2, if possible. If we
had to use one of the endvertices of e2 in P , then P either covers all of C1 ∩ C2 or all of C1 ∩ C2. In either
case we may apply Claim 3.2, and are done. On the other hand, if we could avoid both endvertices of
e2 for P , then Claim 3.4 applies and we are done. This finishes the proof of Theorem 1.5.

3.2. Finding long paths

In this subsection we prove Theorem 1.6. We will use the following theorem, which resolves the
problem for the case of 2-colourings.

Theorem 3.8 ([8,13]). Every 2-edge-coloured Kp+q−1,p+q−1 contains a colour 1 path of length 2p or a
colour 2 path of length 2q.

As in the last section, Ci denotes the subgraph induced by the vertices that have an edge of colour
i. Recall that the length of a path is the number of its vertices.

Lemma 3.9. Let K2m−1,2m−1 be 2-locally coloured with colours 1, 2, 3. Then for distinct colours i, j there
is a monochromatic path of length at least

min{2m, 2max(|Ci ∩ Cj|, |Ci ∩ Cj|)}.

Proof. By symmetry,we can assume that |Ci ∩ Cj| ≥ |Ci ∩ Cj|. Moreover,we can assume that Ci ∩ Cj ≠

∅, as otherwise there is nothing to prove. Then by 2-locality,

Ck \ (Ci ∪ Cj) = ∅, (6)

where k denotes the third colour.
We apply Theorem 3.8 to a balanced subgraph of Ci∩Cj with p = m−|Ci \ Cj| and q = m−|Cj \ Ci|.

For this, note that we have

p + q − 1 = 2m − 1 − |Ci \ Cj| − |Cj \ Ci|
(6)
= |Ci ∩ Cj| ≤ |Ci ∩ Cj|.

By symmetry between i and j we can assume that the outcome of Theorem 3.8 is a colour i path P of
length 2(m − |Ci \ Cj|). Let R ⊆ [Ci ∩ Cj \ P, Ci \ Cj] be a path of colour i and length

r = min(2|Ci ∩ Cj \ P|, 2|Ci \ Cj|).

If r = 2|Ci \ Cj|, then we can join P and R to a path of length of 2m. Otherwise r = 2|Ci ∩ Cj \ P| and

we can join P and R to a path of length of 2|Ci ∩ Cj|. �

Now let us prove Theorem 1.6 by contradiction. To this end, assume that K2m−1,2m−1 is coloured
2-locally and has no monochromatic path on 2m vertices. Since we are not interested in the actual
colours of the path we can assume the colouring to be simple, as in the previous subsection.
Furthermore Theorem 3.8 implies that there are at least three colours.

We now apply Lemma 3.1. The four colour case of Lemma 3.1 is quickly resolved: Without loss of
generality suppose that |C1 ∩ C2| ≥ m. By symmetry between colours 1 and 2, we can assume that
|C1 ∩ C3 ∪ C1 ∩ C4| ≥ m. Thus we easily find a colour 1 path of length 2m alternating between these
sets. This proves:

Claim 3.10. The total number of colours is three.

We can now exclude vertices that see only one colour.



R. Lang, M. Stein / European Journal of Combinatorics 60 (2017) 42–54 53

Claim 3.11. Each vertex sees two colours.

Proof. Suppose that there is a vertex in K2m−1,2m−1 that sees only colour 1, say. Then by 2-locality,
C2 ∩ C3 = ∅. Since the colouring is simple we know that C2 ∩ C3 ≠ ∅. Therefore K2m−1,2m−1 ⊆

(C1 ∩ C2) ∪ (C1 ∩ C3). Since one of C1 ∩ C2 and C1 ∩ C3 must have size at least m, we are done by
Lemma 3.9. �

Put together, Claims 3.10 and 3.11 allow us to assume that the colouring is as shown in Fig. 2. The
next claim follows instantly from Lemma 3.9.

Claim 3.12. For distinct colours i, j we havemax(|Ci ∩ Cj|, |Ci ∩ Cj|) < m.

As the three top parts sum up to 2m − 1, and so do the three bottom parts, we immediately get:

Claim 3.13. Ci ∩ Cj, Ci ∩ Cj ≠ ∅ for all distinct i, j ∈ {1, 2, 3}.

The next claim requires somemore work. Recall that a subgraph ofH ⊆ Kn,n is connected in colour
i, if every two vertices of H are connected by a path of colour i in H .

Claim 3.14. If the subgraph Ci is connected in colour i, then there are distinct j, k ∈ {1, 2, 3} \ {i} such
that |Ci ∩ Cj| ≥ |Ci ∩ Ck|, |Ci ∩ Cj| > |Ci ∩ Ck| (modulo swapping top and bottom partition classes) and
|V (Ci ∩ Ck)| < m.

Proof. Suppose that Ci is connected in colour i and let j, k ∈ {1, 2, 3} \ {i} be such that |Ci ∩ Cj| ≥

|Ci ∩ Ck| (after possible swapping top and bottom partition). By Claim 3.13, and as Ci is connected in
colour i, we find an edge ei ∈ E(Ci∩Cj)∪E(Ci∩Ck) of colour i. Choose an even path P ⊆ [Ci ∩ Cj, Ci ∩ Ck]

which covers Ci ∩ Ck and ends in one of the vertices of ei.
For the first part of the claim, assume to the contrary that |Ci ∩ Cj| ≤ |Ci ∩ Ck|. Take an even path

P ′
⊆ [Ci ∩ Cj, Ci ∩ Ck]which covers Ci ∩ Cj and ends in a vertex of ei. Since P and P ′ are joined by ei we

infer that |Ci ∩ Ck| + |Ci ∩ Cj| < m. But then |Cj ∩ Ck| ≥ m in contradiction to Claim 3.12. This shows

that |Ci ∩ Cj| > |Ci ∩ Ck|, as desired.

This allows us to pick an even path P ′′
⊆ [Ci ∩ Cj, Ci ∩ Ck] of colour i, which covers Ci ∩ Ck and

ends in one of the vertices of ei. Join P and P ′′ via ei to obtain a colour i path of length at least
2|Ci ∩ Ck| + 2|Ci ∩ Ck| = 2|V (Ci ∩ Ck)|. So by our assumption that there is no monochromatic path of
length 2m, we obtain |V (Ci ∩ Ck)| < m, as desired. �

Claim 3.15. For at most one pair of distinct indices i, j ∈ {1, 2, 3} it holds that |V (Ci ∩ Cj)| < m.

Proof. Suppose, on the contrary, that C1 ∩ C2 and C1 ∩ C3 each have less thanm vertices. Then C2 ∩ C3
has at least 2m vertices. Therefore one of its partition classes has size at least m, a contradiction to
Claim 3.12. �

We are now ready for the last step of the proof of Theorem 1.6. We start by observing that if for
some i ∈ {1, 2, 3}, the subgraph Ci is not connected in colour i, then (letting j, k be the other two
indices) the edges of the graphs Ci ∩ Cj and Ci ∩ Ck are all of colour j, or colour k, respectively, and thus
both Cj and Ck are connected in colour j, or colour k, respectively. So we can assume that there are at
least two distinct indices j, k ∈ {1, 2, 3}, such that the subgraphs Cj, Ck are connected in colour j, or in
colour k, respectively. Say these indices are 1 and 3.

We use Claim 3.14 twice: For C1 it yields that one of C1 ∩ C3 and C1 ∩ C2 has less than m vertices.
For C3 it yields that one of C1 ∩ C3 and C2 ∩ C3 has less than m vertices. So by Claim 3.15 we get that
necessarily,

|V (C1 ∩ C3)| < m, |V (C1 ∩ C2)| ≥ m, |V (C2 ∩ C3)| ≥ m. (7)



54 R. Lang, M. Stein / European Journal of Combinatorics 60 (2017) 42–54

Again using Claim 3.14, this implies that C2 is not connected in colour 2. So by Claim 3.13 and the fact
that the edges between C1 ∩ C2 and C2 ∩ C3 are complete bipartite in colour 2, we have that

C1 ∩ C2 is complete bipartite in colour 1. (8)
Also, in light of (7), Claim3.14with input i = 1 gives j = 2 and k = 3 and thus |C1 ∩ C2| ≥ |C1 ∩ C3|,

|C1 ∩ C2| > |C1 ∩ C3| (after possibly swapping top and bottom partition). Choose two balanced
paths of colour 1: The first path P ⊆ [C1 ∩ C2, C1 ∩ C3] such that it covers C1 ∩ C3. The second path
P ′

⊆ [C1 ∩ C2, C1 ∩ C3] such that it covers C1 ∩ C3. As by (8) we know that C1∩C2 is complete bipartite
in colour 1, we can join P and P ′ with a path of colour 1 in C1∩C2, such that the resulting path P ′′ covers
one of C1, C1. Since by assumption, P ′′ has less than 2m vertices, we obtain that C2 ∩ C3 or C2 ∩ C3 has
size at leastm, a contradiction to Claim 3.12. This finishes the proof of Theorem 1.6.
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