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Core logging is the geological study, recording and classification of petrophysical attributes of drill hole
samples, such as lithology, alteration or mineralogical assemblage. The geological logging is qualitative
and subject to errors because of its visual nature and other factors inherent to logging, such as low drill
hole recoveries, difficulties in estimating the volumetric contents of minerals, or different logging criteria
among geologists. To date, different tools for quality control and validation of geological logging have
been elaborated, based on geological knowledge, statistics, geostatistics, image analysis, neural network
and data mining. This paper presents an alternative approach based on geostatistical modeling for iden-
tifying and reclassifying potentially mislogged samples when quantitative covariates from geochemical
analyses or metallurgical tests are available. The principle of this approach is to: (i) define geological
domains for each quantitative variable by an adequate grouping of the log classes; (ii) transform the
quantitative variables into normal scores, accounting for the previously defined domains, (iii) model
the spatial correlation structure of the normal scores, (iv) perform leave-one-out cross validation and
obtain predictions of the normal variables and the associated variance-covariance matrices of prediction
errors; (v) calculate a measure of consistency for each sample and each possible logged class under a mul-
tivariate normal assumption; and (vi) compare these measures of consistency with the actual logged
classes to detect suspicious logs. The methodology is demonstrated in a case study from an iron ore
deposit, with data of rock type logged by geologists and seven quantitative variables (grades of elements
of interest, loss on ignition and granulometry).

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Drilling is the most expensive procedure in mineral exploration.
Information from drill holes can be extracted by different methods,
such as assaying, down-the-hole geophysical logging or geological
core logging (Knödel et al., 2007; Marjoribanks, 2010). The latter is
the geological study, visual recording and classification of petro-
physical attributes of drill cores (essentially extracted by diamond
drilling), such as lithology, alteration or mineralogical assemblage.
Relevant information gathered from geological core logging is the
basis for constructing geological and geo-metallurgical models
for mineral resources evaluation and classification, ore reserves
definition and mine planning (e.g., Soltani and Hezarkhani, 2011).
It is also often used for partitioning heterogeneous deposits into
geological or geo-metallurgical domains in which the regionalized
properties of interest can be interpreted as stationary fields
(Sinclair and Blackwell, 2002; Moon et al., 2006; Yunsel and
Ersoy, 2011; Haldar, 2013; Rossi and Deutsch, 2014).

However, due to the visual nature of logging, the classification
of petrophysical attributes is qualitative and subject to errors,
which may be explained by several factors (Manchuk and
Deutsch, 2012; Cáceres and Emery, 2013): presence of complex
rock textures caused by overprinting processes; inherent difficulty
to estimate mineral percentages and thresholds; lack of geochem-
ical analyses during logging; lack of experience of mining geolo-
gists; non-unique logging criteria among geologists; and low core
recovery because mineralized and altered rock zones are fre-
quently more fragile and are the first parts that are lost during cor-
ing. Inaccurate logs generate data that are inconsistent with
geochemical analyses and metallurgical tests, such as low iron
grades in supposedly supergene hematite zones or low acid con-
sumption in supposedly calcareous rocks. Due to limited time
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and resources for relogging, inconsistent logs are generally seen as
outliers or ignored in the geological or geo-metallurgical modeling
stage (Theys, 1999; Cáceres and Emery, 2013).

Quality control and validation of geological logging have been
discussed in the fields of geosciences and resources engineering,
where manual to automated procedures have been elaborated,
based on geological knowledge, statistics, geostatistics, image
analysis, neural network and data mining tools (Hoyle, 1986;
Agterberg, 1990; Luthi and Bryant, 1997; Taylor, 2000; Luthi,
2001; Hassibi et al., 2003; Bourgine et al., 2008, 2015; Ewusi and
Kuma, 2011). Geological knowledge-based approaches are mainly
focused on chronostratigraphy and sequencing methods for corre-
lating the logs of different drill holes (Agterberg, 1990). Further-
more, geophysical well logging allows mapping of petrophysical
signature and can be used for cross-checking geological logs
(Spies, 1996; Hearst et al., 2000; Luthi, 2001; Dunn et al., 2002;
Knödel et al., 2007; Soleimani et al., 2016). In recent years,
Manchuk and Deutsch (2012) introduced a geostatistical measure
of coherency for geological logs, based on a spatial correlation
model, which can be applied for quality control of drill hole data.
Another proposal by Cáceres and Emery (2013) relies on leave-
one-out cross-validation in order to identify log data that disagree
with quantitative measurements. This proposal was applied to a
synthetic deposit characterized by a single quantitative variable
(an assayed grade) and three logged classes (rock types) to which
different logging errors were added. The results showed good abil-
ity to identify mislogged rock types based on grade information.
However, the proposed approach is applicable to mineral deposits
with hard boundaries between logged classes, i.e., when there is no
spatial correlation among quantitative variables across the bound-
ary between two classes, which is a too restrictive requirement for
disseminated deposits.

This work aims at presenting an improvement of the approach
by Cáceres and Emery (2013) for validating geological logs and
identifying data for which the qualitative logged class is not in
agreement with quantitative variables available from assays or
metallurgical tests. The proposed methodology is also based on
leave-one-out cross-validation, but will be set in a fully multivari-
ate framework and will be applicable to mineral deposits where
quantitative variables are correlated across boundaries between
logged classes (soft boundaries). It relies on the following four
working assumptions: (1) geochemical analyses, metallurgical
tests and geological features such as lithology, alteration or miner-
alogical assemblage should be consistent in spatial and statistical
terms, insofar as they are related responses to the same geological
processes; (2) geochemical analyses and metallurgical tests are
more accurate than geological logging; (3) a small proportion of
the drill cores is likely to be mislogged; (4) the quantitative vari-
ables are regionalized and can be interpreted as realizations of spa-
tial random fields that, within one or more domains that partition
the deposit, are transforms of stationary Gaussian random fields,
i.e., random fields whose finite-dimensional distributions are mul-
tivariate normal and are invariant under a translation in space. The
latter assumption is the basis of most of the current geostatistical
approaches used for simulating quantitative variables and for
quantifying geological uncertainty in mineral deposits (Verly,
1983; Chilès and Delfiner, 2012; Rossi and Deutsch, 2014;
Deutsch et al., 2016).

The paper is outlined as follows. Section 2 describes our pro-
posal from a methodological point of view and leads to the defini-
tion of a statistical measure (p-value) for each drill hole sample
that indicates how closely the classes of the logged petrophysical
attribute agree with the quantitative variables resulting from geo-
chemical analyses and metallurgical tests. Section 3 presents an
application to drill hole samples of an iron ore deposit, for which
information of the logged rock type and seven quantitative covari-
ates is available. Conclusions follow in Section 4.
2. Methodology

2.1. Problem statement

Let us consider a set of drill hole samples with spatial coordi-
nates {x1,. . ., xA}, for which geological logs are available. These logs
provide a class number (between 1 and K) for a petrophysical attri-
bute (e.g., rock type). In addition, there are N quantitative variables
(for example, grade assays) for the same samples as that of the geo-
logical logs. The information from the quantitative variables is sup-
posed to be accurate, due to a proper quality assurance and quality
control program, while that of the logs is subject to errors. The pro-
posed methodology is explained in the following subsections and
summarized in the schematic diagram presented in Fig. 1.

2.2. Geological domaining

For mineral resources evaluation in heterogeneous deposits,
each quantitative variable is generally associated with geological
domains that consist of a single log class or a group of log classes
such that (i) the quantitative variable can be modeled as a station-
ary field (i.e., a field whose distribution is invariant under a spatial
translation) within each domain and (ii) there is a change of distri-
bution between one domain and another (e.g., one observes some
discontinuity or some change in the spatial continuity when cross-
ing the boundary between two domains). A contact analysis is
helpful at this stage to determine the best grouping and therefore
identify the geological domains (Glacken and Snowden, 2001;
Rossi and Deutsch, 2014; Maleki and Emery, 2015). Also note that
the domains can differ from one quantitative variable to another,
depending on the geological characteristics that control the behav-
ior of each variable; in other words, the geological controls may not
be the same for all the quantitative variables.

2.3. Normal score transformation

The data of each quantitative variable within each of its geolog-
ical domains are declustered in order to obtain a distribution cor-
rected for possible biases caused by irregular sampling patterns,
then normal score transformed, i.e., transformed into data that fol-
low a standard Gaussian distribution (Deutsch and Journel, 1998;
Chilès and Delfiner, 2012). The one-to-one relationships between
the original variables and their normal scores can be stored in
transformation tables.

As the geological domains associated with a given quantitative
variable do not overlap, the normal score data associated with the
different domains are totally heterotopic, i.e., they are not defined
at the same locations. In contrast, the normal scores data associ-
ated with different quantitative variables may be isotopic, partially
heterotopic or totally heterotopic, depending on whether the geo-
logical domains are the same, partially overlap or are disjoint and
on the sampling design of the quantitative variables (isotopic or
heterotopic).

2.4. Covariance analysis

Since sample cross-variograms cannot be calculated for hetero-
topic datasets (Wackernagel, 2003), the spatial correlation struc-
ture of the normal score data is inferred by calculating their
sample direct and cross covariances. Direct covariances measure
the spatial continuity of each quantitative variable within each of



Fig. 1. Schematic diagram of proposed methodology.
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its geological domains, while cross-covariances measure the spa-
tial cross-correlation that exists between two different quantita-
tive variables or the spatial cross-correlation of a quantitative
variable between two different geological domains. This way, our
methodology is able to account for soft boundaries, i.e., when mea-
surements of a quantitative variable exhibit some correlation
across domain boundaries (a frequent situation for disseminated
deposits).

On the basis of the calculated sample covariances, a linear core-
gionalization model can be fitted by using combinations of basic
nested covariance models (Wackernagel, 2003; Chilès and
Delfiner, 2012), so as to define a set of theoretical direct and cross
covariances for the Gaussian random fields that represent the
quantitative variables within their different geological domains.

2.5. Cross-validation

Leave-one-out cross-validation (Chilès and Delfiner, 2012) is
then performed in order to get a consistency measure between
the data associated with the quantitative variables and the logged
classes. Specifically, one drill hole sample is removed at a time
from the dataset and all the Gaussian random fields at this sample
are predicted by cokriging, by using all the remaining data located
in the same geological domain and in the other domains. The
results of cokriging for the sample under consideration are a vector
of the prediction of the Gaussian random fields and a variance-
covariance matrix of the prediction errors. This process is per-
formed for each sample successively.

2.6. Calculation of p-values

For each sample a 2 {1. . . A} and each class index k 2 {1. . . K}:

(1) Assume that, if no logging error occurred, class k would pre-
vail at the sample under consideration.

(2) Transform the N quantitative variables measured at this
sample into normal scores, using the suitable normal score
transformation tables obtained in Subsection 2.3. Obtain a
Gaussian vector zk,a with N components.

(3) From the vector of cokriging prediction obtained in Subsec-
tion 2.5, extract the sub-vector z�k;a corresponding to the
Gaussian random fields that are defined for the class under
consideration (i.e., remove the prediction of the Gaussian
random fields associated with geological domains that do
not contain class k).

(4) Similarly, from the variance-covariance matrix of cokriging
errors, extract the sub-matrix

P�
k;a corresponding to the

Gaussian random fields defined for the class under
consideration.

(5) Based on the assumption made at stage (1), the conditional
distribution of the Gaussian random fields at the sample
location is multivariate normal with mean equal to the cok-
riging prediction and with variance-covariance matrix equal
to that of the cokriging errors (Chilès and Delfiner, 2012).
Accordingly, it has the following probability density
function:

gðzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞN detðR�

k;aÞ
q

� exp �1
2
ðz� z�k;aÞT ðR�

k;aÞ�1ðz� z�k;aÞ
� �

ð1Þ

where N is the common size of vectors zk,a and z�k;a (number of orig-
inal quantitative variables), z is a generic point of RN, while z�k;a andP�

k;a have been obtained in the previous steps (3) and (4). Let us
define the Mahalanobis distance as

rðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� z�k;aÞT ðR�

k;aÞ�1ðz� z�k;aÞ
q

ð2Þ
It provides a measure of the distance between the generic point

z of RN and the prediction z�k;a (expected value of the conditional
distribution in Eq. (1)). It is dimensionless, scale-invariant and
takes into account the correlations between the N Gaussian ran-
dom fields defined for the class k under consideration. If N = 1,
the distribution in Eq. (1) reduces to a univariate normal distribu-
tion and the Mahalanobis distance reduces to the standard score.
For N > 1, the Mahalanobis distance is just a multidimensional gen-
eralization of the idea of measuring howmany standard deviations
away z is from z�k;a.

The p-value pk,a associated with zk,a (supposedly true Gaussian
vector for sample a, which has been obtained at step (2)) is defined
as the integral of the probability density in Eq. (1) over all the
points of RN with a Mahalanobis distance greater than r(zk,a). This
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p-value gives a measure of the remoteness between the expected
value z�k;a and the supposedly true value zk,a, i.e.:

pk;a ¼
R
z such that rðzÞ>rðzk;aÞ gðzÞdz

¼ 1� 1
ð2pÞN=2

R rðzk;aÞ
0 exp � 1

2 t
2

� �
2pN=2

C N
2ð Þ t

N�1 dt
ð3Þ

where 2pN=2=CðN2Þ is the surface area of the unit-radius sphere of RN

(Chilès and Delfiner, 2012). To calculate pk,a, let us define

INðrÞ ¼
Z r

0
exp �1

2
t2

� �
tN�1 dt ð4Þ

This integral can be computed by using integration by parts.
One finds:

I1ðrÞ ¼
ffiffiffiffiffiffiffi
2p

p
GðrÞ � 1

2

� �
I2ðrÞ ¼ 1� exp � r2

2

n o

INðrÞ ¼ �rN�2 exp � r2
2

n o
þ ðN � 2ÞIN�2ðrÞ for N P 3

8>>><
>>>:

ð5Þ

where G stands for the standard Gaussian cumulative distribution
function.

At the end of this process, one obtains, for each drill hole sample
(a) and each class (k), a p-value pk,a that measures how ‘‘extreme”
is the vector of N quantitative variables measured at this sample
for the class under consideration. The analysis of the set of
Fig. 2. Box plots showing quantiles Q2.5, Q25, Q50, Q75 and Q97.5 of the distributions of
granulometry, for each rock type.
p-values will allow identification of the data for which the logged
class is likely to be mistaken, as illustrated in the case study pre-
sented in the next section.
3. Case study

3.1. Presentation of the data

The proposed methodology is now applied to a data set from an
iron ore deposit, the name and location of which are not disclosed
for confidentiality reasons. The deposit is hosted by banded iron
formations and is explored by diamond drill holes dipping from
60� to 90�. A total of 4096 samples are taken from cores and sent
for analysis, yielding data for seven quantitative variables: grades
of iron (Fe), silica (SiO2), phosphorus (P), alumina (Al2O3) and man-
ganese (Mn), loss on ignition (LOI) representing the mass concen-
tration of volatile materials, and granulometric fraction of
fragments with size above 6.3 mm (G). The dominant rock type is
also available for each drill hole sample; it is deduced by geological
logging and is classified into 10 classes:

– Code 1: Friable hematite (FH)
– Code 2: Compact hematite (CH)
– Code 3: Alumina-rich hematite (ALH)
iron grade, phosphorus grade, alumina grade, manganese grade, loss on ignition and
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– Code 4: Alumina-rich itabirite (ALI)
– Code 5: Manganese-rich itabirite (MNI)
– Code 6: Compact itabirite (CI)
– Code 7: Friable iron-poor itabirite (FPI)
– Code 8: Friable iron-rich itabirite (FRI)
– Code 9: Amphibolitic itabirite (AI)
– Code 10: Canga (CG).

The deposit is divided into a supergene layer (surficial canga)
and underlying ferruginous rocks. On the one hand, CG is a layer
of well-consolidated rock composed mainly of goethite derived
from weathering of the iron formation, with high iron grade, alu-
mina grade and loss on ignition. On the other hand, the underlying
rocks are subdivided on the basis of their granulometry and con-
tents of iron, alumina, manganese and loss on ignition. Specifically,
iron is mainly present in the form of hematite and itabirite. The
Fig. 3. Workflow of proposed methodology
former is an oxide-facies formation with high iron grade (most
often above 62%), while the latter is a laminated, metamorphosed
oxide-facies formation in which iron is present as thin layers of
hematite, magnetite or martite, with grade generally less than
62% (Dorr, 1964). The alumina and phosphorus grades are high in
ALH, ALI, MNI and AI, with the last two rock types also having high
manganese grade and high loss on ignition, respectively. Finally,
the compact rock types CH and CI exhibit a coarse granulometry,
with values of G most often above 50%, while the other rock types
are associated with finer granulometry (G mostly below 50%)
(Fig. 2). These suggest that the quantitative variables are closely
related to the rock type definition and that the proposed approach
will provide an opportunity to detect inconsistencies between the
former and the latter. In the following subsection, the methodology
proposed in Section 2 is applied step-by-step. A general workflow
is presented in Fig. 3.
for identifying mislogged rock types.
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3.2. Geological domaining

The first modeling step involves partitioning the deposit into
domains in which the quantitative variables are homogeneously
distributed and can be represented by stationary random fields
(Rossi and Deutsch, 2014). To this end, for each quantitative vari-
able, the rock types are grouped into domains based on the follow-
ing considerations:

� The results of contact analysis, which aims at determining the
behavior of the mean value of a quantitative variable in the
neighborhood of the boundary between two rock type domains.
Some examples are provided in Fig. 4, where the mean values
are seen to change abruptly when crossing a rock type bound-
ary, indicating that the rock types on either side of the boundary
belong to different domains.
Fig. 4. Contact analysis for Fe (A, B and C) near the boundaries of geological domains 1 (F
the boundaries of geological domains 1 (AI), 2 (ALH + ALI + MNI) and 3 (FH + CH + CI + F
� The data statistics (mainly the mean value and the standard
deviation) within each rock type. The rock types belonging to
the same domain are expected to have similar statistics. An
example is given in Fig. 5 for the iron grade and loss on ignition.

� The location and contact relationships of the rock types in the
deposit. In particular, CG appears as a specific domain for all
the quantitative variables because of its surficial position and
because the data statistics in CG differ from those in any other
rock type (Fig. 2).

� The lithological controls on the variable under study. For
example, hematites and itabirites are likely to form two differ-
ent domains for the iron and silica grades, but not necessarily
for the other quantitative variables. Likewise, the compact and
friable rock types are likely to define two different domains for
the granulometry, but not for the remaining quantitative
variables.
H + CH + ALH), 2 (ALI + MNI + FRI + AI) and 3 (CI + FPI), and for LOI (D, E and F) near
PI + FRI).



Fig. 5. Mean values and standard deviations of Fe (A) and LOI (B) for the underlying rock types (excluding canga), and grouping of these rock types into geological domains.

Table 1
Geological domaining for each quantitative variable.

FH CH ALH ALI MNI CI FPI FRI AI

Fe 1 1 1 2 2 3 3 2 2 

SiO 2 1 1 1 2 2 3 3 2 2 

P 3 3 2 2 2 3 3 3 1 

Al 2O3 3 3 2 2 2 3 3 3 1 

Mn 2 2 2 2 1 2 2 2 2 

LOI 3 3 2 2 2 3 3 3 1 

G 2 1 2 2 2 1 2 2 2 
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In the following, the study will focus on the underlying ferrug-
inous rocks, i.e., we will no longer consider surficial canga, as its
characterization depends more on the geographical position than
on the quantitative variables. Table 1 gives a summary of the geo-
logical domains defined in the underlying rocks, where each quan-
titative variable is associated with two or three domains.

3.3. Normal scores transformation and coregionalization modeling

Overall, there are 19 combinations of quantitative variables and
geological domains: Fe-1, Fe-2, Fe-3, SiO2-1, SiO2-2, SiO2-3, P-1, P-
2, P-3, Al2O3-1, Al2O3-2, Al2O3-3, Mn-1, Mn-2, LOI-1, LOI-2, LOI-3,
G-1 and G-2. For each variable and each domain, the corresponding
data are normal score transformed. The direct and cross covari-
ances of the normal scores data are then calculated along the hor-
izontal and vertical directions, identified as the main anisotropy
directions, and fitted with a full linear coregionalization model
thanks to a semi-automated fitting algorithm (Emery, 2010). The
model uses a nugget effect and a set of nested exponential covari-
ances with a geometric anisotropy between the horizontal and ver-
tical directions, as its basic structures (Fig. 6).

Note that the normal scores associated with different quantita-
tive variables and/or with different geological domains are
assumed to be dependent, i.e., the linear coregionalization model
assumes the existence of spatial cross correlations between all
the 19 underlying Gaussian random fields. Accordingly, even if a
quantitative variable is discontinuous across the boundary
between two different domains, its values within these two
domains are not necessarily independent (a situation sometimes
referred to as a ‘‘transitional” boundary).
The above model parameters (normal score transformation
tables and theoretical direct and cross covariances) will not change
in all the subsequent stages of the study, insofar as we assumed
that only a small proportion of the samples is mislogged, hence
their effect on the model parameters should be marginal.
3.4. Cross validation

For each drill hole sample, the 19 Gaussian random fields are
predicted by simple cokriging, using a vector of zero means, the
previously fitted linear coregionalization model and a moving
neighborhood (in the present case, a ball with a radius of
300 meters, divided into octants, in each of which the 4 closest
samples are searched) as input parameters, and the normal scores
available at these closest samples as input data. Cokriging yields a
19 � 1 vector of predictions and a 19 � 19 variance-covariance
matrix of prediction errors for each drill hole sample.
3.5. Definition of consistency measures (p-values)

For each drill hole sample (index a = 1,. . ., 4096) and each rock
type (index k = 1,. . ., 9):

– Assume that rock type k prevails at the sample under
consideration.

– In view of the geological domains associated with the quantita-
tive variables (Table 1), identify which of the 19 Gaussian ran-
dom fields are defined for sample a.

– Transform the measured values of the original quantitative vari-
ables (grades, loss on ignition and granulometry) into normal
scores, using the transformation tables associated with the ade-
quate geological domains. Obtain the ‘‘true” Gaussian vector zk,a
of size 7 � 1. For example, for k = 1 (friable hematite FH), the
Gaussian values associated with Fe-1, SiO2-1, P-3, Al2O3-3,
Mn-2, LOI-3 and G-2 are obtained, while the remaining ones
are not.

– From the cross-validation results, extract the 7 � 1 vector of
predictions (z�k;a) and the 7 � 7 variance-covariance matrix of
prediction errors (R�

k;a).
– Calculate the p-value pk,a, as per Eq. (3).

3.6. Detection of suspicious data

To detect samples that may be mislogged, the following criteria
based on the calculated p-values are considered:



Fig. 6. An example of fitted direct covariances and cross-covariances for the transformed iron grade in domain 2 (Fe-2), transformed silica grade in domain 2 (SiO2-2) and
transformed alumina grade in domain 1 (Al2O3-1).
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– The p-value associated with the class that has been actually
logged by the geologist should be less than 0.01, i.e., the logged
class is very unlikely.

– The p-value associated with some other class is more than 0.3
(quite likely).
In addition, to get results that are consistent with the geological
zonation of the deposit, a geographical criterion is also considered,
namely, that the alternative (likely) class has been logged at some
drill hole sample distant less than 50 m from the suspicious
sample.



Table 2
Geochemical assay results for specified suspicious samples.

Sample
number

Fe SiO2 P Al2O3 Mn LOI G

50 58.334 3.351 0.23 4.184 0.034 7.273 61.465
61 58.575 3.34 0.221 4.051 0.034 7.139 62.23
110 61.293 5.146 0.026 3.12 0.02 1.935 13.9
138 36.643 4.958 0.069 2.431 24.729 7.077 41.5
146 59.735 3.414 0.058 3.738 0.014 6.263 84.18
1910 62.103 2.395 0.151 1.011 2.878 2.453 13.691

168 A. Adeli, X. Emery / Ore Geology Reviews 82 (2017) 160–169
Accordingly, each sample meeting all three mentioned condi-
tions represents a suspicious data that should be examined on a
case-by-case basis. Note that the geographical distance limit
(50 m) and the p-value limits (0.01 and 0.3) can be freely modified
by the practitioner, so that one could be more or less conservative
in finding such suspicious data.
3.7. Results and discussion

The application of the previous criteria yields a total of 2.42% of
the drill hole samples identified as suspicious. In the following, a
few of these suspicious samples are discussed in more details, in
the light of their logged rock types, values of the quantitative
variables (grades, loss on ignition and granulometry) (Table 2),
p-values (Table 3) and information of the 10 closest samples
(Table 4).

Sample n�61: This sample has been logged by the geologist as
rock type 3 (ALH), but the p-value of this rock type is close to 0
and the p-value of rock type 9 (AI) is very high (about 0.99)
(Table 3). Looking at the assayed grades in Table 2, the measured
iron grade appears to be abnormally low for an ALH, while the high
loss on ignition agrees well with an AI. Therefore, it seems that
sample n�61 is mislogged and should be relogged as rock type 9.
Table 3
Calculated p-values for all possible rock types of specified suspicious samples.

Sample number FH (1) CH (2) ALH (3) ALI (4)

50 0.316 0.292 0.983 0.865
61 0.027 0.021 0.000 0.000
110 0.006 0.001 0.881 0.143
138 0.000 0.000 0.000 0.000
146 0.000 0.000 0.000 0.000
1910 0.599 0.000 0.327 0.142

Table 4
Distance, sample number and logged rock type of the 10 closest samples to the specified

Sample Number 1 2 3 4

50 Distance (m) 5.1 10.2 20.2 30
Sample No. 61 936 1042 56
Rock type 3 3 3 3

61 Distance (m) 5.1 5.1 15.1 25
Sample No. 50 936 1042 56
Rock type 9 3 3 3

110 Distance (m) 5.1 5.2 13.5 13
Sample No. 2472 109 118 66
Rock type 8 3 4 7

138 Distance (m) 6.1 6.1 14.3 16
Sample No. 137 1287 721 66
Rock type 5 1 1 1

146 Distance (m) 5.3 7.2 11.8 17
Sample No. 145 1373 516 24
Rock type 9 1 3 1

1910 Distance (m) 6.9 9.8 19.7 21
Sample No. 1942 2716 3126 23
Rock type 3 2 2 3
Sample n�50: This sample is the opposite case of sample n�61, as
it has been logged as rock type 9 (AI), but the p-value of this rock
type is close to zero and that of ALH (rock type 3) is close to 0.98
(Table 3). However, the measured grades (Table 2) are very similar
to that of sample n�61 and agree well with rock type 9. Actually,
sample n�61 (mislogged as rock type 3) turns out to be the closest
one (Table 4), therefore the most influential in the cross-validation
procedure, which explains why rock type 9 appears so likely. One
concludes that sample n�50 is logged correctly and that the calcu-
lated consistency measures (p-values) are distorted due to the mis-
logged neighboring sample.

Sample n�110: This sample has been logged as rock type 8 (FRI),
but our criteria suggest changing it to rock type 3 (ALH). Based on
the assays (Table 2) and the existence of samples with rock type 3
in the neighborhood (Table 4), it seems that sample n�110 is effec-
tively mislogged and should be changed to rock type 3.

Sample n�138: This sample has been logged as rock type 1 (FH),
but may be relogged as 5 (MNI). This relogging would definitely
agree with the measured manganese grade (more than 24%)
(Table 2) and with the fact that the closest sample (sample n
�137, less than 10 m away) is also logged as rock type 5 (Table 4).
Note that another very close sample (n�1287) is logged as rock type
1 (Table 4), but the manganese grade measured for this sample is
substantially lower (0.26%) and the iron grade substantially higher
(60.95%), consistent with FH (code 1). Therefore, sample n�138
should be relogged as MNI (code 5), the same as its neighbor sam-
ple n�137, while sample n�1287 is correctly logged as rock type 1.

Sample n�146: This sample has been logged as rock type 1 (FH),
but could be relogged as rock type 9 (AI). From Table 2, it seems
that rock type 9 is more likely (owing to the high value of LOI)
but not decisively (owing to the high value of Fe and low value
of SiO2, more compatible with a hematite). From Table 4, one
observes that the closest sample (sample n�145) whose assays
are very close to that of sample n�146 is coded as rock type 9,
MNI (5) CI (6) FPI (7) FRI (8) AI (9)

0.000 0.006 0.007 0.114 0.003
0.000 0.001 0.001 0.069 0.988
0.010 0.000 0.001 0.000 0.062
0.304 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.913
0.175 0.001 0.218 0.302 0.003

suspicious samples.

5 6 7 8 9 10

.2 40.2 45.8 48.8 50.8 53.9 57.6
8 614 615 563 591 321 917

3 7 3 3 3 3

.1 35.1 40.7 44.8 49.9 52.3 53.5
8 614 615 563 591 321 917

3 7 3 3 3 3

.7 18.8 20.3 25.6 37.7 41.5 44.6
4 604 830 446 32 44 45

1 4 1 3 9 9

.1 25.9 43.0 50.6 58.8 191.3 191.4
1 1076 714 1026 1934 2169 1115

1 1 8 7 5 5

.2 18.2 27.2 34.0 40.9 49.2 50.1
33 358 2370 3358 1328 13 979

3 2 2 3 3 3

.8 29.0 31.8 35.7 39.6 43.9 46.9
11 2043 3382 3257 3374 3182 1083

2 3 2 3 1 8
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which may explain the p-value obtained for rock type 9. But, as for
sample n�146, it cannot be said decisively whether rock type 9 or 5
is correct for sample n�145, so it is advised to physically check and
relog these two samples.

Sample n�1910: This sample has been originally logged as rock
type 2 (CH) but, according to the calculated p-values, it could be
rock type 1 (FH), 3 (ALH) or 8 (FRI) (Table 3). From Table 2, it can
be understood that codes 2 and 8 are not adequate for this sample
(because of the too low granulometry and the too high iron grade,
respectively). Finally, it is suggested to discard codes 2 and 8 and to
physically check this sample to choose between codes 1 and 3.

4. Conclusions

There is an increasing need in the mining industry for high per-
formance of mineral resource models. A portion of model devia-
tions are caused by mislogged samples, for which the logged
value of a petrophysical attribute such as the lithology, alteration
or mineralogical assemblage is erroneous.

Considering the regionalized nature of petrophysical attributes
and their dependence relationships with quantitative variables
from geochemical analyses or metallurgical tests, a geostatistical
approach based on leave-one-out cross-validation has been pro-
posed for identifying possible mislogged samples. The proposal is
aimed at calculating, for each sample, a measure of consistency
between the logged classes and the quantitative covariates. It is
worthwhile to mention that the application is not black-boxed
and allows the practitioner to include additional criteria
(e.g., p-value limits and geographical criteria) to detect suspicious
samples. Also, because some samples may have all their measures
of consistency smaller than the chosen p-value limit and may
therefore not be classified into any of the logged classes, the pro-
posed methodology cannot be used blindly as a substitute for the
original logs.

To illustrate the applicability of the proposal, a case study from
an iron ore deposit has been presented, where the logged rock
types are closely related with seven quantitative variables (grades
of iron, silica, phosphorus, alumina, manganese, loss on ignition
and granulometry) measured on the same set of exploration drill
holes. The samples detected as suspicious have been carefully
checked on the basis of their logged classes and quantitative
covariates, as well as on the basis of the information of the neigh-
boring samples, in order to confirm or reject the correctness of the
original rock type logs.

The proposed approach can be applied in several geometallurgi-
cal contexts, for example by using geochemical data as covariates
for defining lithologies, ore mineralogical data from QEMSCAN
(Quantitative Evaluation of Minerals by SCANning electron micro-
scopy) analyses for finding mineral zones, or gangue mineralogical
data derived from spectroscopy for recognizing alterations, or all
the previous types of data as well as metallurgical tests for identi-
fying geometallurgical domains. In all these contexts, the identifi-
cation of misslogged samples can be beneficial for the overall
performance of the value chain of the mining business and provide
criteria to define samples that should be part of a relogging
campaign.
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