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Abstract. In this paper we derive the full analytical solution for the problem of
a circular micropolar inhomogeneity in an infinite micropolar plate subjected to a re-
mote uni-axial tension. The interface between the inhomogeneity and the surrounding
matrix is considered to be homogeneously imperfect, i.e. it is assumed that across the
interface the stresses/couple stresses are continuous and proportional to the jumps in
the corresponding displacements/microrotation. The solution method is based on the
use of Eringen’s stress functions, which allow to express all stresses/couple stresses and
displacements/microrotation as a linear combination of the solutions of two governing
equations and reduce the boundary conditions on the interface to a system of algebraic
equations for the unknown coefficients.
A parametric study is conducted to show that the stress concentration factors are sig-
nificantly dependent on the micropolar material constants as well as the parameters
characterizing the imperfect bonding between the inclusion and the matrix.
The solution is given in a ready-to-use form, freely downloadable, and can be further
used, for example, for the analysis of interface failures or as a reference solution in
numerical methods.

Keywords. micropolar elasticity, inhomogeneity (inclusion), homogeneously im-
perfect interface.

1 Introduction

Micropolar elasticity is one of the generalized continuum theories, which was developed
by the Cosserat brothers [1], Eringen [2], [3], Nowacki [4] and others to incorporate the
effects of material microstructure directly into the constitutive equations. According
to the provisions of the theory, the material is represented as a continuum of points,
having both translational and rotational degrees of freedom. The applied loading
creates a force and a couple, acting on every infinitesimal material plane, which leads
to the description of the deformation in terms of the asymmetric stress and couple-
stress tensors.

The theory introduces an intrinsic material length scale, associated with the mate-
rial microstructure, which makes it suitable to model materials such as fibre-reinforced
composites, granular and porous, blocky and layered materials. The theory is partic-
ularly adapted to describe materials with periodic microstructures, for which various
homogenisation techniques have been developed for determination of material param-
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eters [5], [6]. For the materials with random microstructure, the material constants
are measured experimentally, see for example, Lakes [7], [8].

A number of analytical and numerical methods have been proposed to solve the
boundary value problems of micropolar elasticity: e.g. the finite element method [9],
[10], [11]; the boundary element method for both, singular and hypersingular boundary
integral equations was developed in [12], [13].

The accuracy of the numerical methods is usually assessed by comparison of the
numerical results with the analytical solutions.

A common approach to obtain analytical solutions in the plane strain case is the
generalisation of the Airy stress function method in classical elasticity, i.e. the stresses
and couple stresses are expressed by means of two potential functions, introduced in
[3], in the form of a series with the unknown coefficients determined from the boundary
conditions. In [14] the analytical solutions for a number of problems were derived by
the direct series expansion of the displacements and microrotations.

In this work we use the method of potential functions to develop the analytical
solution for a problem of a micropolar circular inhomogeneity (inclusion) embedded
into an infinite micropolar matrix subjected to a remote uni-axial tension. A problem
with the same geometry and loading conditions was solved in [15] and [16] for the case
of a micropolar elasticity with constrained rotations, known as couple-stress theory.

The bonding between the inclusion and the matrix in [15] and [16] was assumed
to be perfect, i.e. the displacements, tractions and couple-tractions remain continuous
across the interface. In the present work, we consider the more general case of a
homogeneously imperfect interface, characterized by the continuous tractions and the
jump in displacements proportional to the corresponding traction components. This
model for plane elasticity was introduced in the work of Achenbach and Zhu [17],
Hashin [18], [19], followed by the work of Bigoni [20], and further developed and
generalized in [21], [22], [23] and others.

In this paper we generalise the model of a homogeneously imperfect interface to
the case of micropolar elasticity, which is characterized by the additional conditions
of continuous couple-traction and the jump in the microrotations proportional to the
couple-traction. The dependence of the solutions on the micropolar material param-
eters as well as the parameters characterising the bond between the inhomogeneity
and the matrix is analysed. Two limiting cases are also studied in details: a) strongly
micropolar inclusion embedded in a matrix, described by classical elasticity and b)
inclusion described by classical elasticity embedded in a strongly micropolar matrix.

While the paper contains the numerical results for some particular cases of the
material and interface parameters, used for analysis, the full solution is provided in
[24], in the form of Mathematica files, freely downloadable.

2 Preliminaries

For a micropolar material characterized by constants G (shear modulus), ν (Poisson’s
ratio), ` (characteristic length) and N (coupling number), the state of plane strain
is described in polar coordinates by two displacements u = ur, v = uθ, one out-of-
plane microrotation φ = φz, stress tensor components σrr, σrθ, σθr, σθθ and two couple
stresses mrz, mθz. In [3] it has been shown that stresses and couple stresses can be
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expressed in terms of two stress potentials Φ and Ψ, satisfying the equations:

∇4Φ = 0, ∇2(c2∇2Ψ−Ψ) = 0 (1)

together with the compatibility conditions:
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The stresses/couple stresses and displacements/micro-rotations are related via the
following expressions [3]:
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From the relation between displacements and stresses we can deduce
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while the microrotation is expressed as

φ =
1

4`2G
Ψ. (6)
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3 The inclusion problem

The inclusion problem is formulated as follows. We consider an inclusion of one mi-
cropolar material with constants G1, ν1, `1, N1 into an infinite micropolar matrix
described by constants G2, ν2, `2, N2. The origin of the coordinate system is placed
at the center of the inclusion and the radius of the inclusion is denoted as a. (Fig. 1).
In what follows we will use indices (i) to denote all quantities related to the inclusion,
while (e) will stand for the quantities related to the matrix.
The boundary conditions at r →∞ are given as

σ(e)
rr =

σ0
2

(1 + cos 2θ),

σ
(e)
rθ = −σ0

2
sin 2θ,

m(e)
rz = 0,

(7)

while on the boundary of the inclusion r = a we impose:

(1) λrσ
(e)
rr = u(e) − u(i),

(2) λθσ
(e)
rθ = v(e) − v(i),

(3) λφm
(e)
rz = φ(e) − φ(i),

(4) σ(e)
rr = σ(i)

rr ,

(5) σ
(e)
rθ = σ

(i)
rθ ,

(6) m(e)
rz = m(i)

rz ,

(8)

where constants λr, λθ, λφ are the interface parameters. Eq.(8.1), (8.2), (8.4), (8.5) for
plane elasticity were derived in [20] by representing the interface as a layer of third
material (interphase) with ”small” thickness and using asymptotic expansions of the
displacements and radial stresses in this layer. The same procedure was repeated
in this work for micropolar materials, and from the highest order derivatives in the
equilibrium equations and the relations between microrotations and couple-stresses, we
have concluded that the interface conditions for microrotations φ(i), φ(e) and couple-
stresses m

(i)
rz , m

(e)
rz have the form of (8.3) and (8.6).

Analogously with the classical elasticity [22], two important limiting cases are
included into eqs.(8): when λr = 0, λθ = 0, λφ = 0 we recover the perfect inter-
face conditions, i.e. the displacements and microrotations stay continuous; the case
λr →∞, λθ →∞, λφ →∞ corresponds to complete debonding.

Next, we seek the stress functions Φ(e), Ψ(e), Φ(i), Ψ(i) satisfying eqns.(1),(2) in
the form of the Fourier series expansion. Analogously to the solution of the circular
hole problem, given in [3] and to the solution of the inclusion problem (for a perfect
interface, in couple-stress elasticity), given in [15], it can be shown that the stress
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functions have the following form:
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where I2 (r/c1), K2 (r/c2) are modified Bessel functions of the first and second kind
respectively. The compatibility conditions (2) are satisfied if

A4 = 8(1− ν2)l22A3, B4 = 24(1− ν1)l21B3 (10)

Next, the solution of the problem consists in the following steps:
a) using the stress functions (9) all stresses and couple-stresses are derived according
to eq.(4),
b) then displacements and microrotations are obtained by integrating eqs.(5),
c) all expressions for stresses, couple-stresses, displacements and microrotations are
substituted into the boundary conditions (8) and in each equation the coefficients
of {1, cos 2θ, sin 2θ} are collected. This results in 8 equations for unknown X =
{A1, A2, A3, A5, B1, B2, B3, B5}, written schematically as

MX = Y . (11)

d) after system (11) is solved, all stresses, couple-stresses, displacements and micro-
rotations are obtained from eq.(4), (5).
The expressions for all stresses/couple stresses, displacements/microrotations, and the
entries of matrix M and vector Y are given in Appendix A. The full derivation of the
solution, as well as the final results, are given in [24], in the form of Mathematica files,
which can be used to obtain numerical values of all parameters of the problem for any
fixed material properties.

4 Numerical results

4.1 Perfect interface

The solution for the case of the perfect interface corresponds to λr = λθ = λφ = 0 or
both - desplacements/microrotation and tractions/couple traction - being continuous
across the inclusion interface, i.e.

σ(e)
rr = σ(i)

rr , σ
(e)
rθ = σ

(i)
rθ , m

(e)
rz = m(i)

rz ,

u(e) = u(i), v(e) = v(i), φ(e) = φ(i).
(12)

First we examine the dependence of the solution on the ratio g = G1/G2. In Fig.2, 3,
the stress concentration factors, defined as

SCF = max{σ(i)
θθ (π/2)/σ0, σ

(e)
θθ (π/2)/σ0} (13)
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Figure 1: Circular inclusion in an infinite plate under uni-axial tension.

are shown for the fixed material parameters of the inclusion, i.e. `1/a = 0.75, N1 =
0.5, ν1 = 0.25 and various values of `2/a and N2, while ν2 = 1/3. Note, that the
maximum stress occurs in the inclusion for g > g? and in the matrix for g < g?. The
value of g? is defined from the condition:

σ
(e)
θθ (π/2) = σ

(i)
θθ (π/2). (14)

We have observed, that analogously to the classical elasticity, the value of g? depends
significantly on the values of ν1 and ν2. And g? = 1 for ν1 = ν2 independently of the
values of all other material parameters.
As it can be seen from figure 2 for g < g?, the stress concentration factors for the same
value of g reduce as `2/a and N2 increase. Dependence of SCF on g for fixed values
of `2/a and N2 is analogous to the one in classical elasticity, where the higher stress
concentrations are observed for softer inclusions. The case g = 0 corresponds to the
problem of a infinite plate with a circular hole with the well-known solution given in
[3].

For g > g? the stress concentration factors given by σ(i)(π/2)/σ0 are plotted in fig.
3, also as functions of g. In the cases, when the matrix is softer than the inclusion,
the stress concentration factors for the same value of g are greater for greater values
of `2/a and N2. As values of N2 and `2/a increase, the solutions slower tend to their
limiting values as g →∞. The limiting case of g →∞ corresponds to the solution of
a problem of a rigid inclusion and it is given by dashed lines in fig. 3.

Next, we examine the dependence of the stress concentration factors on the values
of the characteristic lengths. In fig.4, 5 the stress concentration factors, given by
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σ
(e)
θθ (π/2)/σ0 for g = 0.5 and by σ

(i)
θθ (π/2)/σ0 for g = 2 are plotted as functions of the

inclusion material length `1/a for various values of the matrix material parameters N2,
`2/a. The rest of the constants were fixed to: ν1 = 0.25, ν2 = 1/3, N1 = 0.5. In the
case of a ”softer” inclusion in fig.4, the value of the SCF decreases as `2/a and N2

increase, while for a ”stiffer” inclusion in fig.4 the value of SCF increases as `2/a and
N2 increase.

The dependence of the SCFs on the value of the coupling number N1 is shown
in fig.6, 7 for various values of `2/a and N2. Analogously to the previous plots, the
biggest deviations from the classical solutions are observed as `2/a and N2 increase.
Next, we analyse two limiting cases:
a) micropolar inclusion embedded in a matrix, described by classical elasticity,
b) classical inclusion embedded in a micropolar matrix.

a) Micropolar inclusion embedded in a matrix, described by classical elasticity. In
this case we keep ν1 = 0.25, ν2 = 1

3
. The limiting values were taken for N2 = 0.001,

`2/a = 0.001. The stress concentration factors σ
(e)
θθ (π/2) for g = 0.5 and σ

(i)
θθ (π/2)

for g = 2 are shown in Fig. 8, 9 as functions of `1/a and N1. In all four cases the
values of the SCFs do not depend on `1/a and N1 and coincide with the classical

solution, given by σ
(e)
θθ (π/2) = 1.57576 for g = 0.5 and σ

(i)
θθ (π/2) = 1.14872 for g = 2.

This conclusion is consistent with the results established in [15] for the case of the
couple-stress elasticity.

a) Classical inclusion embedded in a micropolar matrix. In this case we keep ν1 =
0.25, ν2 = 1

3
. The limiting values were taken for N1 = 0.001, `1/a = 0.001. The

stress concentration factors σ
(e)
θθ (π/2) for g = 0.5 and σ

(i)
θθ (π/2) for g = 2 are shown in

Fig.10, 11 as functions of `1/a and N1. In this case the stress intensity factors exhibit
strong dependence on the parameters `2/a and N2, which can be seen in figures 10, 11,
and analogously to the previous plots, increasing micropolar parameters of the matrix
leads to decreasing the value of SCF in the case of a softer inclusion and increasing
the value of SCF in the case of a stiffer inclusion.

4.2 Imperfect interface

In the case of an imperfect interface, the distribution of stresses around the inclusion
depends significantly on the bonding between the matrix and the inclusion, described
by parameters λn, λs, λφ. It is noted, that analogously to the classical elasticity,
for certain combinations of the interface parameters and the material parameters of
the matrix and the inclusion, the interface model (8) yields negative displacement
jumps. In such case, since the model is based on the asymptotic expansion of stresses
and displacements in a thin ”interphase” layer between the inclusion and the matrix,
negative displacement jumps are still physically admissible, provided that they are
sufficiently small. This issue is discussed in details in [22] and, since the similar
reasoning is applicable in the case of micropolar elasticity, the detailed study is not
provided in the present work.

For further analysis we introduce the non-dimensional parameters hr, hθ, hφ :

λr =
hr
G2

, λθ =
hθ
G2

, λφ =
hφ
G2

. (15)

In fig.12 we demonstrate the dependence of σ
(i)
θθ , σ

(e)
θθ at point θ = π/2 on g for
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hφ = 0.1 and various values of interface parameters hr and hθ. As it can be seen from
fig.12(a) in the case of perfect bonding in r direction, maximum hoop stress is observed
in the matrix for all values of g, while in the case of perfect bonding in θ direction
only (fig.12(b)), maximum hoop stress is observed in the matrix for g < g? = 1.0355
and in the inclusion for g > g? = 1.0355. The same tendency is demonstrated in fig.12
(c) for hr = hθ = 0.25, however in this case g? = 2.4751. In fig.12 (d) the values of σθθ
are shown for hr = hθ = 1, where the stress concentration is always observed in the
matrix.

The same tendency is illustrated in fig.13 for g = 0.5 and fig.14 for g = 2. Values
of σ

(e)
θθ (π/2), σ

(i)
θθ (π/2) are plotted as functions of h = hr = hθ and p = hφ. In the case

of g = 0.5, for all values of parameters of h and p the values of σ
(e)
θθ (π/2) are greater

than the value of σ
(i)
θθ (π/2), while in the case of g = 2 for small values of h and any p

- the higher stress is observed in the inclusion, but for greater values of h the values
of σ

(e)
θθ (π/2) become greater than the values of σ

(i)
θθ (π/2).

As can be seen in fig.13, 14 for values of p in the range from 0 to 10, dependence
of the solutions on p is much smaller than the dependence on h. For the material
parameters used in this example, and for h = 0, g = 2 the difference in SCF =
maxσ

(e)
θθ (π/2), σ

(i)
θθ (π/2) between p = 0 and p = ∞ is about +2%. For h = ∞, g = 2

the difference in SCF between p = 0 and p =∞ is about −6%.
Another property of the imperfect interface is that for some fixed material param-

eters the interface parameters can be chosen in such way, that no stress concentration
occurs. For example, for the material data, used in Fig.14 in the case g = 2.0 and
p = 1 choosing h = 0.2149 leads to σ

(i)
θθ (π/2)/σ0 = σ

(e)
θθ (π/2)/σ0 = 0.99755. However,

this cannot be achieved in the case g = 0.5, as it can be seen from Fig.14, for all com-
binations of p and h, the minimum value of σ

(e)
θθ (π/2)/σ0 = 1.272 while the maximum

value σ
(e)
θθ (π/2)/σ0 = 0.792.

Next, in Fig.15,16, we demonstrate the influence of parameter h on the distribution
of σrr, σrθ and couple stress mrz along the inclusion interface. In all cases increasing
h leads to decreasing σrr and increasing magnitude of σrθ. However, some values of h
for g = 2.0 lead to negative couple stress mrz.

And finally, in Fig.17 we plot the maximum values U? of the normalized interface
energy density U(θ) as a function of interface parameter h = λr = λθ for various values
of parameter p = λφ. Function U(θ) is defined analogously to [22], but with taking
into account the contribution from the couple-stresses, i.e.

U(θ) = λrσ
2
rr + λθσ

2
rθ + λφm

2
rz. (16)

Function U(θ) reaches its maximum at θ = 0, i.e. U? = U(0), where the interface
failure is most likely to occur. As it can be seen from Fig.13, 14 the influence of
parameter p on maximum value of U(θ) is less significant in comparison with the
influence of parameter h. Plots, analogous to the ones in Fig.17 can be used in material
design to choose interface parameters in order not to exceed the prescribed critical
value of U?, corresponding to the failure of the interface.

5 Conclusions

In the present work, we developed an analytical solution for the problem of an in-
homogeneity in plane micropolar elasticity. We studied the dependence of the stress
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concentration on the material parameters, as well as the parameters characterizing
bonding between the inhomogeneity and the matrix.

Some of the main results are qualitatively described below:

• In the case of a perfect interface, for fixed material parameters of the inclusion,
increasing micropolar parameters of the matrix (`2/a, N2) leads to significant
decrease of the stress concentration for softer inclusions and increase of the stress
concentration for stiffer inclusions.

• In the case of a perfect interface, if the matrix’s microstructural effects are absent,
i.e. l2/a = N2 = 0, the stress concentration does not depend on the micropolar
parameters of the inclusion and equals to the value, described by the classical
theory of elasticity.

• Results also show that in some cases of the imperfect interface, for fixed material
parameters, the interface parameters can be chosen in such way, that no stress
concentration occurs.

The solution can be further used to study interface failure in presence of microstruc-
tural effects or for verification of numerical methods.
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A Apendix

The equations for stresses and couple stresses in the matrix are identical to those
derived in [3] for the problem of a plate with a hole and are given as follows.

σ(e)
rr (r, θ) =

σ0
2

(1 + cos 2θ) +
A1

r2
−
(

6A2

r4
+

4A3

r2
− 6A4

r4

)
cos 2θ

+
2A5

c2r

[
3c2
r
K0(r/c2) +

(
1 +

6c22
r2

)
K1(r/c2)

]
cos 2θ,

σ
(e)
θθ (r, θ) =

σ0
2

(1− cos 2θ)− A1

r2
+

(
6A2

r4
− 6A4

r4

)
cos 2θ

− 2A5

c2r

[
3c2
r
K0(r/c2) +

(
1 +

6c22
r2

)
K1(r/c2)

]
cos 2θ,

σ
(e)
rθ (r, θ) = −

(
σ0
2

+
6A2

r4
+

2A3

r2
− 6A4

r4

)
sin 2θ

+
A5

c2r

[
6c2
r
K0(r/c2) +

(
1 +

12c22
r2

)
K1(r/c2))

]
sin 2θ,

σ
(e)
θr (r, θ) = −

(
σ0
2

+
6A2

r4
+

2A3

r2
− 6A4

r4

)
sin 2θ

+
A5

c22

[(
1 +

6c22
r2

)
K0(r/c2) +

(
3c2
r

+
12c32
r3

)
K1(r/c2)

]
sin 2θ,

m(e)
rz (r, θ) =

(
−2A4

r3
− A5

c2

[
2c2
r
K0(r/c2) +

(
1 +

4c22
r2

)
K1(r/c2)

])
sin 2θ,

m
(e)
θz (r, θ) =

(
2A4

r3
+

2A5

r

[
K0(r/c2) +

2c2
r
K1(r/c2)

])
cos 2θ.

(17)

The equations for stresses and couple stresses in the inclusion are similar to those
derived in [15] for the problem of a circular inclusion in couple-stress elasticity and are

11



given as follows.

σ(i)
rr (r, θ) = 2B1 − 2(B2 +B4) cos 2θ

+
2B5

c1r

[
3c1
r
I0(r/c1)−

(
1 +

6c21
r2

)
I1(r/c1)

]
cos 2θ,

σ
(i)
θθ (r, θ) = 2B1 + 2(B2 +B4 + 6B3r

2) cos 2θ

+
2B5

c1r

[
−3c1

r
I0(r/c1) +

(
1 +

6c21
r2

)
I1(r/c1)

]
cos 2θ,

σ
(i)
rθ (r, θ) = 2(B2 +B4 + 3B3r

2) sin 2θ

+
B5

c1r

[
6c1
r
I0(r/c1)−

(
1 +

12c21
r2

)
I1(r/c1)

]
sin 2θ,

σ
(i)
θr (r, θ) = 2(B2 +B4 + 3B3r

2) sin 2θ

+
B5

c21

[(
1 +

6c21
r2

)
I0(r/c1)−

(
3c1
r

+
12c31
r3

)
I1(r/c1)

]
sin 2θ,

m(i)
rz (r, θ) =

(
2B4r +

B5

c1

[
−2c1

r
I0(r/c1) +

(
1 +

4c21
r2

)
I1(r/c1)

])
sin 2θ,

m
(i)
θz (r, θ) =

(
2B4r +

2B5

r

[
I0(r/c1)−

2c1
r
I1(r/c1)

])
cos 2θ.

(18)

Displacements and microrotations are given as:

2G2u
(e) =

rσ0
2

(1− 2ν2 + cos 2θ)− A1

r

+

(
2(A2 − A4)

r3
+

4A3(1− ν2)
r

− 2A5K2(r/c2)

r

)
cos 2θ,

2G2v
(e) = −rσ0

2
sin 2θ +

(
2(A2 − A4)

r3
− 2A3(1− 2ν2)

r

)
sin 2θ,

− A5

c2

[
2c2
r
K0(r/c2) +

(
1 +

4c22
r2

)
K1(r/c2)

]
sin 2θ,

4G2l
2
2φ

(e) =

(
A4

r2
+ A5K2(r/c2)

)
sin 2θ,

(19)

2G1u
(i) = 2r(1− 2ν1)B1

−
(

2r(B2 +B4) + 4B3ν1r
3 +

2B5

r
I2(r/c1)

)
cos 2θ,

2G1v
(i) = (2r(B2 +B4) + 2B3r

3(3− 2ν1)) sin 2θ

+
B5

c1

[
−2c1

r
I0(r/c1) +

(
1 +

4c21
r2

)
I1(r/c1)

]
sin 2θ,

4G1l
2
1φ

(i) =
(
B4r

2 +B5I2(r/c1)
)

sin 2θ,

(20)

The boundary conditions (8) yield the following system of linear algebraic equations
for unknown coefficients X = {A1, A2, A3, A5, B1, B2, B3, B5}:

MX = Y , (21)
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where the coefficients of matrix M are given by

M11 = 0,M12 =
1

a3G2

+
6λr
a4

,

M13 =
2(1− ν2)
aG2

− 8`22(1− ν2)
a3G2

+ λr

(
4

a2
− 48`22(1− ν2)

a4

)
M14 = −K0(a/c2)

aG2

− 2c2K1(a/c2)

a2G2

− λr
(

6K2(a/c2)

a2
+

2K1(a/c2)

ac2

)
M15 = 0,M16 = a/G1,M17 =

24a`21(1− ν2)
G1

+
2a3ν1
G1

,M18 =
I2(a/c1)

aG1

,

M21 = − 1

2aG2

− λr
a2
,M22 = M23 = M24 = 0,M25 =

a (−1 + 2ν1)

G1

,

M26 = M27 = M28 = M31 = 0,M32 =
1

a3G2

+
6λθ
a4

,

M33 =
−1 + 2ν2
aG2

− 8`22 (1− ν2)
a3G2

+ λθ

(
2

a2
− 48`22 (1− ν2)

a4

)
,

M34 = −K0(a/c2)

aG2

− K1(a/c2)

2c2G2

(
1 +

4c22
a2

)
− λθ

(
6K2(a/c2)

a2
+
K1(a/c2)

ac2

)
,

M35 = 0,M36 = − a

G1

,M37 =
a3 (2ν1 − 3.)

G1

− 24a`21 (1− ν1)
G1

,

M38 =
I0(a/c1)

aG1

− I1(a/c1)

2c1G1

(
1 +

4c21
a2

)
,

M41 = M42 = 0,M43 =
2(1− ν2)
a2G2

+
16`22 (1− ν2)λφ

a3
,

M44 =
K2(a/c2)

4G2`22
+
λφ (K1(a/c2) +K3(a/c2))

2c2
,

M45 = M46 = 0,M47 = −6a2(1− ν1)
G1

,M48 = −I2(a/c1)
4G1`21

,

M51 = 0,M52 = − 6

a4
,M53 = − 4

a2
+

48`22 (1− ν2)
a4

,M54 =
6K2(a/c2)

a2
+

2K1(a/c2)

ac2
,

M55 = 0,M56 = 2,M57 = 48`21(1− ν1),M58 =
2I1(a/c1)

ac1
− 6I2(a/c1)

a2
,

M61 =
1

a2
,M62 = M63 = M64 = 0,M65 = −2,M66 = M67 = M68 = 0,

M71 = 0,M72 = − 6

a4
,M73 = − 2

a2
+

48`22 (1− ν2)
a4

,M74 =
6K2(a/c2)

a2
+
K1(a/c1)

ac2
,

M75 = 0,M76 = −2,M77 = −6a2 − 48`21(1− ν1),M78 =
I1(a/c1)

ac1
− 6I2(a/c1)

a2
,

M81 = M82 = 0,M83 = −16`22(1− ν2)
a3

,M84 = −K1(a/c2) +K3(a/c2)

2c2
,

M85 = M86 = 0,M87 = −48a`21(1− ν1),M88 = −I1(a/c1) + I3(a/c1)

2c1
.

(22)

13



And vector Y is given by:

Y1 = − aσ0
4G2

+
σ0λr

2
, Y2 = − aσ0

4G2

+
aσ0ν2
2G2

+
σ0λr

2
, Y3 =

aσ0
4G2

− σ0λθ
2

,

Y4 = 0, Y5 = Y6 = −σ0
2
, Y7 =

σ0
2
, Y8 = 0.

(23)
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Figure 2: Stress concentration factor σ
(e)
θθ (π/2)/σ0 for `1/a = 0.75, ν1 = 0.25, N1 = 0.5,

ν2 = 1/3 and various values of `2/a and N2 as function of g = G1/G2.
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Figure 3: Stress concentration factor σ
(i)
θθ (π/2)/σ0 for `1/a = 0.75, ν1 = 0.25, N1 = 0.5,

ν2 = 1/3 and various values of `2/a and N2 as function of g = G1/G2.

16



0.0 0.2 0.4 0.6 0.8 1.0
l1/a

1.5756

1.5757

1.57576
1.5758

σθθ
(e)(π/2)/σ0

a)N2 = 0.001

0.0 0.2 0.4 0.6 0.8 1.0
l1/a

1.575

1.547

1.527

1.512

1.5

σθθ
(e)(π/2)/σ0

b)N2 = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
l1/a

1.575

1.529

1.472

1.407

1.336

σθθ
(e)(π/2)/σ0

c)N2 = 1

l2/a = 0.001

l2/a = 0.25

l2/a = 0.5

l2/a = 1

l2/a = 10

Figure 4: Stress concentration factor σ
(e)
θθ (π/2) for g = 0.5, ν1 = 0.25, N1 = 0.5,

ν2 = 1/3 and various values of `2/a and N2 as function of `1/a.
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Figure 5: Stress concentration factor σ
(i)
θθ (π/2) for g = 2, ν1 = 0.25, N1 = 0.5, ν2 = 1/3

and various values of `2/a and N2 as function of `1/a.
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Figure 6: Stress concentration factor σ
(e)
θθ (π/2) for g = 0.5, ν1 = 0.25, `1 = 0.75,

ν2 = 1/3 and various values of `2/a and N2 as function of N1.
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Figure 7: Stress concentration factor σ
(i)
θθ (π/2) for g = 2, ν1 = 0.25, `1/a = 0.75,

ν2 = 1/3 and various values of `2/a and N2 as function of N1.
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Figure 8: Stress concentration factor σ
(e)
θθ (π/2) for g = 0.5, ν1 = 0.25, ν2 = 1/3,

N2 = 0.001, `2/a = 0.001 and a) various values of N1 as function of `1/a, b) various
values of `1/a as function of N1.
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Figure 9: Stress concentration factor σ
(i)
θθ (π/2) for g = 2, ν1 = 0.25, ν2 = 1/3, N2 =

0.001, `2/a = 0.001 and a) various values of N1 as function of `1/a, b) various values
of `1/a as function of N1.
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Figure 10: Stress concentration factor σ
(e)
θθ (π/2) for g = 0.5, ν1 = 0.25, ν2 = 1/3,

N1 = 0.001, `1/a = 0.001 and a) various values of N2 as function of `2/a, b) various
values of `2/a as function of N2.
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Figure 11: Stress concentration factor σ
(i)
θθ (π/2) for g = 2, ν1 = 0.25, ν2 = 1/3,

N1 = 0.001, `1/a = 0.001 and a) various values of N2 as function of `2/a, b) various
values of `2/a as function of N2.
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Figure 12: σ
(e)
θθ (π/2), σ

(i)
θθ (π/2) for ν1 = 0.35, ν2 = 0.25, N1 = 0.75, N2 = 0.9,

`1/a = 0.1, `2/a = 0.75 and various values of hr, hθ and hφ = 0.1 as function of g.
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Figure 13: A ”softer” inclusion, g = 0.5: σ
(e)
θθ (π/2), σ

(i)
θθ (π/2) for ν1 = 0.35, ν2 = 0.25,

N1 = 0.75, N2 = 0.9, `1/a = 0.1, `2/a = 0.75 as functions of h = hr = hθ and p = hφ.
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Figure 14: A ”stiffer” inclusion, g = 2: σ
(e)
θθ (π/2), σ

(i)
θθ (π/2) for ν1 = 0.35, ν2 = 0.25,

N1 = 0.75, N2 = 0.9, `1/a = 0.1, `2/a = 0.75 as functions of h = hr = hθ and p = hφ.
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Figure 15: A ”softer” inclusion, g = 0.5: distribution of σrr for ν1 = 0.35, ν2 = 0.25,
N1 = 0.75, N2 = 0.9, `1/a = 0.1, `2/a = 0.75, g = 0.5 for various values of h and
p = 1.0.
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Figure 16: A ”stiffer” inclusion, g = 2: distribution of σrr for ν1 = 0.35, ν2 = 0.25,
N1 = 0.75, N2 = 0.9, `1/a = 0.1, `2/a = 0.75, g = 0.5 for various values of h and
p = 1.0.
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Figure 17: Maximum values of the normalized interface energy density function U? =
U(0) as function of h = hr = hθ for various values of p = hφ. Material parameters are
set to ν1 = 0.35, l1/a = 0.1, N1 = 0.75, ν2 = 0.25, l2/a = 0.75, N2 = 0.9.
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