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Abstract The plurigaussian model is used in mining

engineering, oil reservoir characterization, hydrology and

environmental sciences to simulate the layout of geological

domains in the subsurface, while reproducing their spatial

continuity and dependence relationships. However, this

model is well-established only in the stationary case, when

the spatial distribution of the domains is homogeneous in

space, and suffers from theoretical and practical impedi-

ments in the non-stationary case. To overcome these lim-

itations, this paper proposes extending the model to the

truncation of intrinsic random fields of order k with

Gaussian generalized increments, which allows reproduc-

ing spatial trends in the distribution of the geological

domains. Methodological tools and algorithms are pre-

sented to infer the model parameters and to construct

realizations of the geological domains conditioned to

existing data. The proposal is illustrated with the simula-

tion of rock type domains in an ore deposit in order to

demonstrate its applicability. Despite the limited number of

conditioning data, the results show a remarkable agreement

between the simulated domains and the lithological model

interpreted by geologists, while the conventional stationary

plurigaussian model turns out to be unsuccessful.

Keywords Geological domaining � Subsurface
heterogeneity � Intrinsic random fields of order k �
Generalized covariance function

1 Introduction

The primary motivation of this paper is the spatial mod-

eling of geological domains in ore deposits, defined on the

basis of lithology, mineralogy or alteration, but the tools

and algorithms developed hereafter can be applied to

other application fields, such as petroleum engineering,

subsurface hydrology and environmental science to model

lithofacies in oil reservoirs, aquifers or contaminated

sites. In the mining industry, geological domaining is

useful to define which material to extract, when and how

it should be extracted, to determine the requirements for

mining operations such as drilling, blasting, hauling and

crushing, and to forecast the destination of the extracted

material (dump, heap leaching, flotation plant, stock pile,

etc.). It is also critical for modeling the mineral resources

and ore reserves, as the spatial behavior of geological,

geotechnical and geo-metallurgical variables, such as the

grades of elements of interest and contaminants, rock

density, fracturation intensity, work index, solubility

ratio, acid consumption or metal recovery, are often

controlled by the lithology, mineralogy or alteration. In

such a case, a two-stage approach is frequently used to

model the resources and reserves (Chilès and Delfiner

2012):

(1) Modeling the spatial layout of the geological

domains based on the characteristics that control

the mineralization, such as rock types, mineral types

or alterations.
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(2) Modeling the geological, geotechnical and geo-

metallurgical variables of interest within each

domain.

The second stage can be achieved through spatial

interpolation methods (such as inverse distance weighting,

kriging, simulation, etc.) and is not of direct interest in this

paper. With respect to the first stage, the problem is two-

fold. On the one hand, one aims at predicting which geo-

logical domains prevail at locations where direct

information is not available. One the other hand, it is of

interest to determine whether or not the layout of the

geological domains is accurately predicted and what is the

risk of misclassification.

Geological domaining can be done with deterministic or

stochastic models. The former provide a unique description

of the geological domain layout within the deposit and are

based on a geological interpretation or on a model inter-

polated from the available data on the deposit, typically

exploration drill hole samples. The latter consist in con-

structing multiple outcomes or realizations of the domains,

represented by random sets (indicators) or categorical

random fields, i.e., random fields that take nominal values

or categories. These approaches contribute to uncertainty

quantification and an improved modeling of the quantita-

tive geological, geotechnical and geo-metallurgical vari-

ables of interest when these variables are homogeneously

distributed in each geological domain but the layout of the

domain boundaries is uncertain.

Among simulation approaches, truncated Gaussian

simulation (Galli et al. 1994) is suited to the cases when the

geological domains follow an ordered sequence, such as

strata in sedimentary deposits, while plurigaussian simu-

lation (Le Loc’h and Galli 1997) allows reproducing more

complex transitions between the geological domains. The

latter has found wide acceptance in the past decades for

modeling ore deposits and petroleum reservoirs (Arm-

strong et al. 2011, and references therein).

However, as most of the geostatistical approaches used

in the mining and petroleum industries, the current design

of the plurigaussian model is based on an assumption of

stationarity, through the use of Gaussian random fields

whose finite-dimensional distributions are invariant by a

translation in space. In a nutshell, such an assumption is

applicable for regionalized variables that behave homoge-

neously throughout the region of interest (Matheron 1971).

Specifically, first-order stationarity assumes that the mean

of the random field is constant over space, while second-

order stationarity assumes that, in addition to the existence

of a constant mean, the covariance or the variogram

between the values observed at two locations only depends

on the geographical separation of these locations.

Nonetheless, the geological domains, represented by

indicator variables, often have a spatially varying mean and

spatial continuity (covariance). For instance, mineralogical

domains exhibit a vertical zonation, where some domains

are likely to be found near the surface (gossan cap, leached

zone, oxidized zone), while others are present only in depth

(supergene sulfide enrichment zone and hypogene or pri-

mary sulfide-bearing zone) (Guilbert and Park 1986). Lat-

eral variations are also often observed in the distributions

of rock types or alterations. As an example, porphyry

copper deposits generally present inner potassic and phyllic

alteration domains, surrounded by a sericitic alteration

domain, in turn surrounded by an argillic alteration domain

and an outer propylitic alteration domain (Lowell and

Guilbert 1970). An assumption of stationarity, implying

that the probability of occurrence of every alteration

domain is constant in space, is clearly inadequate in such a

case. Stationary models may also be ill-suited to describe

phenomena for which a spatial trend is present due to

physical reasons, e.g. folded structures (domes, anticlines

or synclines) in geological formations such as petroleum

reservoirs and ore deposits.

Plurigaussian simulation can be adapted to non-sta-

tionary cases by considering spatially varying truncation

thresholds (Beucher et al. 1993; Ravenne et al. 2002;

Armstrong et al. 2011). However, in general, this procedure

does not allow managing the uncertainty in the true

parameters, as one considers the domain proportions as if

they were perfectly known, which is not the case in reality

(Biver et al. 2002), therefore an important source of

uncertainty may be omitted. Also, handling spatial changes

in the truncation thresholds becomes cumbersome in what

refers to the inference of spatial continuity (covariance or

variogram analysis) and, so far, the formalism is not clearly

laid out (Armstrong et al. 2011).

To overcome these difficulties, this paper proposes to

extend plurigaussian simulation to the non-stationary case

by considering categorical random fields obtained through

the truncation of intrinsic random fields of order k (shortly,

IRF-k) with Gaussian generalized increments (Matheron

1973; Christakos 1992; Chilès and Delfiner 2012). The

rationale is that the use of IRF-k will allow the reproduc-

tion of spatial trends (such as mineral domains that are

present near the surface and absent at depth, or alteration

domains that are present in the inner part of an ore body

and absent in outer parts). To illustrate this idea, Fig. 1

displays isopleth maps of realizations of intrinsic random

fields on the two-dimensional plane, with increasing orders

(left side, from top to bottom). As the order increases, the

intrinsic random field shows a greater short-scale regularity

and, above all, clearer large-scale trends. In each case, two

geological domains can be defined by truncating the

intrinsic random field at a given level curve (right side): the
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trending behavior in the distribution of the domains so

obtained gets more pronounced as the order increases.

The outline of this paper is as follows. Section 2 recalls

the principles of plurigaussian modeling and the theory of

intrinsic random fields of order k, then presents tools and

algorithms for inferring the parameters of the proposed

non-stationary plurigaussian model (in particular, in what

refers to the identification of the spatial correlation

Fig. 1 Isopleth maps of

intrinsic random fields of order

k (left) and two geological

domains (green and yellow)

obtained by truncation at a

specific threshold
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structure of the underlying intrinsic random fields) and for

simulating the geological domains conditionally to existing

data. In Sect. 3, an application to a case study in ore body

modeling is presented. A general discussion and conclu-

sions follow in Sects. 4 and 5, respectively.

2 Methodology

2.1 Stationary plurigaussian modeling

The plurigaussian model (Armstrong et al. 2011) relies on

the simulation of one or more Gaussian random fields and

their truncation to convert the simulated Gaussian values

into categorical values representing a partition of space into

domains (Fig. 2). The practical implementation of this

model requires defining the following parameters:

(1) A truncation rule, which defines the contact relation-

ships between domains. Such a rule can also account

for their chronological relationships, as illustrated in

Fig. 2c: the first geological domain cross-cuts the

other two and therefore stands for a younger domain.

(2) Truncation thresholds, which are related to the

proportion of space covered by each domain.

(3) The covariance functions of the underlying Gaussian

random fields, which are related to the spatial

continuity of the domains obtained by truncation.

The conditional simulation of the geological domains

can be performed in three main steps (Lantuéjoul 2002):

(1) Simulate the underlying Gaussian random fields at

the data locations, conditionally to the categorical

data (presence or absence of a domain at sampling

locations). This step can be realized by an iterative

algorithm known as the Gibbs sampler (Geman and

Geman 1984).

(2) Simulate the Gaussian random fields at the target

locations conditionally to the values obtained in the

previous step. This step can be achieved in two

Fig. 2 Realizations of domains

c obtained by truncating two

independent Gaussian random

fields (a, b). The truncation rule

is represented by a two-

dimensional flag (d), in which

the abscissa axis represents the

first Gaussian random field, the

ordinate axis represents the

second Gaussian random field,

and the horizontal and vertical

lines represent the truncation

thresholds that define the

partition of the bi-Gaussian

space into domains
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stages: first, a non-conditional simulation at the data

and target locations, for which many algorithms are

available; second, a post-conditioning by kriging that

converts the non-conditional simulation into a con-

ditional one (Chilès and Delfiner 2012).

(3) Apply the truncation rule to obtain the simulated

domains.

In practice, to restrict the number of parameters and to

ease their inference, one often considers two independent

Gaussian random fields for the truncation rule. This entails

a limitation in the number of domains that can be modeled,

especially when all these domains are mutually in contact,

a situation that often arises in practice. To overcome this

limitation, Xu et al. (2006) and Emery (2007) propose to

increase the number of Gaussian random fields, so as to

increase the dimensionality of the truncation rule and to

allow the domains to be mutually in contact.

The inference of the model parameters and the simula-

tion often rely on an assumption of stationarity. It implies

that the truncation thresholds are constant over the space

and the Gaussian random fields are second-order station-

ary. To alleviate this assumption, one option is to use

spatially varying thresholds, while the Gaussian random

fields remain second-order stationary. In this case, the

inference of truncation thresholds relies on the concept of

vertical or regionalized proportion curves that give the

proportion of each domain for each spatial location (Beu-

cher et al. 1993; Ravenne et al. 2002). However, such an

approach is challenging not only for the calculation of local

domain proportions, which are assumed to be known

without any uncertainty, but also for variogram analysis,

for which the theoretical and practical frameworks are not

clearly laid out (Armstrong et al. 2011).

2.2 Proposal for non-stationary plurigaussian

modeling

The main contribution of this research is a generalization of

the plurigaussian model to the non-stationary framework.

Instead of working with stationary Gaussian random fields

and spatially varying truncation thresholds, the key idea is

to consider the truncation of intrinsic random fields of

order k with generalized Gaussian increments. Hence, the

non-stationarity is no longer modeled through spatially

varying truncation thresholds, but through the underlying

random fields to be truncated.

2.2.1 Intrinsic random fields of order k

A random field Z = {Z(x): x [ Rd} defined in the d-di-

mensional Euclidean space is an intrinsic random field of

order 0 with no drift if its increments have zero mean and

are second-order stationary (Chilès and Delfiner 2012), i.e.

8x; xþ h 2 Rd;
EfZðxþ hÞ � ZðxÞg ¼ 0

varfZðxþ hÞ � ZðxÞg ¼ 2cðhÞ

(
ð1Þ

Accordingly, the spatial correlation structure of such a

random field is represented by its variogram c(h), a func-

tion that only depends on the separation vector h between

the chosen locations x and x ? h.

To generalize this idea to higher order increments, let

us denote by f ‘ xð Þ : ‘ ¼ 1. . .L
� �

the set of monomials of

the coordinates of x with degree less than or equal to some

positive integer k. A generalized increment of order k of

the random field Z = {Z(x): x [ Rd} is a linear

combination

ZðkÞ ¼
XI

i¼1

ki ZðxiÞ ð2Þ

for a set of weights and locations k ¼ ki; xið Þ : i ¼ 1. . .If g
that filter out the polynomials of the location coordinates of

degree less than or equal to k, i.e.

8‘ 2 f1; . . .; Lg;
XI

i¼1

kif
‘ðxiÞ ¼ 0 ð3Þ

In the following, let Kk denote the set of such general-

ized increments k ¼ ki; xið Þ : i ¼ 1. . .If g fulfilling Eq. (3)

for some positive integer I.

In this context, the random field Z is an intrinsic random

field of order k (IRF-k) if its generalized increments of

order k are second-order stationary and have a zero mean,

i.e.

8k ¼ fðki; xiÞ : i ¼ 1. . .Ig 2 Kk;

EfZðkÞg ¼ 0

varfZðkÞg ¼
PI
i¼1

PI
j¼1

kikjKðxi � xjÞ

8><
>:

ð4Þ

for some function K(h) called a generalized covariance

(Matheron 1973; Christakos 1992; Chilès and Delfiner

2012). Under these conditions, the covariance between any

two generalized increments exists and can be calculated as

8k ¼ fðki; xiÞ : i ¼ 1. . .Ig 2 Kk;

8l ¼ fðlj; x0jÞ : j ¼ 1. . .Jg 2 Kk;

covfZðkÞ;ZðlÞg ¼
XI

i¼1

XJ
j¼1

kiljKðxi � x0jÞ
ð5Þ

Equation (5) shows that the covariance between gener-

alized increments of Z can be calculated as if Z had a

stationary covariance function, by replacing this hypo-

thetical covariance by the generalized covariance.
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Because any random field that differs from Z by a

polynomial of degree less than or equal to k (that is, a linear

combination of the monomials f ‘ xð Þ with deterministic or

random coefficients) possesses exactly the same general-

ized increments ZðkÞ as Z, the definition of an intrinsic

random field of order k can actually be generalized to an

equivalence class Z of random fields that differ by poly-

nomials of degree less than or equal to k and satisfy Eqs. (4)

and (5). Any member of this equivalence class is called a

representation of the IRF-k (Chilès and Delfiner 2012).

The intrinsic random field Z has Gaussian generalized

increments if, furthermore, the finite-dimensional distri-

butions of its generalized increments (Eq. 2) are multi-

variate normal. This property will be assumed in the next

sections for plurigaussian modeling.

2.2.2 Inference of a non-stationary plurigaussian model

Let us revise the changes that the use of intrinsic random

fields of order k implies in the inference of the plurigaus-

sian model.

2.2.2.1 Truncation rule As the truncation rule establishes

the contact relationships between the domains obtained by

truncation, there is no change in this concept with respect

to the stationary model.

2.2.2.2 Truncation thresholds and structural analysis In

the stationary case, one can establish a one-to-one rela-

tionship between the covariance function of a standard

Gaussian random field (q) and the covariance of the indi-

cator random field (CIy ) obtained by truncation at a given

threshold y (Emery 2007):

CIyðhÞ ¼ gðyÞ2
Xþ1

p¼1

1

p
H2

p�1ðyÞ ½qðhÞ�
p ð6Þ

where {Hp: p [ N} are Hermite polynomials and g is the

standard Gaussian probability density function. In the case

of an IRF-k, the covariance may not exist and the spatial

correlation is described by a generalized covariance

(Eq. 5), which has no clear relation with the indicator

random field obtained by truncation. To circumvent this

difficulty, an idea is to consider a representation of the

intrinsic random field that possesses an ordinary covariance

function, which is called an internal representation

(Matheron 1973; Chilès and Delfiner 2012).

Specifically, let Z = {Z(x): x [ Rd} be a representation of

an IRF-k with generalized covariance K(h) and Gaussian

generalized increments, and truncate it at a given threshold z:

IzðxÞ ¼
1 if ZðxÞ[ z

0 otherwise

�
ð7Þ

An internal representation Y = {Y(x): x [ Rd} of the

IRF-k can be obtained by putting:

YðxÞ ¼ ZðxÞ �
Xn

i¼1
kiðxÞ ZðxiÞ ð8Þ

where {xi: i = 1… n} are arbitrarily chosen locations and

ki(x) is the universal kriging weight assigned to location xi
when predicting x with a pure nugget effect model:

In FT
0

F0 0L;L

� �
KðxÞ
MðxÞ

� �
¼ 0n;1

FðxÞ

� �
ð9Þ

where In is the identity matrix with size n 9 n, 0L,L is the

zero matrix with size L 9 L, 0n,1 is the zero vector with

size n 9 1, F0 is the L 9 n matrix with f ‘ xið Þ as the entry

at row ‘ and column i, F(x) is the L 9 1 vector with entry

f ‘ xð Þ at row ‘, K xð Þ is the n 9 1 vector of kriging weights

and M(x) is a L 9 1 vector of Lagrange multipliers. If x

coincides with some xi, then the nugget effect has to be

filtered out of the second member of the kriging system, so

that Eq. (9) still holds. This equation is actually equivalent

to a linear regression of n data (stored in the n 9 1 vector

Z0 with entry Z(xi) at row i) upon L variables (stored in

matrix F0). The solution exists and is unique provided that

the spatial configuration of the locations {xi: i = 1… n}

used to construct the internal representation Y is such that

matrix F0F
T
0 is invertible. In particular, n must be greater

than or equal to the number L of basic drift functions,

which depends on the order k and space dimension d

(Chilès and Delfiner 2012): n� L ¼ ðkþdÞ!
k!d! (Table 1).

Under these conditions, by using the formula of the

matrix inversion in block form (Bernstein 2009), the

kriging weights are found to be:

KðxÞ ¼ FT
0 ðF0F

T
0 Þ

�1FðxÞ ð10Þ

One therefore has (Eq. 8):

YðxÞ ¼ ZðxÞ � ZT
0F

T
0 ðF0F

T
0 Þ

�1FðxÞ ð11Þ

On the one hand, Y(x) differs from Z(x) by a combina-

tion of the components of F(x), i.e., from a polynomial

function of the coordinates of x, so that Y is a representa-

tion of the same IRF-k as Z. On the other hand, Y(x) is a

generalized increment of order k, as it coincides with a

universal kriging error at location x, so that

ki; xið Þ : i ¼ 1. . .nf g 2 Kk [Eq. (3) holds because of the

Table 1 Number L of locations needed to construct an internal rep-

resentation, as a function of the space dimension (d) and order of the

intrinsic random field (k)

k = 0 k = 1 k = 2

d = 2 1 3 6

d = 3 1 4 10
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unbiasedness constraint of universal kriging]. The latter

implies that the internal representation Y has a zero mean, a

finite variance and an ordinary covariance function C(x,x0),
which can be expressed as a function of the generalized

covariance K(h):

Cðx; x0Þ ¼ Kðx� x0Þ �
Xn
i¼1

ki Kðxi � xÞ

�
Xn
i¼1

ki Kðxi � x0Þ þ
Xn
i¼1

Xn
j¼1

ki kj Kðxi � xjÞ

ð12Þ

This internal representation can be standardized to a

Gaussian random field with a unit variance by putting:

8x 2 Rd; ~YðxÞ ¼ YðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðx; xÞ

p ð13Þ

The covariance function of ~Y is

q x; x0ð Þ ¼ C x; x0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðx; xÞC x0; x0ð Þ

p ð14Þ

The indicator and truncation threshold (Eq. 7) can now

be rewritten as:

IzðxÞ ¼ 1 if ~YðxÞ[ yðxÞ
0 otherwise

�
ð15Þ

with

yðxÞ ¼ z� pðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðx; xÞ

p ð16Þ

where pðxÞ ¼ ZT
0F

T
0 ðF0F

T
0 Þ

�1FðxÞ is a polynomial of the

coordinates of x, the coefficients of which depend on the

components of vector Z0. Recalling the relationship

between the covariance functions of a standard Gaussian

random field and its indicator (Eq. 6), one obtains:

CIz x; x
0ð Þ ¼ gðyðxÞÞ g y x0ð Þð Þ

�
Xþ1

p¼1

Hp�1ðyðxÞÞHp�1 y x0ð Þð Þ q x; x0ð Þ½ �p ð17Þ

In practice, the above summation has to be truncated at a

finite order, which must be high enough (say, p = 200) for

the truncation error to be negligible. Finally, the non-cen-

tered indicator covariance between any two locations x and

x0 can be expressed as:

EfIzðxÞIz x0ð Þg ¼ CIz x; x
0ð Þ þ GðyðxÞÞG y x0ð Þð Þ ð18Þ

where G is the standard Gaussian cumulative distribution

function. The right-hand side of this equation depends on

the generalized covariance K(h), the chosen locations {xi:

i = 1… n} (known), the truncation threshold z and the

components of vector Z0 [through the difference z–

p(x) that defines the numerator of y(x) in Eq. (16)], while

the left-hand side can be calculated experimentally for each

pair of data locations, for which the indicator (0 or 1) is

known. Accordingly, if the generalized covariance can be

parameterized through a few parameters (e.g., by consid-

ering a set of known basic models weighted by unknown

nonnegative coefficients), one can jointly estimate these

parameters and the coefficients of z–p(x) by least squares

fitting.

Having determined z–p(x) may not directly provide

information on the truncation threshold z, which agrees

with the formalism of intrinsic random fields: any random

field that differs from Z by a constant is a representation of

the same IRF-k and could be chosen as the random field to

be truncated. Accordingly, without loss of generality, z can

be set to any arbitrary value (for instance, 0).

In case of a complex truncation rule where several

thresholds, say z1… zq, are applied to the same represen-

tation Z, then a similar equation can be derived to express

the indicator direct and cross covariances as a function of

the parameters of the generalized covariance K(h), trun-

cation thresholds and coefficients of the polynomial p(x).

In such a case, the least squares fitting allows jointly

estimating the parameters of the generalized covariance

together with the coefficients of zj–p(x) for j = 1… q: the

relative values of z1… zq are then found and it remains to

fix one of these thresholds to get a solution, e.g., z1 = 0.

2.2.2.3 Summary The steps for inferring the truncation

thresholds and spatial correlation structure of the IRF-k are

therefore the following:

(1) Choose an order k for the intrinsic random field to

truncate.

(2) Choose a set of n locations {xi: i = 1…n} to define

the internal representation (Eq. 11).

(3) Choose the basic nested structures that will compose

the generalized covariance K(h). Some parameters of

these structures (scale factors, sills or multiplicative

coefficients, shape parameters, exponents) may be

assumed known, while others are unknown and will

be determined through the following steps.

(4) Calculate the experimental covariance matrix of the

indicator data (the matrix entries are 1 or 0).

(5) Calculate the theoretical covariance matrix of the

indicator data by using Eq. (18). The entries of this

matrix depend on the covariance parameters to be

fitted and on the (unknown) values of the intrinsic

random field (vector Z0) at locations {xi: i = 1…n}.

(6) Find the covariance parameters and vector Z0 that

minimize the total sum of squared errors between the

experimental and theoretical covariance matrices.

Since this least squares optimization problem is

nonlinear in the parameters, it is advisable to keep
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the generalized covariance model as parsimonious as

possible, by avoiding choosing an excessive number

n of locations on which to construct the internal

representation (step 2) or an excessive number of

nested structures or unknown parameters (step 3).

The above fitting procedure has to be repeated for each

underlying IRF-k used in the plurigaussian model. The

outputs are estimates of the values of vector Z0 and of the

unknown parameters of the generalized covariance K(h).

Note that the order (step 1), set of locations used to con-

struct the internal representation (step 2) and set of basic

nested structures (step 3) are chosen by the practitioner, but

they need not be the same for all the IRF-k. Also note that

Z0 depends on the initial representation of the intrinsic

random field at the chosen locations {xi: i = 1…n} and

will change in other realizations of this random field, while

the generalized covariance parameters are the same for all

the realizations of the intrinsic random field. Therefore, one

only needs to keep the latter parameters for the subsequent

simulation stage and should ‘‘forget’’ the value of Z0

delivered by the least-squares fitting algorithm.

As for most of the structural analysis approaches for an

IRF-k (Chilès and Delfiner 2012), the identification of the

spatial structure turns out to be semi-automatic and does

not rest on a graphical fitting of some experimental

covariance or variogram. This is the price to pay for

dealing with non-stationary random fields.

2.2.3 Conditional simulation of a non-stationary

plurigaussian model

The process of conditional simulation is similar to the

stationary case exposed in Sect. 2.1, except for the

following:

(1) The non-conditional simulation of an IRF-k with

Gaussian generalized increments can be efficiently

done by discrete or continuous spectral approaches

(Stein 2002; Emery and Lantuéjoul 2006, 2008;

Arroyo and Emery 2016) or by Gibbs sampling

(Arroyo and Emery 2015). Most of the other

Gaussian simulation algorithms fail or are approx-

imate when applied to non-stationary random fields.

(2) In both the Gibbs sampler (step 1) and the post-

conditioning of the realizations to data (step 2), one

has to replace simple kriging by intrinsic kriging

when determining the conditional distributions

(Delfiner 1976; Emery 2008; Chilès and Delfiner

2012). Also, care must be taken for the Gibbs

sampler, as the convergence of this iterative algo-

rithm is ensured only when using a unique neigh-

borhood implementation (Emery et al. 2014).

3 Case study

The plurigaussian model is now applied to a dataset from

the Rı́o Blanco copper deposit, located in the Central

Chilean Andes. A geological description of this deposit can

be found in Stambuk et al. (1988), Skewes and Stern

(1995) and Serrano et al. (1996).

3.1 Available data

In the following, we will focus on a reduced region cov-

ering an area of 1.87 km2 in the northern sector of the Rı́o

Blanco deposit, for which two types of data are available:

exploration drill holes and an interpreted lithological

model. The drill holes are in an irregular design along the

northwest-southeast direction; the data consist of infor-

mation on the prevailing rock types logged at 125 drill hole

cores composited at 16 meters and codified into seven main

categories (from the oldest to the youngest: andesite,

granitoids, tourmaline breccia, monolithic breccia, mag-

matic breccia, porphyry and pipe) (Table 2). The litho-

logical model consists of a discretization of the region into

8500 blocks with a volumetric support of

15 m 9 15 m 9 16 m, for which the (assumed) prevailing

rock type domain is assigned to each block (Fig. 3). Along

the vertical direction, the lithological model is limited to a

single elevation (3348 m), while the 125 drill hole data are

located between elevations 3340 and 3356 m.

Table 2 Main rock types in the

Rı́o Blanco deposit
Code Rock type Abbreviation Age

1 Pipe PIP Early Miocene

2 Porphyry POR Middle Miocene

3 Magmatic breccia MAB Late Miocene

4 Monolithic breccia MOB Early Pliocene

5 Tourmaline breccia TOB Early Pliocene

6 Granitoids GD Early Pliocene

7 Andesite AND Late Cretaceous to Early Pliocene
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The proportions of rock type domains calculated from

the interpreted lithological model and from the 125 drill

hole data, before and after declustering, are presented in

Table 3. The declustered proportions are obtained by

interpolating the region of interest with the nearest neigh-

bor technique, i.e., by assigning to each grid node the rock

type observed on the closest drill hole data. For a given

rock type, the deviations between the three calculated

proportions are significant and reflect the uncertainty in the

true unknown proportion.

3.2 Stationary plurigaussian model

In this subsection, a plurigaussian model will be elaborated

based on the proportions of rock type domains calculated

from the interpreted lithological model (Table 3), which

here are assumed to be constant in space and perfectly

known.

3.2.1 Truncation rule

In order to be consistent with the rock type chronology

(Table 2), a model based on six independent Gaussian

random fields {Z1, Z2, Z3, Z4, Z5, Z6} and six truncation

thresholds {z1, z2, z3, z4, z5, z6} is proposed (Madani and

Emery 2015), in which the rock type present at a given

location x is defined as

Fig. 3 Plan view showing a the drill hole data and b the interpreted lithological model for elevation 3348 m

Table 3 Estimated proportions of rock type domains

Rock

type

Proportion in

drill holes

data (%)

Declustered

proportions in drill

hole data (%)

Proportions in

interpreted

lithological model

(%)

PIP 4.8 7.2 10.5

POR 16.8 24.3 26.2

MAB 11.2 3.4 1.2

MOB 11.2 11.9 6.6

TOB 20.0 9.4 5.4

GD 32.8 42.6 49.1

AND 3.2 1.2 1.1
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With this truncation rule, all transitions between rock

types are allowed, i.e., every rock type domain is likely to

be in contact with any other.

3.2.2 Truncation thresholds

Accounting for the hierarchical nature of the model, the

truncation thresholds {z1, z2, z3, z4, z5, z6} are related to the

proportions {p1, p2, p3, p4, p5, p6, p7} of the rock type

domains in the following fashion:

p1 ¼ G�1ðz1Þ
p2 ¼ ½1� G�1ðz1Þ�G�1ðz2Þ
p3 ¼ ½1� G�1ðz1Þ�½1� G�1ðz2Þ�G�1ðz3Þ
p4 ¼ ½1� G�1ðz1Þ�½1� G�1ðz2Þ�½1� G�1ðz3Þ�G�1ðz4Þ
p5 ¼ ½1� G�1ðz1Þ�½1� G�1ðz2Þ�½1� G�1ðz3Þ�

½1� G�1ðz4Þ�G�1ðz5Þ
p6 ¼ ½1� G�1ðz1Þ�½1� G�1ðz2Þ�½1� G�1ðz3Þ�

½1� G�1ðz4Þ�½1� G�1ðz5Þ�G�1ðz6Þ
p7 ¼ ½1� G�1ðz1Þ�½1� G�1ðz2Þ�½1� G�1ðz3Þ�

½1� G�1ðz4Þ�½1� G�1ðz5Þ�½1� G�1ðz6Þ�
ð20Þ

The last equation is actually redundant with the first six

ones and only makes p7 be the complement of the sum of

proportions p1–p6. Knowing the proportions (p1–p7) of rock

type domains, one can derive the truncation thresholds (z1–

z6) to be applied.

3.2.3 Variogram analysis

At each data location, the information on the prevailing

rock type can be codified into indicators, with one indicator

associated with each Gaussian random field. The value of

an indicator is 1 when the Gaussian random field is less

than the associated threshold, 0 when it is greater than the

threshold, or unknown when the Gaussian random field is

not involved in the definition of the rock type domain

(Table 4).

Variogram analysis relies on the calculation of the

experimental variograms of the indicator data. To get more

robust experimental variograms, the data from a wider

region of the deposit, totalizing 12,006 drill hole data, have

been used, insofar as the experimental variograms were not

interpretable when considering only the 125 data in the

region of interest. The three main anisotropy directions

were identified as N20�W, N70�E and vertical, which

agrees with the interpreted lithological model that exhibits

a greater spatial continuity along the direction N20�W in

the horizontal plane.

From the indicator variograms, one can derive the var-

iograms of the underlying Gaussian random fields (Emery

and Cornejo 2010) and fit a model to each experimental

variogram. To ensure that the Gaussian random fields have

a unit variance, the fitting is performed with a semi-auto-

mated algorithm (Emery 2010) that minimizes the mean

squared error between experimental and modeled vari-

ograms under the constraint of a unit sill (Table 5). The

reader is referred to Madani and Emery (2015) for details

on the variogram calculation and modeling.

3.2.4 Conditional simulation and post-processing

of the realizations

Provided with the truncation rule, truncation thresholds and

variograms of the underlying Gaussian random fields, a

total of one hundred realizations are constructed in the

region of interest; the parameters used for simulation are

indicated in Table 6.

With the realizations so obtained, one can assess the

uncertainty in the rock type domains at a local (node-by-

node) scale, by means of probability maps. The maps are

constructed by calculating, for each grid node, the fre-

quency of occurrence of each rock type domain over the

100 conditional realizations (Fig. 4). The probability

map obtained for the first rock type domain (PIP) rela-

tively agrees with the interpreted lithological model

(Fig. 3b). In contrast, the probability map obtained for

the sixth rock type domain (GD) bears little resemblance

to the interpreted model, while that of the second rock

RðxÞ ¼

1 if Z1ðxÞ� z1

2 if Z1ðxÞ[ z1 and Z2ðxÞ� z2

3 if Z1ðxÞ[ z1; Z2ðxÞ[ z2 and Z3ðxÞ� z3

4 if Z1ðxÞ[ z1; Z2ðxÞ[ z2; Z3ðxÞ[ z3 and Z4ðxÞ� z4

5 if Z1ðxÞ[ z1; Z2ðxÞ[ z2; Z3ðxÞ[ z3; Z4ðxÞ[ z4 and Z5ðxÞ� z5

6 if Z1ðxÞ[ z1; Z2ðxÞ[ z2; Z3ðxÞ[ z3; Z4ðxÞ[ z4; Z5ðxÞ[ z5 and Z6ðxÞ� z6

7 if Z1ðxÞ[ z1; Z2ðxÞ[ z2; Z3ðxÞ[ z3; Z4ðxÞ[ z4; Z5ðxÞ[ z5 and Z6ðxÞ[ z6

8>>>>>>>>>>><
>>>>>>>>>>>:

ð19Þ
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type domain (POR) is patchy and does not match at all.

For these last two rock type domains, the probability is

close to zero or to one near the conditioning data loca-

tions, but intermediate over the rest of the region, which

means that the layout of the domain boundaries is highly

uncertain.

These features were foreseeable as the result of assum-

ing a stationary model, in which the probability of occur-

rence of each rock type domain is constant in space,

reflecting a phenomenon that tends to repeat itself in space

without any trend. The conditioning to the drill hole data

improves the results only locally, but its effect is modest

due to the small number of such data.

3.3 Plurigaussian model with spatially varying

proportions

The stationary model developed in the previous subsection

faces two limitations:

(1) The inability to reproduce spatial trends in the

distribution of rock type domains.

(2) Possible misspecifications in the proportions of rock

type domains, which may bias the results.

A non-stationary model may be able to overcome these

limitations. One option is to assume that the proportions of

rock type domains vary locally and to infer the truncation

Table 4 Codification of rock

type domains into indicators
Rock type Rock code Z1\ z1? Z2\ z2? Z3\ z3? Z4\ z4? Z5\ z5? Z6\ z6?

PIP 1 1 Unknown Unknown Unknown Unknown Unknown

POR 2 0 1 Unknown Unknown Unknown Unknown

MAB 3 0 0 1 Unknown Unknown Unknown

MOB 4 0 0 0 1 Unknown Unknown

TOB 5 0 0 0 0 1 Unknown

GD 6 0 0 0 0 0 1

AND 7 0 0 0 0 0 0

Table 5 Fitted variogram models for the stationary case

Stationary Gaussian

random field

Basic nested

structure

Sill Scale factor

along N20�W (m)

Scale factor

along N70�E (m)

Scale factor

along vertical (m)

1 Cubic 1.000 1000 450 900

2 Cubic 0.713 70 40 80

Cubic 0.287 500 60 Infinite

3 Cubic 1.000 1200 280 600

4 Cubic 0.084 20 30 20

Cubic 0.403 300 250 400

Cubic 0.513 800 250 Infinite

5 Cubic 0.013 10 60 60

Cubic 0.117 60 60 60

Cubic 0.314 300 200 220

Cubic 0.556 Infinite 500 2500

6 Cubic 1.000 700 280 500

Table 6 Parameters for

plurigaussian simulation
Simulation parameter Value

Number of iterations (sweeps over the data set) for Gibbs sampler 3000

Number of lines for spectral-turning bands simulation 1000

Number of neighboring data for conditioning All the data (125)

Radius (m) of search ellipsoid along direction N20�W Infinite

Radius (m) of search ellipsoid along direction N70�E Infinite

Radius (m) of search ellipsoid along vertical direction Infinite
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thresholds accordingly, while considering that the under-

lying Gaussian random fields remain stationary. The cal-

culation of local proportions of rock type domains can be

done on the basis of the drill hole data or of the interpreted

lithological model, by means of moving windows statistics

or geographically-weighted statistics (Armstrong et al.

2011). A challenge is the choice of the moving window

size, or of the kernel function in the case of geographically

weighted statistics, which greatly influences the results.

This choice is actually a trade-off between our uncertainty

and our reliance on the interpreted model. With a very

large window, the calculated proportions will tend to the

global proportions, meaning that the spatial variations of

rock type domain proportions that are seen in the inter-

preted lithological model tend to be ignored. On the con-

trary, with a very small window, the local proportions will

be close to 0 or 1, depending on whether or not the rock

type domain is present in the interpreted model at the target

location; in such a case, one is extremely confident in the

interpreted lithological model and the simulated rock type

domains will not depart from this model too much.

As an illustration, an application of this approach with

four different moving window sizes (50 9 50 9 16,

400 9 400 9 16 and 1500 9 1500 9 16 m3) is presented

in Fig. 5, where the local rock type proportions have been

calculated from the interpreted lithological model shown

in Fig. 3b, while the variograms of the Gaussian random

fields are the same as those fitted in Sect. 3.2. In the first

case (window of size 50 9 50 9 16 m3), the results

indicate very little uncertainty, as the probability of

finding a rock type is almost always close to 0 or to 1. In

the third case (window of size 1500 9 1500 9 16 m3),

the zonation of the rock types, especially the porphyry, is

lost and the results are similar to those obtained in the

scope of the stationary model. The second case (window

of size 400 9 400 9 16 m3) provides a more balanced

trade-off that yields geologically plausible probability

maps.

However, even if it solves the first abovementioned

limitation (reproduction of trends), the use of spatially

varying proportions makes the second limitation more

critical, insofar as misspecifications in the domain pro-

portions may be more severe locally than globally.

3.4 Plurigaussian model based on truncated IRF-k

In this subsection, we explore the possibility of simulating

the rock types without using the interpreted lithological

model, by truncating intrinsic random fields of order k in-

stead of stationary random fields. This idea makes sense

not only to reproduce spatial trends or zonal features in the

distribution of rock type domains, but also to avoid mis-

specifying the truncation thresholds. Therefore, the two

abovementioned limitations can be addressed in the IRF-

k model.

3.4.1 Truncation rule and truncation thresholds

The truncation rule remains the same as that presented in

the stationary model (Sect. 3.2) and the truncation

Fig. 4 Plan views showing the probabilities of occurrence of three rock type domains at elevation 3348 m, calculated by using 100 realizations

(stationary plurigaussian model)
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Fig. 5 Plan views showing the probabilities of occurrence of three

rock type domains at elevation 3348 m, calculated by using 100

realizations [plurigaussian model with local rock type proportions

obtained with a moving window of size 50 9 50 9 16 m3 (a–c),
400 9 400 9 16 m3 (d–f) and 1500 9 1500 9 16 m3 (g–i)]
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thresholds can be set to zero, as previously explained in

Sect. 2.2.2.

3.4.2 Generalized covariance analysis

To complete the determination of the model parameters, it

remains to infer the spatial correlation structure (i.e., the

generalized covariance functions) of the intrinsic random

fields of order k to be truncated. To this end, the procedure

presented in Sect. 2.2.2 is successively applied to each

IRF-k:

(1) An order k is chosen, which represents the degree of

the polynomial drift.

(2) The number n of locations used to define the internal

representation of the IRF-k is set to the minimal

allowable value i:e:; n ¼ L ¼ ðkþ3Þ!
k! 3!

� 	
), so as to min-

imize the size of vector Z0 and, accordingly, the total

number of parameters to be determined by least-

squares fitting. Regarding their coordinates, they are

drawn randomly within the limits of the region of

interest and will remain fixed during the fitting

procedure.

(3) The same basic nested structures as those found in

the stationary model (Table 5) are considered,

together with power generalized covariance models

whose exponents and scale factors are chosen after

trial and error, so that only the sills of the stationary

structures and the multiplicative coefficients of the

power structures remain to be found with the

proposed semi-automated fitting algorithm.

A criterion for choosing the order k at step (1) and the

exponents and scale factors of the power structures at step

(3) is to obtain a final fit that minimizes the total sum of

squared errors between the experimental and modeled

indicator covariance matrices (Eq. 18). As a complement,

one could choose the order, exponents and scale factors

that yield a good prediction of the rock types through cross-

validation at the data locations, or that provide probability

maps reproducing the expected zonation of the rock types

within the region of interest (pipe located to the north,

porphyry mainly to the southeast, and granitoids to the west

and southwest). Rather than a detailed geological inter-

pretation as in Fig. 3b, a sketch of such a zonation, based

on a global understanding of the deposit, is sufficient for

such a purpose.

The random fields no 1, 3, 4 and 5 have been chosen

with a power covariance of exponent 1.5 and are therefore

IRF-0, while the random fields no 2 and 6 (with a power

covariance of exponent 3) are IRF-1. The number of

parameters to be fitted with the proposed semi-automated

algorithm is equal to the size n of vector Z0 (1 for an IRF-0,

4 for an IRF-1), plus the number of basic nested structures

used in the generalized covariance model, as each structure

is associated with a single unknown parameter corre-

sponding to its sill or multiplicative coefficient. This entails

a nonlinear least square optimization problem in Rd, with

d varying between 3 (for intrinsic random fields no 1 and 3)

and 7 (for intrinsic random field no 2). Tables 7 and 8

present the final fit of the generalized covariances and the

cross-validation results, respectively.

3.4.3 Conditional simulation and post-processing

of the realizations

Having completed the specification of the model parame-

ters, one can simulate the rock type domains over the

region of interest conditionally to the drill hole data. This is

similar to the stationary case, except for the use of intrinsic

kriging of order k instead of simple kriging in the Gibbs

sampler and post-conditioning process. One hundred real-

izations are constructed, with the same implementation

parameters as in the stationary case (Table 6).

Figure 6 shows the interpreted lithological model toge-

ther with a plan view of the first three realizations. In this

case, it is noticeable that the realizations bear resemblance

to the interpreted model, although the latter is not used as

an input in the simulation process. In particular, the layouts

of porphyry (POR) and granitoids (GD) are much more

realistic than with the stationary model. As before, the

realizations can be used to assess the uncertainty locally at

each target grid node, through probability maps (Fig. 7).

Despite the fluctuations on each individual realization,

these maps, which are calculated by processing all the

realizations, are strikingly similar to the interpreted litho-

logical model for pipe PIP, porphyry (POR) and granitoids

(GD) (Fig. 3b).

From the probability maps, one can construct a litho-

logical model by selecting, for each grid node, the most

probable rock type domain. This model can then be com-

pared to the interpreted lithological model in order to

identify the grid nodes for which the interpreted rock type

domain matches the most probable one, and the grid nodes

for which there is a mismatch and the interpreted model

may be revised or additional drill holes may be taken to

reduce uncertainty (Fig. 8). The latter nodes, mostly loca-

ted near the boundaries of pipe, porphyry and granitoids,

correspond to nodes with a moderate probability (0.3–0.6)

for the most probable rock type domain (in other words,

none of the rock type domains has a high probability of

occurrence). As indicated in Table 9, one obtains 5921

matches over a total of 8500 grid nodes, i.e., the interpreted

rock type domain coincides with the most probable domain
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for 69.7% of the grid nodes. This result is highly satis-

factory, given the very small number of conditioning data.

For comparison, in the stationary model presented in

Sect. 3.2, the percentage of matches is only 54.0%

(Table 10), which demonstrates the significant improve-

ment of the proposed non-stationary model based on IRF-

k over the stationary one. Concerning the model with

spatially varying proportions (Sect. 3.3), the percentage of

matches ranges from 92.0 to 58.7%, depending on the size

of the moving window used for calculating the local pro-

portions (Tables 11, 12, 13). However, these percentages

are misleading because the local proportions used as an

input for constructing the realizations are calculated from

the same interpreted lithological model against which the

realizations are compared; hence a high percentage of

matches is expectable in these cases.

4 Discussion

The plurigaussian model can be extended to the non-sta-

tionary framework by truncating intrinsic random fields of

order k with Gaussian generalized increments instead of

stationary Gaussian random fields. Conditional simulation is

performed similarly to the stationary case, except for the type

of kriging used in the Gibbs sampler and in the post-

Table 8 Cross-validation

results for the plurigaussian

model based on the truncation

of IRF-k

True rock type domain Most probable rock type domain

PIP POR MAB MOB TOB GD AND Total

PIP 5 1 0 0 0 0 0 6

POR 0 20 0 1 0 0 0 21

MAB 0 0 11 0 1 2 0 14

MOB 0 5 0 5 2 2 0 14

TOB 0 2 0 0 15 7 1 25

GD 0 3 1 1 6 30 0 41

AND 0 0 0 0 0 0 4 4

Total 5 31 12 7 24 41 5 125

For 72% of the drill hole samples (90 out of 125), the most probable rock type (i.e., the rock type that

appears most frequently among 100 realizations drawn at the sample location, conditionally to the data

observed at the remaining samples) matches the actually observed rock type

Table 7 Fitted generalized covariance models for the non-stationary case

Intrinsic Gaussian

random field

Basic nested

structure

Sill or multiplicative

coefficient

Scale factor along

N20�W (m)

Scale factor along

N70�E (m)

Scale factor along

vertical (m)

Exponent

1 Cubic 0.095 1000 450 900

Power 0.021 2000 1000 2000 1.5

2 Cubic 0.046 70 40 80

Cubic 0.059 500 60 infinite

Power 8.56 9 10-6 1500 1000 1750 3.0

3 Cubic 0.115 1200 280 600

Power 0.393 4500 1000 2000 1.5

4 Cubic 0.182 20 30 20

Cubic 0.183 300 250 400

Cubic 1.42 9 10-6 800 250 infinite

Power 0.317 1800 1000 3000 1.5

5 Cubic 0.011 10 60 60

Cubic 0.004 60 60 60

Cubic 0.053 300 200 220

Cubic 0.145 infinite 500 2500

Power 455.6 18 10 13 1.5

6 Cubic 13.8 700 280 500

Power 19.9 2.5 1 2 3.0

Stoch Environ Res Risk Assess (2017) 31:893–913 907

123



conditioning stage, where intrinsic kriging of order k re-

places simple kriging, which only requires the knowledge of

the generalized covariances of the intrinsic random fields.

The benefits of the proposed non-stationary plurigaus-

sian model are twofold. First and foremost, it allows

reproducing spatial trends and zonal patterns in the

Fig. 6 Plan views of the interpreted lithological model a and three realizations of the rock type domains b–d for elevation 3348 m (plurigaussian

model based on the truncation of IRF-k)
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distribution of the simulated geological domains. This is a

common feature when modeling lithological, mineralogical

and/or alteration domains due to the parameters that affect

the ore body formation, such as genesis, paragenesis and

regional structures. The current implementation of the

plurigaussian model, based on the truncation of stationary

Gaussian random fields, is not able to reproduce these

trends and zonal patterns, unless spatially varying trunca-

tion thresholds are defined, which amounts to specifying

spatially varying proportions of the geological domains

under study. However, such an approach suffers from two

important limitations when inferring the model parameters:

(1) it assumes a perfect knowledge of the local domain

proportions, which is unrealistic in practice, and (2) the

theoretical background for variogram analysis is not clearly

laid out. Here lies the second benefit of our proposal, insofar

as the simulation process does not rely on local domain

proportions, thus it is not affected by a possible misspeci-

fication of these proportions when the available data are

scarce or the geology is not well known. Also, a procedure

Fig. 7 Plan views showing the probabilities of occurrence of three rock type domains at elevation 3348 m, calculated by using 100 realizations

(plurigaussian model based on the truncation of IRF-k)

Fig. 8 Plan views showing a the most probable rock type domain at

elevation 3348 m, b the probability of occurrence of the most

probable domain, and c the matches and mismatches with respect to

the interpreted lithological model (plurigaussian model based on the

truncation of IRF-k)
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Table 9 Numbers of grid nodes

per rock type domain, according

to the interpreted lithological

model and to the most probable

rock type domain (plurigaussian

model based on the truncation

of IRF-k)

Interpreted

lithological model

Most probable rock type domain

PIP POR MAB MOB TOB GD AND Total

PIP 606 234 0 0 0 70 0 910

POR 3 1871 24 131 26 194 15 2264

MAB 3 8 68 5 2 10 0 96

MOB 9 152 32 175 57 117 5 547

TOB 12 160 15 1 197 81 5 471

GD 103 392 247 145 225 3003 0 4115

AND 0 54 20 3 5 14 1 97

Total 736 2871 406 460 512 3489 26 8500

Table 10 Numbers of grid

nodes per rock type domain,

according to the interpreted

lithological model and to the

most probable rock type domain

(stationary plurigaussian model)

Interpreted

lithological model

Most probable rock type domain

PIP POR MAB MOB TOB GD AND Total

PIP 626 58 0 0 0 226 0 910

POR 2 347 53 131 2 1714 15 2264

MAB 8 1 60 0 0 27 0 96

MOB 13 43 37 140 9 299 6 547

TOB 19 32 13 0 101 304 2 471

GD 110 209 290 122 70 3314 0 4115

AND 0 14 23 2 4 51 3 97

Total 778 704 476 395 186 5935 26 8500

Table 11 Numbers of grid

nodes per rock type domain,

according to the interpreted

lithological model and to the

model based on the most

probable rock type domain

(plurigaussian model with rock

type proportions calculated by

using a moving window of size

50 9 50 9 16 m3)

Interpreted

lithological model

Most probable rock type domain

PIP POR MAB MOB TOB GD AND Total

PIP 895 5 1 0 1 8 0 910

POR 6 2105 2 32 17 91 11 2264

MAB 3 1 88 1 0 3 0 96

MOB 3 67 4 383 22 63 5 547

TOB 1 22 4 5 394 45 0 471

GD 28 41 22 44 69 3909 2 4115

AND 0 15 0 7 8 19 48 97

Total 936 2256 121 472 511 4138 66 8500

Table 12 Numbers of grid

nodes per rock type domain,

according to the interpreted

lithological model and to the

most probable rock type domain

(plurigaussian model with rock

type proportions calculated by

using a moving window of size

400 9 400 9 16 m3)

Interpreted

lithological model

Most probable rock type domain

PIP POR MAB MOB TOB GD AND Total

PIP 707 97 0 0 0 106 0 910

POR 8 1925 13 49 28 232 9 2264

MAB 6 5 66 2 0 17 0 96

MOB 13 155 28 134 72 140 5 547

TOB 14 80 14 1 174 188 0 471

GD 118 191 165 132 82 3427 0 4115

AND 0 47 0 8 8 32 2 97

Total 866 2500 286 326 364 4142 16 8500
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has been designed to infer the spatial correlation structure

on a sound basis. In the case of spatial prediction, a similar

problem occurs with simple kriging when a locally varying

mean value has to be defined: this kriging type is often

replaced by ordinary kriging, with an unknown mean value

at the scale of the kriging neighborhood, or with universal

or intrinsic kriging of order k, which assumes a spatially

varying and, at the same time, unknown mean value. The

proposed plurigaussian model goes in the same line, in the

context of simulation rather than prediction.

The case study proves the applicability of this model to

simulate multiple rock type domains, whereas the con-

ventional stationary model produces realizations of the

domains that do not bear resemblance to the lithological

model interpreted by geologists.

In practice, the main difficulty of the proposed non-sta-

tionary model stems from the inference of the generalized

covariance functions of the underlying intrinsic random

fields. Indeed, one does not have access to an experimental

variogram on which to fit a variogram model, as in the

stationary case. Instead, a semi-automated fitting procedure

has been designed, based on the calculation of the indicator

covariances between all the pairs of data locations, followed

by a nonlinear least-squares optimization to determine the

parameters of the generalized covariance functions to be

modeled. By the way, a similar approach could be used for

the variogram analysis of the plurigaussian model with

spatially varying proportions, so as to avoid calculating

experimental variograms that are biased estimates of the

true underlying variograms. Because of the possibly high

dimensionality of this optimization problem and because

the results can largely depend on prior decisions of the

practitioner (choice of the intrinsic random field orders, of

the basic nested structures composing their generalized

covariances, of their exponents and scale factors, and of the

number and coordinates of the locations used to construct

the internal representations), the proposed fitting algorithm

actually aims at finding one reasonably good model for the

spatial correlation structure of the intrinsic random fields

under consideration, keeping in mind that many other

solutions could be equally suitable. Some additional tips

can help for the fitting, such as considering the stationary fit

as an initial guess and adding non-stationary covariance

structures (e.g., power generalized covariances with expo-

nents and scale factors chosen by trial and error), or

checking that the probability maps derived from a set of

realizations reproduce the expected zonation of the domain

distribution within the region of interest. The sensitivity of

the simulated random fields to the fitted generalized

covariance models is a subject of further research.

Another difficulty that has been met relates to the Gibbs

sampler, whose convergence is not guaranteed if one works

with a moving neighborhood implementation. Solutions

exist in the case of stationary models (Lantuéjoul and

Desassis 2012; Arroyo et al. 2012; Emery et al. 2014) and

should be extended to the conditional simulation of

intrinsic random fields of order k.

5 Conclusions

The spatial modeling of geological domains is critical to

characterize geological heterogeneities in ore bodies and to

further quantify the chemical, physical, mineralogical and

geo-metallurgical properties of the material to be mined. As

the boundaries of the geological domains are generally

uncertain, stochastic spatial models are increasingly used in

place of, or in complement to, deterministic models. To

date, a variety of stochastic simulation approaches have

been developed to model the spatial layout of geological

domains. Among them, plurigaussian simulation offers a

flexible framework, as it aims at reproducing (1) the topo-

logical constraints (contact relationships) on the domains,

(2) the domain proportions, (3) the spatial correlation

structure of these domains and (4) the available condition-

ing data. In this respect, one restriction relates to the

reproduction of complex contact relationships, such as a

directional sequencing of the domains, which cannot be

Table 13 Numbers of grid

nodes per rock type domain,

according to the interpreted

lithological model and to the

most probable rock type domain

(plurigaussian model with rock

type proportions calculated by

using a moving window of size

1500 9 1500 9 16 m3)

Interpreted

lithological model

Most probable rock type domain

PIP POR MAB MOB TOB GD AND Total

PIP 678 67 0 0 0 165 0 910

POR 6 767 38 86 2 1348 17 2264

MAB 8 1 65 0 0 22 0 96

MOB 14 80 38 132 15 263 5 547

TOB 16 50 18 0 110 276 1 471

GD 126 287 300 116 54 3232 0 4115

AND 0 27 20 1 4 42 3 97

Total 848 1279 479 335 185 5348 26 8500

Stoch Environ Res Risk Assess (2017) 31:893–913 911

123



represented through a truncation rule and requires gener-

alizing the plurigaussian model (Langlais et al. 2008). A

second practical restriction relates to the definition of the

domain proportions, for which the plurigaussian model is

caught in a dilemma: if these proportions are assumed

constant in space (stationary model), then the simulation is

unable to reproduce spatial trends and zonal patterns; but if

the proportions are assumed to vary in space, their inference

is likely to be locally inaccurate and the model becomes

sensitive to a misspecification of these proportions.

In this context, a non-stationary plurigaussian model

based on the truncation of intrinsic random fields of order

k instead of stationary random fields has been proposed,

together with tools and algorithms for inferring the model

parameters and for constructing realizations conditioned to

existing data. The application case study demonstrates that,

even with few conditioning data (only 125 over a geo-

graphical area of 1.87 km2), it is possible to simulate rock

type domains in agreement with the interpretation made by

geologists, in a much more successful way than does the

conventional stationary plurigaussian model. The proposed

model therefore allows a more realistic assessment of the

geological uncertainty, with its subsequent gains in the

evaluation of mineral resources and ore reserves. This

model combines, on the one hand, a sound theoretical

framework (in particular, concerning the design of algo-

rithms for fitting the underlying generalized covariance

functions or for simulating intrinsic random fields of order

k) and, on the other hand, the consideration of qualitative

geological knowledge, such as the chronology, contact

relationships or spatial trends of the domains to be simu-

lated, for guiding the modeling process and validating it.
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