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Abstract

We show that for any colouring of the edges of the complete bipartite
graphKn,n with 3 colours there are 5 disjoint monochromatic cycles which
together cover all but o(n) of the vertices. In the same situation, 18
disjoint monochromatic cycles together cover all vertices.
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1 Introduction

The monochromatic cycle partition problem is a Ramsey-type problem that ori-
ginated in work of Gerencsér and Gyárfás [7] and Gyárfás [8], and lately received
a considerable amount of attention from the community. Given a graph G, and
a (not necessarily proper) colouring of its edges with r colours, we are inter-
ested in covering V (G) with mutually disjoint monochromatic cycles, using as
few cycles as possible. (For technical reasons, single vertices, single edges and
the empty set count as cycles as well.) To state the problem more precisely, the
aim is to determine the smallest number m = m(r,G) such that for any r-edge
colouring of G, there are m disjoint monochromatic cycles that cover V (G).

The case G = Kn received the most attention so far. An easy construction
shows that at least r cycles are necessary to cover all the vertices, and Erdős,
Gyárfás and Pyber [6] showed that the number of cycles needed is a function
of r (independent of n). The currently best known upper bound of 100r log r
(for large n) for this function is due to Gyárfás, Ruszinkó, Sárközy and Sze-
merédi [9]. For r = 2, Bessy and Thomassé [4] showed that a partition into
2 cycles (even of different colours) always exists, thus proving a conjecture of
Lehel [2] and extending earlier work of [21, 1]. (See also [24] for an alternative
proof.) Motivated by ideas of Schelp, Balogh et al. [3] suggested a strengthen-
ing of Lehel’s conjecture: Every 2-coloured n-vertex graph of minimum degree
at least 3n/4 can be partitioned into a red and a blue cycle. As evidence for
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their conjecture, Balogh et al. [3] proved an asymptotic version: All but o(n)
vertices of any 2-coloured n-vertex graph of minimum degree (3/4 + o(1))n can
be partitioned into a red and a blue cycle. DeBiasio and Nelsen [5] adapted the
absorbing method of [25], to show that under the same conditions, all vertices
of the graph can be partitioned into a red and a ablue cycle. Extending this
technique, Letzter [17] proved the conjecture of Balogh et al. for large n.

The conjecture [6] that r monochromatic cycles suffice to partition any r-
coloured complete graph for all r ≥ 3, was disproved by Pokrovskiy [23]. How-
ever, his examples allow partitions of all but one vertex. In light of this, it has
been proposed to tone down the conjecture, allowing for a constant number of
uncovered vertices [3, 23]. On the positive side, for r = 3, three monochromatic
cycles suffice to partition of all but o(n) vertices of Kn, and, for large enough
n, 17 monochromatic cycles partition all of V (Kn); this was shown by Gyárfás,
Ruszinkó, Sárközy, and Szemerédi [12]. (Actually, by a slight modification of
their method, one can replace the number 17 with 10, see Section 5.3). Very
recently, Pokrovskiy [24] showed that it is indeed possible to partition all but
a constant number of vertices of a 3-coloured complete graph into at most 3
cycles [24]. This was independently confirmed by Letzter with a better con-
stant [18].

For G being the balanced complete bipartite graph Kn,n, first upper bounds
for monochromatic cycle partitions were given by Haxell [14] and by Peng, Rödl
and Ruciński [22]. The current best known result is that 4r2 monochromatic
cycles suffice to partition all vertices of Kn,n, if n is large [16].

For a lower bound, an easy construction shows we need at least 2r−1 cycles
to cover all the vertices. For instance, starting out with a properly r-edge-
coloured Kr,r, blow up each vertex in one partition class to a set of size r, while
in the other partition class only blow up one vertex to a set of size r(r− 1) + 1.
A similar construction is given in [23].

We believe that the lower bound of 2r − 1 might be the correct answer
to the monochromatic cycle partition problem in balanced complete bipartite
graphs. This suspicion has recently been confirmed for r = 2 by Letzter [18],
after preliminary work of Schaudt and Stein [26]. (See also [19] for a short proof
for a partition into 4 cycles. Our contribution here is that the lower bound of
2r − 1 is asymptotically correct also for r = 3.

Theorem 1.1. For any 3-edge-colouring of Kn,n,

(a) there is a partition of all but o(n) vertices of Kn,n into five monochromatic
cycles, and

(b) if n is large enough, then the vertices of Kn,n can be partitioned into 18
monochromatic cycles.

The second part of our theorem improves the formerly best bound of 1695
disjoint monochromatic cycles for covering any 3-edge coloured Kn,n [14]. We
remark that in [26] it is shown that 12 monochromatic cycles suffice to partition
all the vertices of any two-coloured Kn,n.

A related result for r = 2 and for partitions into paths, is due to Pok-
rovskiy [23]. He showed that a 2-edge-coloured Kn,n can be partitioned into
two monochromatic paths, unless the colouring is a split colouring, that is,
an edge-colouring that has a colour-preserving homomorphism to a properly
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edge-coloured K2,2. In a split colouring, three disjoint monochromatic cycles
(or paths) are always enough to cover all vertices. Pokrovskiy [23] conjectures
2r − 1 disjoint monochromatic paths suffice for arbitrary r.

We now briefly sketch the proof of our main result, Theorem 1.1, thereby
explaining the structure of the paper. The proof of Theorem 1.1(a) involves the
construction of large monochromatic connected matchings (see below) and an
application of the Regularity Lemma [27]. This method has been introduced by
 Luczak [20] and became a standard approach.

A monochromatic connected matching is a matching in a connected compon-
ent of the graph spanned by the edges of a single colour, and such a component is
called a monochromatic component. Slightly abusing notation, we treat match-
ings as both edge subsets and 1-regular subgraphs. The following is our key
lemma. Its proof is given in Section 2.

Lemma 1.2. Let the edges of Kn,n be coloured with three colours. Then there
is a partition of the vertices of Kn,n into five or less monochromatic connected
matchings.

Now for the proof of Theorem 1.1(a), apply the Regularity Lemma to the
given 3-edge-coloured Kn,n. The reduced graph Γ is almost complete bipartite
and inherits a 3-colouring (via majority density of the pairs). A robust version
of Lemma 1.2, namely Lemma 3.1 (see Section 3), permits us to partition almost
all of R into five monochromatic connected matchings. In the subsequent step,
presented in Section 4, we apply a specific case of the Blow-up Lemma [11, 15, 20]
to get from our matchings to five monochromatic cycles which together partition
almost all vertices of Kn,n.

The proof of Theorem 1.1(b) is given in Section 5.2. It combines ideas of
Haxell [14] and Gyárfás et al. [12] with Theorem 1.1(a). First, we fix a large
monochromatic subgraph H , which is Hamiltonian and remains so even if some
of the vertices are deleted from it. Then, using Theorem 1.1(a), we cover almost
all vertices of Kn,n−V (H) with five vertex-disjoint monochromatic cycles. The
amount of still uncovered vertices being much smaller than the order of H , we
can apply a Lemma from [9] in order to absorb these vertices using vertices
from H , and producing only a few more cycles. We finish by taking one more
monochromatic cycle, which covers the remainder of H .

2 Covering with connected matchings

In this section we give the proof of the exact version of Lemma 1.2. Its proof has
been written with the proof of the more technical robust counterpart (Lemma 3.1
in Section 3) in mind, in order to ease the transition between the two proofs. It
may therefore appear to be a bit overly lengthy in some of its parts.

2.1 Preliminaries

This subsection contains some preliminary results for the proof of our key
lemma, Lemma 1.2, which is given in the subsequent subsection. We start with
some definitions. The biparts of a bipartite graph H are its partition classes,
which we denote by H and H . If X ⊆ H and Y ⊆ H, or if X ⊆ H and Y ⊆ H,
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we write [X,Y ] for the bipartite subgraph induced by the edges between X and
Y .

Definition 2.1 (empty graph, trivial graph). A bipartite graph is empty if it
has no vertices and trivial if one of its biparts has no vertices.

For a colouring of the edges of H with colours red, green and blue, a red
component R is a connected component in the subgraph obtained by deleting
the non-red edges and a red matching is a matching whose edges are red. The
same terms are defined for colours green and blue. We now introduce two types
of colourings for 2-coloured bipartite graphs. We call an edge colouring of a
bipartite graph H in red and blue a V -colouring if there are monochromatic
components R and B of distinct colours such that

1. each of R and B is non-trivial;

2. R ∪B is spanning in H ;

3. |V (R ∩B)| = |V (H)| or |V (R ∩B)| = |V (H)|.

A colouring of E(H) in red and blue is split, if

1. all monochromatic components are non-trivial;

2. each colour has exactly two monochromatic components.

The following lemma classifies the component structure of a 2-coloured bipartite
graph.

Lemma 2.2. If the bipartite 2-edge-coloured graph H is complete, then one of
the following holds:

(a) There is a spanning monochromatic component,

(b) H has a V -colouring, or

(c) the edge-colouring is split.

Proof. Let R be a non-trivial component in colour red, say. Set X := H − R
and note that all edges in [R,X] and [R,X] are blue.

We first assume that |X| = 0. If also |X | = 0, we are done, since then R is
spanning. Otherwise, |X| > 0, and thus the colouring is a V -colouring.

So by symmetry we can assume that both |X| > 0 and |X| > 0. If there is a
blue edge in R or in X , then H is spanned by one blue component. Hence, all
edges inside R and X are red and the colouring is split.

Corollary 2.3. If a bipartite 2-edge-coloured graph H is complete, then

(a) there are one or two non-trivial monochromatic components that together
span H, and

(b) if the colouring is not split, then there is a colour with exactly one non-trivial
component.

Let us now turn to monochromatic matchings.
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Lemma 2.4. Let H be a balanced bipartite complete graph whose edges are
coloured red and blue. Then either

(a) H is spanned by two vertex disjoint monochromatic connected matchings,
one of each colour, or

(b) the colouring is split and

• H is spanned by one red and two blue vertex disjoint connected mono-
chromatic matchings and

• H is spanned by one blue and two red vertex disjoint connected mono-
chromatic matchings.

Proof. First assume that the colouring is split. We take one red maximum
matching in each of the two red components. This leaves at least one of the
blue components with no vertices on each side. We extract a third maximum
matching from the leftover of the other blue component, thus leaving one of its
sides with no vertices. Thus the three matchings together span H . Note that
we could have switched the roles of red and blue in order to obtain two blue
and one red matching that span H .

So by Lemma 2.2, we may assume that either there is a colour, say red, with
a spanning component R, or H has a V -colouring, with components R in red
and B in blue, say. In either case, we take a maximum red matching M in R.
Then there is an induced balanced bipartite subgraph of H , whose edges are all
blue, which contains all uncovered vertices of each bipart of H . If this subgraph
is trivial, we are done. Otherwise, we finish by extracting from it a maximum
blue matching M ′ ⊆ B. As H is complete and there are no leftover edges in
said subgraph, we obtain that M ∪M ′ spans H , and we are done.

We continue with a lemma about the component structure of 3-edge-coloured
bipartite graphs.

Lemma 2.5. Let the edges of the complete bipartite graph H be coloured in red,
green and blue, such that each colour has at least four non-trivial components;
then there are three monochromatic components that together span H.

Proof. Let R be a red non-trivial component. Since there are three more red
non-trivial components, the three graphs X := H − R, [R,X ] and [R,X] are
each non-trivial. Moreover, the edges of the latter two graphs are green and
blue. By Corollary 2.3(a) there are one or two non-trivial monochromatic com-
ponents that together span [R,X]. So, if [R,X] has a spanning monochromatic
component, then we can span H with at most three components, which is as
desired. Therefore and by symmetry we may assume from now on that none of
[R,X] and [R,X] has a spanning monochromatic component. Suppose [R,X]
has a split-colouring. By Lemma 2.2, either [R,X] is split or one of R and X is
contained in the intersection of a blue and a green monochromatic component.
In the latter case the union of three monochromatic components of the same
colour contains one of the biparts of H . But this is impossible as each colour
has at least four non-trivial components. On the other hand, if both [R,X ] and
[R,X] have a split colouring, then each bipart of H is contained in the union of
four green components as well as in the union of four blue components, and thus
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all edges in X are red. But then there are only two non-trivial red components,
R and X , a contradiction.

So by Lemma 2.2, and by symmetry, we know that [R,X] and [R,X] both
have green/blue V -edge-colourings. Thus each of [R,X] and [R,X] has a non-
trivial blue component and a non-trivial green component, say these are B1, G1

and B2, G2 respectively. Furthermore, X or R is contained in the intersection
B1 ∩G1, and X or R is spanned by the intersection B2 ∩G2.

We first look at the case where X is contained in B1 ∩G1. If R is contained
in B2 ∩G2, then both green and blue have at most two spanning components,

which is a contradiction. On the other hand, if X is contained in B2 ∩G2, then
H is spanned by the union of R and the blue components in H that contain B1

and B2, and we are done.
Consequently we can assume by symmetry and by Lemma 2.2 that R is

spanned by B1 ∩G1 and R is spanned by B2 ∩G2. Observe that [G1, G2] is

coloured red and blue and [B1, B2] is coloured red and green, since otherwise,

we obtain the desired cover. Suppose there is a red component of [G1, G2] that

is spanning in [G1, G2]. Such a component, together with B1 and B2, spans

H . So, we can assume [G1, G2] has no red spanning red component. Moreover,

since there are at least four non-trivial blue components, [G1, G2] contains two
blue components, which are non-trivial each.

Since these blue components are non-trivial in H , [G1, G2] does not have a

V -colouring (in itself). Thus, by Lemma 2.2, [G1, G2] is split coloured in red

and blue. Similarly we see that [B1, B2] is split coloured in red and green.

Consider the edges in [G1, B2] and [B1, G2]. If any of these edges is green
or blue, then our graph is spanned by three green or by three blue components.
On the other hand, if all edges in [G1, B2] and [B1, G2] are red, then H has only
three non-trivial red components, a contradiction.

2.2 Proof of Lemma 1.2

We are now ready to prove Lemma 1.2. Let H be a balanced bipartite complete
graph of order 2n. Our aim is to show that H can be spanned with five vertex
disjoint monochromatic connected matchings. We suppose that this is wrong in
order to obtain a contradiction. We prove a series of claims in order to reduce
the problem to a specific colouring, which then receives a distinct treatment.

Claim 2.6. Each colour has at least three non-trivial components.

Proof. Suppose the claim is wrong for colour red, say. By assumption, there
are two (possibly trivial) red components R1 and R2 in H , such that all other
red components are trivial. Let M be a maximum red matching in R1 ∪ R2.
Then every edge in the balanced bipartite subgraph X := H − M is green or
blue. By Lemma 2.4, H can be spanned with three vertex-disjoint monochro-
matic connected matchings. So in total we found at most five vertex-disjoint
monochromatic connected matchings that together span H .

Claim 2.7. There are no two monochromatic components that together span H.

Proof. Suppose the claim is wrong and there are monochromatic components R
and B that together span H . By Claim 2.6 we can assume that they have distinct
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colours, say R is red and B is blue. Take a red matching M red of maximum
size in R and a blue matching Mblue of maximum size in B − V (M red). Set
R′ := R − V (M red ∪Mblue) and B′ := B − V (M red ∪Mblue). By maximality,
any edge between B′ and R′ is green. The same holds for the edges between B′

and R′.
If [B′, R′] is empty, we finish by picking a maximum matching in [R′, B′]. We

proceed analogously if [R′, B′] is empty. Assuming that both are non-empty we
now pick now pick a maximum matching in each of the green components of H−
V (M red ∪Mblue) that contain [B′, R′], [B′, R′]. (If this is the same component,
we only pick one matching. If R′ or B′ is empty, we let the matchings be empty.)
Call these green matchings Mgreen

1 resp. Mgreen
2 . Let B′′ := B′ − V (Mgreen

1 ∪
Mgreen

2 ) and R′′ := R′ − V (Mgreen
1 ∪Mgreen

2 ).
Observe that by the maximality of Mgreen

1 and Mgreen
2 , if one of R′′, B′′ is

non-empty, then the other one is empty. The same holds for the sets B′′, R′′.
Thus one of the two graphs R′′, B′′ is empty, say this is B′′.

The edges in R′′ are green and blue. If R′′ contains no green edges, we can
pick another blue matching of maximum size and are done. Then again, if R′′

contains a green edge, it follows by maximality of Mgreen
1 and Mgreen

2 that both
of them are empty, which implies that there are no green edges in R′∪B′. In this
case we ignore Mgreen

1 and Mgreen
2 and finish as follows: By Lemma 2.4, R′ can

be spanned by at most 3 vertex disjoint monochromatic connected matchings.
This proves the claim.

Claim 2.8. Let Y and Z be monochromatic components of distinct colours such
that Y ∩ Z is non-trivial. Then Y − Z is not empty.

Proof. Let Y be a red component, Z be a blue component, and let X := H −
(Y ∪Z). Suppose that Y −Z is empty. We first note that all edges in [Y ∩ Z,X]
and [Y ∩ Z,X] are green. Moreover, by Claim 2.6, there is another non-trivial
blue component in H , which implies that X is non-trivial.

The subgraphs [Y ∩ Z,X] and [Y ∩ Z,X] cannot belong to the same green
component, since otherwise H is spanned by the union of said green component
and Z, which is not possible by Claim 2.7. Consequently, X has no green
edges. By Claim 2.6 there is a green non-trivial component G ⊆ Y ∪ Z. As
H = Z ∪ (Y − Z) ∪X and Y − Z is empty, we obtain that G ∩ Z is non-trivial
in H and G− Z ⊆ Y − Z is empty. Thus G has the same properties as Y with
respect to Z and we can repeat the same arguments as above to obtain that
all edges in X are blue. But this is a contradiction to Claim 2.7, as X and Z
together span H .

Claim 2.9. There is a colour that has exactly three non-trivial components.

Proof. We show that there is a colour with at most three non-trivial components.
This together with Claim 2.6 yields the desired result. So suppose otherwise.
Then each colour has at least four non-trivial components. By Lemma 2.5, there
are components X, Y and Z that together span H.

By assumption, not all of X, Y and Z have the same colour. If two of these
components, say X and Y , have the same colour, say red, then H − (X ∪ Y )
contains a red component that is non-trivial, by the assumption that our claim
is false. The intersection of this red component with Z is non-trivial. Hence we
get a contradiction to Claim 2.8.

7



So assume X is red, Y is blue and Z is green. We claim that (after possibly
swapping top and bottom parts)

(Y ∩ Z) −X is empty. (1)

Indeed, otherwise (Y ∩Z)−X is non-trivial. Then, as [X, (Y ∩ Z) −X ] is non-
trivial and its edges are green and blue, we get X ⊆ Y ∪Z since every vertex in
X sees a vertex in Y ∩ Z. In the same way we obtain X ⊆ Y ∪ Z. Thus Z ∪ Y
is spanning, which is not possible by Claim 2.7. This proves (1).

By assumption, H − X contains three non-trivial red components R1, R2

and R3, say. For i 6= j, [Ri ∩ (Y − Z), Rj ∩ (Z − Y )] has no red, blue or green

edges and thus is trivial. So for at most one i ∈ {1, 2, 3} the subgraph Ri ∩
[Y − Z,Z − Y ] is non-trivial. The same holds for [Ri ∩ (Y − Z), Rj ∩ (Z − Y )].
Consequently, and by the pigeonhole principle, we can assume that,

R1 ∩ [Y − Z,Z − Y ] and R1 ∩ [Y − Z,Z − Y ] are both trivial. (2)

As R1 is non-trivial, we can suppose that without loss of generality R1 ∩ Y is
non-trivial. Thus, by (1) R1 ∩ (Y − Z) is non-empty. Hence, by (2) we get:

|R1 ∩ Z − Y | = 0. (3)

Moreover, Claim 2.8 (applied to R1 and Y ) implies that R1 has at least one
vertex in Z − Y or Z − Y . By (3) we have the latter case and hence

R1 ∩ (Z − Y ) and R1 ∩ (Y − Z) are each non-empty. (4)

The fact that [Y − (X ∪ Z), R1 ∩ (Z − Y )] and [Z − (X ∪ Y ), R1 ∩ (Y − Z)] only
have red edges, together with (2) and (4), yields that

Y − (X ∪ Z) and Z − (X ∪ Y ) are each empty (5)

Now by (5) (and by the existence of R1, R2, R3), we know that (Y ∩ Z) −X
is non-empty. So each vertex of X has a neighbour in (Y ∩ Z) −X and hence
X ⊆ Y ∪ Z. Since, by Claim 2.7, H is not spanned by Y ∪ Z, we have that
X − (Y ∪ Z) is non-empty. This and (4) imply that [X − (Y ∪ Z), Y − (X ∪ Z)]

and [X − (Y ∪ Z), Z − (X ∪ Y )] are non-trivial each. As the edges of these
subgraphs are green and blue respectively, there are green and blue components
G and B such that H −X − [(G ∩ Y ) ∪ (B ∩ Z)] is empty.

Now let G′ be another non-trivial green component. Then G′ −X is empty,
while G′ ∩X is non-empty. By (5) it follows that G′ −X is empty, while G′ ∩X
is non-empty. This is not possible by Claim 2.8 and completes the proof.

Using Claim 2.9 we assume from now on that without loss of generality,
colour red has exactly three non-trivial components R1, R2 and R3. For i =
1, 2, 3, let Mi be a red matching of maximum size in Ri.

The remaining graph Y := H − M1 − M2 − M3 has no red edges. If Y is
trivial, then as |Y | = |Y |, the graph Y is empty, and so we are done. If Y can
be spanned by two disjoint monochromatic connected matchings, we are also
done, since in that case, we found five matchings which together span H. So we
can assume that the colouring of Y is split, by Lemma 2.4 and as the edges of
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red
green

blue

B′
1 = G′

1 B′
2 = G′

2 M1 M2 M3

B′
2 = G′

1 B′
1 = G′

2 M1 M2 M3

Figure 1: The structure of the colouring before Claim 2.10

Y are green and blue. We denote the blue and green components of Y by B′
1,

B′
2, respectively G′

1, G
′
2, where B′

1 = G′
1, B′

2 = G′
2, B′

1 = G′
2, and B′

2 = G′
1.

Note that the subgraph

B′
1 ∪B′

2 ∪M1 ∪M2 ∪M3 is spanning in H. (6)

By Lemma 2.4, Y can be spanned by two blue matchings M4 ⊆ B′
1, M5 ⊆ B′

2

and an additional green matching. If any of the matchings Mi is trivial, we can
ignore it and still have a sufficiently large cover of H . Thus we get that

B′
1, B′

2, G′
1, G′

2, M1, M2, and M3 are non-trivial. (7)

Moreover, let B1 and B2 be the blue components in H that contain B′
1 and

B′
2, respectively. We define G1 and G2 analogously. If B1 = B2, we are done as

M4 ∪M5 is a connected matching. This and symmetry imply

B1 6= B2 and G1 6= G2. (8)

The colouring so far is shown in Figure 1.

Claim 2.10. For each i = 1, 2, 3 we have that

(a) • if |Mi \G1 ∪G2| > 0, then B′
1 ⊆ Ri or B′

2 ⊆ Ri;

• if |Mi \B1 ∪B2| > 0, then G′
1 ⊆ Ri or G′

2 ⊆ Ri;

(b) • if |Mi \G1 ∪G2| > 0, then B′
1 ⊆ Ri or B′

2 ⊆ Ri;

• if |Mi \B1 ∪B2| > 0, then G′
1 ⊆ Ri or G′

2 ⊆ Ri;

(c) • if |Mi \G1 ∪G2 ∪B1 ∪B2| > 0, then B′
1 ∪B′

2 = G′
1 ∪G′

2 ⊆ Ri;

• if |Mi \G1 ∪G2 ∪B1 ∪B2| > 0, then B′
1 ∪B′

2 = G′
1 ∪G′

2 ⊆ Ri.

Proof. For the first part of (a), assume |M1\G1 ∪G2| > 0. Note that there is no
green edge between M1 \G1 ∪G2 and G′

1. First assume that M1 ∩B1 \G1 ∪G2

is non-empty. Then, by (8), any edge between M1 ∩B1 \ G1 ∪G2 and B′
2 =

G′
1 is red. So, by (7) the result follows. So we can assume that this is not

true. Similarly the result holds if |M1 ∩B2 \ G1 ∪G2| > 0. Therefore we can
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assume that M1 \B1 ∪B2 ∪G1 ∪G2 is non-empty. In this case, since all edges
between M1 \G1 ∪G2 ∪B1 ∪B2 and B′

1 are red, the result follows again by (7).
Statement (b) and the second part of (a) follow similarly.

For the first part of (c), note that any edge between Mi \G1 ∪G2 ∪B1 ∪B2

and B′
1 ∪B′

2 = G′
1 ∪G′

2 has to be red and use (7). The second part of (c) is
analogous.

By Claim 2.6 there are green and blue non-trivial components G3 6= G1, G2

and B3 6= B1, B2 in H.

Claim 2.11. It holds that |V (G3 ∩B3 ∩ (M1 ∪M2 ∪M3))| > 0.

Proof. Assume otherwise. That is, assume

|V (G3 ∩B3 ∩ (M1 ∪M2 ∪M3))| = 0.

The components B3 and G3 do not meet with B′
1 ∪ B′

2 = G′
1 ∪ G′

2 and by (6),
there are no vertices outside of B′

1 ∪ B′
2 ∪ M1 ∪ M2 ∪ M3. We conclude that

B3∩(M1∪M2∪M3) and G3∩(M1∪M2∪M3) are each non-trivial. Hence there
are indices i, i′, j, j′ such that there is a blue non-trivial subgraph B′

3 ⊆ B3 and
a green non-trivial subgraph G′

3 ⊆ G3 such that B′
3 ⊆ Mi and B′

3 ⊆ Mi′ , and

G′
3 ⊆ Mj and G′

3 ⊆ Mj′ . Actually, we can choose these indices such that i 6= i′

and j 6= j′. Since if i = i′, say, Claim 2.8 yields that (B3 ∩H) \Mi is not empty
and therefore, by (6), there is some index k 6= i such that B3∩Mk is not empty,
which allows us to swap i′ for k.

For an index k 6= i, the edges between B′
3 ⊆ R1capMi and G′

3 ∩Mk are blue
and green. As by our initial assumption |V (G3 ∩ B3 ∩ (M1 ∪M2 ∪M3))| = 0,
this implies that |G3 ∩Mk| = 0. In the same way we obtain that |G3 ∩Mk| = 0

for k 6= i′ or |B′
3 ∩Mi| = 0, but the latter cannot happen by the choice of B′

3.
Hence we have i = j′ and i′ = j; in other words,

|Mi ∩G3| > 0, |Mj ∩G3| > 0, |Mi ∩B3| > 0 and |Mj ∩B3| > 0.

So by Claim 2.10 (a) and (b), either we have B′
1 ⊆ Ri and B′

2 ⊆ Rj , or we
have G′

1 ⊆ Ri and G′
2 ⊆ Rj . Indeed, the fact that |Mi ∩G3| > 0 together with

Claim 2.10 (b) implies that one of B′
1 = G′

1 ⊆ Ri, B′
2 = G′

2 ⊆ Ri holds. Without
loss of generality, we assume the latter. Next, as |Mi ∩B3| > 0, Claim 2.10 (a)
implies that G′

1 = B′
2 ⊆ Ri or G′

2 = B′
1 ⊆ Ri. Without loss of generality, we

assume the former. We repeat the same with index j, and since we already
know that B′

2 ⊆ Ri, the output of Claim 2.10 has to be B′
1 = G′

2 ⊆ Rj for

|Mj ∩G3| > 0 and B′
1 = G′

1 ⊆ Rj for |Mj ∩B3| > 0. For the remainder, let us

assume that B′
1 ⊆ Ri and B′

2 ⊆ Rj .
Then G′

1 ∩ Rk = ∅ = G′
2 ∩ Rk, where k is the third index, which together

with Claim 2.10 (a) and (b), gives that |Rk∩(G3∪B3)| = 0. The edges between
B′

2 = G′
1 ⊆ G1 ∩Rj and B′

3 ∩Ri have to be green, which implies B′
3 ⊆ G1. As

any edge between B′
3 and Rk −B3 has to be green this implies |Rk ∩G1| > 0

since Rk is non-trivial and |Rk ∩B3| = 0. This also implies that |Rk −G1| = 0.

By repeating the same argument with B′
1 = G′

1 ⊆ G1 and B′
3, it follows that

|Rk ∩G1| > 0 and |Rk −G1| = 0. So Rk ∩ G1 is non-trivial and Rk − G1 is
empty, a contradiction to Claim 2.8.
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red
green

blue

B′
1 = G′

1 ⊆ R1 B′
2 = G′

2 ⊆ R2 M1 M2 M3 \ (G3 ∪B3) M3 ∩G3 ∩B3

B′
2 = G′

1 ⊆ R3 B′
2 = G′

1 ⊆ R3 M1 ⊆ G3 ∪B3 M2 ⊆ G3 ∪B3 M3

Figure 2: The structure of the colouring after (13).

Claim 2.11 and the symmetry between the Mi in both biparts allow us to
assume that without loss of generality

|M3 ∩G3 ∩B3| > 0. (9)

This implies |M3 \G1 ∪G2 ∪B1 ∪B2| > 0 and thus by Claim 2.10(c) with i = 3
we obtain

B′
1 ∪B′

2 = G′
1 ∪G′

2 ⊆ R3. (10)

This implies that (R1 ∪R2)∩(G′
1 ∪G′

2) = ∅. Since the edges between M3 ∩G3 ∩B3

and R1 ∪R2 are coloured green and blue, we have by (9) that

M1 ∪M2 ⊆ R1 ∪R2 ⊆ G3 ∪B3. (11)

So, by (7) and Claim 2.10(b) with i = 1, we can assume that without loss of
generality

B′
1 = G′

1 ⊆ R1 (12)

and hence by (7) and Claim 2.10(b) with i = 2 it follows that

B′
2 = G′

2 ⊆ R2. (13)

The structure of the colouring so far is sketched in Figure 2. The assertions (12)
and (13) imply that R3 ∩G′

1 ∪G′
2 = ∅. Suppose that there is an x ∈ R1 ∪R2 \

G1 ∪G2 ∪B1 ∪B2. By (10), the edges between x and G′
1 ∪G′

2 = B′
1 ∪B′

2 are
not red, and neither green or blue by choice of x. As G′

1 and G′
2 are both

non-trivial in H by (7) and H is complete, we obtain a contradiction. Hence

M1 ∪M2 \G1 ∪G2 ∪B1 ∪B2 = ∅. (14)

In the same fashion, suppose there is an x ∈ (M3 \G1 ∪G2) ∪ (M3 \B1 ∪B2).

By (12) and (13), the edges between x and B′
1 = G′

1 respectively B′
2 = G′

2 are
neither green nor blue by choice of x. Again, using (7) and the completeness of
H , we obtain a contradiction as

M3 \G1 ∪G2 = M3 \B1 ∪B2 = ∅. (15)

Finally, suppose there is an x ∈ B3 ∪G3 ∩M1 ∪M2. By (7), x sees vertices in
M3. This, however, contradicts (15) and thus

B3 ∪G3 ∩M1 ∪M2 = ∅. (16)

Next, we restore the symmetry between the colours.
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Claim 2.12. Each colour has exactly three components.

Proof. We already know that R1, R2 and R3 are the only red components in H .
Suppose there is a (possibly trivial) green component G4 distinct from G1, G2

and G3. Assume first that G4 6= ∅. Note that any edge between G4 and G′
1 ∪G′

2

is red or blue. By (8), no vertex of G4 can send blue edges to both G′
1 and G′

2.

Moreover, by (12) and (13), no vertex of G4 can send red edges to both G′
1 and

G′
2. Since H is complete and G′

1 = B′
1 and G′

2 = B′
2 are non-trivial, we derive

G4 ⊆ R1 ∪R2 ∩B1 ∪B2. But this contradicts (9), because H is complete.

Now let us assume that G4 = ∅, and so, G4 6= ∅. In other words, G4 consists

of a single vertex with no incident green edges. Suppose that G4 ∩M3 = ∅. So
by (7) and (10), the edges between G4 and G′

1 ∪G′
2 are blue, which contradicts

that B′
1 and B′

2 lie in distinct blue components, as asserted by (8). Therefore
G4 ⊆ M3. As G4 = ∅, all edges between G4 and M1 ∪M2 are blue. By (15)

and (16), B3 ⊆ [M1 ∪M2,M3]. Since H is complete and B3 is non-trivial, we

obtain that G4 ⊆ B3. We also have that G3 ⊆ [M1 ∪M2,M3] by (15) and (16).
Since G3 is non-trivial it follows that, G3 ∩ M1 ∪M2 is non-empty. Since the

edges between G4 and G3 are blue, we obtain that M1 ∪M2∩G3 ∩B3 6= ∅. But
this represents a contradiction to (12) or (13), since there is no colour left for
the edges between G3 ∩B3 and B′

1 ∪B′
2. Since a fourth blue component would

behave the same way as G4, this finishes the proof of the claim.

By (10) it follows that Ri = Mi for i = 1, 2. In the same way (12) and (13)
imply that

R3 = M3. (17)

For 1 ≤ i, j, k ≤ 3 we denote i|j|k := Ri ∩Gj ∩Bk and i|j|k := Ri ∩Gj ∩Bk.

From (7), (9), (12) and (13) we obtain that

|1|1|1|, |2|2|2|, |3|3|3| > 0. (18)

Note that by definition and completeness it follows that for all i, i′, j, j′, k, k′

with i 6= i′, j 6= j′ and k 6= k′ we have (modulo switching biparts)

if |i|j|k| > 0, then |i′|j′|k′| = 0. (19)

Let us show that i|j|k = ∅, unless i, j, k are pairwise different. Indeed,
otherwise, if say 1|1|k 6= ∅ for k = 1, 2 or 3, we obtain a contradiction to (19)

as |2|2|2|, |3|3|3| > 0 by (18).
Hence H can be decomposed into sets i|j|k, where 1 ≤ i, j, k ≤ 3 are pairwise

different. So we have:

1|3|2 ∪ 1|2|3 ∪ 2|3|1 ∪ 2|1|3 ∪ 3|2|1 ∪ 3|1|2 = H. (20)

Claim 2.13. We have H = 1|1|1 ∪ 2|2|2 ∪ 3|3|3 ∪ 3|1|2 ∪ 3|2|1.

Proof. First, we show there is no i|j|k 6= ∅ such that exactly two of i, j, k are
equal. If 3|1|1 6= ∅, say, then |1|2|3|, |1|3|2| = 0 by (19). Together with (20),
this implies that R1 is trivial, a contradiction. Second, note that (10) implies
that 3|1|2 and 3|2|1 are non-empty. Again, by (19), it follows that i|j|k = ∅, if
i 6= 3 and 3 ∈ {j, k}. This proves the claim.
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red
green

blue

1|1|1 2|2|2 3|3|3 3|1|2

1|3|2 3|2|12|1|3 3|1|2

Figure 3: The colouring from the proof of Claim 2.14

Claim 2.14. We have H = 1|1|1 ∪ 2|2|2 ∪ 3|3|3.

Proof. By the previous claim it remains to show that 3|1|2 = 3|2|1 = ∅. To this
end, suppose that 3|1|2 6= ∅ and thus |1|2|3|, |2|3|1| = 0 by (19). If 3|2|1 6= ∅
as well, then by (19) also |1|3|2| = 0 which, by Claim 2.13 and (20) gives the

contradiction that R1 ⊆ [1|1|1, 1|2|3 ∪ 1|3|2] is trivial. So we have

H = 1|1|1 ∪ 2|2|2 ∪ 3|3|3 ∪ 3|1|2,

with 3|1|2 6= ∅. This partition is shown in Figure 3.
Ignoring from now on the matchings M1 and M2, we aim at covering H with

M3 and four other matchings. To this end take a green matching Mgreen
1 of

maximum size in G1 −M3 and next a blue matching Mblue
2 of maximum size in

B2 −M3 −Mgreen
1 . Denote

• i|j|k′ := i|j|k \M3 ∪Mgreen
1 ∪Mblue

2 and

• i|j|k′ := i|j|k \M3 ∪Mgreen
1 ∪Mblue

2 .

We can assume that M3 ∪ Mgreen
1 ∪ Mblue

2 is not spanning. Thus, as H is
complete, the maximality of the matchings M3, M

green
1 and Mblue

2 implies that

3|1|2′, 3|1|2′ = ∅.
Moreover it follows that

• |1|1|1′| = 0 or |2|1|3′| = 0 by maximality of Mgreen
1 ⊆ G1,

• |2|2|2′| = 0 or |1|3|2′| = 0 by maximality of Mblue
2 ⊆ B2,

• 3|3|3′ = ∅ as R3 = M3 by (17).

If |1|1|1′|, |2|2|2′| = 0, then we have found three disjoint connected matchings
that span H , contradicting our assumption. If |2|1|3′|, |1|3|2′| = 0, we take
a green matching in G2 and a blue maximum matching in B1, among the yet
unmatched vertices. After this step, there are no vertices of 3|2|1′ left uncovered
and therefore all vertices of H are covered. Thus, as H is balanced, we have
found five disjoint monochromatic connected matchings which together span H .
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red
green

blue

X = |1|1|1| Y = |2|2|2| Z = |3|3|3|

A = |1|3|2| B = |1|2|3| C = |2|3|1| D = |2|1|3| E = |3|2|1| F = |3|1|2|

Figure 4: The partition of Kn,n.

So, either |2|2|2′|, |2|1|3′| = 0, or |1|1|1′|, |1|3|2′| = 0. In either case we can find
two disjoint monochromatic connected matchings that cover all vertices of the
two other sets from the previous sentence and all vertices of 3|2|1′. So we have
five disjoint monochromatic connected matchings spanning H , a contradiction.

For ease of notation we set

X := |1|1|1|, Y := |2|2|2|, Z := |3|3|3| and

A := |1|3|2|, B := |1|2|3|, C := |2|3|1|, D := |2|1|3|, E := |3|2|1|, F := |3|1|2|.

By Claim 2.14 and (20) we have |H | = X+Y +Z and |H | = A+B+C+D+E+F .
Note that the edges between any upper and lower part are monochromatic (see
Figure 4).

Also note that we reached complete symmetry between the colours and the
indices of the components, so we will from now on again treat them as inter-
changeable.

Observe that for (at least) one index i ∈ {1, 2, 3} it holds that |Ri| ≤ |Ri|.
We shall call such an index i a weak index for the colour red. If furthermore
|Ri| < |Ri ∩Bj | = |Ri ∩Gk| and |Ri| < |Ri ∩Bk| = |Ri ∩Gj |, where j, k are

the other two indices from {1, 2, 3}, then we call i very weak for colour red.
Analogously define (very) weak indices for colours blue and red.

Claim 2.15. If index i is weak for colour c, then

(a) the indices in {1, 2, 3} − {i} are not weak for colour c, and

(b) index i is very weak for colour c.

Proof. Let us show this for i = 2 and colour red (the other cases are analogous).
By assumption, Y ≤ C+D. Since X < A+B and Z < E+F cannot both hold,
we can assume without loss of generality that Z ≥ E + F . Now if X ≤ A + B,
then we pick maximal red matchings in [1|1|1, 1|3|2∪ 1|2|3], [2|2|2, 2|3|1∪ 2|1|3]

and [3|2|1∪ 3|1|2, 3|3|3], thus covering all vertices of 1|1|1∪ 2|2|2∪ 3|2|1∪ 3|1|2.

To finish we cover all of the remaining vertices in 3|3|3 ∪ (H \R3) with a blue
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and a green matching, a contradiction. Hence X > A + B. Using this fact,
Z > E + F follows by symmetry. This proves (a).

In order to show (b), let us first prove that Y < C. We pick a maximal
red matching in each of R1 and R3, thus covering all vertices of R1 ∪R3. Now
if Y ≥ C, then all vertices of 2|3|1 are contained in a maximal red matching

that also contains all vertices of 2|2|2. We cover all of the remaining vertices
in R1 ∪R3 with a blue and a green matching, a contradiction. The fact that
Y < D follows analogously.

Suppose two of the three indices 1, 2, 3 are weak for different colours, say 1
is weak for red and 2 is weak for green. Then Claim 2.15(b) gives that X < A
and Y < E. Thus we can match all vertices of 1|1|1 into 1|3|2 and all vertices

of 2|2|2 into 3|2|1 with two matchings, one red and one green, and cover all of
the remaining vertices with three disjoint matchings, one from each of R3, G3,
B3, a contradiction.

Hence, since each colour has a weak index, there is an index i that is weak for
all three colours, i = 2 say. We match all vertices of 2|2|2 into 3|1|2 with a blue

matching M . Let us from now work with the remaining set 3|1|2′ = 3|1|2\V (M)

of cardinality F ′ = F − Y . Set n′ = n− Y . (So instead of five we will have to
find four monochromatic connected matchings covering all vertices of H −M .)
Without loss of generality assume Z ≥ X . Claim 2.15(a) gives that

X > A + B,C + E,D + F ′ and Z > A + C,B + D,E + F ′. (21)

Hence X > n′/3. So, one of the three sums A+C,B+D,E+F ′ has to be strictly
smaller than X , say A+C < X . Consequently, Z = n′ −X < B +D +E +F ′.

If Z ≥ D+E+F ′, then we cover all vertices of R3 −M with a red matching,

and cover all vertices of the remains of 3|3|3 with a blue matching that also covers
all vertices of 2|1|3. Now all that is left on the top is 1|1|1, which we can match
with a red and a blue matching into the remains of 1|3|2 ∪ 1|2|3 ∪ 2|3|1. Thus
we found four connected matchings that cover all vertices of H − V (M), and
are done.

So we may assume Z < D + E + F ′ and thus X > A + B + C. If X ≤
A + B + C + E, then we can proceed similarly as in the previous paragraph
to find four matchings covering all vertices of H . Hence X > A + B + C + E,
implying that Z < D + F ′. But by (21) we have D + F ′ < X a contradiction
to our assumption that X ≤ Z. This finishes the proof of Lemma 1.2.

3 Covering almost all vertices with connected
matchings

3.1 Preliminaries

The goal of this section is to prove a version of Lemma 1.2 for almost complete
graphs. This result is given in Lemma 3.1.

Let G be a graph with biparts A and B and let H be a subgraph of G. We
call H γ-dense in G if it has at least γ|A||B| edges. If H = G, we often simply
say G is γ-dense. Let H be a subgraph of G. If H has biparts X ⊆ A and
Y ⊆ B such that |X | ≥ γ|A| and |Y | ≥ γ|B|, then we call H γ-non-trivial (in
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G), or we say G is γ-spanned by H . Usually, we use the term γ-non-trivial when
γ ≈ 0 and we use the term γ-spanned when γ ≈ 1.

Lemma 3.1. There is an ǫ0 > 0 such that for each 0 < ǫ ≤ ǫ0 there are n0 and
ρ = ρ(ǫ) such that for all n ≥ n0 the following holds.

Every 3-edge-coloured balanced bipartite (1 − ǫ)-dense graph of size 2n is
(1 − ρ)-spanned by at most five disjoint monochromatic connected matchings.

For the proof of Lemma 3.1 we need some more notation. Again, let G be
a graph with biparts A and B and let H be a subgraph of G. We say H has
γ-complete degree in G if degH(y) > γ|A| for y ∈ B∩V (H) and degH(x) > γ|B|
for x ∈ A∩ V (H). Clearly, if H has γ-complete degree in G, then in particular,
H is γ-dense in G.

The following lemmas are well-known and follow from standard averaging
arguments.

Lemma 3.2. For ǫ > 0 let H be a (1 − ǫ)-dense bipartite graph. Then H has
a (1 −√

ǫ)-spanning subgraph H ′ with (1 − 2
√
ǫ)-complete degree (in H).

Lemma 3.3. For 1/4 > ǫ > 0 let H be a bipartite graph with biparts A,B, hav-
ing (1−ǫ)-complete degree. Then any 2ǫ-non-trivial subgraph of H is connected.

We omit the easy proofs of the next two lemmas.

Lemma 3.4. For δ, ǫ > 0 let H be a (1 − ǫ)-dense bipartite graph with a δ-
subgraph H ′. Then H ′ is (1 − ǫ/δ2)-dense in H ′.

Lemma 3.5. For δ, ǫ > 0 let H be a bipartite graph of (1 − ǫ)-complete degree
and H ′ be a δ-non-trivial subgraph. Then H ′ has (1 − ǫ/δ)-complete degree in
itself.

The proof of the next lemma is given as a warm-up. In the remainder of this
section H is a bipartite graph with biparts H and H.

Lemma 3.6. For 1/5 ≥ ǫ > 0 let H be a 2-edge-coloured bipartite graph of
(1−ǫ)-complete degree, with bipartition A,B. Then H has a ((1−ǫ)/2)-spanning
monochromatic component.

Proof. Having (1 − ǫ)-complete degree, H has a monochromatic component R
with |R| ≥ (1− ǫ)|H|/2. If R is ((1− ǫ)/2)-spanning we are done. Otherwise the
monochromatic subgraph [R,H −R] is ((1−ǫ)/2)-spanning, and it is connected
by Lemma 3.3.

In order to formulate a dense version of Lemma 2.2 we need to define dense
variants of V -colourings and split colourings. We say a colouring of E(H) in
red and blue is an ǫ-V -colouring if there are monochromatic components R and
B of distinct colours such that

1. each of R and B is ǫ-non-trivial in H ;

2. R ∪B is (1 − ǫ)-spanning in H ;

3. |V (R ∩B)| ≥ (1 − ǫ)|V (H)| or |V (R ∩B)| ≥ (1 − ǫ)|V (H)|.

A colouring of E(H) in red and blue is ǫ-split, if
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1. all monochromatic components are ǫ-non-trivial;

2. each colour has exactly two monochromatic components.

The following is a robust analogue of Lemma 2.2.

Lemma 3.7. Let ǫ < 1/6. If the bipartite 2-edge-coloured graph H has (1− ǫ)-
complete degree, then one of the following holds:

(a) There is a (1 − 3ǫ)-spanning monochromatic component,

(b) H has a 3ǫ-V -colouring, or

(c) the edge-colouring is 2ǫ-split.

Proof. Let R be an ((1 − ǫ)/2)-spanning component in colour red, say. Such a
component exists by Lemma 3.6. Set X := H − R and note that all edges in
[R,X] and [R,X] are blue.

We first assume that |X | < 3ǫ|V (H)|. If also |X | < 3ǫ|V (H)|, we are done,
since then R is (1 − 3ǫ)-spanning. Otherwise, |X| ≥ 3ǫ|V (H)|, and thus the
blue subgraph [X,R] is connected by Lemma 3.3 and the colouring is a 3ǫ-V -
colouring.

So by symmetry we can assume that both |X | ≥ 3ǫ|V (H)| and |X | ≥
3ǫ|V (H)|. If there is a blue edge in R or in X , then H is spanned by one
blue component by Lemma 3.3. Hence, all edges inside R and X are red and
the colouring is 2ǫ-split, again using Lemma 3.3.

Corollary 3.8. Let ǫ < 1/6. If a bipartite 2-edge-coloured graph H has (1− ǫ)-
complete degree, then

(a) there are one or two 2ǫ-non-trivial monochromatic components that together
(1 − 3ǫ)-span H, and

(b) if the colouring is not 2ǫ-split, then there is a colour with exactly one 3ǫ-
non-trivial component.

Now we prove an analogue of Lemma 2.4.

Lemma 3.9. Let ǫ < 1/6, and let H be a balanced bipartite graph of (1 − ǫ)-
complete degree whose edges are coloured red and blue. Then either

(a) H is (1−5ǫ)-spanned by two vertex disjoint monochromatic connected match-
ings, one of each colour, or

(b) the colouring is 2ǫ-split and

• H is (1− 2ǫ) is spanned by one red and two blue vertex disjoint mono-
chromatic connected matchings and

• H is (1− 2ǫ) is spanned by one blue and two red vertex disjoint mono-
chromatic connected matchings.

Proof. First assume that the colouring is 2ǫ-split. We take one red maximum
matching in each of the two red components. This leaves at least one of the
blue components with less than ǫ|H | vertices on each side. We extract a third
maximum matching from the leftover of the other blue component, thus leaving
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one of its sides with less than ǫ|H| vertices. All three matchings are clearly
connected (or possibly empty, in case of the third matching) Thus the three
matchings together (1 − 2ǫ)-span H . Note that we could have switched the
roles of red and blue in order to obtain two blue and one red matching that
(1 − 2ǫ)-span H .

So by Lemma 3.7, we may assume that either there is a colour, say red, with
an (1−3ǫ)-spanning component R, or H has a 3ǫ-V -colouring, with components
R in red and B in blue, say. In either case, we take a maximum red matching M
in R. Then there is an induced balanced bipartite subgraph of H , whose edges
are all blue, which contains all but at most 3ǫ|V (H)| of the uncovered vertices of
each bipart of H . If this subgraph is not 2ǫ-non-trivial, we are done. Otherwise,
we finish by extracting from it a maximum blue matching M ′ ⊆ B, note that
M ′ is connected by Lemma 3.3. As H has (1 − ǫ)-complete degree and there
are no leftover edges in said subgraph, we obtain that M ∪M ′ (1− 4ǫ)-span H ,
and we are done.

We now prove a robust analogue of Lemma 2.5.

Lemma 3.10. Let 1/66 > ǫ > 0. Let the edges of the bipartite graph H of (1−ǫ)-
complete degree be coloured in red, green and blue, such that each colour has
at least four ǫ1/6-non-trivial components; then there are three monochromatic
components that together (1 − ǫ1/6)-span H.

Proof. Set γ := ǫ1/6 and let R be a red γ-non-trivial component. Throughout
the proof we shall make use of Lemma 3.3 without mentioning it explicitly. Since
there are three more red γ-non-trivial components, the three graphs X := H−R,
[R,X] and [R,X ] are each γ-non-trivial and by Lemma 3.5, each of them has
(1 − γ2)-complete degree (in themselves). Moreover, the edges of the latter
two graphs are green and blue. By Corollary 3.8(a) there are one or two 2γ2-
non-trivial monochromatic components that together (1−3γ2)-span [R,X]. So,
if [R,X] has a (1 − 3γ2)-spanning monochromatic component, then we can
(1−3γ2)-span H with at most three components, which is as desired. Therefore
and by symmetry we may assume from now on that none of [R,X] and [R,X]
has a (1 − 3γ2)-spanning monochromatic component. Suppose [R,X ] has a
2γ2-split-colouring. By Lemma 3.7, either [R,X] is 2γ2-split or a fraction of
(1−3γ2) of one of R and X is contained in the intersection of a blue and a green
monochromatic component. In the latter case the union of three monochromatic
components of the same colour contains a fraction of (1 − 3γ2) vertices of one
of the biparts of H . But this is impossible as each colour has at least four
γ-non-trivial components, and γ > 3γ2. On the other hand, if both [R,X] and
[R,X] have a 2γ2-split colouring, then each bipart of H is contained in the
union of four green components as well as in the union of four blue components,
and thus all edges in X are red. But then there are only two γ-non-trivial red
components, R and X , a contradiction.

So by Lemma 3.7, and by symmetry, we know that [R,X] and [R,X] both
have green/blue 3γ2-V -edge-colourings. Thus each of [R,X] and [R,X] has
a 3γ2-non-trivial blue component and a 3γ2-non-trivial green component, say
these are B1, G1 and B2, G2 respectively. Furthermore, a fraction of (1 − 3γ2)
of X or R is contained in the intersection B1 ∩G1, and a fraction of X or R is
contained in the intersection B2 ∩G2.
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We first look at the case where a fraction of (1 − 3γ2) of X is contained
in B1 ∩G1. If a fraction of (1 − 3γ2) of R is contained in B2 ∩G2, then, as
γ > 6γ2, both green and blue have at most two γ-non-trivial components,
which is a contradiction. On the other hand, if a fraction of (1 − 3γ2) of X is
contained in B2 ∩G2, then H is (1 − 3γ2)-spanned by the union of R and the
blue components in H that contain B1 and B2, and we are done.

Consequently we can assume by symmetry and by Lemma 3.7 that a fraction
of (1 − 3γ2) of R is contained in the intersection B1 ∩G1 and a fraction of
(1−3γ2) of R is contained in the intersection B2 ∩G2. Observe that [G1, G2] is

coloured red and blue and [B1, B2] is coloured red and green, since otherwise, we
obtain the desired cover. As these two graphs are each 3γ3-non-trivial subgraphs
of H , and as ǫ/(3γ3) = γ3/3, Lemma 3.5 implies they have (1− γ3/3)-complete
degree (in themselves). Suppose there is a red component of [G1, G2] that is

(1 − γ)-spanning in [G1, G2]. Such a component, together with B1 and B2,

(1 − 2γ)-spans H as γ < 1/3. So, we can assume [G1, G2] has no red (1 − γ)-
spanning red component. Moreover, since there are at least four γ-non-trivial
blue components, [G1, G2] contains two blue components, which are γ/2-non-
trivial each as γ/2 > 3γ2.

Since these blue components are γ-non-trivial in H , [G1, G2] does not have
a γ3-V -colouring (in itself). Thus, by Lemma 3.7 with input ǫLem3.7 = γ3/3,
[G1, G2] is 2γ3/3-split coloured in red and blue. Similarly we see that [B1, B2]
is 2γ3/3-split coloured in red and green.

Consider the edges in [G1, B2] and [B1, G2]. If any of these edges is green
or blue, then our graph is (1 − 2γ3/3)-spanned by three green or by three blue
components. On the other hand, if all edges in [G1, B2] and [B1, G2] are red,

then [G1 ∪B1, B2 ∪G2] is connected in red by Lemma 3.3, and thus, H has
only three γ-non-trivial red components, a contradiction.

3.2 Proof of Lemma 3.1

We are now ready to prove Lemma 3.1. We will not give specific bounds for
ǫ0 > 0 and n0 but assume that they are sufficiently small respectively large as
we go through the proof. For 0 < ǫ ≤ ǫ0 let n ≥ n0 and H be a balanced
bipartite (1 − ǫ)-dense graph which has (1 − ǫ)-complete degree and order 2n,
where n ≥ n0.

We choose numbers δ, γ, ρ such that

ǫ ≪ δ ≪ γ ≪ ρ < 1. (22)

Although these numbers could in principle be specified, we refrain from doing so
in order to not spoil the neatness of the argumentation. Our aim is to show that
H can be (1 − ρ)-spanned with five vertex disjoint monochromatic connected
matchings. We suppose that this is wrong in order to obtain a contradiction.
Lemma 3.1 then follows by Lemma 3.2.

The next claim is the robust analogue of Claim 2.6.

Claim 3.11. Each colour has at least three γ-non-trivial components.

Proof. Suppose the claim is wrong for colour red, say. Let Y be the set of all
red components with top bipart smaller than γn and let Z be the set of all red
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components with bottom bipart smaller than γn. The total number of edges in
red components that are not γ-non-trivial is less than

∑

Y ∈Y

γn|Y | +
∑

Z∈Z

γn|Z| < 2γn2.

Thus, deleting the (red) edges of all Y ∈ Y ∪ Z, we obtain a spanning sub-
graph H ′ of H that is (1− 3γ)-dense in itself and in which each red component
is either γ-non-trivial or trivial.

By assumption, there are two (possibly trivial) red components R1 and R2

in H ′, such that all other red components are trivial. Let M be a maximum
red matching in R1 ∪ R2. Then every edge in the balanced bipartite subgraph
X := H ′ −M is green or blue.

If the (at most) two connected matchings in M together (1− ρ)-span H , we
are done. Otherwise X is ρ-non-trivial in H ′, and thus (1 − (ρ/20)2)-dense, by
Lemma 3.4 and since we assume 3γ ≤ (ρ2/20)2.

We apply Lemma 3.2 to obtain a subgraph H ′′ ⊆ X that (1 − ρ/20)-spans
X and has (1 − ρ/10)-complete degree. By Lemma 3.9, H ′′ can be (1 − ρ/2)-
spanned with three vertex-disjoint monochromatic connected matchings. So in
total we found at most five vertex-disjoint monochromatic connected matchings
that together (1 − ρ)-span H .

A subgraph X ⊆ H is called ǫ-empty, if both |X| < ǫ|H| and |X| < ǫ|H|
hold. The next claim is a robust version of Claim 2.7.

Claim 3.12. There are no two monochromatic components that together (1 −
γ/2)-span H.

Proof. Suppose the claim is wrong and there are monochromatic components
R and B that together (1 − γ/2)-span H . By Claim 3.11 we can assume that
they have distinct colours, say R is red and B is blue. Take a red matching
M red of maximum size in R and a blue matching Mblue of maximum size in
B−V (M red). Set R′ := R−V (M red∪Mblue) and B′ := B−V (M red∪Mblue).
By maximality, any edge between B′ and R′ is green. The same holds for the
edges between B′ and R′.

If [B′, R′] is γ-empty, we finish by picking a maximum matching in [R′, B′].
We proceed analogously if [R′, B′] is γ-empty. So at least one R′ or B′ is γ-non-
trivial. Thus, since H has (1− ǫ)-complete degree, all edges of [B′, R′] lie in the
same green component. The same holds for [R′, B′].

Assuming that both are non-empty we now pick now pick a maximum match-
ing in each of the green components of H − V (M red ∪ Mblue) that contain
[B′, R′], [B′, R′]. (If this is the same component, we only pick one match-
ing. If R′ or B′ is γ-empty, we let the matchings be empty.) Call these
green matchings Mgreen

1 resp. Mgreen
2 . Let B′′ := B′ − V (Mgreen

1 ∪ Mgreen
2 )

and R′′ := R′ − V (Mgreen
1 ∪Mgreen

2 ).
Observe that by the maximality of Mgreen

1 and Mgreen
2 , if one of R′′, B′′ has

size at least ǫn, then the other one is empty. The same holds for the sets B′′,
R′′. Thus one of the two graphs R′′, B′′ is ǫ-empty, say this is B′′. If R′′ is
2γ-empty, we are done, so we can assume that R′′ is γ-non-trivial.

The edges in R′′ are green and blue. If R′′ contains no green edges, we can
pick another blue matching of maximum size and are done. Then again, if R′′
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contains a green edge, it follows by maximality of Mgreen
1 and Mgreen

2 that both
of them have a size of less than 2ǫn. In this case we ignore Mgreen

1 and Mgreen
2

and finish as follows: By Lemma 3.5, R′′ has (1− ǫ/γ)-complete degree in itself.
So, by Lemma 3.9, R′′ can be (1 − 5ǫ/γ)-spanned by at most 3 vertex disjoint
monochromatic connected matchings. This proves the claim.

Claim 3.13. Let Y and Z be monochromatic components of distinct colours
such that Y ∩ Z is 2ǫ-non-trivial. Then Y − Z is not γ/4-empty.

Proof. Let Y be a red component, Z be a blue component, and let X := H −
(Y ∪ Z). Suppose that Y − Z is γ/4-empty. We first note that all edges in
[Y ∩ Z,X] and [Y ∩ Z,X] are green. Moreover, by Claim 3.11, there is another
γ-non-trivial blue component in H and hence, X is 2ǫ-non-trivial in H , since
γ − γ/4 > 2ǫ by (22).

Thus the subgraphs [Y ∩ Z,X] and [Y ∩ Z,X] are connected in green by
Lemma 3.3. But they cannot belong to the same green component, since other-
wise H is (1−γ/4)-spanned by the union of said green component and Z, which is
not possible by Claim 3.12. Consequently, X has no green edges. By Claim 3.11
there is a green γ-non-trivial component G ⊆ Y ∪Z. As H = Z ∪ (Y −Z) ∪X
and Y −Z is (γ/4)-empty, we obtain that G∩Z is (3γ/4)-non-trivial in H and
G − Z ⊆ Y − Z is (γ/4)-empty. Thus G has the same properties as Y with
respect to Z and we can repeat the same arguments as above to obtain that all
edges in X are blue. Hence X is connected in blue by Lemma 3.3. But this is
a contradiction to Claim 3.12, as X and Z together (1 − γ/4)-span H .

Claim 3.14. There is a colour that has exactly three δ-non-trivial components.

Proof. We show that there is a colour with at most three δ-non-trivial com-
ponents. This together with Claim 3.11 yields the desired result. So suppose
otherwise. Then each colour has at least four δ-non-trivial components. By
Lemma 3.10, there are components X, Y and Z that together (1−ǫ1/6)-span H.

By assumption, and as δ > ǫ1/6 by (22), not all of X, Y and Z have the
same colour. If two of these components, say X and Y , have the same colour,
say red, then H − (X ∪ Y ) contains a red component that is δ-non-trivial in H ,
by the assumption that our claim is false. As δ ≥ ǫ1/6 + 2ǫ by (22), we have
that the intersection of this red component with Z is 2ǫ-non-trivial in H . Hence
we get a contradiction to Claim 3.13 as γ/4 > ǫ1/6 by (22).

So assume X is red, Y is blue and Z is green. We claim that (after possibly
swapping top and bottom parts)

(Y ∩ Z) −X has less than ǫn vertices. (23)

Indeed, otherwise (Y ∩ Z) − X is ǫ-non-trivial. Then, as [X, (Y ∩ Z) −X ] is
ǫ-non-trivial and its edges are green and blue, we get X ⊆ Y ∪ Z since every
vertex in X sees a vertex in Y ∩ Z. In the same way we obtain X ⊆ Y ∪ Z.
Thus Z ∪ Y is (1 − ǫ1/6)-non-trivial, which is not possible by Claim 3.12. This
proves (23).

By assumption, H − X contains three δ-non-trivial red components R1,
R2 and R3, say. For i 6= j, [Ri ∩ (Y − Z), Rj ∩ (Z − Y )] has no red, blue
or green edges and thus cannot be ǫ-non-trivial. So for at most one i ∈
{1, 2, 3} the subgraph Ri ∩ [Y − Z,Z − Y ] is ǫ-non-trivial. The same holds for
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[Ri ∩ (Y − Z), Rj ∩ (Z − Y )]. Consequently, and by the pigeonhole principle we
can assume that

none of R1 ∩ [Y − Z,Z − Y ] and R1 ∩ [Y − Z,Z − Y ] is ǫ-non-trivial. (24)

By (24) and as R1 is δ-non-trivial, at least one of R1 ∩ Z, R1 ∩ Y is 3ǫ-non-
trivial. We will assume the former. Thus, by (23) R1 ∩ (Y − Z) has a size of at
least 2ǫn. Hence, by (24) we get:

|R1 ∩ Z − Y | < ǫn. (25)

Moreover, Claim 3.13 (applied to R1 and Y implies that R1 has at least γn/4−
ǫ1/6n > 2ǫn vertices in Z − Y or Z − Y . By (25) we have the latter case and
hence

R1 ∩ (Z − Y ) and R1 ∩ (Y − Z) each have a size of at least 2ǫn. (26)

The fact that [Y − (X ∪ Z), R1 ∩ (Z − Y )] and [Z − (X ∪ Y ), R1 ∩ (Y − Z)] only
have red edges, together with (24) and (26), yields that

Y − (X ∪ Z) and Z − (X ∪ Y ) each have less than ǫn vertices. (27)

Now by (27) (and by the existence of R1, R2, R3), we know that (Y ∩ Z) −X
has at least ǫn vertices. So each vertex of X has a neighbour in (Y ∩ Z) −X
and hence X ⊆ Y ∪ Z. Since, by Claim 3.12, H is not (1−ǫ1/6−2ǫ)-spanned by
Y ∪Z, we have that X − (Y ∪ Z) has a size of at least 2ǫn. This and (26) imply
that [X − (Y ∪ Z), Y − (X ∪ Z)] and [X − (Y ∪ Z), Z − (X ∪ Y )] are 2ǫ-non-
trivial each. As the edges of these subgraphs are green and blue respectively
and as Lemma 3.3 applies, there are green and blue components G and B such
that H −X − [(G ∩ Y ) ∪ (B ∩ Z)] has a size of less than ǫn + ǫ1/6n by (23).

Now let G′ be another δ-non-trivial green component. Then G′ −X has at
most ǫ1/6n vertices, while G′ ∩X has at least 2ǫn vertices. By (27) it follows
that G′ −X has at most ǫn + ǫ1/3n vertices, while G′ ∩X has at least 2ǫn
vertices. This is not possible by Claim 3.13 and completes the proof.

Using Claim 3.14 we assume from now on that without loss of generality
the colour red has exactly three δ-non-trivial components R1, R2 and R3. For
i = 1, 2, 3 let Mi be a red matching of maximum size in Ri.

None of the red edges in Y := H −M1 −M2 −M3 is in a red δ-non-trivial
component. As seen in the proof of Claim 3.11, the number of red edges which
are not in δ-non-trivial red components sums up to at most 2δn2. Therefore the
number of red edges in Y is at most 2δn2. Let Y ′ be the subgraph of Y where
these edges have been deleted. Note that the edges of Y ′ are coloured in blue
and green. Moreover, H is still (1− 3δ)-dense after the removal of the red edges
of Y .

If Y ′ is not (3δ)1/3-non-trivial, then we are done as Y ′ is balanced. Otherwise
Y ′ is (1−(3δ)1/3)-dense by Lemma 3.4 and thus contains a (1−(3δ)1/6)-spanning
subgraph Y ′′ of Y with (1 − 2(3δ)1/6)-complete degree, by Lemma 3.2. By
removing at most (3δ)1/6n vertices from Y ′′ we can assure that Y ′′ is balanced.
If Y ′′ can be (1− 10(3δ)1/6)-spanned by two disjoint monochromatic connected
matchings, we are done, since in that case, we found five matchings which

22



together (1 − 11(3δ)1/6)-span H. Otherwise, as the edges of Y ′′ are green and
blue the colouring of Y ′′ is 4(3δ)1/6-split in Y ′′, by Lemma 3.9. We denote
its blue and green components by B′

1, B
′
2, respectively G′

1, G
′
2, with B′

1 = G′
1,

B′
2 = G′

2, B′
1 = G′

2, and B′
2 = G′

1.

Since Y ′′ is (1−(3δ)1/6)-spanning in Y ′ it is also (1−(3δ)1/6)-spanning in Y .
Therefore the subgraph

B′
1 ∪B′

2 ∪M1 ∪M2 ∪M3 is (1 − (3δ)1/6)-non-trivial in H. (28)

By Lemma 3.9, Y ′′ can be (1− 4(3δ)1/6)-spanned by two blue matchings M4 ⊆
B′

1, M5 ⊆ B′
2 and an additional green matching. If any of the matchings Mi

has less than γn edges, we can ignore it and still have a sufficiently large cover
of H . Thus we get that

B′
1, B′

2, G′
1, G′

2, M1, M2, and M3 are γ-non-trivial in H . (29)

Moreover, let B1 and B2 be the blue components in H that contain B′
1 and B′

2,
respectively. We define G1 and G2 analogously. If B1 = B2, we are done as
M4 ∪M5 is a connected matching. This and symmetry implies

B1 6= B2 and G1 6= G2. (30)

Claim 3.15. For each i = 1, 2, 3 we have that

(a) • if |Mi \G1 ∪G2| > 6ǫn, then B′
1 ⊆ Ri or B′

2 ⊆ Ri;

• if |Mi \B1 ∪B2| > 6ǫn, then G′
1 ⊆ Ri or G′

2 ⊆ Ri;

(b) • if |Mi \G1 ∪G2| > 6ǫn, then B′
1 ⊆ Ri or B′

2 ⊆ Ri;

• if |Mi \B1 ∪B2| > 6ǫn, then G′
1 ⊆ Ri or G′

2 ⊆ Ri;

(c) • if |Mi \G1 ∪G2 ∪B1 ∪B2| > 2ǫn, then B′
1 ∪B′

2 = G′
1 ∪G′

2 ⊆ Ri;

• if |Mi \G1 ∪G2 ∪B1 ∪B2| > 2ǫn, then B′
1 ∪B′

2 = G′
1 ∪G′

2 ⊆ Ri.

Proof. For the first part of (a), assume |M1 \G1 ∪G2| > 6ǫn. Note that there
is no green edge between M1 \ G1 ∪G2 and G′

1. First assume that M1 ∩B1 \
G1 ∪G2 has a size of at least 2ǫn. Then, by (30), any edge between M1 ∩B1 \
G1 ∪G2 and B′

2 = G′
1 is red. So, by Lemma 3.3 and (29) the result follows. So

we can assume that this is not true. Similarly, the result holds if |M1 ∩B2 \
G1 ∪G2| ≥ 2ǫn. Therefore, we can assume that M1 \B1 ∪B2 ∪G1 ∪G2 has a
size of at least 2ǫn. In this case, since all edges between M1 \B1 ∪B2 ∪G1 ∪G2

and B′
1 are red, the result follows again by Lemma 3.3 and (29). Item (b) and

the second part of (a) follow similarly.
For the first part of (c), note that any edge between Mi \G1 ∪G2 ∪B1 ∪B2

and B′
1 ∪B′

2 = G′
1 ∪G′

2 has to be red and use Lemma 3.3 with (29). The second
part of (c) is analogous.

By Claim 3.11 there are green and blue γ-non-trivial components G3 6=
G1, G2 and B3 6= B1, B2 in H.

Claim 3.16. It holds that |V (G3 ∩B3 ∩ (M1 ∪M2 ∪M3))| > 36ǫn.

23



Proof. Assume otherwise. That is, assume

|V (G3 ∩B3 ∩ (M1 ∪M2 ∪M3))| ≤ 36ǫn.

The components B3 and G3 do not meet with B′
1 ∪B′

2 = G′
1 ∪G′

2 and by (28),
there are not more than 2(3δ)1/6n vertices outside of B′

1 ∪B′
2 ∪M1 ∪M2 ∪M3.

As γ > 2(3δ)1/6 + δ by (22), we conclude that B3 ∩ (M1 ∪ M2 ∪ M3) and
G3 ∩ (M1 ∪M2 ∪M3) are each δ-non-trivial. Hence there are indices i, i′, j, j′

such that there is a blue 37ǫ-non-trivial subgraph B′
3 ⊆ B3 and a green 37ǫ-non-

trivial subgraph G′
3 ⊆ G3 such that B′

3 ⊆ Mi and B′
3 ⊆ Mi′ , and G′

3 ⊆ Mj and
G′

3 ⊆ Mj′ . Actually, we can choose these indices such that i 6= i′ and j 6= j′.

Since if i = i′, say, Claim 3.13 yields that (B3 ∩H) \Mi is not γ/4-emptyand
therefore, by (22) and (28), there is some index k 6= i such that B3 ∩Mk is not
37ǫ-empty, which allows us to swap i′ for k.

For an index k 6= i, the edges between B′
3 ∩Mi and G′

3 ∩Mk are blue and
green. As by our initial assumption |V (G3∩B3∩ (M1∪M2∪M3))| ≤ 36ǫn, this
implies that |G3 ∩Mk| ≤ 36ǫn. In the same way we obtain that |G3 ∩Mk| ≤
36ǫn for k 6= i′ or |B′

3 ∩Mi| ≤ 36ǫn, but the latter cannot happen by the choice
of B′

3. Hence we have i = j′ and i′ = j; in other words,

|Mi ∩G3| ≥ 37ǫn, |Mj ∩G3| ≥ 37ǫn, |Mi ∩B3| ≥ 37ǫn and |Mj ∩B3| ≥ 37ǫn.

So by Claim 3.15 (a) and (b), either we have B′
1 ⊆ Ri and B′

2 ⊆ Rj , or we
have G′

1 ⊆ Ri and G′
2 ⊆ Rj . Indeed, the fact that |Mi ∩G3| ≥ 37ǫn together

with Claim 3.15 (b) implies that B′
1 = G′

1 ⊆ Ri or B′
2 = G′

2 ⊆ Ri. Without
loss of generality, we assume the latter. Next, since |Mi ∩B3| ≥ 37ǫn, and by
Claim 3.15 (a), we get that G′

1 = B′
2 ⊆ Ri or G′

2 = B′
1 ⊆ Ri. Without loss

of generality, we assume the former. We repeat the same with index j, but as
we already have B′

2 ⊆ Ri, the output of Claim 3.15 has to be B′
1 = G′

2 ⊆ Rj

for |Mj ∩G3| ≥ 37ǫn and B′
1 = G′

1 ⊆ Rj for |Mj ∩B3| ≥ 37ǫn. For the

remainder of the proof, let us assume that B′
1 ⊆ Ri and B′

2 ⊆ Rj . Then
G′

1 ∩ Rk = ∅ = G′
2 ∩ Rk, where k is the third index, which together with

Claim 3.15 (a) and (b) gives that Rk ∩ (G3 ∪ B3) is 6ǫ-empty. The edges
between B′

2 = G′
1 ⊆ G1 ∩Rj and B′

3 ∩Ri have to be green, which implies that

B′
3 ⊆ G1. As any edge between B′

3 and Rk −B3 has to be green we deduce
that |Rk ∩G1| ≥ 2ǫn since Rk is γ-non-trivial and |Rk ∩B3| ≤ 6ǫn. This also
implies that |Rk −G1| ≤ 6ǫn.

By repeating the same argument with B′
1 = G′

1 ⊆ G1 and B′
3, it follows that

|Rk ∩G1| ≥ 2ǫn and |Rk −G1| ≤ 6ǫn. So Rk ∩G1 is 2ǫ-non-trivial and Rk−G1

is 6ǫ-empty, a contradiction to Claim 3.13.

Claim 3.16 allows us assume that without loss of generality

|M3 ∩G3 ∩B3| > 6ǫn. (31)

This implies |M3 \ G1 ∪G2 ∪B1 ∪B2| > 2ǫ and thus by Claim 3.15(c) with
i = 3 we obtain

B′
1 ∪B′

2 = G′
1 ∪G′

2 ⊆ R3. (32)
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This implies that (R1 ∪R2)∩(G′
1 ∪G′

2) = ∅. Since the edges between M3 ∩G3 ∩B3

and R1 ∪R2 are coloured green and blue, we have by (31) and Lemma 3.3 that

M1 ∪M2 ⊆ R1 ∪R2 ⊆ G3 ∪B3. (33)

So, by (29) and Claim 3.15(b) with i = 1, we can assume that without loss of
generality

B′
1 = G′

1 ⊆ R1, (34)

and hence, by (29) and Claim 3.15(b) with i = 2 it follows that

B′
2 = G′

2 ⊆ R2. (35)

The last two assertions imply that R3 ∩ G′
1 ∪G′

2 = ∅. Suppose that there
is an x ∈ R1 ∪R2 \ G1 ∪G2 ∪B1 ∪B2. By (32), the edges between x and
G′

1 ∪G′
2 = B′

1 ∪B′
2 are not red, and neither green or blue by choice of x. As G′

1

and G′
2 are both γ-non-trivial in H by (29) and H has (1− ǫ)-complete degree,

we obtain a contradiction. Hence

M1 ∪M2 \G1 ∪G2 ∪B1 ∪B2 = ∅. (36)

In the same fashion, suppose there is an x ∈ (M3 \G1 ∪G2) ∪ (M3 \B1 ∪B2).

By (34) and (35), and by the choice of x, the edges between x and B′
1 = G′

1

respectively B′
2 = G′

2 are neither green nor blue. Again, using (29) and the
(1 − ǫ)-completeness of H , we obtain

M3 \G1 ∪G2 = M3 \B1 ∪B2 = ∅. (37)

Finally, suppose there is an x ∈ B3 ∪G3 ∩M1 ∪M2. By (29) and the (1 − ǫ)-
completeness of H , x sees vertices in M3. This, however, contradicts (37) and
thus

B3 ∪G3 ∩M1 ∪M2 = ∅. (38)

Now let us turn to back the graph H , for reasons that will become clear below.
Assume that H has a red edge vw outside of M1 ∪M2 ∪M3. By maximality of
the matchings Mi, vw is not part of R1, R2 or R3. By (29), (34) and (35) we
have vw ∈ G1 ∩B2 or vw ∈ G2 ∩B1. However, both cases contradict (31). This
yields

V (H) = V (B′
1) ∪ V (B′

2) ∪ V (M1) ∪ V (M2) ∪ V (M3). (39)

Next, we restore the symmetry between the colours.

Claim 3.17. Each colour has exactly three components.

Proof. By (39) there are no red edges in Y = H − V (M1 ∪ M2 ∪ M3) and
hence Y = Y ′ = Y ′′. By (32), (34) and (35) R1, R2 and R3 are the only red
components in H .

Suppose there is a (possibly trivial) green component G4 distinct from G1,
G2 and G3. Assume first that G4 6= ∅. Note that any edge between G4 and

G′
1 ∪G′

2 is red or blue. By (30), no vertex of G4 can send blue edges to both G′
1

and G′
2. Moreover, by (34) and (35), no vertex of G4 can send red edges to both

G′
1 and G′

2. Since H has (1 − ǫ)-complete degree and G′
1 = B′

1 and G′
2 = B′

2
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are γ-non-trivial, we derive G4 ⊆ R1 ∪R2 ∩B1 ∪B2. But this contradicts (31),
because H is (1 − ǫ)-complete.

Now let us assume that G4 = ∅, and so, G4 6= ∅. In other words, G4 consists

of a single vertex with no incident green edges. Suppose that G4 ∩ M3 =
∅. So by (29) and (32), the edges between G4 and G′

1 ∪G′
2 are blue, which

contradicts that B′
1 and B′

2 lie in distinct blue components, as asserted by (30).
Therefore G4 ⊆ M3. So as G4 = ∅, all edges between G4 and M1 ∪M2 are blue.

By (37), (38) and (39), B3 ⊆ [M1 ∪M2,M3]. Since H is (1−ǫ)-complete and B3

is γ-non-trivial, we obtain that G4 ⊆ B3. We also have that G3 ⊆ [M1 ∪M2,M3]
by (37), (38) and (39). Since G3 is γ-non-trivial it follows that, G3 ∩M1 ∪M2

has a size of at least γn. Since the edges between G4 and G3 are blue, we obtain
that M1 ∪M2∩G3 ∩B3 6= ∅. But this represents a contradiction to (34) or (35),

since there is no colour left for the edges between G3 ∩B3 and B′
1 ∪B′

2. Since
a fourth blue component would behave the same way as G4, this finishes the
proof of the claim.

By (32) and (39) it follows that Ri = Mi for i = 1, 2. In the same
way (34), (35) and (39) imply that

R3 = M3. (40)

For 1 ≤ i, j, k ≤ 3 we denote i|j|k := Ri ∩Gj ∩Bk and i|j|k := Ri ∩Gj ∩Bk.

From (29), (31), (34) and (35) we obtain that

|1|1|1|, |2|2|2|, |3|3|3| > 6ǫn. (41)

Note that by definition and (1 − ǫ)-completeness it follows that for all
i, i′, j, j′, k, k′ with i 6= i′, j 6= j′ and k 6= k′ we have (modulo switching bi-
parts)

if |i|j|k| ≥ ǫn, then |i′|j′|k′| = 0. (42)

Let us show that i|j|k = ∅, unless i, j, k are pairwise different. Indeed,
otherwise, if say 1|1|k 6= ∅ for k = 1, 2 or 3, we obtain a contradiction to (42) as

|2|2|2|, |3|3|3| ≥ 6ǫn by (41). Then the edges of the graph [1|1|k, 2|2|2 ∪ 3|3|3]
are all blue as H has (1 − ǫ)-complete degree, implying that 2 = k = 3, a
contradiction. Hence H can be decomposed into sets i|j|k, where 1 ≤ i, j, k ≤ 3
are pairwise different. So we have:

1|3|2 ∪ 1|2|3 ∪ 2|3|1 ∪ 2|1|3 ∪ 3|2|1 ∪ 3|1|2 = H. (43)

Claim 3.18. We have H = 1|1|1 ∪ 2|2|2 ∪ 3|3|3 ∪ 3|1|2 ∪ 3|2|1.

Proof. First, we show there is no i|j|k 6= ∅ such that exactly two of i, j, k are
equal. If 3|1|1 6= ∅, say, then |1|2|3|, |1|3|2| ≤ ǫn by (42). Together with (43),
this implies that R1 is not γ-non-trivial, a contradiction. Second, note that (32)
implies that 3|1|2 and 3|2|1 have each a size of at least γn. Again, by (42), it
follows that i|j|k = ∅, if i 6= 3 and 3 ∈ {j, k}. This proves the claim.

Claim 3.19. We have H = 1|1|1 ∪ 2|2|2 ∪ 3|3|3.
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Proof. By the previous claim it remains to show that 3|1|2 = 3|2|1 = ∅. To this
end, suppose that 3|1|2 6= ∅ and thus |1|2|3|, |2|3|1| ≤ ǫn by (42). If 3|2|1 6= ∅
as well, then by (42) also |1|3|2| ≤ ǫn which, by Claim 3.18 and (43) gives the

contradiction that R1 ⊆ [1|1|1, 1|2|3 ∪ 1|3|2] is not γ-non-trivial. So we have

H = 1|1|1 ∪ 2|2|2 ∪ 3|3|3 ∪ 3|1|2,

with 3|1|2 6= ∅. This partition is shown in Figure 3.
Ignoring from now on the matchings M1 and M2, we aim at covering H with

M3 and four other matchings. To this end take a green matching Mgreen
1 of

maximum size in G1 −M3 and next a blue matching Mblue
2 of maximum size in

B2 −M3 −Mgreen
1 . Denote

• i|j|k′ := i|j|k \M3 ∪Mgreen
1 ∪Mblue

2 and

• i|j|k′ := i|j|k \M3 ∪Mgreen
1 ∪Mblue

2 .

We can assume that M3 ∪Mgreen
1 ∪Mblue

2 is not (1 − ǫ)-spanning. Thus, as H
has (1 − ǫ)-complete degree, the maximality of the matchings M3, M

green
1 and

Mblue
2 implies that 3|1|2′, 3|1|2′ = ∅.
Moreover it follows that

• |1|1|1′| ≤ ǫn or |2|1|3′| ≤ ǫn by maximality of Mgreen
1 ⊆ G1,

• |2|2|2′| ≤ ǫn or |1|3|2′| ≤ ǫn by maximality of Mblue
2 ⊆ B2,

• 3|3|3′ = ∅ as R3 = M3 by (40).

If |1|1|1′|, |2|2|2′| ≤ ǫn, then we have found three disjoint connected matchings
that (1 − 2ǫ)-span H , contradicting our assumption. If |2|1|3′|, |1|3|2′| ≤ ǫn,
we take a green matching in G2 and a blue maximum matching in B1, among
the yet unmatched vertices. After this step, there are at most ǫn vertices of
3|2|1′ left uncovered and therefore all but at most 3ǫn vertices of H are covered.
Thus, as H is balanced, we have found five disjoint monochromatic connected

matchings which together (1 − 3ǫ)-span H . So, either |2|2|2′|, |2|1|3′| ≤ ǫn, or

|1|1|1′|, |1|3|2′| ≤ ǫn. In either case we can find two disjoint monochromatic
connected matchings that cover all but at most 2ǫn vertices of the two other
sets from the previous sentence and all but at most 2ǫn vertices of 3|2|1′. So we
have five disjoint monochromatic connected matchings (1 − 4ǫ)-spanning H , a
contradiction.

For ease of notation we set

X := |1|1|1|, Y := |2|2|2|, Z := |3|3|3| and

A := |1|3|2|, B := |1|2|3|, C := |2|3|1|, D := |2|1|3|, E := |3|2|1|, F := |3|1|2|.

By Claim 3.19 and (43) we have |H | = X+Y +Z and |H | = A+B+C+D+E+F .
Note that the edges between any upper and lower part are monochromatic (see
Figure 4). Also note that we reached complete symmetry between the colours

27



and the indices of the components, so we will from now on again treat them as
interchangeable.

Observe that for (at least) one index i ∈ {1, 2, 3} it holds that |Ri| ≤ |Ri|.
We shall call such an index i a weak index for the colour red. If furthermore
|Ri| < |Ri ∩Bj | = |Ri ∩Gk| and |Ri| < |Ri ∩Bk| = |Ri ∩Gj |, where j, k are

the other two indices from {1, 2, 3}, then we call i very weak for colour red.
Analogously define (very) weak indices for colours blue and red.

Claim 3.20. If index i is weak for colour c, then

(a) the indices in {1, 2, 3} − {i} are not weak for colour c, and

(b) index i is very weak for colour c.

Proof. Let us show this for i = 2 and colour red (the other cases are analogous).
By assumption, Y ≤ C + D. Since X < A + B and Z < E + F cannot
both hold, we can assume without loss of generality that Z ≥ E + F . Now
if X ≤ A + B, then we pick maximal red matchings in [1|1|1, 1|3|2 ∪ 1|2|3],

[2|2|2, 2|3|1 ∪ 2|1|3] and [3|2|1 ∪ 3|1|2, 3|3|3], thus covering all but at most 3ǫn

vertices of 1|1|1 ∪ 2|2|2 ∪ 3|2|1 ∪ 3|1|2. To finish we cover all but 4ǫn of the

remaining vertices in 3|3|3 ∪ (H \R3) with a blue and a green matching, a
contradiction. Hence X > A + B. Using this fact, Z > E + F follows by
symmetry. This proves (a).

In order to show (b), let us first prove that Y < C. We pick a maximal red
matching in each of R1 and R3, thus covering all but at most 2ǫn vertices of
R1 ∪R3. Now if Y ≥ C, then all but at most ǫn vertices of 2|3|1 are contained

in a maximal red matching that also contains all but at most ǫn vertices of 2|2|2.
We cover all but 4ǫn of the remaining vertices in R1 ∪R3 with a blue and a
green matching, a contradiction. The fact that Y < D follows analogously.

Suppose two of the three indices 1, 2, 3 are weak for different colours, say 1 is
weak for red and 2 is weak for green. Then Claim 3.20(b) gives that X < A and
Y < E. Thus we can match all but at most ǫn vertices of 1|1|1 into 1|3|2 and

all but at most ǫn vertices of 2|2|2 into 3|2|1 with two matchings, one red and
one green, and cover all but 6ǫn of the remaining vertices with three disjoint
matchings, one from each of R3, G3, B3, a contradiction.

Hence, since each colour has a weak index, there is an index i that is weak
for all three colours, i = 2 say. We match all but at most ǫn vertices of 2|2|2
into 3|1|2 with a blue matching M . Further choose a subset F ⊆ 3|1|2 \ V (M)

of size |2|2|2| − |V (M)/2| ≤ ǫn, and let us from now work with the remaining
set 3|1|2′ = 3|1|2 \ (V (M) ∪ F ) of cardinality F ′ = F − Y . Set n′ = n− Y . (So
instead of five we will have to find four monochromatic connected matchings
covering all but few vertices of H − M .) Without loss of generality assume
Z ≥ X . Claim 3.20(a) gives that

X > A + B,C + E,D + F ′ and Z > A + C,B + D,E + F ′. (44)

Hence X > n′/3. So, one of the three sums A+C,B+D,E+F ′ has to be strictly
smaller than X , say A+C < X . Consequently, Z = n′ −X < B +D +E +F ′.

If Z ≥ D + E + F ′, then we cover all but at most ǫn vertices of R3 −M
with a red matching, and cover all but at most ǫn vertices of the remains of
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3|3|3 with a blue matching that also covers all but at most ǫn vertices of 2|1|3.

Now all that is left on the top is 1|1|1, which we can match with a red and a
blue matching into the remains of 1|3|2 ∪ 1|2|3 ∪ 2|3|1 (except for ǫn vertices).
Thus we found four connected matchings that cover all but at most γn vertices
of H − V (M), and are done.

So we may assume Z < D + E + F ′ and thus X > A + B + C. If X ≤
A + B + C + E, then we can proceed similarly as in the previous paragraph
to find four matchings covering all vertices of H . Hence X > A + B + C + E,
implying that Z < D + F ′. But by (44) we have D + F ′ < X a contradiction
to our assumption that X ≤ Z. This proves Lemma 3.1.

4 From connected matchings to cycles

In this section we prove Theorem 1.1(a). We basically follow the approach of
 Luczak [20], which has become a standard method in this field. Therefore we
present only an outline of the proof, omitting most of the tedious details that
have been discussed in earlier works in more general contexts. We refer the
interested reader to [3, 5, 9, 12, 13, 21].

For a graph G the bipartite subgraph H = [A,B] ⊆ G is (ǫ,G)-regular if

X ⊆ A, Y ⊆ B, |X | > ǫ|A|, |Y | > ǫ|B| imply |dG(X,Y ) − dG(A,B)| < ǫ.

A vertex-partition {V0, V1, . . . , Vl} of l+ 1 clusters of a graph G is called (ǫ,G)-
regular, if

(a) |V1| = |V2| = . . . = |Vl|;

(b) |V0| < ǫn;

(c) apart from at most ǫ
(

l
2

)

exceptional pairs, the graphs [Vi, Vj ] are (ǫ,G)-
regular.

Lemma 4.1 (Regularity Lemma with prepartition and colours). For every ǫ > 0
and positive integers m, r, s ∈ N there are m ≤ M ∈ N and n0 ∈ N such that
for n ≥ n0 the following holds. For any set of mutually edge-disjoint graphs
G1, G2, . . . , Gr with V (G1) = V (G2) = . . . = V (Gr) = V , with |V | = n, and
any partition W1 ∪ . . .∪Ws = V , there is a partition V0 ∪V1 ∪ . . .∪Vl of V into
l + 1 clusters such that

(a) m ≤ l ≤ M ;

(b) for each 1 ≤ i ≤ l there is 1 ≤ j ≤ s such that Vi ⊆ Wj ;

(c) V0 ∪ V1 ∪ . . . ∪ Vl is (ǫ,Gi)-regular for each 1 ≤ i ≤ r.

Let us now prove Theorem 1.1(a). Let n ≫ 0 and 0 < ǫ ≪ 1. Let the edges
of Kn,n with biparts W1 and W2 be coloured in red, green and blue. We denote
by G1, G2 and G3 the graphs induced by the edges of each of the colours.

For m ≫ 0 and ǫ ≪ d ≪ 0, Lemma 4.1 provides a vertex-partion V0, V1, . . . , Vl

of Kn,n satisfying Lemma 4.1(a)–(c) for some M ≥ m. As usual, we define the
(ǫ, d)-reduced graph Γ by identifying a new vertex vi with each cluster Vi for
1 ≤ i ≤ l. For 1 ≤ i, j ≤ l and 1 ≤ q ≤ 3 we place an edge of colour q between
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two vertices vi, vj if the subgraph [Vi, Vj ] of the respective clusters has edge-
density at least d in Gq and is (ǫ,Gq)-regular. To get a simple graph, we keep
an arbitrary edge from each multi-edge.

Since the clusters have the same size, we can, if necessary, remove some of
them to obtain a balanced bipartite (1 − 2ǫ)-complete subgraph of Γ, which
we will continue to call Γ. Therefore Lemma 3.1 can be used to cover all but
at most ρ|V (Γ)| vertices of Γ by five vertex-disjoint monochromatic connected
matchings M1, . . . ,M5. We finish the proof by turning these five matchings into
monochromatic cycles of Kn,n using the following lemma from [3, 5, 9, 12, 13,
21].

Lemma 4.2. Let 0 < ǫ ≪ ρ ≪ d ≤ 1 and let Γ be the (ǫ, d)-reduced graph
of G1, G2, . . . , Gr, obtained from Lemma 4.1. Assume that there is a set of
disjoint monochromatic connected matchings M in Γ. Let U ⊆ V (G) be the set
of vertices, which are in clusters associated to the vertices of V (M). Then there
are |M| monochromatic cycles in G partitioning all but (1−ρ)|U | vertices of U .

5 Covering all vertices

5.1 Preliminaries

We call a balanced bipartite subgraph H of a 2n-vertex graph (1−ǫ)-Hamiltonian,
if any balanced bipartite subgraph of H with at least 2(1 − ǫ)n vertices is
Hamiltonian. The next lemma is a combination of results from [14, 22].

Lemma 5.1. For any 1 > γ > 0, there is an n0 ∈ N such that any balanced
bipartite graph on 2n ≥ 2n0 vertices and of edge density at least γ has a (1−γ/4)-
Hamiltonian subgraph of size at least γ3024/γn/3.

We make no attempt to optimise the bounds in Lemma 5.1. For the proof,
we need some definitions and tools. For a graph G, and disjoint A,B ⊆ V (G) let
e(A,B) denote the number of edges in [A,B]. For 0 < ǫ, σ < 1, [A,B] is called
(ǫ, σ)-dense if e(X,Y ) ≥ σ|A||B| for every X ⊆ A, Y ⊆ B with |X | ≥ ǫ|A| and
and |Y | ≥ ǫ|B|.
Theorem 5.2 (Peng et. al [22]). Given a bipartite balanced graph of size 2n
and edge density 0 < γ < 1. Then for all 0 < ǫ < 1 there is an (ǫ, γ/2)-dense
balanced subgraph on at least γ12/ǫn/2 vertices.

For 0 < ǫ, δ < 1, we say that the balanced subgraph H = [A,B] is (ǫ, δ)-
uniform in G, if it has minimum degree at least δ|A|, and any ǫ-non-trivial
subgraph of H has at least one edge. The next result, due to Haxell, shows that
sufficiently strong uniformity implies hamiltonicity.

Theorem 5.3 (Haxell [14]). Let ǫ > 0 be given, and suppose that H = [A,B]
is a bipartite graph with |A| = |B| ≥ 1

ǫ such that H is (ǫ, δ)-uniform for δ > 7ǫ.
Then H is Hamiltonian.

Proof of Lemma 5.1. Set ǫ := γ/253 and n0 := 2γ−12/ǫǫ−1. Let H be a bal-
anced bipartite graph of density γ and size 2n ≥ 2n0. Apply Theorem 5.2 to
obtain a balanced (ǫ, γ/2)-dense subgraph [A,B] ⊆ H of size at least γ12/ǫn/2.
Deleting at most ǫ|A| vertices on either side, we arrive at a (2ǫ, γ/3)-uniform
subgraph [X,Y ] ⊆ [A,B] of size at least γ12/ǫn/3.
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In order to see that [X,Y ] is (1-γ/4)-Hamiltonian, delete an arbitrary frac-
tion of at most γ/4 < 1/4 vertices from each of X , Y . Clearly, the obtained
subgraph [X ′, Y ′] is (3ǫ, γ

12 )-uniform, and has size at least γ12/ǫn0/4 ≥ 1/(3ǫ).
Thus Theorem 5.3 applies and we are done.

Finally, we make use of the following lemma due to Gyárfás et al. It allows
us to absorb small vertex sets with few monochromatic cycles.

Lemma 5.4 (Gyárfás et al. [10]). There is a constant n0 ∈ N such that for
n ≥ n0 and m ≤ n

(8r)8(r+1) , and for any r-colouring of Kn,m, there are 2r

disjoint monochromatic cycles covering all m vertices on the smaller side.

5.2 Proof of Theorem 1.1(b)

Let A and B be the two partition classes of the 3-edge-colouredKn,n. We assume
that n ≥ n0, where we specify n0 later. Pick subsets A1 ⊆ A and B1 ⊆ B of
size ⌈n/2⌉ each. Say red is the majority colour of [A1, B1]. Lemma 5.1 applied
with γ = 1/3 yields a red (1 − 1/12)-Hamiltonian subgraph [A2, B2] of [A1, B1]
with

|A2| = |B2| ≥ 39999|A1| ≥ 3−104n.

Set H := G−(A2∪B2), and note that each bipart of H has order at least ⌊n/2⌋.
Let δ := 24−32 · 3−104 . Assuming n0 is large enough, Theorem 1.1(a) yields five
monochromatic vertex-disjoint cycles covering all but at most 2δn vertices of
H . Let XA ⊆ A (resp. XB ⊆ B) be the set of uncovered vertices in A (resp. B).
Since we may assume none of the monochromatic cycles is an isolated vertex,
we have |XA| = |XB| ≤ δn.

By the choice of δ, and since we assume n0 to be sufficiently large, we can
apply Lemma 5.4 to the bipartite graphs [A2, XB] and [B2, XA]. We obtain
a union C of twelve vertex-disjoint monochromatic cycles that together cover
XA ∪XB. As |XA| = |XB| ≤ δn ≤ 3−104/12, we know that [A2, B2] − V (

⋃ C)
contains a red Hamiltonian cycle. Thus, in total, we covered G with at most
5 + 12 + 1 = 18 vertex-disjoint monochromatic cycles.

5.3 A remark on 3-coloured complete graphs

The number of 17 cycles needed to partition a 3-coloured complete graph, ob-
tained by Gyárfás et al. [12], is not expected to be optimal. By a slight modific-
ation of their method, one can replace the number 17 with (the still not optimal
number) 10.

Erdős et al. [6] have shown that any large enough 3-coloured Kn has a
monochromatic triangle cycle of linear size. That is, a union of two cycles
(u1, u2, . . . , uk, u1) and (u1, v1, u2, v2, . . . , uk, vk, u1). Clearly, after the deletion
of an arbitrary subset of the outer vertices, {v1, . . . , vk}, the triangle cycle still
has a Hamiltonian cycle.

Given a sufficiently large 3-coloured Kn, we proceed as follows. First we
reserve the vertex set of a linear sized monochromatic triangle cycle T for later
use. We cover the remaining graph, except for some small set X , with three
vertex-disjoint monochromatic cycles, using the result of Gyárfás et al. [12]. We
then use Lemma 5.4 to cover all of X with six vertex-disjoint monochromatic
cycles, which use some of the outer vertices of T (and X). This can be done
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since T is of linear size while |X | is a vanishing fraction of n. We finish by
covering the remains of T with a monochromatic Hamiltonian cycle.
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[7] L. Gerencsér and A. Gyárfás, On Ramsey-type problems, Annales Univ.
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