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A B S T R A C T

In this paper we generalize the recent implicit models that have been put into place to describe the elastic
response of bodies when thermal effects come into play. The implicit constitutive relations for thermoelastic
response presented here provide a very natural way to overcome a serious problem associated with the
celebrated model due to Fourier, namely infinite speed of the propagation of temperature. We also study some
boundary value problems within the context of the implicit equations that we have developed. We carry out a
linearization based on the classical assumption that the displacement gradient is small and obtain constitutive
relations that allow the linearized strain to be a non-linear function of the stress and temperature.

1. Introduction

The celebrated eponymous equation governing the conduction of
heat, that is given the status of a ‘law’, namely Fourier's law, is merely
an approximation which in fact predicts erroneously that temperature
propagates with infinite velocity. In view of the fact that the propaga-
tion has finite speed, there has been considerable interest in developing
a more meaningful equation for the conduction of heat. A pioneering
study in this direction is that by Cattaneo [1]. Later, Lord and Shulman
[2] studied the thermoelastic response of solids wherein they sought to
ensure finite wave speeds for the propagation of temperature. These
early works have been followed by papers too numerous to detail,
provide minor improvements or generalization to the response of
viscoelastic bodies and bodies described by higher gradient theories.
The thermoelastic response studied by Lord and Shulman [2] as well as
the others such as Ezzat [3], consider the response of Cauchy elastic
bodies (or the sub-class of Green elastic bodies) with thermal effects
being taken into consideration. In this paper, we study the response of a
new class of elastic bodies that are not necessarily Cauchy elastic
bodies, being described by implicit constitutive relationship between
the stress and the deformation gradient, when thermal effects are
included. At the outset, we would like to make a case for why the new
class of implicit constitutive relations to describe the response of elastic
bodies is worth studying in detail. As discussed in details by Rajagopal
[4–9], there are several reasons for employing a theory wherein one has
an implicit relationship between the deformation gradient and the
Cauchy stress. From a philosophical standpoint the theory is in keeping
with the demands of causality as the deformation is a consequence of

the applied traction and the resulting stress field. Such an approach also
allows for the material moduli to depend on for instance the mean value
of the stress, namely the mechanical pressure, a feature exhibited by
many polymeric solids (see Rajagopal and Saccomandi [10]). Further-
more, it allows the strain to have a nonlinear relationship with regard to
the stress even in what would be considered the ‘small strain’ regime, a
response characteristic of many intermetallic alloys (see Rajagopal [9],
Devendiran et al. [11]). Also, a Cauchy elastic body cannot describe an
elastic body which exhibits limiting strains, while a fully implicit
constitutive relation or a constitutive expression wherein the Cauchy-
Green strain as a function of the stress models can describe such
constrained response (see [4]). Moreover, while using the linearized
version of such implicit theories one does not necessarily have to face
glaring inconsistencies such as those encountered while studying the
state of strain at a crack tip within the context of the linearized theory
of elasticity. As Cauchy elastic bodies are a very special sub-class of the
class of bodies characterized by the implicit constitutive relation
between the stress and the deformation gradient, the classical results
of thermoelasticity are recovered when attention is directed to the sub-
class of Cauchy elastic bodies.

In addition to the issue of ensuring finite speed for the propagation
of temperature, we also consider the counterpart to the celebrated
Oberbeck-Boussinesq equations (see Oberbeck [12,13] and Boussinesq
[14]) that has been developed to describe the response of fluids that can
only undergo isochoric motions in isothermal processes, but can
undergo compression or expansion in non-isothermal processes. The
Oberbeck-Boussinesq approximation is one of the most useful approx-
imations in fluid mechanics, and is employed to study problems in
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astrophysical and geophysical fluid dynamics as well as several other
technological applications. It is important to bear in mind that the
Oberbeck-Boussinesq approximation does not stem from retaining
terms in a proper perturbation expansion but in fact includes terms of
different orders in the same equation. A detailed discussion of the status
of the Oberbeck-Boussinesq approximation within the context of the
full Navier-Stokes-Fourier theory can be found in the paper by
Rajagopal et al. [15]. The Oberbeck-Boussinesq approximation has
been extended for various other constitutive equations governing the
response of fluids (see [16,17] and the references cited therein). The
basic approach to the problem is the assumption that the deformation
gradient meets the restriction that the motion is isochoric in isothermal
processes.

The counterpart of the above problem within the context of classical
nonlinear thermoelasticity is however not straightforward. It is well
known that the above constraint leads to physically unrealistic situa-
tions such as that of instability of wave propagation (see Chadwick and
Scott [18], Scott [19,20], Leslie and Scott [21], Scott [22]). Since
Cauchy elastic bodies are a sub-class of the general class of implicit
elastic bodies, and also overlap with bodies wherein the Cauchy-Green
strain is an explicit function of the stress when the relationship is
invertible, for such models the physically unrealistic situation will
persist. For models wherein the relationship between the Cauchy-Green
strain and the Cauchy stress is not invertible we do not know if this
problem will recur. This is the object of an ongoing investigation. Here,
we look at the problem wherein the constitutive relation is a non-linear
relationship between the linearized strain and the Cauchy stress in
which case we do not have the possibility of inverting the nonlinear
expression for the linearized strain in terms of the stress. It is possible
that even this class of models might exhibit the physically unacceptable
behaviour observed by Scott and co-workers in the case of Cauchy
elastic bodies. This is also being looked into in the ongoing investiga-
tion mentioned above.

The organization of the paper is as follows. In the next section we
provide a brief introduction of the kinematics and the basic equations
(see Section 2) and this is followed in Section 3 where the implicit
constitutive relation between the Cauchy stress, the Cauchy-Green
tensor, heat-flux vector and temperature is proposed to describe the
response of a thermoelastic body. The first, and a specific form of the
second, laws of thermodynamics are introduced, and a generalization of
the Fourier model for heat transfer by conduction is proposed. In
Section 4 the special case of isotropic relations is considered, and some
subclasses of constitutive relations and equations are derived from that,
assuming for some cases that some of the variables are small enough; of
particular interest is the case of assuming small gradient of the
displacement field. In Section 5 several simple boundary value pro-
blems are analyzed, for the special case of the constitutive equation
obtained assuming that the gradient of the displacement field is small.
In Section 6 the constraints of incompressibility and inextensibility are
studied for two of the subclasses of constitutive equations proposed in
Section 4. Finally, in Section 7 concluding remarks are made.

2. Basic equations

A point in a body � is denoted X and in the reference configuration
the point occupies the position κ XX = ( )r . The reference configuration
is denoted �κ ( )r . In the current configuration the position of the point is
denoted x, and it is assumed that there exists a one-to-one mapping χ
such that χ tx X= ( , ). The current configuration is denoted �κ ( )t .

The displacement field, the deformation gradient, the right Cauchy-
Green stretch tensor, the Lagrange strain and the linearized strain
tensors are defined, respectively, as:

ε

u x X F x C F F E C I

u u

= − , = ∇ , = , = 1
2

( − ),

= 1
2

(∇ + ∇ ),

r
T

T
(1)

where we assume J F= det > 0, ∇r and ∇ are the gradient operators in
the reference and the current configuration, respectively.

The Cauchy stress tensor is denoted T and it satisfies the equation of
motion

ρ ρx T b¨ = div + , (2)

where ρ is the density of the body and b represents the body forces in
the current configuration, and where we use the notation ( )˙ for the
time derivative.

The second Piola-Kirchhoff stress tensor S is defined as

JS F TF= .−1 −T (3)

More details about kinematics and the above definitions can be
found, for example, in [23].

3. Implicit relations for thermoelastic bodies

We will be interested in studying some subclasses of the general
implicit relation for a thermoelastic body (see [4,5] for the original
formulation for elastic bodies)

F θS E 0( , , ) = , (4)

where θ is the absolute temperature and F is a second order tensor
relation. Relation (4) would be a generalization of the classical explicit
model K θS E= ( , ), where now in (4) S cannot be obtained in general
explicitly in terms of E. Additionally, we have added θ as one of the
fundamental variables for the heat transfer problem.

The first law of thermodynamics in the reference configuration is
(see, for example, [24])

ρ w ρhϵ̇ = + Div + r,r r r (5)

where hr is the heat flux in the reference configuration, ϵ is the internal
energy, ρr is the density in the reference configuration, w SE= tr( ˙ ) is the
rate of work and r the rate of heat generated internally by the body.

The dissipation d is defined as (see, for example, [25])

d θη w
ρ

= ˙ − ϵ̇ + ,
r (6)

where this dissipation must satisfy the inequality

d ≥ 0. (7)

The heat flux must satisfy the inequality

⎛
⎝⎜

⎞
⎠⎟γ γ θ

θ
h− · ≥ 0, where = ∇ 1 .r r

(8)

Adding these two inequalities (7), (8) we obtain

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ γρ θη

ρ
w h˙ − ϵ̇ + 1 − · ≥ 0.r

r
r

(9)

Let us introduce the Helmotz potential ψ, which we assume is of the
form

ψ ψ θS E= ( , , ). (10)

The relation between the Helmholtz potential and the internal energy is

ψ θη= ϵ − . (11)

From (11) we have ψ θη θηϵ̇ = ˙ + ˙ + ˙ and replacing in (9) we obtain

γρ ψ θη w h− ( ˙ + ˙ ) + − · ≥ 0.r r (12)

For ψ̇ we have (in index notation and Cartesian co-ordinates)
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ψ ψ
S

S ψ
E

E ψ
θ

θ˙ = ∂
∂

˙ + ∂
∂

˙ + ∂
∂

˙,
αβ

αβ
αβ

αβ
(13)

where the repetition of the index here and elsewhere means summation
from 1 to 3 unless stated otherwise. Using (13) and (11) in (12)
considering the above calculations we obtain

ψ
S

S ψ
E

E ψ
θ

θ θη
ρ

S E h γ− ∂
∂

˙ − ∂
∂

˙ − ∂
∂

˙ − ˙ + 1 ˙ − ≥ 0,
αβ

αβ
αβ

αβ αβ αβ α
r

rα (14)

which is satisfied if

η ψ
θ

= − ∂
∂ (15)

and

ψ
S

S ψ
E

E
ρ

S E h γ− ∂
∂

˙ − ∂
∂

˙ + 1 ˙ − ≥ 0.
αβ

αβ
αβ

αβ αβ αβ α
r

rα (16)

If we take the derivative of F in time we have

F F F

S
S

E
E

θ
θ

∂
∂

˙ +
∂
∂

˙ +
∂
∂

˙ = 0.γζ

αβ
αβ

γζ

αβ
αβ

γζ

(17)

The relation F and the function ψ must satisfy the above two conditions
for any Ṡ, Ė and θ̇.

Using (11) and (13) in (5) (considering (15)) we have (in index
notation and Cartesian co-ordinates)

⎡
⎣
⎢⎢
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥ρ ψ

S
θ ψ

θ S
S ψ

E
θ ψ

θ E
E θ ψ

θ
θ

S E
h
X

ρr

∂
∂

− ∂
∂ ∂

˙ + ∂
∂

− ∂
∂ ∂

˙ − ∂
∂

˙

− ˙ =
∂
∂

+ .

αβ αβ
αβ

αβ αβ
αβ

αβ αβ
α

r

2 2 2

2

r
r

α

(18)

In this work we assume that hr can be found from the following
vector implicit relation

g θ θS E h h 0( , , , ˙ , ∇ , ) = ,r r r (19)

As it will be shown in Section 4.1.1 this implicit vector constitutive
relation can be seen as a generalization of some models presented in the
literature [1,2,26], which are of the form c k θh h+ ˙ = − ∇or r r , and which
have been proposed as replacements of the classical Fourier model

k θh = − ∇r r for heat transfer, in order to address some problems that
such classical model has with the propagation of a heat wave, see, for
example, the Introduction in [26].

In the following sections we study the case when F, g and ψ are
isotropic functions and relations, and we consider some special cases,
where the strains, the stresses, the temperature, etc. are ‘small’ in
comparison with some reference values. In order to do so, let us assume
that there exist characteristic or reference values for the stress σo, the
heat flux ho, the rate of the heat flux hov

the temperature gradient ℵ and
temperature θo, such that we can define the dimensionless quantities

σ h h
θ θ

θ
S h h1 , 1 , 1 ˙ , 1

ℵ
∇ , .

o o o o
r r r

v (20)

In the following sections we do not use a different notation for these
dimensionless variables.

4. Isotropic bodies

The following is the list of invariants for an isotropic function or
relation that depends on the tensors S, E, the vectors hr, ḣr, θ∇r and the
scalar field θ (see [27,28]).1.

I S S S= tr , I = 1
2

tr( ), I = 1
3

tr( ),1 2
2

3
3

(21)

I E E E= tr , I = 1
2

tr( ), I = 1
3

tr( ),4 5
2

6
3

(22)

I I I θ θh h h h= · , = ˙ · ˙ , = ∇ ·∇ ,7 r r 8 r r 9 r r (23)

I SE S E SE S E= tr( ), I = tr( ), I = tr( ), I = tr( )10 11
2

12
2

13
2 2 (24)

I I I Ih Sh h S h h Eh h E h= ·( ), = ·( ), = ·( ), = ·( ),14 r r 15 r
2

r 16 r r 17 r
2

r (25)

I I I Ih Sh h S h h Eh h E h= ˙ ·( ˙ ), = ˙ ·( ˙ ), = ˙ ·( ˙ ), = ˙ ·( ˙ ),18 r r 19 r
2

r 20 r r 21 r
2

r (26)

I θ θ I θ θ

I θ θ I θ θ

S S
E E

= ∇ ·( ∇ ), = ∇ ·( ∇ ),
= ∇ ·( ∇ ), = ∇ ·( ∇ ),

22 r r 23 r
2

r

24 r r 25 r
2

r (27)

I I θ I θh h h h= ( · ˙ ) , = ( ·∇ ) , = (˙ ·∇ ) ,26 r r
2

27 r r
2

28 r r
2 (28)

I Ih h h Sh h h h S h= (˙ · ) ˙ ·( ), = (˙ · ) ˙ ·( ),29 r r r r 30 r r r
2

r (29)

I Ih h h Eh h h h E h= (˙ · ) ˙ ·( ), = (˙ · ) ˙ ·( ),31 r r r r 32 r r r
2

r (30)

I θ θ I θ θh h S h h S= ( ·∇ ) ·( ∇ ), = ( ·∇ ) ·( ∇ ),33 r r r r 34 r r r
2

r (31)

I θ θ I θ θh h E h h E= ( ·∇ ) ·( ∇ ), = ( ·∇ ) ·( ∇ ),35 r r r r 36 r r r
2

r (32)

I θ θ I θ θh h S h h S= (˙ ·∇ )˙ ·( ∇ ), = (˙ ·∇ )˙ ·( ∇ ),37 r r r r 38 r r r
2

r (33)

I θ θ I θ θh h E h h E= (˙ ·∇ )˙ ·( ∇ ), = (˙ ·∇ )˙ ·( ∇ ),39 r r r r 40 r r r
2

r (34)

I I I θ θh SEh h SEh SE= ·( ), = ˙ ·( ˙ ), = ∇ ·( ∇ ),41 r r 42 r r 43 r r (35)

I I θ θh h h SE ES h h h SE ES= (˙ · ) ˙ ·[( − ) ], = ( ·∇ ) ·[( − )∇ ],44 r r r r 45 r r r r (36)

I θ θ I θh h SE ES= (˙ ·∇ )˙ ·[( − )∇ ], = .46 r r r r 47 (37)

Considering the above list of invariants, in the case of an isotropic
relation we obtain for F (see [27,28])

α α α α α α

α α

α

I S S E E ES SE
E S SE S E ES
S E E S 0

+ + + + + ( + )
+ ( + ) + ( + )
+ ( + ) = ,

0 1 2
2

3 4
2

5

6
2 2

7
2 2

8
2 2 2 2

(38)

where the scalar functions α α I= ( )k k j , k = 0, 1, 2, …, 8 depend on the
invariants Il, l = 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 47.

In the case of the vector relation (19), for the sake of mathematical
simplicity we assume that there exists a scalar function2

Ξ Ξ θ θS E h h= ( , , , ˙ , ∇ , )r r r such that

g θ θ Ξ Ξ Ξ
θ

S E h h
h h

( , , , ˙ , ∇ , ) = ∂
∂

+ ∂
∂˙ + ∂

∂∇
.r r r

r r r (39)

On considering the invariants (21)–(37) from (39) we obtain

β θ β θ β θ β θ β θ β β β

β β β β β β β β θ

β β

S S E E h Sh S h

Eh E h h Sh S h Eh E h SE ES
SE ES h SE ES h 0

∇ + ∇ + ∇ + ∇ + ∇ + + +

+ + + ˙ + ˙ + ˙ + ˙ + ˙ ( + )∇

+ ( + ) + ( + )˙ = ,

0 r 1 r 2
2

r 3 r 4
2

r 5 r 6 r 7
2

r

8 r 9
2

r 10 r 11 r 12
2

r 13 r 14
2

r 15 r

16 r 17 r

(40)

where the functions βj, j = 0, 1, 2, …, 17 depend on the invariants
given in (21)–(37) and are given in terms of the derivatives of Ξ, which
as in the previous case for brevity are not shown here.

1 In a series of recent works Shariff (see, for example, [29,30]) has proposed some new
classes of invariants, which have clearer physical meanings than the classical invariants
by Rivlin and Spencer (see, for example, [27,28]). In the present work we use the classical
invariants instead such new invariants, as the invariants used in [27,28] have been used
commonly for a long time, and suffice for the purpose of illustrating our ideas.

2 Here it is necessary to indicate that the function Ξ does not necessarily have any
physical meaning, and that the representation (39) has been assumed only for the sake of
simplicity, considering that explicit expressions for an implicit vector function, which
depends on two tensor and three vector functions, have not been found in the literature
on invariants.
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4.1. The sub-class O δu|∇ | ∼ ( )r , δ⪡1

In this case let us assume that O δu|∇ | ∼ ( )r , δ⪡1, therefore we have
the approximations u u∇ ≈ ∇r , εE ≈ , S T≈ , θ θ∇ ≈ ∇r , h h≈r and
h h˙ ≈ ˙

r , where ∇is the gradient with respect to the current configura-
tion. In this case we have also the approximation

α α θ
α

E
εT 0≈ ( , , ) +

∂
∂

,i i
i

αβ θ

αβ

T 0( , , ) (41)

and from (38) neglecting terms of order δr, r ≥ 2, after some manipula-
tions we obtain the following equation

A Gθ ε θT T( , ) = ( , ),ijkl kl ij (42)

where A θT( , ) andG θT( , ) are a fourth order tensor and a second order
tensor functions, respectively. If A is invertible, then (42) can be
expressed in general in the form

fε θT= ( , ), (43)

which in the case f is an isotropic function becomes

ε ω ω ωI T T= + + ,0 1 2
2 (44)

where the functions ωi, i = 0, 1, 2 depend on the invariants3 I1, I2, I3
and I47 from (21), (37)2.

Since in this case fε θT= ( , ) then in (19) the relation g does not
depend directly on εE ≈ , therefore (40) becomes

ξ θ ξ θ ξ θ ξ ξ ξ ξ ξ ξT T h Th T h h Th T h

0

∇ + ∇ + ∇ + + + + ˙ + ˙ + ˙

= ,
0 1 2

2
3 4 5

2
6 7 5

2

(45)

where the functions ξi, i = 0, 1, …, 5 depend on the invariants Ii, i= 1, 2,
3, 7, 8, 9, 14, 15, 18, 19, 22, 23, 26–30, 33, 34, 37, 38 and 47 from
(21)–(37) (replacing S, hr, θ∇r and ḣr by T, h, θ∇ and ḣ, respectively).

A special class of constitutive relation is obtained from (43), if we
assume that ωi, i = 0, 1, 2 in (44) are expressed in terms of a scalar
function Π Π θ Π I I I θT= ( , ) = ( , , , )1 2 3 as

ε Π Π Π Π
T

I T T= ∂
∂

= + + ,1 2 3
2

(46)

where Π =j
Π
I

∂
∂ j
, j = 1, 2, 3.

The constitutive Eq. (43) can be very important in its own right, as a
generalization of fε T= ( ), which as indicated, for example, in [9], could
be a very interesting model to describe the behaviour of materials such
as rock, concrete, gum metal, and also in the fracture analysis of brittle
bodies.

4.1.1. The subclass wherein O δh| | ∼ ( ), δ⪡1
In this case let us assume that O δh| | ∼ ( ), δ⪡1, then from (45)

following a procedure similar to the one considered in the previous
section we obtain a relation of the form

j θ θh T h= − ( , ˙ , ∇ , ), (47)

which in the case that j is an isotropic function becomes

ζ θ ζ θ ζ θ ζ ζ ζh T T h Th T h= − ( ∇ + ∇ + ∇ + ˙ + ˙ + ˙),0 1 2
2

3 4 5
2 (48)

where ζi, i = 0, 1, 2 depend on the invariants Ik, k= 1, 2, 3, 8, 9, 18, 19,
22, 23, 28, 37, 38, 47 and from (8) this function must satisfy the
inequality for all T, ḣ, θ∇ , θ

⎛
⎝⎜

⎞
⎠⎟ζ θ ζ θ ζ θ ζ ζ ζ

θ
T T h Th T h−( ∇ + ∇ + ∇ + ˙ + ˙ + ˙)·∇ 1 ≥ 0.0 1 2

2
3 4 5

2

(49)

An important and interesting special case can be obtained from
(48), assuming that ζ = 04 , ζ = 05 and that ζi, i = 0, 1, 2, 3 do not
depend on ḣ and θ∇ . From (48) we obtain

ζ ζ θ ζ θ ζ θh h T T+ ˙ = − ( ∇ + ∇ + ∇ ).4 0 1 2
2 (50)

In [2,26] some models have been presented to study the heat
transfer for conduction, where unlike the Fourier's model, the speed of
propagation of heat waves is finite. One of such models (see, for
example, [26]) can be derived as a special case from (50) if one assumes
in (50) that ζ ζ= = 01 2 and ζ0 does not depend on T; in such a case (50)
becomes ζ ζ θh h+ ˙ = − ∇4 0 that is the model proposed, for example, in
[1]. The Fourier's model appears if we further assume that ζ = 04 .

4.1.2. The subclass wherein θ O δ|∇ | ∼ ( ), δ⪡1
Let us study here the alternative situation where θ O δ|∇ | ∼ ( ), δ⪡1

and h| | can be arbitrarily large. From (45) it is possible to show that that
relation becomes

pθ θT h h∇ = ( , , ˙ , ), (51)

which in the case p is an isotropic function becomes

θ ι ι ι ι ι ιh Th T h h Th T h∇ = + + + ˙ + ˙ + ˙ ,0 1 2
2

3 4 5
2 (52)

where ιi, i = 0, 1, 2, …, 6 are scalar functions that depends on the
invariants Ik, k= 1, 2, 3, 7, 8, 14, 15, 18, 19, 26, 29, 30 and 47 from
(21)–(37).

4.2. The sub-class O δS| | ∼ ( ), δ⪡1

In this section we want to obtain the classical constitutive relations
for a nonlinear thermoelastic body in terms of the strains, starting from
the general implicit relations (38). If O δS| | ∼ ( ), δ⪡1 and u|∇ |r is
arbitrarily large, it is easy to show (following the same procedure as
presented as in Section 4.1) that from (38) we obtain a relation of the
form

K θS E= ( , ), (53)

where if K is an isotropic function it becomes

ϖ ϖ ϖS I E E= + + ,0 1 2
2 (54)

where the scalar functions ϖi, i = 0, 1, 2 depend on the invariants I4, I5,
I6, I47 from (21)–(37). Eq. (53) is the classical constitutive equations for
a nonlinear thermoelastic body, see, for example, Equation 96b.26 of
[31].

Taking into account the previous considerations, from (19) g would
depend on E, θ∇r , hr, ḣr and θ, and (40) becomes

ν θ ν θ ν θ ν ν ν ν ν

ν

E E h Eh E h h Eh

E h 0

∇ + ∇ + ∇ + + + + ˙ + ˙

+ ˙ = ,
0 r 1 r 2

2
r 3 r 4 r 5

2
r 5 r 4 r

5
2

r (55)

where the scalar functions νi depend on the invariants Ii, i= 4–9, 16, 17,
20, 21, 24–28, 31, 32, 35, 36, 39 and 40 from (21)–(37).

If we assume again that O δh| | ∼ ( )r , δ⪡1, them from (55) we would
obtain a relation of the form

q θ θh E h= − ( , ˙ , ∇ , ).r r r (56)

In the case q is an isotropic function it becomes

θ θ θh E E h Eh E h= − (ϑ ∇ + ϑ ∇ + ϑ ∇ + ϑ ˙ + ϑ ˙ + ϑ ˙ ),r 0 r 1 r 2
2

r 3 r 4 r 5
2

r (57)

where the functions ϑi, i = 0, 1, 2 depend on the invariants Ij, j= 4–9,
20, 21, 24, 25, 28, 39, 40, 47 from (21)–(37). The classical Fourier
model for heat transfer appears if we assume ϑ = 0i , i = 1, 2, 3, 4, 5 and

θϑ = ϑ ( )0 0 , in which case (57) becomes θ θh = − ϑ ( )∇r 0 r .

4.3. Another alternative simplification

Let us assume that in (38) the functions αi, i = 4, 5, ‥, 8 are equal to
zero, α ≠ 03 and α α θS= ( , )j j , j = 0, 1, 2, 3, therefore from (38) we
obtain a relation of the form

H θE S= ( , ), (58)3 In the definitions of the invariants it is necessary to replace S by T.
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which if H is an isotropic function becomes

φ φ φE I S S= + + ,0 1 2
2

(59)

where the functions φi, i = 0, 1, 2 depend on the invariants I1, I2 and I3
(see (21)).

In the case of (19), the final expression is similar to (45), replacing T
by S, θ∇ by θ∇r and h by hr.

4.4. The linearized theory of thermoelasticity for isotropic bodies

Linearized constitutive equations for thermoelastic bodies can be
derived, for example, from (44) in the following manner. Let us assume
that4 θ O δ| − 1| ∼ ( ), δ⪡1. Then from (44) we have the approximations
ω θ ω θT T( , ) ≈ ( , 1) + ( − 1)i i

ω
θ T

∂
∂ ( ,1)

i , and after some manipulations (ne-

glecting terms of order δr, r ≥ 2) from (44) we would obtain something
of the form

  ε ω ω ω ω ω ω θI T T I T T= + + + ( + + )( − 1),0 1 2
2

0 1 2
2 (60)

where the functions ωi, ωi, i = 0, 1, 2 only depend on T.
Let us assume additionally that O δT| | ∼ ( ), δ⪡1, then from (60)

we have the approximation (in index notation)

ω ω TT 0( , 1) ≈ ( , 1) +i i
ω
T jk

0

∂
∂

( ,1)

i
jk

and   ω ω TT 0( , 1) ≈ ( , 1) +i i
ω
T jk

0

∂
∂

( ,1)

i
jk

. Re-

placing in (60) and neglecting terms of order O δ( )r , r ≥ 2 (and using the
assumption that θ O δ| − 1| ∼ ( ), δ⪡1), after some simplifications we
obtain.5

ε ω ω ω θT I T I= tr( ) + + ( − 1),∼ ∼ ∼
0 1 2 (61)

where ω∼0, ω∼1 and ω∼2 are constant.

5. Boundary value problems

In this section we study some boundary value problems for the
particular subclass (46)considering6 (50). From (46) we have

ε Π Π ΠI T T= + + ,1 2 3
2 (62)

where Π Π I I I θ= ( , , , )1 2 3 and Π =i
Π
I

∂
∂ i
, i = 1, 2, 3.

From (50) we have

ζ ζ θ ζ θ ζ θh h T T+ ˙ = − ( ∇ + ∇ + ∇ ),4 0 1 2
2 (63)

where we have assumed that ζ ζ θ ζ I I I θT= ( , ) = ( , , , )j j j 1 2 3 , j = 0, 1, 2, 4.
Regarding (18) we assume that ψ ψ θ ψ I I I θT= ( , ) = ( , , , )1 2 3 , then it

becomes (interchanging S and T)

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ε

ρ ψ
I

θ ψ
I θ

ψ θ ψ
θ

ψ θ ψ
θ

θ ψ
θ

θ ρ

T TT T T

T h

∂
∂

+ ∂
∂ ∂

tr ˙ + ∂
∂I

+ ∂
∂I ∂

tr( ˙ ) + ∂
∂I

+ ∂
∂I ∂

tr( ˙ )

− ∂
∂

˙ − tr( ˙) = div + r.

1

2

1 2

2

2 3

2

3

2

2

2

(64)

Finally we recall the equation of motion (2).

ρ ρu T b¨ = div + . (65)

Considering that ε u u= (∇ + ∇ )1
2

T from (62)–(65) we have 13
equations for the components of T (6 unknowns), u (3 components),
h (3 components) and θ (one unknown), i.e., in total for 13 unknowns.
In the following sections we study some simple boundary value
problems analyzing the above equations.

5.1. Uniform stress and temperature distributions

In the problems presented in this section we assume that

t θ θ tT T= ( ), = ( ),o o (66)

i.e., that the stress and the temperature are uniform but may depend on
time. In general, as shown below, this would not satisfy the equation of
motion (65). From (62) we would have

ε Π Π ΠI T T= + + ,o o1 2 3
2 (67)

where Π Π t θ tT= ( ( ), ( ))i i o o , which means that ε would only depend on
the time t. If ε ε t= ( ) a possible solution u for (1)5 would be of the form

t tu A x u= ( ) + ( ),o (68)

where A is a symmetric tensor, and its 6 independent components can
be found from Π Π ΠA I T T= + +o o1 2 3

2. Since T 0div (t) =o the equation of
motion (65) becomes

ρ t t ρA x u b[ ¨ ( ) + ¨ ( )] = .o (69)

It is possible to see that the above equation would not be satisfied in
general. For example, for the case b 0= we would need A 0¨ = and
u 0¨ =o , which would imply that Π Π Π c t cI T T+ + = +o o1 2 3

2
1 0, where c1

and c0 are constants. The above condition may not be satisfied always.
In the examples presented in the following subsections we assume

that b 0= and u 0=o , and that tT ( )o is small enough such that tA x 0¨ ( ) =
would be satisfied approximately.

If tT T= ( )o and θ θ t= ( )o we have that θ 0∇ = and
ζ ζ t ζ t θ tT= ( ) = ( ( ), ( ))o o4 4 4 , therefore (63) becomes

ζ th h 0+ ( )˙ = ,4 (70)

whose solution is

∫t eh c( ) = ,ζ ξ θ ξ ξT− 1
( ( ), ( )) d

t

o o0 4 (71)

where c is a constant vector. In the particular case when To and θo do
not depend on time, we would have

t eh c( ) = .
t

ζ−
4 (72)

Finally since hdiv = 0, assuming additionally that7 r=0 from (64)
we have

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

ρ ψ
I

θ ψ
I θ

ψ θ ψ
θ

ψ θ ψ
θ

θ ψ
θ

θ

T T T

T T T A

∂
∂

+ ∂
∂ ∂

tr ̇ + ∂
∂I

+ ∂
∂I ∂

tr( ̇ )

+ ∂
∂I

+ ∂
∂I ∂

tr( ̇ )− ∂
∂

̇ − tr( ̇ ) = 0,

o o o o o

o o o o o o

1

2

1 2

2

2

3

2

3

2
2

2
(73)

where Ii would be calculated with To and ψ and its derivatives depend
on To and θo. It is possible to see that the above equation would impose
a restriction on To and θo, i.e., they would not be independent.

5.1.1. Uniform traction of a cylinder
In this problem we consider a cylinder defined in cylindrical

coordinates as

r r ϕ π z L0 ≤ ≤ , 0 ≤ ≤ 2 , 0 ≤ ≤ .o (74)

We assume that this cylinder is under the influence of the stress
distribution

t σ tT e e( ) = ( ) ⊗ .o z z z (75)

We assume that the above stress and temperature distributions generate
a displacement field of the form

u c r u u λ z= , = 0, = ( − 1) ,r o ϕ z (76)4 This would be equivalent to say that θ θ| − |⪡0o , i.e., that the temperature of the body
does not change much from the reference temperature θo.

5 We assume that if T 0= and θ = 1 then ε 0= .
6 For brevity we do not consider the other classes of constitutive relations presented in

Section 4.

7 For all the problem to be presented in the following section we assume that the
internal heat generation is zero.
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where c c t= ( ) > 0o o and λ λ t= ( ). In this case ε c ε= =rr o ϕϕ, ε λ= − 1zz
and ε i j= 0 ≠ij .

From (21) we have

I σ I σ I σ= , = 1
2

, = 1
3

.z z z1 2
2

3
3

(77)

Substituting the above expressions in (62) we have

c Π λ Π Π σ Π σ= , − 1 = + + ,o z z1 1 2 3
2 (78)

where Π Π σ t θ t= ( ( ), ( ))i i z o , i = 1, 2, 3.
For h the solution is presented in (71), where we can assume that
hc e= o z. Finally, in this problem Eq. (73) becomes

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

ρ ψ
I

θ ψ
I θ

σ ψ
I

θ ψ
I θ

σ σ ψ
I

θ ψ
I θ

σ σ

θ ψ
θ

θ σ λ

∂
∂

+ ∂
∂ ∂

˙ + ∂
∂

+ ∂
∂ ∂

˙ + ∂
∂

+ ∂
∂ ∂

˙

− ∂
∂

˙ − ˙ = 0,

o z o z z o z z

o o z

1

2

1 2

2

2 3

2

3

2

2

2
(79)

where ψ and its derivatives depend on σ t( )z and θ t( )o . This last equation
could be used to find, for example, σ t( )z in term of θ t( )o or viceversa.

5.1.2. Uniform shear of a slab
Let us consider the slab defined through

L
x

L
i−

2
≤ ≤

2
, = 1, 2, 3,i

i
i

(80)

which we assume is deforming under the influence of the stress tensor

τ tT e e e e= ( )( ⊗ + ⊗ ).o 1 2 2 1 (81)

We assume that under the effect of the above stress tensor the slab
deforms as

u λ x κx u λ x u λ x= ( − 1) + , = ( − 1) , = ( − 1) ,a b c1 1 2 2 2 3 3 (82)

where λ λ t= ( )a a , λ λ t= ( )b b and λ λ t= ( )c c are positive and κ κ t= ( ).
Using the above assumptions from (21) we have I I= = 01 3 and

I τ t= ( )2
2 , whereas ε λ= − 1a11 , ε λ= − 1b22 , ε λ= − 1c33 , ε = κ

12 2 and
ε ε= = 013 23 . From (62) we have

λ λ Π Π τ λ Π κ Π τ− 1 = − 1 = + , − 1 = ,
2

= ,a b c1 3
2

1 2 (83)

where Π Π τ θ= ( , )i i o , i = 1, 2, 3.
Regarding h we have the solution (71), where now c can be assumed

to be of the form h hc e e= +o o1 21 2
. Finally, regarding (73) in the present

problem that equation becomes

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ρ ψ

I
θ ψ

I θ
ττ θ ψ

θ
θ τκ∂

∂
+ ∂

∂ ∂
2 ˙ − ∂

∂
˙ − ˙ = 0,o o o

2

2

2

2

2
(84)

which could be used again to find, for example, θo in terms of τ or
viceversa, recalling that here ψ and its derivatives depend on τ and θo.

5.2. Non uniform distributions for the stress and temperature

In this section we study two simple boundary value problems, where
the different variables can depend on the position and time.

5.2.1. A one-dimensional rod
Let us consider the one-dimensional rod defined in the un-deformed

configuration (cylindrical coordinates) as

r r ϕ π z0 ≤ ≤ , 0 ≤ ≤ 2 , − ∞ < < ∞.o (85)

In this problem we assume that the stress and temperature are of the
form

σ z t θ θ z tT e e= ( , ) ⊗ , = ( , ).z z z (86)

Furthermore, we suppose that under the influence of the above stress
and temperature distributions that the displacement field is approxi-

mately of the form

u z tu e= ( , ) .z z (87)

Finally, regarding the heat flux h, we assume that through the surface
r r= o there is no heat transfer and so

h z th e= ( , ) .z z (88)

In virtue of the above assumptions, the equation of motion (65) (if
b 0= ) becomes

σ
z

ρ
u
t

∂
∂

=
∂
∂

.z z
2

2 (89)

Regarding (1)5 we have that ε =zz
u
z

∂
∂

z and from (87) and (62) we obtain

u
z

Π Π σ Π σ
∂
∂

= + + .z
z z1 2 3

2
(90)

It is necessary to recognize that from (62) we also have that
ε ε Π= =rr ϕϕ 1, which in general is not zero, therefore we do have a
radial displacement besides the axial displacement presented in (87).
But if we assume that ro is very small in comparison with the axial
dimension of the rod, we neglect such displacement for the present
problem. In (62) Π Π σ z t θ z t= ( ( , ), ( , ))i i z , i = 1, 2, 3.

From (86) and (88) we find that Eq. (63) becomes

h ζ
h
t

ζ ζσ ζ σ θ
z

+
∂
∂

= − ( + + ) ∂
∂

,z
z

z z4 0 1 2
2

(91)

where ζ ζ σ z t θ z t= ( ( , ), ( , ))i i z , i = 0, 1, 2, 4.
Finally, considering (86), (88) we have that (64) is of the form

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ρ ψ

σ
θ ψ

θ σ
σ
t

θ ψ
θ

θ
t

σ
u

z t
h
z

∂
∂

+ ∂
∂ ∂

∂
∂

− ∂
∂

∂
∂

−
∂
∂ ∂

=
∂
∂

.
z z

z
z

z z
2 2

2

2

(92)

We are interested now in studying the above equations within the
context of the following especial expressions for the different functions

σ z t Σ p θ z t Θ p u z t U p h z t H p( , ) = ( ), ( , ) = ( ), ( , ) = ( ), ( , ) = ( ),z z z

(93)

where

p kz λt= + , (94)

where k ≠ 0 and λ ≠ 0 are constants. Considering the above expres-
sions, it is easy to show that

σ
z

k Σ
p

σ
t

λ Σ
p

∂
∂

= d
d

,
∂
∂

= d
d

,z z

(95)

and similar expressions can be found for the derivatives of the other
functions in (93). Using this in (89)–(92) we obtain the following
system of ordinary differential equations (for the functions Σ p( ),Θ p( ), U
(p) and H(p)):

k Σ
p

ρλ U
p

d
d

= d
d

,2
2

2 (96)

k U
p

Π Σ Θ Π Σ Θ Σ Π Σ Θ Σd
d

= ( , ) + ( , ) + ( , ) ,1 2 3
2

(97)

H λζ Σ Θ H
p

k ζ Σ Θ ζ Σ Θ Σ ζ Σ Θ Σ Θ
p

+ ( , )d
d

= − [ ( , ) + ( , ) + ( , ) ] d
d

,4 0 1 2
2

(98)

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ρλ ψ

Σ
Θ ψ

Θ Σ
Σ
p

Θ ψ
Θ

Θ
p

kλΣ U
p

k H
p

∂
∂

+ ∂
∂ ∂

d
d

− ∂
∂

d
d

− d
d

= d
d

.
2 2 2

2
(99)

From (96) and (97) we obtain

k
ρλ

Σ Π Σ Θ Π Σ Θ Σ Π Σ Θ Σ c= ( , ) + ( , ) + ( , ) + ,
2

2 1 2 3
2

0
(100)
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∫U p
k

Π Σ s Θ s Π Σ s Θ s Σ s Π Σ s Θ s Σ s s c( ) = 1 [ ( ( ), ( )) + ( ( ), ( )) ( ) + ( ( ), ( )) ( )]d + ,
p

0
1 2 3

2
1

(101)

where c0 and c1 are constants.
With regard to (98), we have the solution

⎧
⎨⎪
⎩⎪

⎫⎬⎭

∫H p e c k
λ

e
ζ Σ l Θ l

ζ Σ l Θ l

ζ Σ l Θ l Σ l ζ Σ l Θ l Σ l l l

( ) = −
( ( ), ( ))

[ ( ( ), ( ))

+ ( ( ), ( )) ( ) + ( ( ), ( )) ( )] ( ) d ,

∫ ∫
λ ζ Σ s Θ s s p s

Θ
p

− 1 1
( ( ), ( )) d

2 1

d

4
0

1 2
2 d

d

p λ
l

ζ Σ s Θ s
1 4

1
1

1
4( ( ), ( ))

(102)

where c2 is a constant.

Finally, it follows from (99) and (96) that =U
p

k
ρλ

Σ
p

d
d

∂
∂

2

2 2 , and therefore

(99) becomes

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥λρ ψ

Σ
Θ ψ

Θ Σ
Σ
p

Θ ψ
Θ

Θ
p

k
ρλ p

Σ k H
p

∂
∂

+ ∂
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d
d

− ∂
∂

d
d

−
2

d
d

( ) = d
d

.
2 2 2

2

(103)

Let us use the notation

� Σ Θ e
ζ Σ l Θ l

ζ Σ Θ ζ Σ Θ Σ ζ Σ Θ Σ( , ) =
( ( ), ( ))

[ ( , ) + ( , ) + ( , ) ],
∫ sd

4
0 1 2

2λ
l

ζ Σ s Θ s
1

1
1

4( ( ), ( ))

(104)

Integrating Eq. (103) becomes

�

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭

⎡
⎣⎢

⎤
⎦⎥

∫

∫

λρ ψ
Σ

Σ s Θ s Θ s ψ
Θ Σ

Σ s Θ s Σ
s

s

Θ s ψ
Θ

Σ s Θ s Θ
p

s s

k
ρλ

Σ p ke c k
λ

Σ s Θ s Θ
s

s

c

∂
∂

( ( ), ( )) + ( ) ∂
∂ ∂

( ( ), ( )) d
d

( )

− ( )∂
∂

( ( ), ( )) d
d

( ) d

−
2

( ) = − ( ( ), ( )) d
d

d

+ ,

∫

p

λ ζ Σ s Θ s s p

1

2

2

2
2 − 1 1

( ( ), ( )) d
2 1

3

p
1 4

(105)

where c3 is a constant. Therefore, in order to obtain closed solutions for
this boundary value problem, we would need to solve in parallel the
general nonlinear algebraic Eq. (100) and the integral Eq. (105), in
order to find Σ p( ) and Θ p( ).

5.2.2. Inflation of an infinitely long cylindrical tube
In this last problem we are interested in analyzing the case of a

cylindrical tube deforming under the influence of mechanical loading
and a temperature field, which depend only on the radial position (in a
cylindrical coordinates system). In the un-deformed configuration the
tube is described by

r r r ϕ π z L≤ ≤ , 0 ≤ ≤ 2 , 0 ≤ ≤ ,i o (106)

and we assume that in this tube we have stress and temperature
distributions of the form

σ r t σ r t σ r t θ θ r zT e e e e e e= ( , ) ⊗ + ( , ) ⊗ + ( , ) ⊗ , = ( , ).r r r ϕ ϕ ϕ z z z

(107)

We assume that the above stress and temperature distributions can
cause the following displacement field and heat flux

u r t λ z h r t h r tu e e h e e= ( , ) + ( − 1) , = ( , ) + ( , ) ,r r z r r z z (108)

where λ is a constant. From (1)5 and (108)1 we have

ε
u
r

ε
u
r

ε λ=
∂
∂

, = , = − 1.rr
r

ϕϕ
r

zz (109)

Considering the above assumptions the equation of motion (65)

becomes

σ
r r

σ σ ρ
u
t

∂
∂

+ 1 ( − ) =
∂
∂

,r
r ϕ

r
2

2 (110)

while from (62) we have

u
r

Π Π σ Π σ
u
r

Π Π σ Π σ

λ Π Π σ Π σ

∂
∂

= + + , = + + ,

− 1 = + + .

r
r r

r
ϕ ϕ

z z

1 2 3
2

1 2 3
2

1 2 3
2 (111)

On the other hand from (63) we obtain

h ζ
h
t

ζ ζσ ζ σ θ
r

h ζ
h
t

+
∂
∂

= − ( + + ) ∂
∂

, +
∂
∂

= 0,r
r

r r z
z

4 0 1 2
2

4 (112)

and finally (64) becomes
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1 1
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3 3
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2

2

(113)

In (111)–(113) the functions Πi, i = 1, 2, 3, ζj, j = 0, 1, 2, 4 and ψ

depend on the invariants I σ σ σ= + +r ϕ z1 , I σ σ σ= ( + + )r ϕ z2
1
2

2 2 2 ,

I σ σ σ= ( + + )r ϕ z3
1
3

3 3 3 and θ.
The 7 Eqs. (111)–(113) must be solved to find the 7 functions

σ r t( , )r , σ r t( , )ϕ , σ r t( , )z , h r t( , )r , h r t( , )z , θ r t( , ) and u r t( , )r .

6. Constraints

In this section we study how the kinematical constraints of
incompressibility and inextensibility can be imposed for one of the
subclasses of constitutive equations presented in Section 4.1, namely
the case fε θT= ( , ). The analysis presented here follows closely the
studies published in [32,33] for the purely elastic case.

6.1. An isotropic thermoelastic body, which is mechanically incompressible
but thermally compressible. The case O δu|∇ | ∼ ( )r , δ⪡1

Let us study the incompressibility constraint for this new class of
constitutive relations (44). We are interested in modelling the beha-
viour of a body, which is mechanically incompressible, but whose
volume can change due to variations in the temperature, i.e., where

J f θ f f θF= det = ( ) where (1) = 1 and ( ) > 0, (114)

where notice again that the volume of the body is only affected by a
change in the temperature (from the reference temperature). Two
additional restrictions on f are: θ < 1 then f θ0 < ( ) < 1, and if θ ≥ 1
then f θ( ) ≥ 1.

Under the assumption O δu|∇ | ∼ ( )r , δ⪡1 the above constraint can be
written in terms of ε as

ε θtr = g( ), (115)

where we have defined g θ( ) = f θ( ) − 1
2

2
and if θ < 1 then g θ− < ( ) < 01

2
and if θ ≥ 1 then g θ0 ≤ ( ).

Replacing (46) in (115) we obtain the first order linear partial
differential equation

Π I Π I Π g θ3 + + 2 = ( ),1 1 2 2 3 (116)
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whose solution is

Π I I I θ g θ
I

Π I I θ( , , , ) = ( )
3

+ ( , , ),1 2 3
1

1 2 (117)

where we have defined (see [33])

I I
I

I I I I I= −
6

, = − 2
3

+ 2
27

.1 1
1
2

2 3 1 2 1
3

(118)

Using (117) in (46) we finally obtain

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥ε g θ

I Π
I

I I I Π
I

I T I I T T= ( ) + −
3

∂
∂

+ 2
9

−
3

−
2
3

+ ∂
∂

1

1

1
2

2 1 2

2 (119)

If we define p T I= − (tr )1
3 , the stress tensor can be decomposed as

pT T I= −o , where T T T I= − (tr )o . As shown in [33], it is easy to prove
that I1 and I2 are the same if they are calculated using T or To, moreover

T I T I− = −I
o

I

3 3
o1 1 and

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟I T T I T2 − − + = 2 − −I I I I I I

o9 3
2
3

2
9 3

2

3
o o o1

2
2 1 1

2
2 1

T+ o
2, where I T= tro o1

and I T= tr( )o o
1
2

2
2 , therefore from (119) we have

ε εθ θT T( , ) = ( , ).o (120)

6.2. An intextensible transversely isotropic thermoelastic body

Let us study the behaviour of a transversely isotropic body, where
we have a matrix filled with inextensible fibres (if the temperature
is constant and θ = 1). Let us assume that both the body and the
fibres can react to changes in the temperature, in particular
the length of such fibres is affected by the temperature.
Considering this, if a0 is the unit vector field describing the directions
of the family of fibres in the reference configuration, we have the
constraint

f θ g θ f θa Ca a Ea·( ) = ( ) ⇔ ·( ) = ( ) = ( ) − 1
2

,0 0 0 0 (121)

where f (1) = 1 that implies that g(1) = 0. In the case O δu|∇ | ∼ ( ), δ⪡1
we have εE ≈ and the constraint can be written as

ε g θa a·( ) = ( ), (122)

where a Fa a= ≈0 0.
Assuming again that there exists a function Π Π θT a= ( , , ) such that

ε = Π
T

∂
∂ , for a transversely isotropic function we have

Π Π I I I I I θ= ( , , , , , )1 2 3 4 5 , where I1, I2 and I3 have been defined in
(21)1,2,3 and

I Ia Ta a T a= ·( ), = ·( ).4 5
2 (123)

Using (21) and (123) in ε = Π
T

∂
∂ we obtain

ε Π Π Π Π ΠI T T a a a Ta Ta a= + + + ⊗ + [ ⊗ ( ) + ( ) ⊗ ],1 2 3
2

4 5 (124)

where Π =i
Π
I

∂
∂ i
, i = 1, 2, 3, 4, 5.

Replacing (124) in (122) we obtain the first order linear partial
differential equation

Π Π I Π I Π Π I g θ+ + + + 2 = ( ).1 2 4 3 5 4 5 4 (125)

One solution of the above equation is (see [32])

Π θ I g θ Π I I I I θT a( , , ) = ( ) + ( , , , , ),4 1 2 3 4 (126)

where we have defined

I I I I I I I I I I I I I= − , = 1
2

+ − , = − 2 + ,1 4 1 2 1
2

2 1 4 3 1
2

1 4 5 (127)

I I I I I I I= − 1
3

+ + − .4 1
3

3 1
2

4 1 5 (128)

Using this in (115) we obtain.8

ε g θ Π
I

Π
I

I I

Π
I

I I

Π
I

I I I

a a a a I I T a a

I a a a Ta Ta a

I T a a a Ta Ta a

= ( ) ⊗ + ∂
∂

( ⊗ − ) + ∂
∂

( − + − ⊗ )

+ ∂
∂

[ − 2 − 2 ⊗ + ⊗ ( ) + ( ) ⊗ ]

+ ∂
∂

{ − + + ⊗ − [ ⊗ ( ) + ( ) ⊗ ]}.

1 2
1 1

3
1 1

4
3

2
1
2

1

(129)

If we decompose the stress tensor as qT T a a= + ⊗o , where
a T a·( ) = 0o it is easy to show that I I=k ok

, where Iok
are the invariants

presented in (127), (128) defined in terms of To. More generally from
(129) it is possible to show (see [32]) that

ε εθ θT T( , ) = ( , ).o (130)

If the constraint only affects the fibres in traction then (122) is
replaced by

ε g θa a·( ) ≤ ( ), (131)

and considering the above results we have for this case

ε
ε

Π θ Π I I I I I θ g θ
I g θ Π I I I I θ g θ

T a a a
a a

( , , ) = ( , , , , , ) if ·( ) < ( ),
( ) + ( , , , , ) if ·( ) = ( ).

1 2 3 4 5

4 1 2 3 4 (132)

7. Final remarks

In the present paper we have studied the extension of the implicit
constitutive theories proposed by Rajagopal and his co-workers [4–8],
within the context of thermoelasticity. Some subclasses of such implicit
constitutive theories, where the strains are given as nonlinear functions
of the stresses and the temperature, could be very interesting for the
potential applications in the modelling of some metal alloys and rock
(see, for example, [9] and the references cited therein). It has been
found that such implicit constitutive theories and in particular some of
its subclasses, can be very useful and appropriate for addressing some
problems such as the incorporation of kinematical constraints into the
constitutive equations. In future works some boundary value problems
will be studied considering some specific expressions for the constitu-
tive functions and relations, as well as this, the incremental equations
will be obtained, to study how small thermal and mechanical waves
propagate, especially for the case of incompressible bodies.
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8 Interestingly, there is a second solution for (125) of the form
Π θ I g θ Π I I I I θT a( , , ) = ( ) + ( , , , , )1 1 2 3 4 , in which case the expression for the strain is

ε g θ Π
I

Π
I

I I

Π
I

I I

Π
I

I I I

I a a I I T a a

I a a a Ta Ta a

I T a a a Ta Ta a

= ( ) + ∂
∂

( ⊗ − ) + ∂
∂

( − + − ⊗ )

+ ∂
∂

[ − 2 − 2 ⊗ + ⊗ ( ) + ( ) ⊗ ]

+ ∂
∂

{ − + + ⊗ − [ ⊗ ( ) + ( ) ⊗ ]}.

1 2
1 1

3
1 1

4
3

2
1
2

1

From (126) and this solution, taking into account that (125) is a linear partial differential
equation, we could consider a more general solution of the form

Π θ αI βI g θ Π I I I I θT a( , , ) = ( + ) ( ) + ( , , , , ),1 4 1 2 3 4

where α and β are constants and α β+ = 1.

R. Bustamante, K.R. Rajagopal International Journal of Non-Linear Mechanics 92 (2017) 144–152

151



References

[1] C.R. Cattaneo, Sur une forme de l′équation de la chaleur éliminant le paradoxe
d′une propagation instantanée, Comptes Rendus 247 (4) (1958) 431–433.

[2] H.W. Lord, Y.A. Shulman, Generalized dynamical theory of thermoelasticity, J.
Mech. Phys. Solids 15 (1967) 299–309.

[3] M.A. Ezzat, A.S. El-Karamany, The relaxation effects of the volume properties of
viscoelastic material in generalized thermoelasticity, Int. J. Eng. Sci. 41 (2003)
2281–2298.

[4] K.R. Rajagopal, On implicit constitutive theories, Appl. Math. 48 (2003) 279–319.
[5] K.R. Rajagopal, The elasticity of elasticity, Z. Angew. Math. Phys. 58 (2007)

309–317.
[6] K.R. Rajagopal, A.R. Srinivasa, On the response of non-dissipative solids, Proc. R.

Soc. Lond. A 463 (2007) 357–367.
[7] K.R. Rajagopal, A.R. Srinivasa, On a class of non-dissipative solids that are not

hyperelastic, Proc. R. Soc. Lond. A 465 (2009) 493–500.
[8] K.R. Rajagopal, Conspectus of concepts of elasticity, Math. Mech. Solids 16 (2011)

536–562.
[9] K.R. Rajagopal, On the nonlinear elastic response of bodies in the small strain range,

Acta Mech. 225 (2014) 1545–1553.
[10] K.R. Rajagopal, G. Saccomandi, The mechanics and mathematics of the effect of

pressure on the shear modulus of elastomers, Proc. R. Soc. Lond. A 465 (2009)
3859–3874.

[11] V.K. Devendiran, R.K. Sandeep, K. Kannan, K.R. Rajagopal, A thermodynamically
consistent constitutive equation for describing the response exhibited by several
alloys and the study of a meaningful physical problem, Int. J. Solids Struct. 108
(2017) 1–10.

[12] A. Oberbeck, Ueber die Wärmleitung der Flüssigkeiten bei Berücksichtigung der
Strömungen infolge von Temperaturdifferenzen, Ann. Phys. 243 (1879) 271–292.

[13] A. Oberbeck, Uber die Bewegungsercheinungen der Atmosphere, Sitz. Ber. K.
Preuss. Akad. Wiss. 383–395 (1888) 1129–1138.

[14] J.B. Boussinesq, Thèorie Analytique de la Chaleur, Gauthier-Villars, Paris, 1903.
[15] K.R. Rajagopal, M. Ruzicka, A.R. Srinivasa, On the Oberbeck-Boussinesq approx-

imation, Math. Mod. Meth. Appl. S 6 (1996) 1157–1167.
[16] K.R. Rajagopal, G. Saccomandi, L. Vergori, On the Oberbeck-Boussinesq approx-

imation for fluids with pressure dependent viscosities, Nonlinear Anal. Real. World
Appl. 10 (2009) 1139–1150.

[17] K.V. Mohankumar, K. Kannan, K.R. Rajagopal, Exact, approximate and numerical

solutions for a variant of Stokes' first problem for a new class of non-linear fluids,
Int. J. Non-Linear Mech. 77 (2015) 41–50.

[18] P. Chadwick, N.H. Scott, Linear dynamical stability in constrained thermoelasticity
I. Deformation-temperature constraints, Q. J. Mech. Appl. Math. 45 (1992)
641–650.

[19] N.H. Scott, Linear dynamical stability in constrained thermoelasticity II.
Deformation-entropy constraints, Q. J. Mech. Appl. Math. 45 (1992) 651–662.

[20] N.H. Scott, A theorem in thermoelasticity and its application to linear stability,
Proc. R. Soc. Lond. A 424 (1989) 143–153.

[21] D.J. Leslie, N.H. Scott, Incompressibility at uniform temperature or entropy in
isotropic thermoelasticity, Q. J. Mech. Appl. Math. 51 (1998) 191–211.

[22] N.H. Scott, Thermoelasticity with thermomechanical constraints, Int. J. Nonlinear
Mech. 36 (2001) 549–564.

[23] C.A. Truesdell, R. Toupin, The classical field theories. in: Flügge, S. (ed.) Handbuch
der Physik, Vol.III/1. Berlin, Germany: Springer, 1960.

[24] H.B. Callen, Thermodynamics and an introduction to thermostatics, Second ed.,
John Wiley & Sons, 1985.

[25] K.R. Rajagopal, A.R. Srinivasa, A.R. On thermomechanical restrictions of continua.
Proc. R. Soc. Lond. A 460 (2004) 631-651.

[26] J. Ignaczak, M. Ostoja-Starzewski, Thermoelasticity with finite wave speeds. Ofxord
Mathematical Monographs, Oxfords University Press, 2010.

[27] A.J.M. Spencer, Theory of Invariants. In Continuum Physics, Vol. 1, ed. A. C.
Eringen, pp. 239–353. New York, NY: Academic Press, 1971.

[28] Q.S. Zheng, Theory of representations for tensor functions - a unified invariant
approach to constitutive equations, Appl. Mech. Rev. 47 (1994) 545–587.

[29] M.H.B.M. Shariff, Nonlinear transversely isotropic solids: an alternative represen-
tation, Q. J. Mech. Appl. Math. 61 (2008) 129–149.

[30] M.H.B.M. Shariff, Physical invariants for nonlinear orthotropic solids. Int. J. Solids
Struct. 48 (2011) 1906–1914.

[31] C.A. Truesdell, W. Noll, The non-linear field theories of mechanics. (ed. S.S.
Antman) 3rd edn. Berlin, Germany, Springer, 2004.

[32] R. Bustamante, K.R. Rajagopal, Study of a new class of non-linear inextensible
elastic bodies, Z. Angew. Math. Phys. 66 (2015) 3663–3677.

[33] R. Bustamante, K.R. Rajagopal, On the consequences of the constraint of incom-
pressibility with regard to a new class of constitutive relations for elastic bodies.
Small displacement gradient approximation, Contin. Mech. Therm. 28 (2016)
293–303.

R. Bustamante, K.R. Rajagopal International Journal of Non-Linear Mechanics 92 (2017) 144–152

152

http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref1
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref1
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref2
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref2
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref3
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref3
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref3
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref4
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref5
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref5
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref6
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref6
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref7
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref7
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref8
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref8
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref9
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref9
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref10
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref10
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref10
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref11
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref11
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref11
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref11
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref12
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref12
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref13
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref13
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref14
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref15
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref15
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref16
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref16
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref16
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref17
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref17
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref17
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref18
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref18
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref18
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref19
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref19
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref20
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref20
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref21
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref21
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref22
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref22
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref23
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref23
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref24
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref24
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref25
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref25
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref26
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref26
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref27
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref27
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref27
http://refhub.elsevier.com/S0020-7462(17)30053-7/sbref27

	Implicit equations for thermoelastic bodies
	Introduction
	Basic equations
	Implicit relations for thermoelastic bodies
	Isotropic bodies
	The sub-class |∇ru|∼O(δ), δ⪡1
	The subclass wherein |h|∼O(δ), δ⪡1
	The subclass wherein |∇θ|∼O(δ), δ⪡1

	The sub-class |S|∼O(δ), δ⪡1
	Another alternative simplification
	The linearized theory of thermoelasticity for isotropic bodies

	Boundary value problems
	Uniform stress and temperature distributions
	Uniform traction of a cylinder
	Uniform shear of a slab

	Non uniform distributions for the stress and temperature
	A one-dimensional rod
	Inflation of an infinitely long cylindrical tube


	Constraints
	An isotropic thermoelastic body, which is mechanically incompressible but thermally compressible. The case |∇ru|∼O(δ), δ⪡1
	An intextensible transversely isotropic thermoelastic body

	Final remarks
	Acknowledgment
	References




