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Universidad Andres Bello

Santiago, Chile

Abstract

A connected graph G = (V,E) with m edges is called universal antimagic if for
each set B of m positive integers there is an bijective function f : E → B such
that the function f̃ : V → N defined at each vertex v as the sum of all labels of
edges incident to v is injective. In this work we prove that several classes of graphs
are universal antimagic. Among others, paths, cycles, split graphs, and any graph
which contains the complete bipartite graph K2,n as a spanning subgraph.
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1 Introduction

Let G = (V,E) be a graph with n vertices and m edges. Let B be a set of
m positive integers. For a bijective labeling of the edges of G with labels in
the set B, we define the function f̃ : V → N by setting f̃(v) to be the sum of
labels on edges containing v. If f̃ is an injective function, then we say that f
is a B-antimagic labeling of G. If for all sets B of m positive integers there
is a B-antimagic labeling of G, then we say that G is universal antimagic.
Hartsfield and Ringel in 1990 conjectured that any connected graph with at
least two edges has an {1, . . . ,m}-antimagic labeling. This question remains
open even restricted to trees [9]. Several classes of graphs have been shown to
be antimagic (see [2,3,5,6,13,14,15,11,4,7,10,12]).

The notion of universal antimagic graphs is motivated by the so called
weighted-k-antimagic graphs which are graphs with m edges admitting, for
any given vertex function w, an edge labeling f with image in {1, . . . ,m+ k}
and such that the function f̃ + w is injective. This notion was introduced
in [16] based on previous concepts presented in [8]. Among other results, in
[16] it was proved that any graph with maximum degree n − 1 is weighted-
2-antimagic. This motivates us to study universal antimagic graphs which
can be seen as the network version of antimagic labeling. We highlight that
in [8] it was noticed that no path Pi, for each i ∈ {3, 4, 5} has an antimagic
labeling using numbers in {−1, 0, . . . , i− 3}, and a similar observation is valid
for the graph K1,n. In contrast, in this work, we prove that paths, cycles,
split graphs and any graph containing a complete bipartite graph K2,n−2 as
spanning subgraph are universal antimagic.

We start with the case of paths and cycles which corresponds to connected
graphs with maximum degree 2. The proof is easy and it is omitted because
of space restrictions.

Proposition 1.1 Any connected graph G with maximum degree 2 is universal
antimagic unless it is a path of length one.

We can extend the previous result to any graph with maximum degree at
most two whose connected components are cycles of any length or paths of
odd length at least three.

Proposition 1.2 Any graph G with maximum degree 2 is universal antimagic
if it has no connected component being a path of even length or of length one.

Proof sketch. We assign the larger labels to the edges in cycles. Among
them, we assign the larger ones to one cycle, the second larger to the next
cycles and so on. Inside each cycle we proceed as in Proposition 1.1. The
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remaining connected components are paths of odd length at least three. In
this case their parity plays a crucial role, and further analysis is needed. �

A split-partition of a connected graph G = (V,E) is a partition {S,K,R}
of the set V , where S is an independent set and the following properties are
satisfied: (1) for each x ∈ S, NG(x) � K and (2) for each x ∈ K, R ⊆ NG(x),
where NG(x) denotes the set of neighbors of a vertex x in G.

In [3], Barrus proves that any connected graph with at least three vertices,
m edges and admitting a split-partition {S,K,R}, with K a set of pairwise
adjacent vertices, is {1, . . . ,m}-antimagic. It is not hard to see that the proof
of this result can be modified to show that graphs admitting a such split-
partition are universal antimagic. Therefore, the following result holds.

Theorem 1.3 Any connected graph with at least three vertices and admit-
ting a split-partition {S,K,R}, with K a set of pairwise adjacent vertices, is
universal antimagic. In particular, split graphs are universal antimagic.

In [13], Barrus’ result was extended to each graph G admitting a split-
partition {S,K,R}, where K induces in G a regular graph. The proof of this
result relies on arithmetic relations between the elements of the set {1, . . . ,m},
which do not hold for general sets of integers. In this work we prove that
a graph admitting a split partition with the set K having two elements is
universal antimagic. When S = ∅, this situation corresponds to graphs having
the complete bipartite graphK2,n−2 as a spanning subgraph. For clarity’s sake,
we first show that the complete bipartite graph K2,n−2 is universal antimagic.
We later extend the proof of this result to the following theorem.

Theorem 1.4 For each n ≥ 3, any connected graph containing the complete
bipartite graph K2,n−2 as a spanning subgraph is universal antimagic.

The proof that the complete bipartite graph K2,n−2 is universal antimagic
splits in two cases. We analyse the first case in a separated lemma; the second
one is considered inside the proof itself.

Lemma 1.5 Given numbers a > b > c and d > e > g, there are injective
functions σ, σ′ : {a, b, c} → {d, e, g} such that the functions x → x+ σ(x) and
x → x+ σ′(x) are injective, σ(a) �= d and σ′(c) �= g.

Proof sketch. We show that, if (σ(a), σ(b), σ(c)) represents σ, then (e, d, g),
(g, d, e) or (e, g, f) satisfies the conclusion. A similar idea works for σ′. �

Proposition 1.6 For each n ≥ 3, K2,n−2 is universal antimagic.
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Proof. The case n ≤ 4 was already considered in Proposition 1.1. We now
consider n ≥ 5. Let V = {x, w} ∪ {v1, . . . , vn−2} be the set of the vertices
of G := K2,n−2 where {x, w} is the independent set of size two. Given a
set B of m = 2(n − 2) positive integers y1 > · · · > ym, let f be the edge
labeling given by f(xvi) = yi and f(wvi) = yi+n−2, for each i ∈ {1, . . . , n−2}.
Then, f̃(vi) = yi + yi+n−2, for each i ∈ {1, . . . , n − 2}, f̃(x) =

∑n−2
i=1 yi and

f̃(w) =
∑n−2

i=1 yi+n−2. Thus,

f̃(x) > f̃(v1) > · · · > f̃(vn−2)

and f̃(x) > f̃(w). If f̃(w) �= f̃(vi), for each i ∈ {1, . . . , n − 2}, then f
is a B−antimagic labeling of G. Otherwise, f̃(w) = f̃(vi), for some i ∈
{1, . . . , n− 2}.

We shall prove that under some small modifications we can transform f
into a B-antimagic labeling f ′ of G.

We first consider the case i = 1. To ease the presentation, we define
a = y1, b = y2, c = y3, d = yn−2+1, e = yn−2+2 and g = yn−2+3. We have
that f̃(w) = a + d, a > b > c and d > e > g. Let σ be the injective function
given in Lemma 1.5 when applied to a, b, c, d, e and g. Then σ(a) �= d and
the function x → x + σ(x) is injective. We use σ to modify f on edges in
the set {wv1, wv2, wv3}. The modified labeling f ′ is given by f ′(wv1) = σ(a),
f ′(wv2) = σ(b) and f ′(wv3) = σ(c). It satisfies f̃(v) = f̃ ′(v) for all v /∈
{v1, v2, v3}. Moreover, if v′1, v

′
2, v

′
3 is the non-increasing order according to f̃ ′

of the vertices v1, v2, v3, we have

f̃ ′(x) = f̃(x)>a+ d = f̃ ′(w) = f̃(w) > f̃ ′(v1) > f̃ ′(v′2) > f̃ ′(v′3)

> f̃ ′(v4) = f̃(v4) > · · · > f̃ ′(vn−2) = f̃(vn−2).

This completes the proof in the case i = 1. It is clear that the case
i = n − 2 can be settled in a symmetric manner by modifying f in the
set {wvn−4, wvn−3, wvn−2}, according to the function σ′ given in Lemma 1.5.
When 3 ≤ i or i ≥ n− 4 we can proceed as before by modifying f in the set
{wvi−2, wvi−1, wvi} or in the set {wvi, wvi+1, wvi+2}, respectively.

Due to space restriction for the remaining case, n = 5 and i = 2, we shall
give only a brief sketch of the proof. In this situation, we have

f̃(x) = a+ b+ c > f̃(v1) = a+ d > f̃(v2) = b+ e > f̃(v3) = c+ g,

and f̃(w) = d+e+g = b+e. Hence, the modified labeling f ′ given by f ′(wv1) =
e and f ′(wv2) = d is a B-antimagic labeling for G, unless a+ e = b+d. When
this latter equality holds, the modified labeling f ′ given by f ′(wv2) = g and
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f ′(wv3) = e is a B-antimagic labeling of G, unless c + e = b + g. When
a+e = b+d and c+e = b+g the modified labeling f ′ defined by f ′(wv1) = g,
f ′(wv2) = d and f ′(wv3) = e is a B-antimagic labeling ofG, unless b+e = a+g.
Moreover, the modified labeling f ′ defined by f ′(wv1) = e, f ′(wv2) = g and
f ′(wv3) = d is a B-antimagic labeling of G, unless b+ e = c+ d.

If none of previous modifications work, that is when d + e + g = b + e =
a+ g = c+d, the modified labeling f ′ defined by f ′(xv1) = g and f ′(wv1) = a
is a B-antimagic labeling of G and the proof is completed. �

We now give the proof of the main contribution of this work.

Proof of Theorem 1.4. Let G be a graph with m edges and n ≥ 5 vertices.
Let {x, w} be the independent set of size two of the spanning subgraph K2,n−2
of G. Let B be any set of m positive integers and let us assume that the
elements of B are the integers 0 < ym < · · · < y1. The case when x and w are
adjacent is contained in Theorem 1.3. In fact, we can take S = ∅, K = {x, w}
and R the set of the remaining vertices.

We only consider the case where x and w are not adjacent in G. We assign
the values ym, . . . , y2n−5 to the edges in the graph induced by V \{x, w}. This
partial labeling defines partial sums at each vertex. Denote the vertices of
V \{x, w} by v1, . . . , vn−2, where the vertices are indexed in the non-increasing
order of their partial sums. Let f be the labeling of G obtained from this
partial labeling by assigning to the edge xvi the value yi, for i ∈ [n− 2], and
to each edge wvi the value yn−2+i. The labeling f satisfies

f̃(vn−2) < f̃(vn−3) < · · · < f̃(v1) < f̃(x).

If f̃(w) �= f̃(vi) for every i ∈ [n − 2], then f is a B-antimagic labeling of
G. Otherwise, there is a unique index i such that f̃(vi) = f̃(w). As n− 2 ≥ 4
we can assume that i + 2 ≤ n − 2 or that i − 2 ≥ 1. From the proof of
Proposition 1.6 we know that these two possibilities are symmetric. Hence, we
can assume that i ≥ 3. As in the proof of Proposition 1.6 we know that there
is a local modification f ′ of f in the set of edges {xvi, xvi+1, xvi+2}, such that
f̃(w) = f̃(vi) /∈ {f̃ ′(vi), f̃ ′(vi+1), f̃ ′(vi+2)}, the values f̃ ′(vi), f̃ ′(vi+1), f̃ ′(vi+2)
are distinct, and they lay in the open interval (f̃(vi+2), f̃(vi)). Hence, f ′ is a
B-antimagic labeling of G. �

References

[1] N. Alon, Combinatorial Nullstellensatz, Probab. Comput. 8, 7-29, (1999).

M. Matamala, J. Zamora / Electronic Notes in Discrete Mathematics 62 (2017) 159–164 163



[2] N. Alon, G. Kaplan, A. Lev, Y. Roditty and R. Yuster, Dense graphs are
antimagic, Journal of Graph Theory, 47(4), 297-309 (2004).

[3] M. Barrus, antimagic labeling and canonical decomposition of graphs.
Information Processing letters, 110, 261-263, (2010).

[4] F.-H. Chang, Y.-C. Liang, Z. Pan, X. Zhu, Antimagic Labeling of Regular
Graphs. Journal of Graph Theory 82(4): 339-349 (2016).

[5] Y. Cheng, Lattice grids and prims are antimagic, Theo. Comp. Sci., 374 (1-3)
66-73, (2007).

[6] D.W. Cranston, Regular bipartite graphs are antimagic. Journal of Graph
Theory 60 (3), 173-182, (2009).

[7] D. W. Cranston, Y.-C. Liang, X. Zhu, Regular Graphs of Odd Degree Are
Antimagic. Journal of Graph Theory 80(1): 28-33 (2015).

[8] D. Hefetz, Antimagic graphs via the Combinatorial Nullstellensatz, Journal of
Graph Theory, 50(4): 263-274, (2005).

[9] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press,
Inc.,Boston, 108-109, (1990).

[10] Y.-C. Liang, T.-L. Wong, X. Zhu, Antimagic labeling of trees. Discrete
Mathematics 331: 9-14 (2014).

[11] Y.-C. Liang and X. Zhu, Antimagic Labeling of Cubic Graphs. Journal of Graph
Theory 75(1): 31-36 (2014).

[12] J.-L. Shang, Spiders are antimagic. Ars Comb. 118: 367-372 (2015).
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