
Agent Server: Semantic Agent for Linked Data

Teofilo Chambilla1,a, Claudio Gutierrez2,b

1UTEC Universidad de Ingeniería y Tecnología, 2Department of Computer Science,
Universidad de Chile

atchambilla@utec.edu.pe, bcgutierr@dcc.uchile.cl

Abstract. The demo features Agent Server, a web platform allowing fully

distributed and decentralized querying on the Web of Linked Data. It

works under the REST principles, and is lightweight and provides a safe

environment in which users can develop and deploy software agents for

web computing and Semantic Web, independent of their own computing

devices and can run indefinitely. For this case study, We develop Nauti‐

LOD in a fully distributed version using reactive agent architectures.

Keywords: Agents, Linked Data, NautiLOD.

1 Introduction

In the literature, there are different approaches to address the navigation on the
Linked Open Data (LOD). Among them is the language NautiLOD[1,2], a declarative
language designed to specify navigation patterns in LOD. This language is based on
regular expressions on predicates RDF intertwined with tests of the type ASK SPAR‐
QL queries issued on the RDF resources present at each node (server). There are two
tools that implement the language NautiLOD related to our work. The first is the SW‐
PORTAL [3], a Web platform where expressions can be processed by NautiLOD
agents. A personal agent navigates NautiLOD semantic data sources for relevant infor‐
mation and provides notifications of results directly to user by email. The second tool
is the SWGET [4] application fully developed in JAVA. For the approach we are pre‐
senting here, it is relevant to highlight that both SWPORTAL and SWGET ap‐
plications are currently implemented in a centralized form. That is, to process a Nauti‐
LOD expression, a central node must make successive requests, using only the GET
method of the HTTP protocol, to the different SPARQL Endpoints for information.

We develop a fully distributed version using reactive agent architectures[7] and this
work is an extended of the presented case study in "specification language for delegat‐
ing tasks to the environment of the Web"[6]. For this, four servers have been configured
on the Microsoft Azure platform in which we replicated the data base of SPARQL
Endpoints dbpedia.org, freebase.org, geonames.org and yago.org respectively (Fig. 1).

2 Architecture for Distributed NautiLOD

http://www.utec.edu.pe/profesores/teofilo-chambilla
https://users.dcc.uchile.cl/~cgutierr/
http://www.utec.edu.pe/
https://www.dcc.uchile.cl/
mailto:tchambilla@utec.edu.pe
mailto:cgutierr@dcc.uchile.cl
https://swget.wordpress.com/

For allowing the agents to develop their capacities for processing task in LOD
is needed a high level of communication infrastructure between platforms. The
Agent Communication Language (ACL) established by FIPA would be the
most appropriate for it. On the other hand, an ideal platform for MultiAgent
systems would be JADE [5] because it has as characteristic a good communi‐
cation infrastructure. However, although it supports the HTTP protocol com‐
munications, is not completely oriented to the Web environment. For this rea‐
son, We develop a dedicated platform called Agent Server. The platform is de‐
scribed in https://github.com/tchambil/agentserver. It is based entirely on
the Web architecture and was developed with features of a REST API. The
Agent Server platform incorporates relevant information and functions for
managing agents from the behavior and life cycle point of view.
The architecture of this platform includes the Message Transport Protocol
Module for reliable processing of messages, which uses the ACL specified by
FIPA and managed by the methods GET, POST, PUT and DELETE of the
HTTP communication protocol. Likewise Agent Manager incorporates the
module responsible for the management of the platform and agents. All agents
in the Agent Server platform have the same actions implemented, thus allow‐
ing to develop their capabilities in a uniform manner in cotrolled environ‐
ments. Agent Manager, it is responsible for managing the life cycle, behavior
and the definition of knowledge (skills) agents; Main Manager, main module of
the platform, responsible for managing the operation of the Platform; Web
Controller is responsible for managing the interaction of events by users, han‐
dles HTTP requests using the JSON format and the choice of it is due to
both, the simplicity of their implementation; Persistence, responsible for stor‐

Fig. 1. Distributed NautiLOD

http://www.fipa.org/repository/aclspecs.html
https://github.com/tchambil/agent-server

ing all necessary information from agents, definitions, messages and the prop‐
erties required for the operation of the platform. Agent Server is an extension
of "AgentServerStage0".

In http://agentserver.herokuapp.com/ can be found an implementation of
an agentserver that can be executed and a tutorial to run it. On the other
hand, Fig. 2 shows the SPARQL Endpoints dbpedia.org, freebase.org, geon‐
ames.org and yago.org, AgentA, AgentB, AgentC and AgentD installed on
each server. Each of these agents has implemented a NautiLOD Engine[1,2],
which allows to process NautiLOD expressions and delegating tasks if it were
necessary.

3 NautiLOD Distributed Execution

Fig. 2. Architecture for Distributed NautiLOD

Fig. 3. NautiLOD language expression with actions.

http://basetechnology.blogspot.com/2012_03_01_archive.html
http://agentserver.herokuapp.com/

In http://agentserver.herokuapp.com/nautilodrun.do/ can be found an imple‐
mentation of Distributed NautiLOD and the following query was
tested: “Starting from DBpedia, find cities with less than 15000 persons, along
with their aliases, in which musicians, currently living in Italy, were born".
Fig. 3 shows the NautiLOD language expression. This expression is an RDF
file with the Test ASK interlaced and a FILTER which allows evaluating
triples that meet the established pattern. In addition, the expression incorpo‐
rates actions putTo(.) and exec(.) which will be interpreted by the players
involved, these actions are defined in the specification language for delegating
tasks to the environment of the Web[6]. The putTo(.) action indicates that
the result will be delivered to agent3@yagos.org agent after executing
the exec(.) action.

In what follows, we describe the execution of the Distributed NautiLOD ex‐
pression using agents:

The AgentA represents agent1@dbpedia.org starts the processing of the
NautiLOD expression and it obtains the description of Italy D(dbp:Italy) and
looks for URIs having dbp:hometown as a predicate and getting as result
those that satisfy this pattern.

There are several URIs belonging to other Endpoints, but according to the
initial expression, our interest is only URIs belonging to the Endpoint geon‐
ames.org. The AgentA communicates with the agent AgentB represents agen‐
t2@geonames.org to send the NautiLOD expression by a message expressed as
msg(AgentA, AgentB, REQUEST(PutTo(AgentC, Exec(Expr, Mdata))) where
AgentC represents agent3@yago.org and Expr represents the NautiLOD ex‐
pression, and Mdata represents the metadata necessary for the execution of
the task. When the request reaches the agent agent2@geonames.org, it evalu‐
ates the new NautiLOD expression with a reasoning similar to the one of the
initial agent and sent by the agent agent1@dbpedia.org.

The AgentB has to check on D(geo: Solarolo) if the query can be satisfied,
that is, whether this city has less than 15K habitants The AgentB at geon‐
ames.org contacts directly the AgentC to send the result (i.e., the URI geo:So‐
larolo) by type messages ACL expressed as msg(AgentB, AgentC,
REQUEST(Result(Ri))).

Optionally, the AgentC notifies the result of the task direct to the email of
the requesting user.

The end result of the task execution is represented by Fig. 9, where it can
be seen how decreases the workload on each endpoint as each of them gets less
and less URI that meet the specified pattern until the URIs obtained in the
server http://yagos.org/ give the final result.

4 Preliminary Results

http://agentserver.herokuapp.com/nautilodrun.do

 When a task is started the platform generates an identifier, this is to track
the same on the other Endpoints. Fig. 4 represents the interaction of the par‐
ticipating agents agent1@dbpedias.org, agent2@geonames.org and agent3@ya‐
gos.org and the following process takes place.

1. agent1@dbpedias.org receives the task represented by the expression Nauti‐
LOD which includes the actions to be performed the same as shown in Fig. 3.
These actions are PutTo and Exec where the agent agent1@dbpedias.org
must execute to resolve the task. The first URIs obtained from the dbpedi‐
a.org Endpoint are presented through Fig. 5 which represents all triples that
meet the dbp:hometown predicate.

Fig. 4. Interaction between distributed agents

Fig. 5. Result obtained in the Endpoint dbpedia.org

2. The result obtained by agent1@dbpedias.org will check if there are URIs
that belong to the geonames.org Endpoint. If in the case of these URI's the
agent agent1@dbpedias.org delegates the task to the agent agent2@geon‐
ames.org using the FIPA ACL message shown in Fig. 8.

3. The agent agent2@geonames.org evaluates the NautiLOD expressions with
a friction similar to the agent agent1@dbpedias.org. The URIs obtained from
the Endpoint geonames.org is presented by Fig. 6 which represents all triples
that meet the condition [ASK?ctx<geo:population>?pop:FILTER(?
pop>10000):].

Fig. 6. Result obtained in the Endpoint geonames.org

4. agent2@geonames.org delivers those URIs that meet the specified pattern to
the agent agent3@yagos.org using the ACL message represented in Fig. 8. The
final result of the task is represented by Fig. 9.
5. The agent agent3@yagos.org receives all the results and performs the writ‐
ing in its dataset to create the notification of the result to the user later.

Fig. 7. Result obtained in the Endpoint yago.org

6. Optionally, agent3@yagos.org reported directly to the email, the result
obtained.

The final result of the execution of the task is represented by Fig. 9, where
it is possible to observe how the workload in each Endpoint is decreasing, ob‐
taining less and less URIs that fulfill the specified pattern, leaving the result
of the URIs Obtained in the Server of http://yagos.org.

Fig. 8. ACL message

5 Conclusions

At first sight, it may seem this as a simple exercise or example. But, (1) devel‐
oping this lightweight agent infrastructure (with a basic communication lan‐
guage) that follows basic standards in the Agent field (and thus, able to be
further extended); (2) that uses Web protocols (particularly HTTP) and thus
scalable; (3) to have been able to implement over it a complex navigational
language like NautiLOD; has shown that to integrate these tasks is by no
means a trivial development. For this project, the homogeneity of data in the
Linked Data cloud was proved to be crucial (and probably one of the most
difficult challenges to scale this case to the whole Liked Open Data cloud).

6 Video of Execution

References

1. Valeria Fionda, Claudio Gutierrez, and Giuseppe Pirró. Semantic navigation on the
web of data: specification of routes, web fragments and actions. In Proceedings of
the 21st international conference on World Wide Web, pages 281–290. ACM, 2012.

2. Valeria Fionda, Giuseppe Pirrò, and Claudio Gutierrez. Nautilod: A formal language
for the web of data graph. ACM Transactions on the Web (TWEB), 9(1):5, 2015

3. Valeria Fionda, Claudio Gutierrez, and Giuseppe Pirro. The swget portal:
Navigating and acting on the web of linked data. Web Semantics: Science, Services
and Agents on the World Wide Web, 26:29–35, 2014

4. Valeria Fionda, Claudio Gutierrez, and Giuseppe Pirró. Semanticallydriven
recursive navigation and retrieval of data sources in the web of data, 2011.

Fig. 9. Final result NautiLOD Distributed

5. Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing multi
agent systems with JADE, volume 7. John Wiley & Sons, 2007

6. Teofilo Chambilla and Claudio Gutierrez. The notion delegation of tasks in Linked
Data through agents.Proceedings of the Alberto Mendelzon Workshop (AMW),
Monte Video, Uruguay, Jun 59, 2017

7. WOOLDRIDGE, Michael. An introduction to multiagent systems. John Wiley &
Sons, 2009.

