
A Bayesian Mixture-of-Gaussians Model for
Astronomical Observations in Interferometry

Lerko Araya-Hernández
Dpt. of Electrical Engineering

Universidad de Chile
Santiago, Chile

email: lerko.araya@ug.uchile.cl

Axel Osses
Dpt. of Mathematical Engineering

Universidad de Chile
Santiago, Chile

email: josilva@ing.uchile.cl

Jorge F. Silva
Dpt. of Electrical Engineering

Universidad de Chile
Santiago, Chile

email: josilva@ing.uchile.cl

Felipe Tobar
Center for Mathematical Modeling

Universidad de Chile
Santiago, Chile

email: ftobar@dim.uchile.cl

Abstract—The interferometry problem addresses the estima-
tion of an unknown quantity exploiting the interference among
measurements from different sources. These measurements are
obtained from the Fourier domain but are sparse and contami-
nated with noise. We propose a parametric, sum-of-basis, model
for these observations together with a Bayesian approach for
reconstructing interferometry images. Our main contributions
are the construction of a model with a complex-valued noise
source, an implementation of an approximate inference method
to train the model using Markov chain Monte Carlo and a quan-
titative comparison against the so-called dirty algorithm, where
the proposed approach outperformed the considered baseline.

Keywords—Interferometry, Bayesian inference, mixture of
Gaussians, signal processing, spectral estimation

I. INTRODUCTION

Interferometry is a class of methods where different signals
are combined in order to extract useful information from their
sources. Within radio astronomy, interferometry has proven to
provide a high-resolution representation of celestial objects by
sampling the sky in the frequency (Fourier) domain. In order to
do so, interferometers are comprised of an array of antennas,
usually identical or coplanar, that simulates an optical lens,
where the diameter of this virtual lens is directly related to the
largest distance among the antennas in the array. In this way,
each pair of antennas yields a visibility, i.e., an observation in
the frequency space [1], and the set of all visibilities compose
the observation in an interferometry setting; the main purpose
in this setting is then to convert the observations from the
frequency domain to the space domain.

Due to the invertibility of the Fourier transform, if we had
complete information of the spectrum (i.e., if the interferome-
try setting had no missing values or noise) we could determine
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the spatial representation directly. However, astronomical ob-
servations are always subjected to noise and missing data, this
is because the region where the spectrum is acquired is given
by the topology of the array of antennas and covering dense
areas requires an infinite number of them. Therefore, the main
challenge arising in real-world applications of interferometry
for radio astronomy is to recover the spatial representation
of celestial objects given noisy and sparse observations of its
spectrum.

A basic approach to recover astronomical images from
missing data in interferometry is the dirty method [2], which
just fills the missing observations with zeros and then applies
the discrete Fourier transform. Then, there are two main
methods for recovering astronomical images from missing
data in interferometry. The first one is CLEAN [2], proposed
by Högbom in 1974, which takes a deconvolution standpoint
and assumes that the image is a mixture of Gaussian radial
basis functions (RBFs). CLEAN finds the locations, magnitude
and widths of these RBFs sequentially by fitting a single
component to the image and then continuing sequentially with
the residual of the previous step. The second method is the
maximum entropy method (MEM), proposed by Maisinger et
al. [3], which consists on a nonparametric model that is learnt
by optimising the entropy of the image.

Although the aforementioned methods are the standard in
interferometry for radio astronomy, neither of these methods
are able to account for their own uncertainty, a property
that arises naturally in the Bayesian approach. In this sense,
Lochner et al. [4] proposed the method Bayesian Inference
for Radio Observations (BIRO), which models the visibility as
a function of atmospheric interference and the interferometer
noise. Our proposed model differs from BIRO in that we focus
on the image signal directly.

We address the Bayesian recovery of astronomical images
in interferometry by proposing a generative model composed
of a mixture of Gaussians equiped with a complex-valued
observation noise model. We then define the prior distributions
for all the elements in the model, discuss the implementation
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requirements of the proposed model and find their posterior
distributions in the light of observed data. The model is proved
to be superior to the dirty method in terms of the reconstruction
mean square error.

The remaining of the paper is organised as follows: Section
II presents the basic notions of interferometry, Section III
presents the proposed models for the astronomical images
and the observation noise, Section IV gives insight into the
implementation of the proposed algorithm and Section V
presents the simulation results and numerical comparison of
the proposed model. Finally, Section VI gives a discussion of
our finding and future research directions.

II. INTERFEROMETRY BASICS

The supporting concept behind interferometry is the Van
Cittert-Zernike Theorem [5], [6]. Denoting by U × V a 2-
dimensional frequency space and by X × Y a 2-dimensional
location space, the Van Cittert-Zernike Theorem states that
if an interferometer has a reception area A(x, y), (x, y) ∈
X × Y , then the visibility V (u, v), (u, v) ∈ U × V , of a set
of signals with intensity I(x, y), (x, y) ∈ X×Y , is given by:

V (u, v) =

∫ ∫
X×Y

A(x, y)I(x, y) exp{−2πj(ux+ vy)} dxdy

(1)

This means that (i) the visibility V and (ii) the intensity
I of the astronomical image—in the space domain—masked
with the acquisition function A are Fourier pairs. Therefore,
a successful reconstruction of the image intensity I requires
either a dense acquisition function A (hardware), or an efficient
reconstruction algorithm to cater for the points masked by A
(estimation theory).

Standard methods to deal with the aforementioned challenge
rely on the properties of the Fourier transform and address this
problem from a deconvolution point of view. Despite the ef-
fectiveness of those approaches, they fail to provide a measure
of uncertainty of its estimates. The inherent uncertainty in the
observations in radio astronomy is our motivation to focus on
the recovery of astronomical observations in interferometry
from a Bayesian standpoint.

III. A BAYESIAN PARAMETRIC MODEL FOR OBSERVATIONS
IN INTERFEROMETRY

Our approach relies on a parametric model for the image
I that admits closed-form Fourier spectrum, this way, the
visibility V is also a parametric model that is learnt from the
observations. Then, as the parameters of I and V are linked
via the Fourier transform and the Van Cittert-Zernike Theorem,
fitting the model to V in the frequency domain provides the
parameters of the image I in the space domain and vice versa.
We consider a mixture-of-Gaussians for two reasons: First,
the square exponential functions are invariant under linear
(e.g., Fourier) transformations [7]. Second, they are universal,
meaning that they can approximate any continuous functions
to a desired degree of precision [8].

A. Generative model

Let us consider an image I : R×R→ R and model it a as
a mixture of Gaussian functions of the form

I(x, y) =

NB∑
i=1

βiψi(x, y)

∀i = 1, ..., NB βi ∈ R;ψi : R× R→ R

with ψ(x, y) the basis functions given by

ψi(x, y) =
1√
2πl

exp

− 1

2l2

∣∣∣∣∣∣∣
∣∣∣∣∣∣
[
x
y

]
−

[
Cix
Ciy

]∣∣∣∣∣∣
∣∣∣∣∣∣∣
2
 , (2)

equiped with a lengthscale parameter l and centres of the ith

RBF given by Cix, Ciy in the location space.
Owing to Van Cittert-Zernike Theorem, assuming a perfect

(constant) acquisition function A, and taking advantage of
the linear properties of the Fourier transform, the visibility
function V is also a mixture of Gaussians given by eq. (3).

V (u, v) =

∫ ∞
−∞

∫ ∞
−∞

NB∑
i=1

βiψi(x, y)

· exp {−2πjux} exp {−2πjvy} dxdy

=

NB∑
i=1

βi

∫ ∞
−∞

∫ ∞
−∞

ψi(x, y)

· exp {−2πjux} exp {−2πjvy} dxdy

=

NB∑
i=1

βil

· exp

{
−2π2

(
u2 + v2

)
1/l2

+ j2π(Cixu+ Ciyv)

}
(3)

Thus, renaming the model parameters according to

αi = βil (4)

φi(u, v) = exp

{
−2π2

(
u2 + v2

)
1/l2

+ j2π(Cixu+ Ciyv)

}
(5)

we have the model for the visibility V by:

V (u, v) =

NB∑
i=1

αiφi(u, v).

Notice that the proposed model results in a complex-valued
RBF model for the visibility. For general hypercomplex-valued
kernel models, the reader is referred to [9], [10], [11], [12],
[13], [14].



B. Noise model

Recall that the observations are complex-valued, therefore,
we represent the noise in a general complex-valued manner,
that is, introducing correlations between the real and imaginary
channels based on the latent variable representation proposed
in [15]. The noise-corrupted observation model is therefore

Vobs(u, v) =

NB∑
i=1

αiφi(u, v) + η(0, C, P ) (6)

where η(0, C, P ) is a (possibly noncircular [16]) complex-
valued random variable with probability density function

f(z) =
1

π|Σ|
exp

−
1

2

[
z − µ
z̄ − µ̄

]T [
C P
P C

]−1

︸ ︷︷ ︸
Σ−1

[
z − µ
z̄ − µ̄

]
(7)

where z denotes the complex conjuate z, and the covariance
C and the pseudocovariance P are defined by eq. (8)

C = E[(z − µ)(z − µ)
T

]; P = E[(z − µ)(z − µ)T ] (8)

Finally, recall that general complex-valued random variables
have non-vanishing pseudocovariances [15].

C. Finding the posterior distribution of the model

We aim to represent the uncertainty in the latent spectrum
resulting from the missing observations, therefore, we take a
full Bayesian approach and compute the posterior densities of
all the parameters of the proposed model. In this sense, let
us denote the observation locations by U = {uk, vk}Ns

k=1 and
the observed visibilities by V = {Vk}Ns

k=1, then the posterior
distribution of the proposed model parameters (denoted by
θ = {C,P, l, αi, Cix, Ciy}) are given by

p(θ|U, V ) = p(θ)

Ns∏
k=1

p(Vk, uk, vk|θ)

= p(θ)

Ns∏
k=1

1

π|Σ|
exp

{
−1

2
eTk Σ−1ek

}
(9)

where Σ is defined by C and P as in eq. (7), and ek is the
error or discrepancy between the proposed model and the kth

observation given by

ek =

[
Vk − V (uk, vk)

Vk − V (uk, vk)

]
.

We have denoted the prior over the parameters by p(θ)
and factorised the likelihood due to the independence of the
observations given the model parameters.

Finding the full posterior allows us to compute error bars,
modes and higher-order statistics. In particular, we can com-
pute the maximum-a-posteriori parameters for point estimates.
This is given by

θ∗ = argmax
C,P,l,αi,Ci

x,C
i
y

p(C,P, l, αi, C
i
x, C

i
y|U, V ).

These parameters, via the notation introduced in eq. (4), can
then be used to compute the parameters of the image model
I .

IV. IMPLEMENTATION DETAILS

There are a number of practical considerations that need
to be addressed to implement our proposed model. These
are related to the representation of complex-valued data in
the scientific computation packages used, choice of the prior
distributions of the model parameters, and the numerical
differences between the theoretical Fourier transform and its
numerical approximation. We next refer to these aspects.

A. From complex to real valued parameters

In order to avoid numerical stability issues and compatibility
with general available functions in Python, we represent the
proposed models (both for the image I and the visibility V )
in R2 according to

V real(u, v) =

 Real
(∑NB

i=1 αiφi(u, v)
)

Imag
(∑NB

i=1 αiφi(u, v)
)


where the noise is now given by

ω(0,Σω) ∈ R2 (10)

and the covariance Σω is a function of both the covariance
C and pseudocovariance C of the complex-valued noncircular
noise process η.

B. Choice of the prior distributions

The computation of the posterior distribution requires a
model (likelihood), an approximate inference procedure (in
our case Markov chain Monte Carlo) and prior distributions.
The prior distributions encode all previous knowledge about
the problem at hand and the properties that the practitioner
would like to introduce (such as regularisation penalties).

Due to numerical representation of the data to be analysed,
we need to ensure positivity of all centres and the weight pa-
rameters α. Additionally, the lengthscales have to be positive,
they are the width of the RBFs. Consequently, we choose the
following priors:

α ∼ Gamma(αα, β0) l ∼ Gamma(αl, β0)

Cix ∼ Gamma(αCx, β0) Ciy ∼ Gamma(αCy, β0)

In order to ensure positive definiteness of the noise co-
variance matrix, we use a prior distribution according to the
Lewandowski-Kurowicka-Joe method (LKJ) [17]

Σω ∼ LKJCholesky(η0, d0).

In this distribution, the parameter η0 controls the indepen-
dence of each covariance. Under Σω ∼ LKJCholesky(η0, d0)
samples of the covariance matrix Σω are obtained with a
probability proportional to det[Σω]η0−1.



For all prior distributions chosen, the parameter β0 is
fixed manually and the remaining hyperparameters1 have been
optimised according to maximum likelihood.

C. Relationship between discrete- and continuous-time
Fourier transforms

The observations in interferometry are obtained through
the discrete Fourier transform (DFT), whereas the proposed
method links the parameters of the image and visibility mod-
els according to the continuous-time Fourier transform. The
discrepancy between these transformations yields a scaling in
the frequencies with respect to one another.

Recall that the 2-dimensional Fourier transform of a func-
tion f(x, y) at frequencies (u, v) is given by

Fc(u, v) =

∫ ∫
f(x, y) exp

(
−2πj(ux+ vy)

)
dxdy (11)

and that the discrete Fourier transform by

Fd(u, v) =

N−1∑
x=0

M−1∑
y=0

f(x, y) exp

(
−2πj

(
ux

N
+
vy

M

))
In this sense, the frequencies u and v have to be scaled

according to 1
N and 1

M respectively, and, as expected, they
range between 0 and N and M respectively.

V. SIMULATIONS

We validated the ability of the proposed methodology to
recover images from their spectrum with missing data and
added (observation) noise. We generated a 50 × 50 image,
shown in Fig. 1, through a mixture of three Gaussians with
the following parameters:
• weights: α = 7.52
• lengthscale: l = 3
• centres: [(25, 25), (40, 30), (10, 10)]
• covariances: σ2

x = 0.02, σ2
y = 0.02 and σxy = 0.0002
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Fig. 1: Synthetic image generated by a mixture of Gaussians.

Then we computed the discrete Fourier transform of this
image, added noise and randomly removed some of the data—
the remaining datapoints were then regarded as observations
from an interferometer. We report results for two variants of
this approach using 50% and 70% of the samples to train
the models, the aim of this experiment was to show how, in

1By hyperparameters we mean parameters of the prior distributions of the
parameters of the model.
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Fig. 2: Posterior distributions of the model parameters for 50% (left column) and 70%
(right column) of data. Using more data results in narrower posterior distributions.

TABLE I: MEAN SQUARE ERROR (MSE) FOR IMAGE RE-
CONSTRUCTION USING THE PROPOSED AND DIRTY METH-
ODS FOR 50% AND 70% OF OBSERVATIONS.

Amount of data Proposed method MSE Dirty method MSE
50% 1.08 · 10−1 1.16
70% 1.51 · 10−2 9.47 · 10−1

a Bayesian rationale, more data results in narrower posterior
distributions.

Fig. 2 shows the posterior distributions for both scenarios,
where we can see that the model was able to give unbiased
estimates, as well as to reduce uncertainty in the estimates as
more data are seen. Figs. 3 and 4 show the reconstructions
for the 50% and 70% scenarios respectively, where we have
compared our proposal to the dirty method [2], which consists
in setting the missing visibilities to zero and applying the
inverse Fourier transform. We have used the same colour
scale in all figures to emphasise how the proposed method
outperformed the dirty one in both scenarios. Furthermore,
Table I shows the reconstruction error for both methods, where
the proposed approach reported a performance improvement
of more than one order of magnitude than the dirty approach.
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(d) Proposed method residual

Fig. 3: Image reconstruction using 50% of data. Notice how the proposed method
successfully learns the constant regions of the image unlike the dirty method.
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(d) Proposed method residual

Fig. 4: Image reconstruction using 70% of data. The proposed method recovered the
rightmost centre much more accurately in the presence of more data (see Fig. 3).

VI. DISCUSSION

We have proposed a Bayesian parametric model for ob-
servations in interferometry applications to radio astronomy.
The model has desired analytic properties given by its closed
form under the Fourier domain, this resulted in having dual
models for the space and frequency models with parameters
that are linked via the Van Cittert-Zernike Theorem. The
model also features a complex-valued observation noise and
can be trained using Markov chain Monte Carlo to find the
posterior distribution of all the parameters. The proposed
methodology was validated against the dirty method [2] in
terms of the reconstruction MSE for two different levels of
missing data. Additionally, we would like to emphasise that
another advantage of the proposed approach is its flexibility:
the basis functions and prior distributions can be chosen based
on expert knowledge.

The next steps to validate the proposed approach is to test it
on real-world images of celestial objects such as those shown
in Fig. 5 (obtained from ALMA). The main challenge in this
setting is the absence of a ground truth and therefore the
comparison has to be made based on the recommendation of a
specialist (astronomer) and other methods such as CLEAN [2]
and MEM [3].

(a) Reconstructed Image (b) Spectrum of reconstructed image

Fig. 5: A reconstructed image and its spectrum. These real-world data have been obtained
from ALMA and therefore there is no ground truth for them.

REFERENCES

[1] G. Taylor, C. Carilli, and R. Perley, Synthesis Imagining in Radio
Astronomy II. Astronomical Society of the Pacific, 1999.
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