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a b s t r a c t

Many fields of study, including medical imaging, granular physics, colloidal physics, and active matter,
require the precise identification and tracking of particle-like objects in images. While many algorithms
exist to track particles in diffuse conditions, these often performpoorlywhen particles are densely packed
together—as in, for example, solid-like systems of granular materials. Incorrect particle identification can
have significant effects on the calculation of physical quantities, which makes the development of more
precise and faster tracking algorithms a worthwhile endeavor. In this work, we present a new tracking
algorithm to identify particles in dense systems that is both highly accurate and fast. We demonstrate the
efficacy of our approach by analyzing images of dense, solid-state granular media, where we achieve an
identification error of 5% in theworst evaluated cases. Going further, we propose a parallelization strategy
for our algorithm using a GPU, which results in a speedup of up to 10× when compared to a sequential
CPU implementation in C and up to 40× when compared to the reference MATLAB library widely used
for particle tracking. Our results extend the capabilities of state-of-the-art particle tracking methods by
allowing fast, high-fidelity detection in dense media at high resolutions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Extracting quantitative information from image data is at the
heart of scientific fields ranging from biology [1,2] to physics [3,4].
Often, the first step in image analysis is the identification of objects
of interest, i.e. ‘‘particles’’. As examples, one can look to the identi-
fication of stars in telescope images, the tracking of individual cells
in a biomedical experiment, or the tracking of grains of sand or
other media in table top physical systems. While many algorithms
exist to identify particles that are diffusely distributed throughout
an image, e.g. stars in a telescope image, there are few algorithms
that are able to reliably identify particles that are in close contact,
as would be encountered in a dense population of living cells or a
closely-packed colloidal system.

One particularly interesting case, which has been used to some
degree as a model system, is the tracking used to study the dy-
namics of confined, quasi-two-dimensional granular systems. The
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typical experimental setup consists of granular particles placed in
a shallow, enclosed container that is vibrated vertically. Measure-
ments are performed by taking images or videos with a camera
from above. Physically, this system is of interest because it under-
goes state phase transitions (e.g. liquid to solid) when energy is
injected into it during vibration [5,6]. The confined geometry has a
great advantage because it permits the observation of both individ-
ual trajectories and collective behavior, which enables one to study
both themicroscopic andmacroscopic dynamics. Computationally,
this system creates a complex and challenging tracking situation
because following particles through the phase transition requires
particle identification in both diffuse and dense conditions.

From a computational point of view, this kind of identification
and tracking analysis is performed with two main post-processing
strategies: (i) particle-image velocimetry (PIV) and (ii) particle
tracking (PT) [7]. PIV has the advantage that it is capable of ex-
tracting motion vector fields from images without requiring the
identification of each particle. This is achieved by looking at the
correlation of small windows of the field of view from one image
to the next. For computer vision, this kind of method corresponds
to the so called ‘‘optical flow’’ family of algorithms [7]. The main
disadvantage of PIV methods is that the information about in-
dividual particles is lost, thus statistical measurements such as
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Fig. 1. Comparison of PT segmentation. The two scenarios: sparse (upper row), and dense (lower row) of PT are shown using synthetic images. The input column shows
the granular media input image. Red dots show particle detection result for template free (column 2) and template based algorithm (column 3). Green dots show missing
particle for the template based algorithm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

velocity profiles are only approximated [8,9]. On the other hand PT
methods have the advantage of extracting information at the single
object level, being a direct and more precise way to look at the
microscopic details [10]. However, PT has the disadvantages that
it comes at significant computational cost and fails in situations
where particles are so closely packed together that individuals are
difficult to detect.

This work proposes an automatic PTmethod that can handle in-
contact media as well as accelerate its performance by offloading
its most computationally-intensive tasks to a Graphics Process-
ing Unit (GPU). GPU computing is a useful tool for the field of
computational physics as it can produce up to an order of mag-
nitude of speedup on data-parallel problems when compared to
a CPU [11,12]. We illustrate the strategy used to accelerate the
algorithm with GPU computing and benchmark its effectiveness
through analysis of synthetic images that imitate the well-studied
yet computationally challenging physical system that was first
studied by Olafesn and Urbach [13]: quasi-two-dimensional grains
undergoing a phase transition from a diffuse-gas like state to a
dense solid-like state. This system serves as an ideal candidate
for this purpose as its transitions from a relatively easy tracking
problem in the gas state, where particles are fully separated, to
a nearly intractable one in the solid state, where particles clump
together to create large borderless units. For a review of the
physics behind this system see [14]. The proposed strategy allows
us to handle experiments that are dense, long in duration, and
recorded at high resolution all in a single computer. The paper
is organized by first presenting a review of common PT methods
in Section 2. Section 3 presents the new algorithm to handle in-
contact particles, and Section 4 presents the GPU implementation
of the proposed algorithm. Finally, in Section 5we detail the results
and in Section 6 we summarize the main findings.

2. Related work

Particle tracking problems have been extensively addressed in
the literature and are typically separated into three stages: seg-
mentation, correspondence, and parameter extraction [7]. The first
stage aims to identify the objects in the image, from simple dot-like
features to complex shapes. The correspondence stage attempts
to match identified objects from one frame (or set of frames) to
the next. At the end the set of identified trajectories are studied,
where the parameter extraction stage obtains descriptors such as

trajectory length, mean speed, directionality, and also domain-
specific descriptors such as mean squared displacement, bond-
orientational parameter, structure factor, velocity correlations and
so forth. In the two dimensional granular system we work with
here, correspondence is simple as data is obtained from controlled
conditions with regard to lighting and camera parameters, thus a
closest neighbor criterion has been reported as satisfactory [15].
For this reason, we focus our efforts on the segmentation stage,
which has a higher degree of difficulty.

In the case of the system we study, the segmentation stage is a
straightforwardprocess if objects are sparse andhavehigh contrast
and uniform shape, such as those shown in the upper row of Fig. 1.
This task becomes much more difficult in dense configurations,
e.g. as shown in the lower row of Fig. 1.Within this context, several
segmentation methods have been propose. These can be classified
in as those that involve a template model and those that do not,
which we detail in the following subsections.

2.1. Template Free PT methods (TFPT)

Perhaps the simplest strategies for performing image segmen-
tation are the template free PTmethods (TFPT), which are based on
the detection of local intensity maxima (or minima) of the image.
To illustrate the key idea, a practical realization of the algorithm is
shown in Fig. 1b, e. The procedure has 3 steps: filtering (Gaussian
filter with parameters σ = 2.5), a regional maximum operation
(imregionalmaxMATLAB function), and finally a step to reduce each
object found to a single location. By construction, the location of
a particle’s center is limited to a precision of 1 pixel. The main
drawback of this approach is that when particles are in-contact,
their centers are no longer local maxima/minima, as shown in
Fig. 1e. This causes most TFPT methods to systematically overde-
tect particles in high-density regions, as well as miss particles in
other regions.

For an image of N pixels TFPT methods have a computational
complexity of O(N), where N is the number of image pixels [16].
Thus, for a movie of T frames, the overall complexity is O(TN),
which makes the algorithm fast and suitable for parallel archi-
tectures. The main issue with TFPT methods is that they fail in
dense scenarios. The difficulty in these cases is that particles can
be in contact, thus there is no measurable decrease in the image
intensity between neighboring peaks. Another issue is that, due to
the lack of geometrical constraints, there is no built-in crosscheck
for the minimum spacing between particles, although this can be
added as a post-processing step.



10 M. Cerda et al. / Computer Physics Communications 227 (2018) 8–16

Fig. 2. Proposed algorithm. Starting from the input image (from a confined quasi-two-dimensional experiment [5,6]) a first pixel-level peak detection is performed, followed
by adding missing seeds in the difference image (peaks added in green). After peaks are refined with subpixel precision, the particle cleaning process is applied to remove
false positive peaks by removing identifications of abnormally high intensity, thresholding from data histogram distribution, or associated to small Voronoi cells, obtaining
the final output peaks. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2.2. Template Based PT methods (TBPT)

Template based particle tracking (TBPT) methods offer a more
precise alternative to the TFPT methods, but come at the cost
of increased complexity. One potent and widely-used variant of
this family was proposed by Franklin & Shattuck [15], which we
choose in this work to base our comparisons. This serves as a good
standard because the Franklin & Shattuck algorithm starts by sim-
plifying the tracking problem and assuming that all particles have
the same unknown diameter (D) and can be fit to a 2D hyperbolic
intensity profile. The position of a particle is then estimated from
the parameters of this fit.

Concretely, one often uses the hyperbolic particle intensity
profile

Ip(x⃗;D, ω) =
1
2
[1− tanh(

|x⃗| − D/2
ω

)], (1)

where D is the particle diameter and ω defines the ‘sharpness’ of
its border. The algorithm starts by generating a filtered image

χ̃2
1 (D, ω) =

I2 ∗ Ip − 2I ∗ I2p
⟨I3p ⟩

+ 1, (2)

where I is the input image, ∗ is the convolution operation, and
⟨a⟩ >= 1 ∗ a. Similar to TFPT methods, local maxima with pixel
precision are obtained from χ̃2

1 . To achieve sub-pixel accuracy,
particles positions are estimated with a minimization process of
the target function χ2

2 defined as follows:

χ2
2 (x⃗n;D, ω) =

∫ [
I(x⃗)− Ic(x⃗, x⃗n;D, ω)

]2dx⃗, (3)

Ic(x⃗, x⃗n) =
∑
n

Wn(x⃗)Ip(x⃗− x⃗n;D, ω), (4)

whereWn(x⃗) is aweight functionwith value one inside the Voronoi
[17] area of particle n and zero elsewhere, and I(x⃗) the input image.
The target function χ2

2 can be minimized using the Gauss–Newton
iterative algorithm [18] from the initial approximated solution
using Eq. (3). In this case the minimization condition is given
by ∂χ2

2 (x⃗
∗
n;D

∗, ω∗)/∂ x⃗n = 0. Numerically, at each iteration the
particle positions are corrected by ∆

∆ = −H−1g⃗, (5)

whereH is the HessianMatrix and g⃗ the gradient vector. Finally, to
link particles from one frame to the next, the total displacement
is minimized. The combinatorial space is greatly simplified if a
maximum traveled distance D/2 is imposed, a condition directly
related to the experimental particle speed and camera sampling
rate.

The TBPT implementation by Franklin & Shattuck [15] is shown
in black in the pseudocode of the Algorithm 1 . In terms of com-
putational complexity (for an image of N pixels and P particles)
the algorithm is dominated by the minimization of χ2

2 by Gauss–
Newton method stage of O(PN). Thus, for a movie of T frames, the
overall complexity is O(TPN). The algorithm checks for minimal
distance, but still fails to detect objects that are closely packed as
the seeds of the iterative process are still local maxima, as shown
in Fig. 1f. The crux of this failure is that in dense regions there are
multiple solutions for the minimization of the target functions, χ̃2

1
and χ2

2 . Compounding this disadvantage is the fact that the algo-
rithm experiences considerable slowdown when implemented in
a sequential way.

3. Proposed tracking algorithm for dense granular media

The TFPT and TBPT methods just described fail to correctly
detect particles in high density configurations, were objects are in
direct contact. In this section we propose our new solution for this
problem.

3.1. Adding missing seeds

The key consideration for our approach is the fact that the TBPT
segmentation problem comes from missing peaks in the initial
stage. We add an iterative process to the TBPT algorithm over the
target function remainder ∆I(x⃗), defined as

∆I(x⃗) =
[
I(x⃗)− Ic(x⃗, x⃗n;D, ω)

]2
. (6)

With this step, the intent is to recover missing seeds by looking
at local maxima with pixel precision in Eq. (6), as illustrated in
Fig. 2a. As a result, the newmethod is able to deliver peak detection
in high-density scenarios at sub-pixel accuracy. However, this
solution can deliver false positives, an issue that we handle in a
cleaning stage we detail in the following subsection.
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3.2. Cleaning particles

The proposed solution to add missing seeds delivers false posi-
tive detections thatmust be handled. Typically these false positives
occur in dense areas (solid phase) and are associated with bright
pixel intensities, as highlighted in purple in Fig. 2b. To identify
particles in the solid phase, we compute the Voronoi diagram
for all peaks and then use the associated Voronoi cell area as an
estimation of each particle’s area. If a given particle area is lower
than a threshold area A (A = 50 pix2 for our images with D = 9 pix
and w = 1.49 pix), then the particle is identified as belonging to
the solid phase. In this case, if its intensity is higher than a certain
threshold (τ ), then it is filtered out. We automatically compute
the intensity threshold τ as τ = µ − 1.5σ , where µ and σ are
the mean and standard deviation of all particle intensities (at the
center pixel). The introduction of new parameters for this filtering
increases the algorithm’s complexity. However, the minimal area
A can be estimated from the system itself, and the image intensity
τ can be estimated reliably from the data as explained. With this
approach, the segmentation process becomes robust even in highly
packed configurations. The proposed algorithm is summarized in
Algorithm 1 (red text), and illustrated in Fig. 2a, b.

3.3. Example application and implications for physical calculations

In order to demonstrate the effectiveness of the proposed
algorithm, and in particular the implications on subsequent cal-
culations based on particle positions, we now perform a test.
We compare results obtained from particles detected with our
algorithm and those obtained from Shattuck’s et al. [15]. With the
identified particles from each of these, we then compute the static
structure factor—a physical quantity that gives direct insight into
the spatial arrangement of the particles.

The experimental setup and procedures are similar to those
presented in [5,6]. The surface filling fraction is φ = NπD2/4L2 ≈
0.92. Particles are stainless steel spheres of diameter D = 1 mm.
Thenumber of particles isN ≈ 11 700. The cell’s lateral dimensions
are Lx = Ly ≡ L = 100D, and its confinement height is
h = (1.94 ± 0.02)D. The whole system is forced sinusoidally with
displacement z(t) = A sin(ωt), with f = ω/2π = 80 Hz and
normalized acceleration Γ = Aω2/g = 4.50 ± 0.01, where g is
the gravitational acceleration.

The structure factor is ameasure of the intensity of density fluc-
tuations in Fourier space. The particle density field is described as

ρ(r⃗, t) =
N∑
j=1

δ(r⃗ − r⃗j(t)), (7)

where δ is the Dirac delta function. Particle positions r⃗j(t) in the
plane (x, y) are determined for each time t . Experimentally, there
is no access to the z coordinate. Thus, the 2D microscopic density
field Fourier components are

ρ̂(k⃗, t) =
∫

d2r eir⃗·k⃗ρ(r⃗, t) =
N∑
j=1

eik⃗·r⃗j(t). (8)

The static structure factor S(k⃗) is then defined as

S(k⃗) =
⟨|̂ρ(k⃗, t)− ⟨̂ρ(k⃗, t)⟩|

2
⟩

N
, (9)

where ⟨ ⟩ denotes time averaging. In general, ⟨ρ(k⃗)⟩ ̸= 0 due
to inhomogeneities induced by boundary conditions. The wave
vectors are computed from k⃗ = π (nx ı̂ + ny ȷ̂)/L, where nx, ny ∈ N.
We have previously shown that the system is isotropic, i.e. S(k⃗) =
S(k = |k⃗|) [6].

Fig. 3. (a) Structure factor comparison. Red squares represent S(k) computed from
positions obtained form the original Shattuck algorithm; blue circles correspond
to the computations carried out with the positions detected with our improved
algorithm. (b) Image of about a quarter of the experimental system (L/2 × L/2).
The green dots show the particle positions detected with our algorithm, whereas
red dots show those obtained with Shattuck’s version. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

In Fig. 3a we present S(k) computed using positions obtained
with our algorithm and Shattuck’s. A total of 6000 images were
acquired at 10 fps, which provides sufficient time between im-
ages to ensure decorrelation, thus improving the statistics (under
these conditions the time average ⟨ ⟩ is equivalent to an ensemble
average). Although qualitatively both curves are very similar, for
a given wavenumber, S(k) computed from positions obtained via
Shattuck’s algorithm is systematically larger than the one com-
puted via ours. This systematic difference is about 40%, which is
quite large when quantitative information is required from the
static structure factor. As an example, for fluids at equilibrium, it
is well established that in the low wavenumber limit,

S(k→ 0) =
χT

χ0
T
, (10)

where the fluid’s isothermal compressibility is χT and χ0
T =

1/(ρkBT ) is the one of the ideal gas [19].We attribute such system-
atic over-estimation of S(k) by the number of additional particles
that Shattuck’s algorithm incorrectly detects. For the set of images
that we have studied, the number of additional false particles is
about 250 per image. In Fig. 3b we show an example of the differ-
ences in particle detection. Most of the particles are well detected
by both algorithms, but Shattuck’s findsmore false particles. This is
acutely visible in dense regions, where the older algorithm detects
false positives in the regions between neighboring particles.

4. Parallelization of the proposed algorithm

Particle tracking algorithms have a high computational cost
when images are large in size and have a high quantity of particles,
as in the granular media experiments reported in [5,6] that serve
as the model for the algorithm benchmark we present here. In this
section, we detail a GPU parallelization scheme for the proposed
TBPT algorithm to improve the O(TPN) time complexity. A prelim-
inary implementation and results were reported in [20].

There are two ways of approaching the parallelization of the
TBPT algorithm: (1) by simultaneous image processing and (2)
by simultaneous processing within an image. The first approach,
where all T images can be simultaneously processed inO(PN) time,
is not detailed in this section, but it is worth mentioning that it
is a pleasingly parallel scenario that can be achieved by running
T instances of the TBPT algorithm on one or more devices. If the
number of GPUs is less than T then one can opt to run multiple
instances on each GPU, as the job scheduler is capable to execute
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Fig. 4. Mapping schemes. On the left, a per-pixel mapping acts by assigning a fixed number of pixels to each thread. The center illustrates a 32 particle and 16× 16 pixels
image example. On the right, a per-particle mapping assigns particle locations to each thread.

input : A movie composed of T frames, a maximum
iterations number (maxIterations), a minimum chi2
variation (minDeltaChi2). The detected object must
have a minimum brightness th and area thArea.

output: An array of 2D positions of N in T frames (positions).

for t ← 1 to T do
image←movie[t];
chi1← buildingTargetFunction1(image, D, ω);
positions(t)← getPeaks(1/chi1);
npeaks← 1;
while npeaks > 0 do

chi2← buildingTargetFunction2(image,
positions(t), D, ω);
newPositions← getPeaks(1/chi2);
npeaks←length(newPositions);
positions(t)← [positions(t) newPositions];

end
i← 0;
deltaChi2← minDeltaChi2;
while i < maxIterations and deltaChi2 >= minDeltaChi2
do

chi2← buildingTargetFunction2(image,
positions(t), D, ω);
[∆x, ∆y] ←newtonCenter(chi2, D, ω, positions);
positions(t)←positions(t)+[∆x, ∆y];

end
for i← 0 ; i < length(positions(t)) ; i← i+1 do

if image(positions(t, i)) > th or
voronoiArea(positions(t, i)) < thArea then

delete(positions(t, i)) ;
end

end
end
trajectories←tracking(positions,D);

Algorithm 1: Franklin & Shattuck tracking (black) and pro-
posed high density algorithm (red).

multiple concurrent kernels. This is possible given current GPU
architectures can run up to 32 concurrent kernels [21].

The parallelization proposed in this work focuses on the second
approach where the algorithm has to be re-adapted to the GPU
computing model in order to scale performance with the image
size. From a global perspective, two types of GPU mappings can
be distinguished when doing simultaneous processing within an
image; (1) per-pixelmapping and (2) per-particlemapping. For the
first one, the amount of parallelism scales with N (i.e., the number
of pixels), while for the second approach parallelism scales with
the number of tracked particles P . Fig. 4 illustrates both mapping
schemes.

The grids of Fig. 4 correspond to parallel spaces, i.e., where
threads are contained before being mapped onto the data domain.
The dimensions of a grid are specified in terms of blocks, which
for the purpose of this example has blocks1 of 4× 4 threads. Since
P ≪ L2, one can expect that for large images the per-pixel tasks
will provide most of the computing acceleration. The per-particle
grid can also be a one dimensional grid of 1 × 8 blocks. During a
full particle trackingpass, several taskswill require one or the other
mapping scheme in order to take advantage of GPU parallelism.

4.1. Choosing tasks for parallelization

The tasks chosen for parallelization are the ones involved in the
minimization of χ̃2

1 and χ2
2 as they have higher relative compu-

tational cost. A performance profiling process was performed on
the MATLAB and C implementations of Shattuck’s method and the
proposed high density algorithm. The relative computational cost
for each task is obtained as the fraction of time employed from
the total time excluding I/O and initialization routines (i.e., time
is measured once data is main memory). Fig. 5 shows the relative
sequential times for all three implementations for two different
image sizes.

From the relative costs, one can note that the distribution of
percentages of the proposed algorithm and those of Shattuck’s
display significant differences regarding their MATLAB and C im-
plementations. In theMATLAB Shattuck (MS) resultswith an image
size of N = 1000 × 1000, 30% is dedicated to the gengrid task,
40% to newton-center, 20% to getpeaks. On the other hand, in the
CS results of N = 1000 × 1000 gengrid is less significant having
less than 10%, but chi2diff and convolution increase to 16% and
70%, respectively. The reason for such differences comes in great
part from the fact that several MATLAB routines decrease their
cost when being implemented in C, since it can handle for loops
and other instructions in a much more efficient way. For the high-
density algorithm, one can note a similar change from MATLAB
(MHD) to C (CHD), where the costs of chi2diff and convolution
become the most significant ones in the C implementations for
N = 1000× 1000.

For N = 4000 × 4000, the scenario of CHD is more balanced
than the CS one. The tasks chi2diff, getpeaks, newtonc, convolution
and gengrid have comparable costs among each other, while in
the case of CS the getpeaks function is the one that takes most
of the computing time. With the relative costs of both medium
and large images analyzed, the selection of tasks to be paral-
lelized become getpeaks, newtoncenter, gengrid, convolution, and
normalize which account for at least 96% of the total time. All
parallelizations are implemented with CUDA [22]. In the follow-
ing subsections, we provide more detailed technical descriptions

1 Block sizes of 256, 512 or 1024 threads are typically used for higher perfor-
mance.
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Fig. 5. The relative runtime percentages of the high-density proposed algorithm differ from those of Shattuck and also vary with the image size. MATLAB Shattuck (MS),
MATLAB Proposed (MHD), C Shattuck (CS), C Proposed (CHD).

regarding the GPU parallelization approach chosen for each task.
We will frequently refer to the symbol, k, which is a complexity
parameter that refers to the number of processors that are used to
express the asymptotic costs of the parallel tasks.

4.1.1. Pixel level peaks (getpeaks)
This task processes the image and identifies peaks. The parallel

GPU approach uses a per-pixel mapping approach, where threads
handle different small regions of the image to search for local
minima. The cost of this parallel computation isO(N/k) operations.

4.1.2. Gauss–Newton iterations (newtonCenter)
Here we compute (∆x, ∆y) on each peak location, as defined in

Algorithm 1. This task has no data race condition as the accesses
on the neighbor pixels are read-only and the write operations
are performed only on the peak locations that are independently
parallelized with GPU threads. The parallel GPU strategy uses a
per-particle mapping approach that costs O(PN/k). It is important
to mention that a synchronization barrier is required in order to
prevent memory accesses on outdated information, i.e., when the
neighbor accesses include another derivative location.

4.1.3. W matrix (gengrid)
The W matrix task finds, for each pixel, the closest particle to

that pixel as well as its distance from it. The GPU parallelization
uses a per-particle mapping approach, with a local neighborhood of
pixels for each particle to search through. Although this mapping
approachmay produce race conditionswhen particles are too close
(i.e., overlapped neighborhoods), we found by experimentation
that on average four repetitions make W rapidly converge to the
result given by the sequential implementation, with a standard
deviation of 0.5 for the mean of tracked particles. Because of
this favorable behavior, it was not necessary to opt for per-pixel
mapping, where the amount of parallel resources increase in the
order of the image size. This chosen parallel GPU approach has an
asymptotic cost of O(P/k) operations.

4.1.4. Convolutions
The GPU parallelization of the convolution uses the cuFFT li-

brary [23] which is a highly optimized code for GPU-based FFT
computations. The strategy used by cuFFT is a per-pixel mapping
approach,where information from image space is transformed into
information in the frequency spectrum. The cost of a parallel FFT
computation in theory is O( nk log 2(n)).

4.1.5. Normalize
The normalize task does not have a significant cost when

compared to the other tasks. Nevertheless, we still included it in
GPU parallelization since it is a pleasingly parallel computation
pattern [11] that does not require significant implementation time.
This task normalizes the color magnitudes of each pixel within a
fixed range relative to the maximum and minimum color values
found. The GPU-based implementation of this task uses a per-pixel
mapping approach tomodify each pixel value according to the new
range given by the minimum and maximum color values. The cost
of the parallel implementation is O(N/k).

4.1.6. Difference matrix J (chi2diff)
This routine computes a matrix J of differences defined as

follows:

Jx,y =
1− tanh

(
[Wx,y − D/2]/w

)
− 2Ix,y

2
, (11)

where Jx,y is difference value at pixel (x, y) and D, w are the diame-
ter and sharpness of the particles, respectively. The parallelization
of this computation uses per pixel-mapping in order to compute
Jx,y simultaneously on all (x, y) locations.

5. Results

Both the CPU and GPU implementations of the new tracking
algorithm, chi2HD and chi2HDCuda, respectively, as well as the
C-language version of Shattuck’s sequential tracking algorithm
(named chi2), are tested in terms of quality and performance. The
quality of a tracking process is

Q = Nt/N, (12)

where Nt is the number of tracked particles and N is the original
number of particles in the image. The performance of a single
particle tracking execution process is defined as the sum of the
performances of the main sub-routines present in all three imple-
mentations, i.e.,

T = Tgengrid + Tconvolution + Tnormalize + Tnewtoncenter + Tgetpeaks
+ Tchi2diff + Tother , (13)

where Tother corresponds to the time of the rest of the computa-
tions, which have a lesser impact. For the GPU implementation,
all routines except other run on the GPU. The input tests consist
of synthetic images of L × L pixels where particle coordinates
follow a Beta distribution B(α, β) with parameters D = 10, ω =
1.4273. Two categories of tests were generated; (1) the uniform
distribution, i.e. B(α = 1, β = 1), and (2) the cluster distribution,
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(a) ρ ≈ 0.01. (b) ρ ≈ 0.32. (c) ρ ≈ 0.68.

(d) ρ ≈ 0.02. (e) ρ ≈ 0.04. (f) ρ ≈ 0.07.

Fig. 6. Synthetic image generation for benchmarking. The uniform (upper row) and cluster distributions (lower row) at different densities for L = 1000. The cluster is
embedded in the same frame of L× L pixels as in the uniform case.

Table 1
Workstation used for performance tests.

OS Arch Linux 64-bit
RAM 128 GB
CPU Intel i7-6950X @ 3.0 GHz
GPU NVidia GTX Titan X (Pascal, GP102), 3584 CUDA cores, 12 GB

i.e. B(α = 50, β = 50), see Fig. 6. For each category several
instances of synthetic images were generated with different N, L.

The packing density, which is referred here just as density, is

ρ =
πN(D/2)2

L2
(14)

and it is used as the independent variable in order to explore the
behavior of quality and performance when increasing the num-
ber of particles. The L parameter is also used as an independent
variable in order to plot the behavior quality stability as well as
performance scaling. The computer used in all tests is specified in
Table 1.

5.1. Uniform distribution

Fig. 7 shows the tracking quality and performance of the sub-
routines for particles that follow a uniform distribution. On the
top-left plot, as density increases (ρ), the % of detected particles
(Q ) drops to 93% for chi2 while chi2HD has a slightly drop of 1%.
On the top-right, the tracking quality is preserved for different L,
except for L < 500 where tracking quality is less than 93%. From
the bottom-left plot, the speedup provided by the GPU implemen-
tation is significantly faster than the rest of the implementations,
achieving close to an order of magnitude with respect to the CPU
version of chi2HD. It is important to note that the sequential
version chi2HD is even slower than the chi2 algorithm, making
the CUDA implementation even more useful. This performance
behavior is preserved for the density range. Another aspect to note
is that at lower densities the cost of the algorithms is dominated

by the convolution, and for higher densities the other sub-routines
take amore relevant role affecting performance. From the bottom-
right plot, it is possible to see that L does affect the speedup
obtained by the GPU implementation, making chi2HD the fastest
for high resolution images (L > 1000).

5.2. Cluster distribution

Fig. 8 shows the tracking quality and performance of the sub-
routines for the cluster distribution test. On the top-left plot, one
can note that the tracking quality of the chi2 algorithm drops at
a faster rate than in the uniform distribution test. At a density
of 8%, the chi2 algorithm tracks only 80% of the particles, thus
fairing far poor than our algorithm, which still manages to track
more than 95% of the particles (in both CPU and GPU). The concave
shape of the curve can be explained by the fact that once a cluster
reaches maximal density no more particles fit in the core, thus
the only particles that end up being added to an image are the
peripheral ones which have more distance among them. When
varying L (top-right plot), the tracking quality becomes stable once
L > 1000. In terms of performance it is interesting to note that
in the bottom-left plot most of the computing time is dominated
by the convolution. This is because, although a cluster is locally
dense, the number of particles does not contribute significantly to
the cost. In terms of scaling with L (bottom-right), the chi2HDCuda
implementation manages to be the fastest of all three for high
resolution images (L > 1000).

Although the CPU performance results of chi2 and chi2HD come
from sequential implementations, they are still useful measures
for comparison as they allow one to estimate an upper bound
to the eventual performance on a fully utilized multi-core chip.
A parallel multi-core CPU implementation would produce higher
performance indeed, however it is unlikely to scale perfectly lin-
early with the number of cores, i.e, to have 100% parallel multi-
core efficiency. In practice, bottlenecks from memory bandwidth
and caching mechanisms begin to manifest as more processors are
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Fig. 7. Quality (top) and performance (bottom) results for the uniform distribution.

Fig. 8. Quality (top) and performance (bottom) results for the cluster distribution.
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used. A relatively optimized multi-core implementation on a 4-
core CPU could produce a parallel efficiency in the range 70%–80%,
which would put the CPU result much closer to the GPU ones. Such
approach can be an interesting alternative for workstations that
lack a GPU. For the results obtained here, the GPU implementation
provides a speedup of up to 10× over the CPU implementation.

6. Conclusions

In this work we have presented a new algorithm for high-speed
particle tracking for densemedia. The algorithmaddsmissed parti-
cles to an initial local minima peak detection routine to ultimately
refine peak detection at the sub-pixel level. False positives in this
peak detection are reliably and efficiently cleaned using the par-
ticle’s Voronoi area and the image intensity. We have shown that
the proposed approach is precise, achieving at least 95% particle
detection in dense scenarios, which is 15% better than the most
widely-used reference algorithm. We have illustrated how this
difference in detection fidelity can lead to errors of up to 40% in
physical quantities such as the static structure factor. In terms of
speed, the proposed GPU-based parallelization speeds up compu-
tations by up to 10× in comparison to its sequential CPU version,
and this speedup is most significant when the images studied are
high-resolution images (L > 1000). Considering that the C version
is already 4× faster than the reference MATLAB particle tracking
library [15], one sees that the proposed algorithm is up to 40×
faster than the MATLAB standard bearer for high-resolution, high-
density data. The results obtained in this work illustrate that the
proposed algorithm is an excellent tool for performing particle
tracking in dense media recorded on high resolution images. The
authors make the source code available in [24].
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