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a  b  s  t  r  a  c  t

System  states  are  related,  directly  or indirectly,  to  health  condition  indicators.  Indeed,  critical  system
failures  can  be  efficiently  characterized  through  a state  space manifold.  This  fact  has  encouraged  the
development  of a series  of failure  prognostic  frameworks  based  on  Bayesian  processors  (e.g.  particle  or
unscented  Kalman  filters),  which  efficiently  help  to  estimate  the  Time-of-Failure  (ToF)  probability  distri-
bution in  nonlinear,  non-Gaussian,  systems  with  uncertain  future  operating  profiles.  However,  it is  still
unclear  how  to determine  the efficacy  of these  methods,  since  the Prognostics  and  Health  Management
(PHM)  community  has  not  developed  rigorous  theoretical  frameworks  that  could  help  to  define  proper
performance  indicators.  In this  regard,  this  article  introduces  novel  prognostic  performance  metric  based
on the  concept  of Bayesian  Cramér-Rao  Lower  Bounds  (BCRLBs)  for  the  predicted  state  mean  square  error
(MSE),  which  is conditional  to measurement  data  and  model  dynamics;  providing  a  formal  mathematical
definition  of the  prognostic  problem.  Furthermore,  we  propose  a  novel  step-by-step  design  methodology
to  tune  prognostic  algorithm  hyper-parameters,  which  allows  to guarantee  that  obtained  results  do  not
violate  fundamental  precision  bounds.  As  an  illustrative  example,  both  the  predictive  BCRLB  concept  and
the  proposed  design  methodology  are  applied  to  the  problem  of End-of-Discharge  (EoD)  time  prognostics
in  lithium-ion  batteries.

© 2018  Elsevier  B.V.  All  rights  reserved.

. Introduction

Failure prognostic algorithms use long-term predictions to describe the evolution in time of a condition indicator with the purpose of
stimating the Time-of-Failure (ToF) of a system, or the Remaining Useful Life (RUL) of a failing component. These long-term predictions
re made using a thorough understanding of the underlying degradation processes and the anticipated future usage, as well as an effective
haracterization of all associated uncertainty sources.

Probability-based methods are preferred when characterizing uncertainty sources in failure prognostic algorithms [1], since they provide
 well-known mathematical framework that can be directly applied to data analysis, modeling identification, and parameter estimation
roblems. Particularly, Bayesian approaches [2] stand out as a suitable option for online characterization of uncertainty sources in failure
rognostic algorithms, since they provide a sound theoretical framework for the implementation of filtering, smoothing, and prediction
ethods in nonlinear, non-Gaussian, dynamic processes [3]. For this reason, many Bayesian state estimation methods have been applied in

he past to characterize initial conditions for the long-term prediction problem [4], while others were used to characterize future loading
or stress) profiles [5].

In failure prognostics, an effective characterization of future uncertainty sources is important because we require to avoid catastrophic
vents and take preventive measures [6,4]. Although this problem can be solved, if we assume that both the actual system condition and

egradation model are known, by performing Monte Carlo (MC) simulation [7], the computational cost associated with this method is
umongous and nearly impossible to handle for real-time decision-making processes (such as the ones found in condition-based mainte-
ance schemes). The Prognostic and Health Management (PHM) community has chosen particle-filtering-based algorithms [8] as the de
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acto alternative to MC,  since particle-filters (PFs) offer an interesting balance between efficiency and efficacy in state estimation problems.
owever, it is still not clear how to measure the efficacy of particle-filtering-based prognostic methods in terms of the generated results,
ecause the PHM community has not yet established adequate performance metrics. Indeed, prognostic algorithms lack standard defini-
ions and suffer from ambiguous and inconsistent interpretations [9]. This lack of standards is in part due to varied end-user requirements,

 significant fact when considering that forecasting is a topic of interest for a number of different domains, including aerospace, auto-
otive, electronics, finance, medicine, nuclear power, and weather. The definition of standardized performance metrics (and not simply

erformance indicators)  is still a matter of debate.
The general agreement is that better algorithms will exhibit better accuracy (related to estimates biases) and precision (related to

stimates variances). This idea sounds natural and intuitive. However, it is easy to artificially “improve” the precision exhibited by an
lgorithm by modifying hyper-parameters of the model that defines the evolution of the state over time (state transition model). It is only
atural to wonder which is the fundamental limit for these “improvements”. May  I be generating precise, although biased, estimates of
he time-of-failure? The latter could be catastrophic in terms of decision-making processes related to maintenance scheduling.

This research effort aims at introducing a novel prognostic performance metric based on the concept of Bayesian Cramér-Rao Lower
ounds (BCRLBs) for the predicted state mean square error (MSE), which is conditional to measurement data and model dynamics; providing

 formal mathematical definition of the prognostic problem. Furthermore, we  propose a novel step-by-step design methodology to tune
rognostic algorithm hyper-parameters, which allows to guarantee that obtained results do not violate fundamental precision bounds.

n this regard, the contributions of this article are: (i) definition of a more general notion of algorithm efficacy in prognostics, based on
heoretical bounds that characterize the quality of long-term predictions, and (ii) the design of a step-by-step methodology aimed at
uning the parameters of prognostic algorithms; guaranteeing that the precision of obtained results does not violate these fundamental
ounds. As an illustrative example, both the predictive BCRLB concept and the proposed design methodology are applied to the problem
f End-of-Discharge (EoD) time prognostics in lithium-ion batteries.

The article structure is as follows. BCRLBs are introduced in Section 2. Section 3 presents a novel prognostic performance metric based
n BCRLBs and a step-by-step methodology for prognostic algorithm design. Section 4 shows the application of the proposed metrics and
esign methodology to the EoD problem in lithium-ion batteries and Section 5 presents main conclusions.

. Cramér-Rao Lower Bounds

The Cramér-Rao Lower Bound (CRLB) [10,11] is a fundamental limit that establishes a lower bound for the mean square error (MSE) of
ny estimator. The most conventional version of this bound was  developed for the assessment of the performance of unbiased estimators
or unknown deterministic parameters. Later, Van Trees developed an analogous bound applicable to the case of random parameters, the
o called Bayesian Cramér-Rao Lower Bound (BCRLB) [12]. The BCBR does not require the assumption of unbiased estimators.

.1. Bayesian Cramér-Rao Lower Bounds

Let x ∈ R
nx a vector of random parameters to be estimated and y ∈ R

ny a random vector of observations. Let x̂(y) be an estimator of x
btained as a function of the observations y. The Bayesian Cramér-Rao inequality [12] establishes that

Ep(x,y){[x̂(y) − x][x̂(y) − x]T } ≥ J−1 (1)

where p(x, y) is a joint probability density function and J is the Bayesian Information Matrix (BIM) (called Fisher Information Matrix in
he conventional setting of deterministic parameter estimation), defined as

J = Ep(x,y){−�x
x log p(x, y)} (2)

The operator � denotes the second-order derivative

�y
x = ∇x∇y

T , (3)

and with ∇ denoting the gradient operator.

.2. BCRLBs for Discrete-Time Dynamical Systems

Bayesian approaches [2] constitute a suitable option for online characterization of uncertainty sources and degradation processes that
ffect the condition of nonlinear dynamic processes, via a state-space representation. In this regard, let us consider {Xk, k ∈ N} a first order
arkov process denoting a nx- dimensional system state vector with initial distribution p (x0) and transition probability p (xk|xk−1). Also,

et {Yk, k ∈ N\{0}} denote ny-dimensional conditionally independent noisy observations. Then,

xk = f (xk−1, ωk−1) (4)

yk = g(xk, vk), (5)

where ωk and vk denote independent, not necessarily Gaussian, random vectors.
According to [13], there are different versions of the BCRLB for discrete-time dynamical system that may  be used as a lower bound for

he MSE. Let x0:k =
[

x0
T x1

T . . . xk
T
]T

and y1:k =
[

y1
T y2

T . . . yk
T
]T

denote a collection of augmented states and measurement
ectors up to time k. The estimator of xk is denoted as x̂k(y1:k), which is a function of the measurement sequence y1:k. Let also denote
ˆ0:k(y1:k) the estimator of the whole state trajectory x0:k. The inequalities regarding these versions of BCRLB’s are summarized below.
A. Joint unconditional BCRLB

Ep(x0:k,y1:k){[x̂0:k(y1:k) − x0:k][x̂0:k(y1:k) − x0:k]T } ≥ J−1
0:k (6)
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J−1
0:k = Ep(x0:k,y1:k){−�x0:k

x0:k
log p(x0:k, y1:k)} (7)

B. Marginal unconditional BCRLB

Ep(xk,y1:k){[x̂k(y1:k) − xk][x̂k(y1:k) − xk]T } ≥ J−1
k

(8)

J−1
k

= Ep(xk,y1:k){−�xk
xk

log p(xk, y1:k)} (9)

C. Joint conditional BCRLB

Ep(x0:k,yk |y1:k−1){[x̂0:k(y1:k) − x0:k][x̂0:k(y1:k) − x0:k]T } ≥ J0:k(y1:k−1)−1 (10)

J0:k(y1:k−1)−1 = Ep(x0:k,yk |y1:k−1){−�x0:k
x0:k

log p(x0:k, yk|y1:k−1)} (11)

D. Marginal conditional BCRLB

Ep(xk,yk |y1:k−1){[x̂k(y1:k) − xk][x̂k(y1:k) − xk]T } ≥ Jk(y1:k−1)−1 (12)

Jk(y1:k−1)−1 = Ep(xk,yk |y1:k−1){−�xk
xk

log p(xk, yk|y1:k−1)} (13)

The aforementioned bounds can be classified according to two  main criteria. On the one hand, the bound is said to be joint if it restricts
he MSE  of the whole state trajectory x0:k, whereas if it solely limits the MSE  of the state vector xk, the bound is said to be marginal. On the
ther hand, if the bound considers measurements y1:k−1 as a random vector, it is said to be unconditional,  whereas if y1:k−1 is a vector of
nown measurements, it is said to be conditional.

[14] proposed an elegant way for computing the marginal unconditional BCRLB J−1
k

(see Eq. (9)) without manipulating large matrices
t each time instant k in the following manner:

Jk+1 = D22
k − D21

k (Jk + D11
k )

−1
D12

k (14)

where

D11
k = E{−�xk

xk
log p(xk+1|xk)} (15)

D12
k = E{−�xk+1

xk
log p(xk+1|xk)} = (D21

k )
T

(16)

D22
k

= E{−�
xk+1
xk+1

[log p(xk+1|xk)+ log p(yk+1|xk+1)]} (17)

= D22,a
k

+ D22,b
k

. (18)

with expectations taken with respect to p (x0:k+1, y1:k+1). It is important to remark that the marginal unconditional BCRLB considers
andom measurement vectors. [15] introduced the marginal conditional BCRLB Jk (y1:k−1)−1 (see Eq. (13)) and also developed en elegant
ecursive way for its computation, in the following manner:

Jk+1(y1:k) = B22
k − B21

k (JA
k (Yk) + B11

k )
−1

B12
k , (19)

where

B11
k = E{−�xk

xk
log p(xk+1|xk)} (20)

B12
k = E{−�xk+1

xk
log p(xk+1|xk)} = (B21

k )
T

(21)

B22
k

= E{−�
xk+1
xk+1

[log p(xk+1|xk)+ log p(yk+1|xk+1)]} (22)

= B22,a
k

+ B22,b
k

, (23)

with expectations taken with respect to p (x0:k+1, yk+1| y1:k). On the other hand, JA
k

(y1:k) is defined as the auxiliary BIM matrix for xk,
eing its inverse equal to the nx × nx lower-right block of the inverse of the auxiliary BIM matrix IA

k
(y1:k), where

IA
k (y1:k) = Ep(x0:k |y1:k){−�x0:k

x0:k
log p(x0:k|y1:k)}. (24)

. Methodology for prognostic algorithm design

Let us assume that we require to implement a probability-based prognostic algorithm to measure the risk of future usage for failing
quipment in real-time. Let � ∈ � ⊆ R

n� be a vector of hyper-parameters that allows to configure any implementation of this probability-
ased prognostic algorithm. We aim at defining a step-by-step methodology that could help to tune these hyper-parameters to maximize
he efficacy of the prognostic algorithm, subject to efficiency constrains (typically imposed by hardware specifications, maximum processing
ime, and/or computational cost). It is important to note that modifications on certain hyper-parameters will have a positive impact on the
fficacy of the algorithm, while in other cases most of the impact can be measured in terms of an improvement on the efficiency. In this
egard, we will group the components of the vector � in two  clusters of hyper-parameters: those that primarily affect the efficiency of the
lgorithm (conveniently arranged in the vector �A ∈ �A ⊆ R

n�A , n�A
< n�), and those that primarily have impact on the quality of obtained
esults (arranged in the vector �B ∈ �B ⊆ R
n�B , where �T = [�T

A �T
B ] and n�A

+ n�b
= n�). While �A is typically tuned to meet efficiency

onstraints, it is still unclear how to choose adequate values for the components of �B.
In this regard, we hereby propose an ad hoc metric, based on the Bayesian Cramér-Rao Lower Bound concept, which allows to measure

he performance of the failure prognostic algorithm conditional to a realization of �. Furthermore, we  present a design methodology for
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rognostic algorithms that uses predictive BCRLBs to determine fundamental limits of predicted state MSEs (at any future time instant)
nd a feasible region �̄B ⊂ �B of values for the hyper-parameter vector �B, assuming that �A is chosen to meet efficiency constraints. This
easible region is thereby characterized by all values of �B for which the predictive state MSE  does not violate the corresponding predictive
CRLB (at any future time instant). A first attempt towards the incorporation of these concepts can be found in [16], where the problem of
esigning a prognostic algorithm to compute the Remaining Useful Life (RUL) of lithium-ion batteries (as a function of the State-of-Health)
onsidered Bayesian bounds that were unconditional to the acquired measurements. We  now extend this procedure to the case where the
recision of long-term state predictions is a function of a set of known observations.

The methodology for prognostic algorithm design can be summarized as follows:

1) Choose �A such that efficiency specifications are met. Compute (recursively) Bayesian Cramér-Rao bounds for the predicted state MSE
(also referred to as predictive BCRLBs), starting from time kp and up to a time prediction horizon defined by kh > kp.

2) Choose realizations of the hyper-parameter vector �B ∈ �B. You may  use sampling schemes to obtain these realizations from a prior
distribution.

3) Execute the prognostic algorithm, conditional to each one of the obtained realizations for �. Discard realizations that generate predicted
state MSEs smaller than the predictive BCRLB at any time kp < k < kh.

4) For all realizations of � that were not discarded in Step 3, use the associated implementation of the prognostic algorithm to compute
the evolution of the predicted state MSE  over time. Compute a weighted average of the �1 distances between the MSE  curves (per
component of the state vector) and the corresponding BCRLB curves over time. Choose [�T

A �̂T
B ] as the realization that minimizes the

aforementioned weighted average. Compute the predicted ToF probability mass function (PMF) conditional to [�T
A �̂T

B ].
5) Explore the impact associated with a relaxation in soft efficiency constraints: Modify �A to allow less efficient algorithm implementa-

tions. Go through Steps 1–4, and assess the impact on the resulting ToF PMF  using a metric of choice. Iterate until either the impact on
the resulting ToF PMF  is negligible or hard efficiency limitations are met.

This step-by-step design methodology for prognostic algorithms requires a formal definition for Bayesian Cramér-Rao Lower Bounds
or the predicted state MSE, as well as a feasible procedure to compute this bound recursively. This formal definition is now presented, as
art of the contributions of this research effort. Proofs for Theorem 3.1 and Theorem 3.2 can be found in Appendices A and B, respectively.
roofs for both theorems were inspired on concepts described in [15,17] . For completeness purposes, we also include the formal definition
f the Time-of-Failure PMF.

.1. Conditional predictive Bayesian Cramér-Rao Lower Bounds

Among the different expressions for Bayesian Cramér-Rao bounds currently available in the literature, it is important to remark that [17]
resents an unconditional predictive version that may  be applicable to failure prognostic algorithms. This unconditional BCRLB assumes
n observational setting where measurements are treated as random vectors. However, in actual prognostic algorithm implementations,
easurements are always assumed to be available, because it is inadequate to prognosticate a failure even before the fault could be

iagnosed. In this regard, a novel performance metric based on Bayesian Cramér-Rao lower bounds for the predicted state mean square
rror (MSE), conditional to measurement data and model dynamics, is now introduced.

Let xkp:k =
[

xkp
T xkp+1

T . . . xk
T
]T

and also xi, i = 1, 2, . . .,  (k − kp + 1) nx, be the ith component of the vector xkp:k. We  will first show
ow to find a lower bound of the MSE  associated to any estimator of xkp:k (bound for the predictive state MSE) and, afterwards, we will
enerate a recursion that could be used to compute the bound with ease.

Let x̂kp:k(y1:kp ) be an estimator of xkp:k conditional to the set of measurements acquired until the prognostic time kp, k > kp. Besides, let
˜kp:k � x̂kp:k(y1:kp ) − xkp:k be the estimation error and pcp

k
� p(xkp:k|y1:kp ). We  will denote the second order derivative as

�y
x = ∇x∇y

T , (25)

where ∇x = [ ∂
∂x1

, ∂
∂x2

, . . ., ∂
∂xnx

] is a gradient operator of dimensions 1 × nx.

efinition 3.1. The Conditional Predictive Bayesian Information Matrix (CPBIM) is defined as

Icp(xkp:k|y1:kp ) � Epcp
k

{[∇xkp:k
T log pcp

k
][∇xkp:k log pcp

k
]} (26)

The following two theorems introduce the joint and marginal versions of the CP-BCRLB, respectively. The joint version represents a
ound for the predictive state MSE  associated with the whole state trajectory xkp:k, and requires to incur in a series of expensive matrix
omputations that grow exponentially as k > kp increases. In contrast, the marginal version allows to obtain a bound for the predicted state
SE  associated with xk, k > kp, which can be easily computed using a recursive expression.

heorem 3.1 (Joint Conditional Predictive BCRLB). Let us assume the following conditions about the density pcp
k

:

. pcp
k

is absolutely continuous and
∂pcp

k
∂xi is absolutely integrable with respect to xkp:k , this is∫ ∣∣∣∣∂pcp

k

∂xi

∣∣∣∣dxkp:k < +∞ (27)
. For each xi, with i = 1, 2, . . .,  (k − kp + 1) nx,

lim
xi→+∞

xip(xkp:k) = lim
xi→−∞

xip(xkp:k) = 0 (28)
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The MSE  associated to any estimator x̂kp:k(y1:kp ) of the state trajectory xkp:k is lower bounded

Epcp
k

{x̃kp:kx̃T
kp:k|y1:kp } ≥ I−1

cp (xkp:k|y1:kp ), (29)

where I−1
cp (xkp:k|y1:kp ) is referred to as the Joint Conditional Predictive BCRLB (JCP-BCRLB).

As stated before, we have developed a recursive formula that allows to compute the marginal version of the bound CP-BCRLB, which is
ow introduced.

heorem 3.2 (Marginal Conditional Predictive BCRLB). Let us define

Si
i+1 = E{−�xi

xi
log p(xi+1|xi)} (30)

Si,i+1
i+1 = E{−�xi+1

xi
log p(xi+1|xi)} (31)

Si+1
i+1 = E{−�xi+1

xi+1
log p(xi+1|xi)} (32)

with Si+1,i
i+1 = Si,i+i

i+1

T
, i = kp, kp + 1, . . .,  k. The MSE associated to xk, is lower bounded as

Epcp
k

{x̃kx̃T
k |y1:kp } ≥ C22

k (33)

where C22
k

is named as Marginal Conditional Predictive BCRLB (MCP-BCRLB), and can be recursively computed as

[C22
k ]

−1 = Sk
k − Sk,k−1

k
[[C22

k−1]
−1 + Sk−1

k
]
−1

Sk−1,k
k

(34)

considering the initial condition

[C22
kp

]
−1 = Skp

kp
= E{−�xkpxkp

log p(xkp |y1:kp )}

.2. Analytic computation of MCP-BCRLBs

The computation of MCP-BCRLBs requires the computation of expectations over the predictive state probability density. This fact
mplies that, in the case of nonlinear systems, the designer may  need to perform Monte Carlo simulations to tune the hyper-parameters of

 given prognostic algorithm. Although in those situations the concept of MCP-BCRLBs still helps to establish a feasible region for hyper-
arameters, its implementation may  require significant computational efforts.

Fortunately, MCP-BCRLBs can be analytically calculated in systems where the state transition equation has additive noise and is linear
ith respect to the state vector; i.e.,

xk+1 = f (xk, uk) + ωk

= Ak(uk) · xk + Bk(uk) + ωk,

where uk is the system’s input, Ak(uk) is an nx-dimensional square matrix, Bk(uk) is an nx × 1 matrix, and ωk is an nx- dimensional zero
ean Gaussian random vector. Indeed, consider the case where ωk has covariance matrix �k:

− log p(xi+1|xi) = c + 1
2

[xi+1 − f (xi, ui)]
T ˙−1

i
[xi+1 − f (xi, ui)]

−∇xi
∇xi

T log p(xi+1|xi) = Ai(ui)
T ˙−1

i

T∇xi
f (xi, ui)

= Ai(ui)
T ˙−1

i
Ai(ui)

−∇xi+1∇xi
T log p(xi+1|xi) = −Ai(ui)

T ˙−1
i

T∇xi+1 xi+1

= −Ai(ui)
T ˙−1

i

−∇xi+1∇xi+1
T log p(xi+1|xi) = ˙−1

i

T∇xi+1 xi+1

= ˙−1
i

Note that ˙−1
i

T = ˙−1
i

since the covariance matrix is assumed to be symmetric and ∇y∇x
T = �y

x . Therefore, from Eqs. (30)–(32), the
ecursion for MCP-BCRLBs has analytic expressions:

Si
i+1 = E{−�

xi
xi

log p(xi+1|xi)} = Ai(ui)
T ˙−1

i
Ai(ui)
Si,i+1
i+1 = E{−�

xi+1
xi

log p(xi+1|xi)} = −Ai(ui)
T ˙−1

i

Si+1
i+1 = E{−�

xi+1
xi+1

log p(xi+1|xi)} = ˙−1
i
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Fig. 1. OCV curve of a Li-Ion cell (black line) and the projection of its linear operational range (dashed gray line) as a function of SoC [5].

.3. Acuña’s time-of-failure probability mass function

Denoting healthy and faulty systems (at the kth time instant) by Hk and Fk, respectively, the Acuña’s ToF PMF  [3] is defined as

P(Fk) = P(Fk|Hkp:k−1)
k−1∏

j=kp+1

(1 − P(Fj|Hkp:j−1)), (35)

∀k > kp, where

P(Fk|Hkp:k−1) =
∫
Rnx

p(failure|xk)p(xk|y1:kp )dxk. (36)

. Case study: end-of-discharge time prognosis of lithium-ion batteries

We  now proceed to apply the proposed methodology for prognostic algorithm design and hyper-parameter tuning on an illustrative
ase study, which corresponds to the problem of End-of-Discharge (EoD) time prognostics in lithium-ion (Li-Ion) batteries. This case study
ssumes that a filtering stage is carried out by a particle filtering algorithm, following the recommendations suggested in [5] (in terms of
he number of particles utilized, among other implementation issues). In that regard, it is assumed that posterior estimates for both the
attery State-of-Charge (SoC, defined as the ratio between the actual available energy and the maximum battery storage capacity Ecrit) and

nternal polarization resistance are always available at the time where the prognostic algorithm is executed. The failure condition in this
ase is characterized by SoC levels below 10%.

.1. State-space model

Filtering and prognostic stages use a state-space model to represent the evolution in time of the Li-Ion battery voltage as a function of
i) the SoC, (ii) the battery internal impedance, and (iii) the discharge current (exogenous system input). The objective in this case study
s to prognosticate the moment in which the battery energy has depleted below 10%. As it has been already mentioned in Section 1, and
s in any other prognostic problem, the “ground truth” failure PMF  (in this case, the EoD time PMF) can be computed offline using Monte
arlo simulations for future trajectories of the state vector.

In actual implementations of failure prognostic algorithms, it is also necessary to characterize the future evolution of exogenous inputs
o the state-space model (future operating profiles). Particularly, for EoD time prognostic purposes, [5] proposes to use a probabilistic
haracterization of the battery discharge current, via Markov Chains. However, it is important to note that, without loss of generality, both
he performance assessment of a given prognostic algorithm and of the exogenous input characterization can be conducted separately
18]. Indeed, it is always possible to evaluate the performance of the prognostic algorithm conditional to a specific realization of the future
sage profile, and then use the Law of Total Probability to incorporate the uncertainty associated with exogenous inputs. For this reason,
ereafter, this study will assume that the future battery usage profile is known, solely focusing on computing the EoD time PMF  conditional
o that given profile.

For most of the battery operating range, the relationship between SoC and the Open Circuit Voltage (OCV) curve can be well characterized
y an affine function; see “zone 2” in Fig. 1. However, we will use the state-space model proposed in [5], which allows to characterize the
onlinear behavior present in “zone 1” and “zone 3”. Also, we have adopted a structure proposed in [19] to model the dependency between
he polarization resistance and the battery discharge current.

State transition model

xk+1 = xk − voc(xk) · uk · Ts

Ecrit
+ ωk (37)

Measurement model
yk = voc(xk) − u(k) · Rint (xk, uk) + 	k, (38)

with

voc(xk) = vL + (v0 − vL) · e
 · (x2(k)−1) +  ̨ · vL · (x2(k) − 1) +(1 − ˛) · vL · (e−ˇ − e−  ̌ ·
√

x2(k)) (39)
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and

Rint (xk, uk) = r0(uk) + r1(uk) · xk + r2(uk) · xk
2. (40)

In this representation, the input to the system uk = ik[A] is defined as the discharge current, while yk = vk[V ] is the voltage at the battery
erminals. The state xk is the battery SoC measured with respect to Ecrit, the expected total energy delivered by the battery; whereas the
bsolute value of the internal impedance is represented by the function Rint (xk, uk). The process noise ωk and the measurement noise 	k
ssume a zero mean Gaussian distribution. Finally, Ts[s] is the sample time and v0, vL, ˛,  ̌ and 
 are model parameters to be estimated
ffline (see [5] for more details).

Since a faulty condition is defined in this case by SoC values below a 10%, then Eq. (36) (required for computing the ToF PMF) becomes:

p(failure|xk) = 1{x ∈ R:x<0.1}(xk). (41)

.2. Prognostic algorithm

A particle-filtering-based prognostic algorithm [4] is selected to illustrate the design methodology. This algorithm uses, as initial condi-
ion, an empirical state posterior distribution that results from a PF implementation. It also considers that prognostic stage begins at time
p, and that the state posterior distribution at that time instant is denoted by

p(xkp |y1:kp ) =
Np∑
i=1

w(i)
kp

ı
x(i)

kp

(xkp ), (42)

where Np is the amount of samples used by the PF implementation.

0) Resample p(xkp |y1:kp ) and get a set of N� equally weighted particles.

Then, for each future time instant k, k > kp, perform the following steps:

1) Compute the expected state transitions x∗
k

(i) = E{f (xk−1
(i), uk−1, ωk−1)}, ∀i ∈ {1, . . .,  N�}, and calculate the empirical covariance matrix

Ŝk = 1
N� − 1

N�∑
i=1

[x∗
k

(i) − x̄∗
k][x∗

k
(i) − x̄∗

k]
T
,

with x̄∗
k

= 1
N�

∑N�
i=1x∗

k
(i).

2) Compute D̂k such that D̂k · D̂T
k

= Ŝk.
3) Update the samples as

x(i)
k

= x∗
k

(i) + h� · D̂k · ε(i)
k

, ε(i)
k

∼E,

where E is the Epanechnikov kernel and h� corresponds to its bandwidth.

Thus, in this case, the hyper-parameters vector for the prognostic algorithm is defined as �T =
[

N� h�

]
.

.3. Algorithm design: hyper-parameter tuning

The methodology presented in Section 3 is now utilized to tune hyper-parameters N� and h� of the prognostic algorithm proposed by [4]
see Section 4.2), when this algorithm is used to solve the problem of EoD time prognosis (see Section 4.1). Please note that the parameter

� directly affects the computational effort of the method (i.e.; �A = N�), while �B = h� is more related to the capability of the algorithm to
ppropriately represent probability densities.

We  will test the performance of the prognostic algorithm when predicting the EoD time at different moments during the battery
ischarge process. In this regard, and given that a full discharge takes approximately 11,628[s], we  decided to execute the prognostic
outine at 2000[s], 4000[s]  and 6000[s]  of operation. As it was  previously mentioned in Section 4.1, the future discharge current is assumed
o be known without loss of generality, since we  aim at assessing the performance of the algorithms to characterize the evolution in time
f the uncertainty associated with the state vector. The discharge current profile was generated from random realizations of a four-state
arkov Chain. Each state of the Markov Chain is associated with a specific value for the battery discharge current: 5[A], 10[A], 15[A] and

0[A], respectively (see Fig. 2). It is assumed that transitions between these Markov Chain states occur every 10[s].
We now proceed to apply the proposed methodology to this case study, step-by-step.

.3.1. Step 1: generate MCP-BCRLBs
The first step of the methodology is to compute the sequence of MCP- BCRLBs, which in turn requires computation of an initial condition

or the recursion. The procedure to achieve this goal has been reported in [13], and the detailed equations for this particular case study can

e found in Appendix C.1. The hyper-parameter N� is set to 100 particles, following the recommendations stated in [5]. As the recursion
equires to compute expectations over predicted state probability density functions, the MCP-BCRLB cannot be computed analytically (see
ppendix C.2 for detailed expressions). To overcome this difficulty, we simulate a million random trajectories for the evolution of the
attery SoC using Eq. (37). Fig. 3 shows the results obtained when state predictions are computed at kp = 4000[s].
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Fig. 2. Illustration of battery discharge current profile.

Fig. 3. Example results for kp = 4000[s]. Fig. 3(a) shows the results for battery SoC filtering and prediction stages. The estimation stage assumes an incorrect initial condition
o
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f  70% for the SoC, and is executed using a PF with 100 particles [5]. Long-term predictions are performed simulating a million random state trajectories. These predictions
re  used to compute MSE  and MCP-BCRLB curves in Fig. 3(b).

A similar procedure can be utilized to compute the MCP-BCRLB when kp = 2000[s] or kp = 6000[s]; see Fig. 4.

.3.2. Step 2: choose candidates for algorithm hyper-parameters
The bandwidth h� of each Epanechnikov kernel has a theoretical optimal value hopt when particles are sampled from Gaussian dis-

ribution with unity covariance matrix (see Eq. (43)) [4]. Although this is seldom the case, particle- filtering-based prognostic algorithm
mplementations use this value as an educated guess. Since in this case study nx = 1, we should use hopt = 0.8529.

hopt = A · N− 1
nx+4

� , A = (8 · c−1
nx

· (nx + 4) · (2 · √�)
nx )

1
nx+4 (43)

However, if we set h� = hopt the implementation of the particle-filtering-based prognostic algorithm evidenced poor performance in
erms of predicted state MSE  (far greater than corresponding MCP- BCRLB). This fact motivates to search for other hyper-parameter candi-
ates, possibly smaller that hopt. For illustrative purposes, we  will analyze the following options for the bandwidth for the Epanechnikov
ernel: h�,1 = 0.0048, h�,2 = 0.0046, h�,3 = 0.0044, h�,4 = 0.0042 and h�,5 = 0.0040.

.3.3. Step 3: discard hyper-parameter candidates related to implementations that violate MCP-BCRLBs
Fig. 5 shows the resulting predictive state MSE  curves for realizations of the particle-filtering-based prognostic algorithm (N� = 100)

hat used the proposed candidates for the hyper-parameter h�; all of them executed at time kp = 4000[s]. It can be noticed that predictive
SE  curves associated with candidates h�,4 and h�,5 violate the MCP-BCRLB curve. That is also the case for candidate h�,2, although it must

e noted that the bound is violated for a small set of time instants: a fact that may  be caused by efficiency algorithm constraints that were

riginally imposed. It would be interesting to analyze how the algorithm performs with h�,2 if N� increases. We  will keep this idea in mind
or Step 4).

The analysis is analogous for cases in which kp = 2000[s] and kp = 6000[s].
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Fig. 4. MCP-BCRLB curves computed at different values of kp .

Fig. 5. Predictive state MSE  and MCP- BCRLB curves computed at kp = 4000 [s].

Table 1
Dissimilarity between predicted state MSE  and MCP-BCRLB curves (�1 distance) for N� = 100. Candidates that were discarded in Step 3 are marked with a × symbol. Chosen
candidates are associated with minimum distances (marked with a

√
symbol).

‖MSEh�,i
− MCP-BCRLB‖1 h�,1 h�,2 h�,3 h�,4 h�,5

kp = 2000 [s] 8.8529 6.4213 5.8543
√

4.8402× 6.0454×√

4

i
b

f

a
o
c

4

o
t

kp = 4000 [s] 6.1874 3.5286× 3.9176 2.9338× 3.1468×
kp = 6000 [s] 1.5946× 1.6885

√
2.0745× 1.7413× 1.6845×

.3.4. Step 4: use the �1-norm to select the most appropriate hyper-parameter candidate
After executing Step 3, two candidates remain: h�,1 and h�,3. Although Fig. 5 suggests that h�,3 may  have better performance, it is

mportant to select the value of the hyper-parameter using a rigorous criteria: we propose to use the �1-norm to measure the distance
etween predicted state MSEs and MCP-BCRLB curves:

‖MSEh�,1
− MCP-BCRLB‖1 = 6.1874

‖MSEh�,3
− MCP-BCRLB‖1 = 3.9176.

Following an analogous procedure for cases in which kp = 2000[s] and kp = 6000[s], it is possible to assign adequate values of � as a
unction of the elapsed time. Results are summarized in Table 1.

It is important to note that candidate h�,3 = 0.0044 represents an appropriate choice if the prediction horizon is relatively large. However,
s we approach the battery discharge time, only h�,2 = 0.0046 becomes a feasible option. This result is strongly conditioned to the number
f particles used in the PF-based prognostic algorithm implementation (N� = 100). Intuition indicates that it is worthwhile to explore which
ould be the best choice for h� if we relax efficiency constraints and allow a larger number of particles in the implementation.

.3.5. Step 5: relax efficiency soft-constraints

According to the proposed methodology, we  now proceed to relax soft- constraints associated with efficiency criteria (i.e., the number

f particles N�). This procedure will help us to understand the cost associated with computational effort constraints, measured in terms of
he efficacy of the prognostic algorithm. In this regard, let us increase the hyper- parameter value to N� = 500. After going through Steps
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Fig. 6. Time-of-Failure PMFs for two choices of algorithm hyper-parameters �T
1 = [100 0.0044] and �T

2 = [500 0.0044]. The latter choice, �2,  assumes a relaxation of
efficiency constraints (i.e., N� = 500). Prognosis is executed at time kp = 4000[s], and EoD PMFs are computed using solely one realization of the probability-based algorithm.
Black-dashed line shows the “ground truth” EoD PMF, which is approximated by a million simulations of the state transition model (37) .
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ig. 7. Time-of-Failure PMFs for two choices of algorithm hyper-parameters �T
4 = [5000 0.0044] and �T

5 = [10, 000 0.0044]. Prognosis is executed at time kp = 4000 [s],
nd  EoD PMFs are computed using solely one realization of the probability-based algorithm. Black-dashed line shows the “ground truth” EoD PMF, which is approximated
y  a million simulations of the state transition model (37).

–4 once more, it is interesting to note that in this new hypothetical scenario, the most appropriate hyper-parameters vector choice would
ave been different (see Table D.2 in the Appendix for more details):

�T =
[

N� h�,2

]
=
[

500 0.0044
]

.

Although the aforementioned steps allow to choose hyper-parameter candidates in terms of the resulting predicted state MSE, we
hould also assess the impact in terms of the true outcome of probability-based prognostic algorithms: the ToF PMF. For this purpose,
e need to use a metric that could help to characterize differences between two  (or more) ToF PMFs. Using this metric, the designer
ould be able to avoid decreasing the efficiency of the implementation if the associated increment on its efficacy is negligible. In this

egard, we suggest the use of an �1 distance between discrete-time functions as a measure of changes between two  ToF PMFs. Indeed,
et us consider the case illustrated in Fig. 6, which shows the ToF PMFs obtained when implementing a PF-based algorithm for the EoD
ime prognostics with two choices for the hyper-parameters vector: �T

1 = [100 0.0044] and �T
2 = [500 0.0044]. The latter choice, �2,

ssumes a relaxation of efficiency constraints (i.e., N� = 500 instead of 100 particles). The �1 distance between these two  PMFs indicate that
he impact associated with the increment in the size of the particle population is not negligible. Furthermore, a direct comparison with the
ground truth” EoD PMF, approximated by a million simulations of the state transition model, indicates that this increment in N� allows a
etter characterization of the left tail of the ToF PMF.

Thus, we may  now proceed to explore the impact of a larger increase in the number of particles N� , in terms of the achievable limits for
lgorithm efficacy. Consider, for this purpose, the following sequence of hyper-parameters candidates, indexed according to an efficiency
riterion:

{�n}5
n=1 =

{[
N�n

h�n

]}5

n=1

=
{  [

100

0.0044

]
,

[
500

0.0044

]
,

[
1000

0.0042

]
,

[
5000

0.0044

]
,

[
10,  000

0.0044

]}
.

Fig. 7 illustrates the ToF PMFs obtained when using the two  last candidates of the proposed sequence in the implementation of the
F-based prognostic algorithm: �T

4 = [5000 0.0044] and �T
5 = [10, 000 0.0044]. It is interesting to note that differences in terms of

he characterization of the left tail of the PMF  (the most useful source of information to quantify operational risk in prognostics) is
mall compared to the increment in computational complexity. Moreover, when comparing with respect to the “ground truth” EoD PMF,
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Fig. 8. Summary of �1 distances between EoD PMFs using single realizations of the probability-based algorithm on each iteration. The nth iteration of the design procedure
is  related to hyper-parameters vector �n . Prognostics are executed at time kp = 4000 [s].
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ig. 9. Comparison of obtained MCP- BCRLBs. The red thick line corresponds to a bound computed by simulating a million state trajectories. Green dashed line uses the
roposed analytic solution in an approximated state model.

vidence indicates that efficacy does not increase when N� = 10, 000. Thus, in terms of the final design for this specific case study, we would
ecommend to use �T

4 = [5000 0.0044]. This final hyper- parameter choice aims at a combination that provides reasonable results in
erms of a truthful characterization for the risk of failure, using the least computational resources.

To complement the previous analysis, Fig. 8 depicts the evolution of �1 distances between obtained ToF PMFs as we  proceed comparing
he performance associated with candidates �1, . . .,  �5 (where �n is the candidate selected in the nth iteration of the design procedure).
t is interesting to note that the relaxation of efficiency constrains (N� , in this case) entails strictly decreasing differences regarding EoD
MFs results in terms of the proposed metric (�1 distance between ToF PMFs).

Further information about the performance exhibited by the prognostic algorithm when using other elements of the sequence of
andidates can be found in Tables D.2–Table D.5; see Appendix.

.4. Avoiding Monte Carlo simulations in EoD prognostic algorithms

The battery discharge model can be easily approximated by a structure that holds the necessary requirements to obtain an analytic
xpression of MCP-BCRLBs (see Section 3.2). The state transition equation for the SoC is:

xk+1 = xk − voc(xk) · uk · Ts

Ecrit
+ ωk,

which is nonlinear with respect to xk because of the term voc(xk). However, from Fig. 1 we can recognize a wide operating zone in which
oc(xk) is linear with respect to xk. Indeed, if we linearize voc(xk) around xo = 0.5, we  obtain:

voc(xk) ≈ voc(xo) + ∂voc(xk)
∣∣∣∣ · (xk − xo)
∂xk xk=xo
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And thus, the state transition equation can be approximated by:

xk+1 = (1 − ∂voc(xk)
∂xk

|
xk=xo

· uk · Ts

Ecrit
)︸  ︷︷  ︸

Ak(uk)

· xk +(
∂voc(xk)

∂xk

|
xk=xo

· xo − voc(xo)) · uk · Ts

Ecrit︸  ︷︷  ︸
Bk(uk)

+ ωk,

expression that has the required form xk +1 = Ak (uk) · xk + Bk (uk) + ωk.
Fig. 9 shows a comparison between the MCP-BCRLB curve that is obtained with the proposed approximation and the one that results

rom the computation of Monte Carlo simulation of the battery discharge model. It is noteworthy that design methodology would have
ed to the same conclusions if the prediction horizon is limited to 4000[s] of operation. This would have resulted in a prognostic algorithm
hat would have been able to perform properly with prediction windows that exceeded an hour of anticipation.

. Conclusions

This article presents a novel prognostic performance metric based on the concept of Bayesian Cramér-Rao Lower Bounds (BCRLBs)
or the predicted state mean square error (MSE), which is conditional to measurement data and model dynamics. This metric allows to
mplement a formal step-by-step design methodology to tune prognostic algorithm hyper-parameters, which allows to guarantee that
btained results do not violate fundamental precision bounds. Both the metric and the proposed design methodology are verified and
alidated using the problem of End-of-Discharge time prognosis as a case study. In this regard, it is safe to state that the contributions of
his research effort are both theoretical and practical, with special focus on probability-based prognostic algorithms.

The design methodology distinguishes between hyper-parameters that affect the efficiency of the implementation and those that have
mpact on the efficacy of obtained results, providing a structured procedure to explore different combinations that could improve the
haracterization of the ToF PMF. We  demonstrated that the proposed design procedure allows to detect situations in which the prognostic
lgorithm implementation generates results with greater precision than it is possible to achieve. Furthermore, it allows to measure the
mpact of a relaxation in efficiency constraints on the outcome of the prognostic algorithm; thus helping the designer to take an informed
ecision on the hardware that is required to implement the algorithm for real-time applications.

Finally, it is important to mention that, for the very first time, it was  possible to tune the parameters of a PF-based prognostic algorithm
ith regularization of the predicted state probability density using a formal and structured procedure. This outcome will undoubtedly be

f value for members of the PHM community who are currently using this algorithm in Li-Ion battery EoD time prognostic problems, or in
ther challenges of the same nature.
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ppendix A. Proof of Theorem 3.1

Let x̂i = x̂i(y1:kp ) be an estimator of xi. Since pcp
k

is absolutely continuous,
∂pcp

k
∂xi is well defined, moreover, by hypothesis, it is absolutely

ntegrable. Therefore, we have the following identity∫
R

(k−kp+1)nx

∂pcp
k

∂xi
(xkp:k)dxkp:k

=
∫
R

(k−kp+1)(nx−1)
lim

N→∞

∫
[−N,N]

. . .

∫
[−N,N]

∂pcp
k

∂xi
(xkp:k\i, xi

kp
, . . .xi

k)dxi
kp

. . .dxi
kdxkp:k\i

=
∫
R

(k−kp+1)(nx−1)
(pcp

k
(xkp:k\i, xi))

∣∣+∞
−∞dxkp:k\i

= 0.

where the last identity is implied by the hypothesis of

lim
xi→+∞

xip(xkp:k) = lim
xi→−∞

xip(xkp:k) = 0

Then, simply multiplying by x̂i(y1:kp ) we get∫
x̂i(y1:kp )

∂pcp
k

∂xi
(xkp:k)dxkp:k = 0. (A.1)

On the other hand, integrating by parts one gets that
∫ +∞

−∞
xi

∂pcp
k

∂xi
dxi = (xipcp

k
)
∣∣+∞
−∞ −

∫ +∞

−∞
pcp

k
dxi.
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Due to condition 2 (see Eq. (28)), (xipcp
k

)
∣∣+∞
−∞ = 0. Integrating with respect to xkp:k\i (xkp:k omitting the i-th element), then∫

xi
∂pcp

k

∂xi
dxkp:k = −1. (A.2)

Subtracting Eq. (A.2) to Eq. (A.1), we obtain, ∀y1:kp ,∫
(x̂i(y1:kp ) − xi)

∂pcp
k

∂xi
dxkp:k =

∫
(x̂i(y1:kp ) − xi)

∂  log pcp
k

∂xi
pcp

k
dxkp:k = 1. (A.3)

Similarly for j ∈ {1, 2, . . .,  (k − kp + 1) nx} \ {i}, we  have ∀y1:kp∫
(x̂i(y1:kp ) − xi)

∂ log pcp
k

∂xj
pcp

k
dxkp:k = 0. (A.4)

Combining Eqs. (A.3) and (A.4) in a matrix form, we get∫
(x̂kp:k(y1:kp ) − xkp:k)[∇xkp:k log pcp

k
]pcp

k
dxkp:k = I(k−kp+1)nx ,

where I(k−kp+1)nx is the (k − kp + 1) nx-dimensional identity matrix. Pre-multiplying and post-multiplying the last equation by aT and b,
, b ∈ R

(k−kp+1)nx , respectively, we have

aT b =
∫

aT (x̂kp:k(y1:kp ) − xkp:k)[∇xkp:k log pcp
k

]bpcp
k

dxkp:k

=
∫

aT (x̂kp:k(y1:kp ) − xkp:k)
√

pcp
k

[∇xkp:k log pcp
k

]b
√

pcp
k

dxkp:k.

Applying Cauchy–Schwarz inequality

(aT b)
2 ≤

(∫
aT (x̂kp:k(y1:kp ) − xkp:k)(x̂kp:k(y1:kp ) − xkp:k)T apcp

k
dxkp:k

)
. . .

. . . ·
(∫

[∇xkp:k log pcp
k

]bbT [∇xkp:k log pcp
k

]
T
pcp

k
dxkp:k

)
.

Expressing this in terms of conditional expectation, we get the following

(aT b)
2 ≤ (aT

Epcp
k

{x̃kp:kx̃T
kp:k|y1:kp }a). . .

. . . ·
(∫

[∇xkp:k log pcp
k

]bbT [∇xkp:k log pcp
k

]
T
pcp

k
dxkp:k

)T

= (aT
Epcp

k
{x̃kp:kx̃T

kp:k|y1:kp }a). . .

. . . · (bT
Epcp

k
{[∇xkp:k

T log pcp
k

][∇xkp:k log pcp
k

]}b).

Defining Icp(xkp:k|y1:kp ) � Epcp
k

{[∇xkp:k
T log pcp

k
][∇xkp:k log pcp

k
]} and choosing b = I−1

cp (xkp:k|y1:kp )a, we obtain

aT (Epcp
k

{x̃kp:kx̃T
kp:k|y1:kp } − I−1

cp (xkp:k|y1:kp ))a ≥ 0.

Given that a ∈ R
(k−kp+1)nx is arbitrary, Epcp

k
{x̃kp:kx̃T

kp:k|y1:kp } − I−1
cp (xkp:k|y1:kp ) must necessarily be a semi-definite positive matrix.

ppendix B. Proof of Theorem 3.2

We  need some previous results before demonstrating the Theorem 3.2, which were extracted from [20].

heorem Appendix B.1. Defining the score function s(�, z) = ∇ � logp(�|z) and taking t(·, ·) a vectorial function of z and � with values in R
n� ,

nd assuming some regularity, the following identity holds

Ep(�|z){t(�, z)s(�, z)} = ∇�Ep(�|z){t(�, z)} − Ep(�|z){∇�t(�, z)}. (B.1)

roof. We  have
Ep(�|z){t(�, z)} =
∫

t(�, z)p(�|z)dz.
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Applying gradient operator at both sides and assuming that differentiation conditions are fulfilled so that the gradient can get into the
ntegral:

∇�Ep(�|z){t(�, z)} = ∇�

∫
t(�, z)p(�|z)dz

=
∫

[∇�t(�, z)p(�|z)]dz

=
∫

t(�, z)[∇�p(�|z)]dz +
∫

[∇�t(�, z)]p(�|z)dz

=
∫

t(�, z)[∇� log p(�|z)]p(�|z)dz +
∫

[∇�t(�, z)]p(�|z)dz

= Ep(�|z){t(�, z)s(�, z)} + Ep(�|z){∇�t(�, z)}
�

orollary 1. If s(�, z) is the score function of a differentiable likelihood p(�|z), then

Ep(�|z){s(�, z)} = 0.

roof. By Theorem B.1, and because of Eq. (B.1), for each constant vector t we  have that:

tEp(�|z){s(�, z)} = Ep(�|z){ts(�, z)}
= ∇�Ep(�|z){t} − Ep(�|z){∇�t}
= 0.

As the latter expression is valid for all t, it follows that Ep(z|�){s(�, z)} = 0.
�

emma  Appendix B.2. If the score function s(y1:kp , xkp:k) = ∇xkp:k log p(xk|y1:kp ) is differentiable, then Icp(xkp:k|y1:kp ) can be expressed as

Icp(xkp:k|y1:kp ) = Epcp
k

{−�xkp:k
xkp:k

log pcp
k

}. (B.2)

roof. By Theorem B.1 and Corollary 1, substituting � = xkp:k and z = y1:kp , we  have

Epcp
k

{t(y1:kp , xkp:k)s(y1:kp , xkp:k)} = ∇xkp:kEpcp
k

{t(y1:kp , xkp:k)} − Epcp
k

{∇xkp:k t(y1:kp , xkp:k)}.

Taking the function t(y1:kp , xkp:k) = s(y1:kp , xkp:k)T and using the previous result, we  get

Epcp
k

{t(y1:kp , xkp:k)s(y1:kp , xkp:k)} = −Epcp
k

{∇xkp:k t(y1:kp , xkp:k)},

and the result is straightforward.�
Taking into account these previous results, we are now able to prove Theorem 3.2:
We have

log p(xkp:k|y1:kp ) = log p(xkp |y1:kp ) +
k∑

i=kp+1

log p(xi|xi−1).

Considering that Di = Si
i
+ Si

i+1, Icp(xkp:k|y1:kp ) can be decomposed into a matrix of four blocks in the following manner

where empty spaces represent zeros. Considering the previous definitions, it can be verified that

(B.3)
On the other hand, we  have

(B.4)
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Then, the MSE  associated to any estimator of xk is lower bounded by

Epcp
k

{x̃kx̃T
k |y1:kp } ≥ C22

k .

Taking into account Eqs. (B.3) and (B.4), and applying the matrix inversion rule,

[C22
k

]
−1 = J22

k
− J21

k
[J11

k
]
−1

J12
k

= Sk
k

− Sk,k−1
k

[J22
k−1 + Sk−1

k
− J21

k−1[J11
k−1]

−1
J12
k−1]

−1
Sk−1,k

k

= Sk
k

− Sk,k−1
k

[[C22
k−1]

−1 + Sk−1
k

]
−1

Sk−1,k
k

with the initial condition [C22
kp

]
−1 = Skp

kp
= E{−�xkpxkp

log p(xkp |y1:kp )}.

ppendix C. MCP-BRCLB initial condition and recursion elements

.1 Initial condition

Below we develop a series of equations for obtaining the initial condition for the computation of the MCP-BCRLB recursive sequence.
e aim at computing:

[C22
kp

] = E{−�xkpxkp
log p(xkp |y1:kp )}−1.

Following the indications reported in [13], we have that

p(xk|y1:k) = p(xk, yk, y1:k−1)
p(yk, y1:k−1)

= p(yk|xk, y1:k−1)p(xk|y1:k−1)p(y1:k−1)
p(yk|y1:k−1)p(y1:k−1)

=

likelihood︷ ︸︸  ︷
p(yk|xk)

︷  ︸︸  ︷
p(xk|y1:k−1)

prior

p(yk|y1:k−1)︸  ︷︷  ︸
evidence

Now, we have

− log p(xk|y1:k) = − log p(yk|xk) − log p(xk|y1:k−1) + log p(yk|y1:k−1)

It is required to get second derivatives with respect to xk before applying expectation. Let’s proceed term by term:

Likelihood:

− log p(yk|xk) = − log
1√

2��
e

−
1
2

(yk − (voc(xk) − IkRint (xk, Ik)))2

2
�

= c0 + 1
2

(yk − (voc(xk) − IkRint (xk, Ik)))2

2
�

⇒ −∂ log p(yk|xk)
∂xk

= −
(

yk − (voc(xk) − IkRint (xk, Ik))

2
�

)
. . .

. . . ·
(

∂voc(xk)
∂xk

− Ik
∂Rint (xk, Ik)

∂xk

)

⇒ −∂2 log p(yk|xk)

∂xk
2

= 1

2
�

(
∂voc(xk)

∂xk

− Ik
∂Rint (xk, Ik)

∂xk

)2

. . .

. . . −
(

yk − (voc(xk) − IkRint (xk, Ik))
)

. . .

2

�

. . . ·
(

∂2voc(xk)

∂xk
2

− Ik
∂2

Rint (xk, Ik)

∂xk
2

)
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Prior: Firstly, note that

p(xk|y1:k−1) =
∫
Xk−1

p(xk, xk−1|y1:k−1)dxk−1

=
∫
Xk−1

p(xk|xk−1, y1:k−1)p(xk−1|y1:k−1)dxk−1

=
∫
Xk−1

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

(C.1)

Then, since p(·|xk−1) is sufficiently regular,

− log p(xk|y1:k−1) = − log

(∫
Xk−1

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

)

⇒ −∂ log p(xk|y1:k−1)
∂xk

= − 1
p(xk|y1:k−1)

∂p(xk|y1:k−1)
∂xk

= −

∫
Xk−1

∂p(xk|xk−1)
∂xk

p(xk−1|y1:k−1)dxk−1∫
Xk−1

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

⇒ −∂2 log p(xk|y1:k−1)

∂xk
2

= −

∫
Xk−1

∂2
p(xk|xk−1)

∂xk
2

p(xk−1|y1:k−1)dxk−1∫
Xk−1

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

. . .

. . . +

⎛
⎜⎜⎝
∫
Xk−1

∂p(xk|xk−1)
∂xk

p(xk−1|y1:k−1)dxk−1∫
Xk−1

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

⎞
⎟⎟⎠

2

On the other hand

p(xk|xk−1) = 1√
2�ω

e
− 1

2

(xk−(xk−1−Ik−1voc (xk−1) Ts
Ecrit

))
2

2
ω

−
1

(xk − (xk−1 − Ik−1voc(xk−1)
Ts

Ecrit
))

2

⇒ ∂p(xk|xk−1)
∂xk

= − 1√
2�3

ω

e 2 2
ω . . .

. . . · (xk − (xk−1 − Ik−1voc(xk−1)
Ts

Ecrit
))
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⇒ ∂2
p(xk|xk−1)

∂xk
2

= 1√
2�5

ω

e
−

1
2

(xk − (xk−1 − Ik−1voc(xk−1)
Ts

Ecrit
))

2

2
ω . . .

. . . · (xk − (xk−1 − Ik−1voc(xk−1)
Ts

Ecrit
))

2
. . .

. . . − 1√
2�3

ω

e
−

1
2

(xk − (xk−1 − Ik−1voc(xk−1)
Ts

Ecrit
))

2

2
ω

= 1√
2�3

ω

e
−

1
2

(xk − (xk−1 − Ik−1voc(xk−1)
Ts

Ecrit
))

2

2
ω . . .

. . . ·

⎛
⎜⎝ (xk − (xk−1 − Ik−1voc(xk−1)

Ts

Ecrit
))

2

2
ω

− 1

⎞
⎟⎠

Evidence: Since p(yk| y1:k−1) does not depend on xk, it follows that

⇒ ∂2 log p(yk|y1:k−1)

∂xk
2

= 0

Therefore, the MCP-BCRLB at the prognostic time instant kp can be approximated considering the state posterior distributions at times
p and kp − 1, which are of the form:

p(xkp |y1:kp ) ≈
Np∑
i=1

w(i)
kp

ı
x(i)

kp

(xkp )

p(xkp−1|y1:kp−1) ≈
Np∑
i=1

w(i)
kp−1ı

x(i)
kp−1

(xkp−1)

Nonetheless, all these calculations require the following equations:

xk+1 = xk − Ikvoc(xk)
Ts

Ecrit
+ ωk

yk = voc(xk) − IkRint (xk, Ik) + �k

voc(xk) = vL + (v0 − vL) · e
 ·  (xk−1) +  ̨ · vL · (xk − 1) + (1 − ˛) · vL · (e−ˇ − e−  ̌ ·√xk )

∂voc(xk)
∂xk

= (v0 − vL) · 
 · e
 · (xk−1) +  ̨ · vL + (1 − ˛) · vL · e−  ̌ ·√xk · ˇ

2
√

xk

∂2voc(xk)

∂xk
2

= (v0 − vL) · 
2 · e
 · (xk−1) − (1 − ˛) · vL · e−  ̌ ·√xk · ˇ

4
·
(

ˇ

xk
+ 1

xk
3/2

)

Rint (xk, Ik) = p0(Ik) + p1(Ik)xk + p2(Ik)x2
k

∂Rint (xk, Ik)
∂xk

= p1(Ik) + 2p2(Ik)xk
∂2
Rint (xk, Ik)

∂xk
2

= 2p2(Ik)
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.2 Elements of the recursion

− log p(xk+1|xk) = − log
1√

2�ω
e

−
1
2

(
xk+1 −

(
xk − Ikvoc(xk)

Ts

Ecrit

))2

2
ω

= c1 + 1
2

(
xk+1 −

(
xk − Ikvoc(xk)

Ts

Ecrit

))2

2
ω

−∂ log p(xk+1|xk)
∂xk

= 1

2
ω

(xk+1 − xk + Ikvoc(xk)
Ts

Ecrit
)
(

−1  + Ik
dvoc(xk)

dxk

Ts

Ecrit

)

−∂ log p(xk+1|xk)
∂xk+1

= 1

2
ω

(
xk+1 − xk + Ikvoc(xk)

Ts

Ecrit

)

⇒ −∂2 log p(xk+1|xk)

∂xk
2

= 1

2
ω

((
−1 + Ik

dvoc(xk)
dxk

Ts

Ecrit

)2

. . .

. . . +
(

xk+1 − xk + Ikvoc(xk)
Ts

Ecrit

)
Ik

d2voc(xk)

dxk
2

Ts

Ecrit

)

⇒ −∂2 log p(xk+1|xk)
∂xk∂xk+1

= 1

2
ω

(
−1 + Ik

dvoc(xk)
dxk

Ts

Ecrit

)

⇒ −∂2 log p(xk+1|xk)

∂xk+1
2

= 1

2
ω

ppendix D. Impact of design hyper- parameter on prognostic algorithm performance

able D.2
issimilarity between predicted state MSE  and MCP-BCRLB curves (�1 distance) for N� = 500. Candidates that were discarded in Step 3 are marked with a × symbol. Candidates
ssociated with minimum distances are marked with a

√
symbol.

‖MSEh�,i
− MCP-BCRLB‖1 h�,1 h�,2 h�,3 h�,4 h�,5

kp = 2000 [s] 7.7933 6.3497 5.1402 4.3521
√

4.2905×
kp = 4000 [s] 4.6074 4.6585 4.0858 3.0111

√
2.7673×

kp = 6000 [s] 2.1356 2.0592 1.9863 1.6549
√

1.7349×

able D.3
issimilarity between predicted state MSE  and MCP-BCRLB curves (�1 distance) for N� = 1000. Candidates that were discarded in Step 3 are marked with a × symbol. Candidates
ssociated with minimum distances are marked with a

√
symbol.

‖MSEh�,i
− MCP-BCRLB‖1 h�,1 h�,2 h�,3 h�,4 h�,5

kp = 2000 [s] 7.0399 6.3170 5.0063 4.7501
√

4.1201×
kp = 4000 [s] 4.5221 4.1722 3.5164 2.8865

√
2.6738×

kp = 6000 [s] 2.6213 2.1310 2.0551
√

1.7470× 1.7253×

able D.4
issimilarity between predicted state MSE  and MCP-BCRLB curves (�1 distance) for N� = 5000. Candidates that were discarded in Step 3 are marked with a × symbol. Candidates
ssociated with minimum distances are marked with a

√
symbol.

‖MSEh�,i
− MCP-BCRLB‖1 h�,1 h�,2 h�,3 h�,4 h�,5
kp = 2000 [s] 7.0030 6.3168 5.3319 4.3004
√

4.2133×
kp = 4000 [s] 4.6211 4.4223 3.6820 3.2294

√
2.6773×

kp = 6000 [s] 2.5407 2.2773 1.9471
√

1.6789× 1.6890×
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Table  D.5
Dissimilarity between predicted state MSE  and MCP-BCRLB curves (�1 distance) for N� = 10, 000. Candidates that were discarded in Step 3 are marked with a × symbol.
Candidates associated with minimum distances are marked with a

√
symbol.

‖MSEh�,i
− MCP-BCRLB‖1 h�,1 h�,2 h�,3 h�,4 h�,5

√

R

[
[
[
[

[
[
[

[

[

[

[

kp = 2000 [s] 7.1497 6.1347 5.2790 4.4606 4.1559×
kp = 4000 [s] 4.8909 4.1680 3.6592 2.8972

√
2.7126×

kp = 6000 [s] 2.4718 2.0924 1.8365
√

1.6653× 1.6822×
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