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We give different conditions for the invariance of closed sets with respect to 
differential inclusions governed by a maximal monotone operator defined on Hilbert 
spaces, which is subject to a Lipschitz continuous perturbation depending on the 
state. These sets are not necessarily weakly closed as in [3,4], while the invariance 
criteria are still written by using only the data of the system. So, no need to 
the explicit knowledge of neither the solution of this differential inclusion, nor the 
semi-group generated by the maximal monotone operator. These invariant/viability 
results are next applied to derive explicit criteria for a-Lyapunov pairs of lower semi-
continuous (not necessarily weakly-lsc) functions associated to these differential 
inclusions. The lack of differentiability of the candidate Lyapunov functions and the 
consideration of general invariant sets (possibly not convex or smooth) are carried 
out by using techniques from nonsmooth analysis.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We provide sufficient and, in many different interesting situations, necessary criteria for the invariance 
property of closed subsets with respect to the following differential inclusion, given in a Hilbert space H,

ẋ(t) ∈ f(x(t)) −Ax(t), x(0) = x0 ∈ domA, a.e. t ≥ 0 (1)

where A is a maximal monotone operator which is subject to a Lipschitzian perturbation f . Equivalently, 
we establish many primal and dual explicit criteria for a-Lyapunov pairs and functions associated to the 
differential inclusion above. The current work extends and improves some of the results given in [3,4] on 
weakly closed invariant sets and weakly lower semi-continuous a-Lyapunov pairs.
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The domain of A does not need to be closed, nor the values of A are supposed to be bounded or even 
nonempty. Thus, the scope of the equation above goes beyond the differential inclusions treated in [6,7,12,
14,15], where the right-hand side is generally represented by a cusco set-valued mapping (in particular, with 
nonempty and weak*-compact multi-valued operator). It is the monotonicity of A which compensates the 
lack of compacity in our differential inclusion, while the maximality of this operator guaranties, among other 
properties, the existence and the regularity of solutions. These two facts are also essential when checking 
the invariance of closed sets.

In front of the lack to a direct access to the explicit calculus of either the solution of the inclusion above 
or to the semi-group generated by A, the current work aims at finding weaker conditions for the invariance 
of closed sets, which only appeal to the fresh input data, namely the maximal monotone operator and the 
Lipschitz mapping. These conditions are applicable to a large variety of closed sets which do not need to 
be convex or smooth. Our approach fits the general scope and the main ideas behind Lyapunov’s stability, 
which consists of looking for an adjacent function to the system described by the inclusion above; namely, 
an energy-like function which decreases along the trajectories and, so, under some extra usual conditions, 
forces the system to converge towards its equilibrium state and to remain there. Since our analysis allows to 
deal with extended-real valued functions, the invariance of a set occurs as long as the associated indicator 
function is a Lyapunov’s function. However, our approach is more geometric since we first establish criteria 
for the invariance property and next deduce the adequate conditions for Lyapunov pairs and functions.

Invariant sets associated to general differential inclusions/equations have been the subject of extensive 
research during the last decades; namely, in relation with differential inclusions involving cusco mappings 
in their right-hand side (see, e.g., [6]). First results dealing with Lyapunov pairs and functions associated to 
the differential inclusions above have been first established in [19,20] in the case of homogeneous systems; 
that is, f ≡ 0. Pazy’s criteria for a-Lyapunov pairs are given by means of directional-like derivative using the 
Moreau–Yoshida approximation of the operator A. This result has been extended to the general inclusion 
above in [11,17], with the use of implicit criteria depending heavily on the semi-group generated by the 
maximal monotone operator A. Recently, different criteria for weakly lower semi-continuous a-Lyapunov 
pairs have been investigated in [3,4].

The need of more explicit conditions, not depending on the semi-group generated by A, is of utmost 
importance for many reasons, one of which is that the inclusion above is sometimes evoked as a companion 
tool to analyze other differential inclusions. In that case, the operator A may not be known explicitly, and this 
fact makes the access to its semi-group more complicated. For instance, in our work [5] we have investigated 
the existence of solutions to a differential inclusion governed by the normal cone to a prox-regular set [21], by 
rewriting it in the form of (1) with A being some intrinsic maximal monotone operator to this prox-regular 
set. Such an operator A is not known explicitly but it processes enough information in order to check the 
invariance of the involved prox-regular set with respect to (1). This was sufficient to get the desired existence 
results; for more details, we refer the reader to [5].

Invariant sets are also referred to in the wide literature as viable sets [6–8], and are of crucial use in many 
domains, as in economic, renewable resources, biology, diseases propagation, control processes of species and 
so on. It is manifest, in recent papers [16,24], that the investigation of certain algebraic varieties is sufficient 
to characterize invariant sets forced by symmetries. Lyapunov pairs and functions are used extensively in 
dynamic systems and control theory, among many other applications; see, e.g., [1,10].

In this work, we provide different criteria to characterize those sets which are invariant with respect to 
the differential inclusion (1). Only the data, A and f , will be appealed to and no need to solve explicitly 
the equation. These invariant results are then rewritten as criteria for a-Lyapunov pairs, which are crucial 
for Lyapunov stability of (1). Because the sets we consider are not necessary convex or smooth, and the 
candidate Lyapunov functions are not necessarily sufficiently regular, we use techniques of nonsmooth 
analysis (e.g. [14,18,23]).
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The organization of the paper is as follows. After an introductory section to present the main notations 
and tools which are used through this work, we give in Section 3 the main invariance criterion in Theorem 4, 
using the normal cone to the nominal set. Other corollaries follow in order to simplify this invariance criterion 
and provide equivalent primal and dual conditions. In Section 4, we apply the previous invariance result to 
investigate a-Lyapunov pairs associated to differential inclusion (1).

2. Notation and preliminary results

Let (H, 〈·, ·〉, ‖·‖) be a Hilbert space, with origin θ. Given a set S ⊂ H, by S and S∗ we denote the closure
of S and the polar of S, respectively, where

S∗ := {x∗ ∈ H | 〈x∗, x〉 ≤ 0 for all x ∈ S}.

The indicator and the distance functions are respectively given by

IS(x) := 0 if x ∈ S; +∞ if x /∈ S, and dS(x) := inf{‖x− y‖ : y ∈ S}

(in the sequel we shall adopt the convention inf∅ = +∞). For δ ≥ 0, we denote P δ
S the (orthogonal) 

δ-projection mapping onto S defined as

P δ
S(x) := {y ∈ S : ‖x− y‖2 ≤ d2

S(x) + δ2};

for δ = 0, we simply write PS(x) := P 0
S(x). It is known that PS is nonempty-valued on a dense subset of 

H \ S [14]. For an extended-real valued function ϕ : H → R := (−∞,+∞], we denote domϕ := {x ∈ H |
ϕ(x) < +∞} and epiϕ := {(x, α) ∈ H ×R | ϕ(x) ≤ α}. Function ϕ is lower semi-continuous (lsc, for short) 
if epiϕ is closed. The contingent directional derivative of ϕ at x ∈ domϕ in the direction v ∈ H is

ϕ′(x; v) := lim inf
t→0+,w→v

ϕ(x + tw) − ϕ(x)
t

.

A vector ξ ∈ H is called a proximal subgradient of ϕ at x ∈ H, written ξ ∈ ∂Pϕ(x), if there are ρ > 0 and 
σ ≥ 0 such that

ϕ(y) ≥ ϕ(x) + 〈ξ, y − x〉 − σ‖y − x‖2
, ∀ y ∈ Bρ(x),

where Bρ(x) (=: B(x, ρ)) is the closed ball centred at x ∈ H of radius ρ > 0. The vector ξ is called a Fréchet 
subgradient of ϕ at x, written ξ ∈ ∂Fϕ(x), if

ϕ(y) ≥ ϕ(x) + 〈ξ, y − x〉 + o(‖y − x‖), ∀ y ∈ H;

and a basic (or Limiting) subgradient of ϕ at x, written ξ ∈ ∂Lϕ(x), if there exist sequences (xk)k and (ξk)k
such that

xk
ϕ→ x, ξk ∈ ∂Pϕ(xk), ξk ⇀ ξ,

where ⇀ refers to the weak convergence in H, and xk
ϕ→ x means that xk → x together with ϕ(xk) → ϕ(x).

If x /∈ domϕ, we write ∂Pϕ(x) = ∂Fϕ(x) = ∂Lϕ(x) = ∅. If S is a closed set and s ∈ S, we define the 
proximal normal cone to S at s as NP

S (s) = ∂P IS(s), the Fréchet normal cone to S at s as NF
S (s) = ∂F IS(s), 

the limiting normal cone to S at s as NL
S(s) = ∂LIS(s), and the Clarke normal cone to S at s as NC

S (s) =
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S(s). Equivalently, we have that NP

S (s) = cone(P−1
S (s) − s), where P−1

S (s) := {x ∈ H | s ∈ PS(x)}. The 
Bouligand tangent cone to S at x is defined as

TS(x) :=
{
v ∈ H | ∃ xk ∈ S,∃ tk → 0, st. t−1

k (xk − x) → v as k → +∞
}
.

We also define the Clarke subgradients of ϕ at x as the vectors ξ ∈ H such that (ξ, −1) ∈ NC
epi ϕ(x, ϕ(x)), 

and denote ∂Cϕ(x) the Clarke subdifferential of ϕ at x. The singular subdifferential of ϕ at x, written 
∂∞ϕ(x), is the set of vectors ξ ∈ H for which there are sequences xk

ϕ→ x, ξk ∈ ∂Pϕ(xk) and λk → 0+ such 
that λkξk ⇀ ξ; equivalently, ξ ∈ ∂∞ϕ(x) iff (ξ, 0) ∈ NL

epi ϕ(x, ϕ(x)) (see [18, Theorem 2.38]). It is known 
that every ξ ∈ H such that (ξ, 0) ∈ NP

epi ϕ(x, ϕ(x)) belongs to ∂∞ϕ(x) and, moreover, there exist sequences 
as in the definition before but with λkξk → ξ instead of λkξk ⇀ ξ (see [18, Lemma 2.37]). Observe that 
∂Pϕ(x) ⊂ ∂Fϕ(x) ⊂ ∂Lϕ(x) ⊂ ∂Cϕ(x). For all these concepts and properties we refer to [18,23].

We shall use the following version of Gronwall’s Lemma:

Lemma 1. (Gronwall’s Lemma [2]) Let T > 0 and a, b ∈ L1(t0, t0+T ; R) such that b(t) ≥ 0 a.e. t ∈ [t0, t0+T ]. 
If an absolutely continuous function w : [t0, t0 + T ] → R+ satisfies, for 0 ≤ α < 1,

(1 − α)w′(t) ≤ a(t)w(t) + b(t)wα(t) a.e. t ∈ [t0, t0 + T ],

then

w1−α(t) ≤ w1−α(t0)e
∫ t
t0

a(τ)dτ +
t∫

t0

e
∫ t
s
a(τ)dτ b(s)ds, ∀t ∈ [t0, t0 + T ].

Next, we review some facts about monotone and maximal monotone operators. Given a set-valued oper-
ator A : H ⇒ H, which we identify with its graph, we denote its domain by domA := {x ∈ H | Ax �= ∅}. 
Operator A is monotone if

〈x1 − x2, y1 − y2〉 ≥ 0 for all (x1, y1), (x2, y2) ∈ A.

We say that A is maximal monotone if A is monotone and coincides with every monotone operator containing 
its graph. In such a case, it is known that Ax is convex and closed for every x ∈ H; moreover, for every 
λ > 0 there exists a unique vector Jλx ∈ (id +λA)−1(x), which is the resolvent of the (maximal monotone) 
operator A, while Aλx := x−Jλx

λ is the Moreau–Yoshida approximation of A. If S ⊂ H is a closed convex 
set, we denote S0 := {y ∈ S | ‖y‖ = min

z∈S
‖z‖}; in particular, we write A0x := (Ax)◦, x ∈ domA.

Associated with a maximal monotone operator A : H ⇒ H we consider the differential inclusion given 
in (1):

ẋ(t) ∈ f(x(t)) −A(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ domA,

where f : H → H is a given (L-)Lipschitz continuous mapping. Every solution of differential inclusion (1)
will be denoted by x(·; x0).

We introduce the concept of invariant sets (see, e.g., [6,13,14]):

Definition 1. A set S ⊂ domA is said to be invariant for (1) provided that x(t; x0) ∈ S for every x0 ∈ S

and every t ≥ 0.

We also recall the following result on the existence of solutions of (1); for more details, we refer to [9].
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Proposition 2. For any x0 ∈ domA and T > 0, system (1) has a unique continuous solution, which is the 
uniform limit on [0, T ] of xλ(·; x0) (as λ ↓ 0), where xλ(·; x0) is the solution of the differential equation

ẋλ(t) = f(xλ(t)) −Aλ(xλ(t)), xλ(0) = x0.

Moreover, the following holds:

(i) For all s, t ≥ 0 and all y0 ∈ domA we have that

x(s;x(t;x0)) = x(t + s;x0), ‖x(t;x0) − x(t; y0)‖ ≤ eLt ‖x0 − y0‖ .

(ii) If x(t0, x0) ∈ domA for some t0 ≥ 0, then

d+x(t0;x0)
dt

= (f(x(t0;x0)) −Ax(t0;x0))0.

(iii) The function t → d+x(t;x0)
dt is right-continuous at every t ≥ t0, where t0 ≥ 0 is such that x(t0; x0) ∈

domA, and we have
∥∥∥∥d+x(t;x0)

dt

∥∥∥∥ ≤ eL(t−t0)
∥∥∥∥d+x(t0;x0)

dt

∥∥∥∥ .
3. Invariant sets

In this section, we achieve our first goal to characterize those closed sets in the Hilbert space H, which 
are invariant with respect to differential inclusion (1):

ẋ(t) ∈ f(x(t)) −A(x(t)), t ∈ [0,∞), x(0) = x0 ∈ domA;

the unique solution of this inclusion is written x(·; x0).
It is worth observing that whenever differential inclusion (1) possesses a strong solution starting from S

(x0 ∈ S), which is an absolutely continuous function such that x(t; x0) ∈ domA for all t > 0, each invariant 
closed set S ⊂ domA satisfies the condition

S = domA ∩ S. (2)

However, this condition may not be true when only weak solutions exist. This is why we shall assume in 
what follows that our invariance candidate sets satisfy this “almost necessary” condition.

Remark 1. Theorem 4 below gives the main invariance criterion, stated in (3), for closed sets with respect 
to differential inclusion (1), using only the data in (1) which are the operator A and the mapping f . Hence, 
explicit calculus of either the solution or the semigroup generated by A are not required. Criterion (3)
extends and adapts some of the results given in [3,4] on weakly closed invariant sets. Its geometric meaning 
is very similar to the classical ones established in [12,14] for differential inclusions of the form

ẋ(t) ∈ F (x(t)),

with a w∗-compact, nonempty and convex multifunction F . In our case, condition (3) takes into account 
that the right-hand side in (1), which is governed by a general maximal monotone operator, may have 
empty or unbounded values. As well, another crucial difference between (1) and the last inclusion above is 
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that our analysis also allows the initial condition in (1) to start from the larger set domA. Thus, the scope 
of our analysis goes beyond the differential inclusions treated in [6,7,12,14,15]. First invariance criteria for 
differential inclusions involving maximal monotone operators have been given in [19] (see, also, [9]) without 
considering the Lipschitzian perturbation. Such results have been extended in [11,17] to maximal monotone 
operators which are subject to Lipschitz perturbations, using criteria which depend on the semi-group 
of contractions generated by −A. Compared to [11,17] (see, also, references therein), condition (3) relies 
exclusively on the geometry of C as in [12,14].

Before we state the main theorem of this section, Theorem 4 below, we give the following lemma.

Lemma 3. Given a closed set S ⊂ H and an m ≥ 0, we denote

Sm :=
{
x ∈ S ∩ domA |

∥∥(f(x) −Ax)0
∥∥ ≤ m

}
.

Then the set Sm is closed.

Proof. Take a sequence (xk)k ⊂ Sm such that xk → x (∈ S). Without loss of generality, and taking into 
account the norm-weak upper semi-continuity of the maximal monotone operator A, we conclude that the 
sequence (PAxk

(f(xk)))k weakly converges to some z ∈ Ax. Then

∥∥(f(x) −Ax)0
∥∥ ≤ ‖f(x) − z‖
≤ lim infk→∞ ‖f(xk) − PAxk

(f(xk))‖
= lim infk→∞

∥∥(f(xk) −Axk)0
∥∥ ≤ m,

so that x ∈ Sm. �
Theorem 4. Given a closed set S ⊂ domA ∩ S, we assume that for every x ∈ S∩domA there exist m, r > 0
such that ‖PAx(f(x))‖ ≤ m and

sup
ξ∈NP

Sm
(y)

min
y∗∈Ay∩B(θ,m)

〈ξ, f(y) − y∗〉 ≤ 0 for all y ∈ B(x, r). (3)

Then S is invariant for (1).

Proof. We fix x0 ∈ S ∩ domA and ε > 0. Let m, r > 0 be as in the current assumption (with x = x0), and 
choose an M > 0 such that

f(y) −Ay ∩B(θ,m) ⊂ B(θ,M) for all y ∈ K := Sm ∩B(x0, r). (4)

We also choose sufficiently small numbers t̄, δ > 0 and a sufficiently large integer N such that

max{6M2t̄2, 8δ2} <
r2

2 , δ <
t̄

N
, (5)

max
{

(M2 + 4M + 1)t̄2

N
,
M2t̄2

N2 + 2δ2
}

<
ε2

4 . (6)

We denote by π := {t0, t1, ..., tN} the uniform partition of the interval [0, ̄t ]. We put d(π) :=
max

0≤i≤N−1
(ti+1 − ti) = t̄

N and, by (4), we choose an element s∗0 ∈ f(x0) − A(x0) such that ‖s∗0‖ ≤ M . 

We consider the function z0(t), t ∈ [t0, t1] such that
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{
ż0(t) = s∗0, t ∈ [t0, t1],
z0(0) = x0,

and denote z1 := x0 + s∗0t1. We pick ŝ1 ∈ P δ
K(z1). Then there exists a pair (y1, s1) such that s1 ∈ K, 

y1 − s1 ∈ NP
K(s1) and (see, e.g., [13,22])

max{‖y1 − z1‖ , ‖s1 − ŝ1‖} ≤ δ, ‖(y1 − s1) − (z1 − ŝ1)‖ ≤ 2δ,

as well as (see [5, Lemma 4])

‖s1 − x0‖2 ≤ 6‖z1 − x0‖2 + 8δ2 = 6t21‖s∗0‖
2 + 8δ2 < 6t̄2M2 + 8δ2 < r2;

hence, s1 ∈ int(B(x0, r)) and, so, NP
K(s1) = NP

Sm
(s1). Consequently, by the current assumption of the 

theorem, we find s∗1 ∈ (f(s1) −A(s1)) ∩B(θ, M) such that

〈y1 − s1, s
∗
1〉 ≤ 0.

With this vector s∗1 in hand, we consider the function z1(t), t ∈ [t1, t2], such that
{

ż1(t) = s∗1, t ∈ [t1, t2]
z1(t1) = z1.

By repeating the arguments used above, for each i ∈ 2, N − 1, we consider the function zi(t), t ∈ [ti, ti+1], 
such that {

żi(t) = s∗i , t ∈ [ti, ti+1]
zi(ti) = zi−1(ti) =: zi,

and the corresponding elements (ŝi, yi, si, s∗i ) such that ŝi ∈ P δ
K(zi), yi − si ∈ NP

K(si) = NP
Sm

(si), s∗i ∈
[f(si) −A(si)] ∩B(θ, M),

〈yi − si, s
∗
i 〉 ≤ 0,

max{‖yi − zi‖ , ‖si − ŝi‖} ≤ δ, ‖(yi − si) − (zi − ŝi)‖ ≤ 2δ.

Now, we are going to prove that the absolute continuous trajectory z(·), defined on 
[
0, t̄

]
as z(t) := zi(t) =

zi + (t − ti)s∗i for t ∈ [ti, ti+1], satisfies

dS(z(t)) ≤ ε, ∀t ∈ [0, t̄ ], (7)

‖si − z(t)‖ ≤ 2ε, ∀t ∈ [ti, ti+1]. (8)

Indeed, for any 1 ≤ i ≤ N − 1, one has

d2
K(zi+1) ≤ ‖zi+1 − ŝi‖2 = ‖zi+1 − zi‖2 + ‖zi − ŝi‖2 + 2〈zi+1 − zi, zi − ŝi〉

= ‖(ti+1 − ti)s∗i ‖
2 + d2

K(zi) + δ2 + 2d(π)〈s∗i , zi − ŝi〉

≤ M2d2(π) + d2
K(zi) + δ2 + 2d(π)〈s∗i , yi − si〉

+ 2d(π)〈s∗i , (zi − ŝi) − (yi − si)〉

≤ d2
K(zi) + (M2 + 4M + 1)d(π)(ti+1 − ti),
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which gives us

d2
K(zi+1) ≤ d2

K(z1) + (M2 + 4M + 1)d(π)(ti+1 − t1)

≤ ‖z1 − x0‖2 + (M2 + 4M + 1)d(π)(ti+1 − t1)

≤ (M2 + 4M + 1)d(π)t̄ ≤ (M2 + 4M + 1)t̄2

N
<

ε2

4 . (9)

This shows that, for every t ∈ [ti, ti+1],

d2
S(z(t)) ≤ d2

K(z(t)) = d2
K(zi(t))) = d2

K(zi(ti) + (t− ti)s∗i )

≤ 2d2
K(zi) + 2(t− ti)2M2 ≤ ε2

2 + 2d2(π)M2 ≤ ε2

and (7) follows. Inequality (8) also follows since that for every t ∈ [ti, ti+1]

‖si − z(t)‖2 ≤ 2‖z(t) − zi‖2 + 2‖si − zi‖2

≤ 2(t− ti)2M2 + 4‖si − ŝi‖2 + 4‖zi − ŝi‖2

≤ 2(t− ti)2M2 + 4d2
K(zi) + 8δ2

≤ 2d2(π)M2 + ε2 + 8δ2 ≤ 2ε2,

where in the last inequality we used (9).
Now, let x(t) be the (strong) solution of (1) starting at x0, and denote li(t) := si − z(t), t ∈ [ti, ti+1], so 

that ż(t) = s∗i ∈ f(si) −A(si) = f(z(t) + li(t)) −A(z(t) + li(t)). Hence, by using the monotonicity of A we 
get

〈f(z(t) + li(t)) − ż(t) − f(x(t)) + ẋ(t), z(t) + li(t) − x(t)〉 ≥ 0,

which leads us, using (7) and (8) together with the L-Lipschitzianity of f , to

〈ż(t) − ẋ(t), z(t) − x(t)〉 ≤ 2ε ‖f(z(t) + li(t)) − ż(t) − f(x(t)) + ẋ(t)‖

+ ‖z(t) − x(t)‖ ‖f(z(t) + li(t)) − f(x(t))‖

≤ 2ε ‖ż(t) − ẋ(t)‖ + 2εL ‖z(t) + li(t) − x(t)‖

+ L ‖z(t) − x(t)‖ ‖z(t) + li(t) − x(t)‖ .

So, if C is any constant such that ‖ż(t) − ẋ(t)‖ ≤ C for all t ∈ [0, ̄t ] (as ‖ż(t)‖ ≤ M , and x(·) is Lipschitz 
on 

[
0, t̄

]
), we get

〈ż(t) − ẋ(t), z(t) − x(t)〉 ≤ 2εC + 4εL ‖z(t) − x(t)‖ + L‖z(t) − x(t)‖2 + 4ε2L.

Next, by applying Lemma 1 to the function ‖z(·) − x(·)‖2 + 2εC+4ε2L
L we get, for all t ∈

[
0, t̄

]

‖z(t) − x(t)‖ ≤
(

4ε2L + 2εC
L

)2

eLt + 4ε(eLt − 1),

implying that, in view of (7) and (8),

dS(x(t)) ≤ dS(z(t)) + ‖z(t) − x(t)‖ ≤
(

4ε2L + 2εC
)2

eLt̄ + 4εeLt̄.

L
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Consequently, by the arbitrariness of ε we conclude that x(t) ∈ S for every t ∈ [0, ̄t ]. Moreover, as x(t̄; x0) ∈
S∩domA, by the same argument as above we find t̂ > 0 such that for every t ∈ [0, ̂t ] (recall Proposition 2)

x(t + t̄;x0) = x(t;x(t̄;x0)) ∈ S ∩ domA;

that is, x(t) ∈ S for every t ∈ [0, ̄t+ t̂ ]. This proves that x(t) ∈ S for every t ≥ 0. Finally, if x0 ∈ S ∩ domA, 
we take a sequence (xk) ⊂ S ∩ domA such that xk → x0. As we have just shown, for every k ≥ 1 we have 
that x(t; xk) ∈ S for every t ≥ 0. Thus, since S is closed, as k → +∞ we deduce that x(t; x0) ∈ S for every 
t ≥ 0. �

The proof of Theorem 4 shows actually the following:

Corollary 5. Given a closed set S ⊂ domA ∩ S and x0 ∈ S∩domA, we assume that for some m, r > 0 such 
that ‖PAx(f(x0))‖ ≤ m it holds

sup
ξ∈NP

Sm
(y)

min
y∗∈Ay∩B(θ,m)

〈ξ, f(y) − y∗〉 ≤ 0 for all y ∈ B(x0, r).

Then there exists t̄ > 0 such that x(t; x0) ∈ S for all t ∈ [0, ̄t ].

As we show in the corollary below the criterion of Theorem 4 becomes necessary if the maximal monotone 
operator A has a minimal norm section, which is locally bounded relative to its domain. As typical examples 
of such operators there are normal cones to closed convex sets, and the subdifferential mapping of lsc convex 
functions, which are Lipschitz relative to their domains. To fix this concept we say that the operator A is 
locally minimally bounded on S, if for every x ∈ S ∩ domA there exist m, r > 0 such that

∥∥A0y
∥∥ ≤ m for all y ∈ S ∩ domA ∩B(x, r). (10)

This condition is less restrictive compared with the local boundedness of A relative to S, which means that 
for every x ∈ S ∩ domA there exist m, r > 0 such that

‖y∗‖ ≤ m, ∀y∗ ∈ Ay, y ∈ S ∩ domA ∩B(x, r). (11)

Obviously every locally bounded operator is locally minimally bounded.
Then the following result gives necessary and sufficient simpler criteria for the invariance of closed sets 

with respect to differential inclusion (1), using the normal cone mapping to S, NS, which stands for either 
the proximal normal cone NP

S or the Fréchet normal cone NF
S .

Corollary 6. Let S ⊂ H be a closed set satisfying (2). Then the following statements are equivalent, provided 
that A is locally minimally bounded on S,

(i) S is an invariant set for (1);
(ii) for every x ∈ S ∩ domA

f(x) − PAx(f(x)) ∈ TS(x);

(iii) for every x ∈ S ∩ domA

sup
ξ∈NS(x)

〈ξ, f(x) − PAx(f(x))〉 ≤ 0;
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(iv) for every x ∈ S ∩ domA and every m ≥ ‖f(x) − PAx(f(x))‖

sup
ξ∈NS(x)

inf
x∗∈(f(x)−Ax)∩B(θ,m)

〈ξ, x∗〉 ≤ 0;

and the following assertion, when A is locally bounded relative to S,
(v) for every x ∈ S ∩ domA

sup
ξ∈NS(x)

inf
x∗∈f(x)−Ax

〈ξ, x∗〉 ≤ 0.

Proof. We fix x ∈ S ∩domA. The implication (iii) =⇒ (iv) is immediate, while the implication (ii) =⇒ (iii)
follows because TS(x) ⊂ (NS(x))∗. In the same line, implication (i) ⇒ (ii) follows easily by observing that

(f(x) −A(x))0 = d+x(·;x)
dt

(0) = lim
t↓0

x(t;x) − x

t
∈ TS(x).

Thus, we only need to prove that (iv) ⇒ (i). If (iv) holds, by the current local boundedness assumption of 
A0 on S ∩ domA we pick m, r > 0 such that 

∥∥(f(y) −Ay)0
∥∥ ≤ m for all y ∈ B(x, 2r) ∩ S ∩ domA. Hence,

B(x, 2r) ∩ S ∩ domA = Sm ∩B(x, 2r),

and, since S = S ∩ domA, for every y ∈ B(x, r) ∩ Sm,

NSm
(y) = NSm∩B(x,2r)(y) = NS∩dom A∩B(x,2r)(y) = NS∩dom A(y) = NS(y).

So (iv) gives us, for every y ∈ B(x, r) ∩ Sm,

sup
ξ∈NSm (y)

inf
x∗∈(f(y)−Ay)∩B(θ,m)

〈ξ, x∗〉 ≤ 0,

and (i) follows, according to Theorem 4.
Suppose now that A is locally bounded on S ∩ domA, and consider the intermediate assertion
(iv)′ for every x ∈ S ∩ domA and every large enough m ≥

∥∥(f(x) −Ax)0
∥∥ we have that

sup
ξ∈NS(x)

inf
x∗∈(f(x)−Ax)∩B(θ,m)

〈ξ, x∗〉 ≤ 0.

As we see from the proof above (namely, the implication (iv) ⇒ (i)), we have that (iv)′ ⇒ (i), so that 
(v) ⇒ (iv)′ ⇒ (i). The proof of the corollary is finished because the implication (iv) =⇒ (v) is immediate. �

In the following corollary we deduce another sufficient condition for the invariance of closed sets, using the 
Moreau–Yoshida approximations of A. Observe that we do not require here that set S satisfies condition (2).

Corollary 7. Given a closed set S ⊂ H, we suppose that for every bounded subsets B of S

lim inf
λ↓0

sup
y∈B

sup
ξ∈NP

S (y)
〈ξ, f(y) −Aλy〉 ≤ 0.

Then S is invariant set for (1).

Proof. Fix an x ∈ S and let x(·; x) be the corresponding solution of (1). Given an r > 0 we let λk, k ≥ 1, 
be such that λk ↓ 0 and
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sup
ξ∈NP

S (y)
〈ξ, f(y) −Aλk

y〉 ≤ 0 for all k ≥ 1 and y ∈ B(x, r) ∩ S. (12)

If ε < r
4 and t̄ > 0 are such that x(t; x) ∈ B(x, r4 ) for all t ∈ [0, ̄t ], then for large enough k ≥ 1 the solution 

xλk
(·; x) of the differential equation ẋ(t) = f(x(t)) −Aλk

(x(t)), x(0) = x, satisfies (see Proposition 2)

‖x(t;x) − xλk
(t;x)‖ ≤ ε <

r

4 ; (13)

hence, xλk
(t; x) ∈ B(x, r2 ) for all t ∈ [0, ̄t ]. On the other hand, since Aλk

is Lipschitz continuous, for large 
enough m > 0 we have B(x, r) ∩ S = {z ∈ B(x, r) ∩ S | ‖Aλk

z‖ ≤ m}. So, according to Corollary 5, (12)
ensures that for some t̂ > 0, say t̂ ∈ (0, ̄t), it holds xλk

(t; x) ∈ S for all t ∈ [0, ̂t ]. Since xλk
(t; x) ∈ B(x, r2 )

for all t ∈ [0, ̄t ], we infer that xλk
(t; x) ∈ B(x, r2 ) ∩ S for all t ∈ [0, ̄t ]. Consequently, by (13) we get 

dS(x(t; x)) ≤ ε for all t ∈ [0, ̄t ]. Then, as ε → 0, we deduce that x(t; x) ∈ S for all t ∈ [0, ̄t ]. Finally, the 
invariance of S follows by using the semi-group property of the solution x(·; x) (see again Proposition 2). �

We consider now the special case where f ≡ θ, so that our differential inclusion (1) takes the simpler 
form

ẋ(t) ∈ −Ax(t), x(0) = x0 ∈ domA. (14)

In this case, the criterion of Theorem 4 becomes also necessary as the following corollary shows. Here too 
NSm

stands for either NP
Sm

or NF
Sm

.

Corollary 8. Let S ⊂ H be a closed set satisfying (2). Then the following statements are equivalent:

(i) S is an invariant set of (14);
(ii) for every x ∈ S ∩ domA

−A0x ∈ TSm
(x) for all m ≥

∥∥A0x
∥∥ ;

(iii) for every x ∈ S ∩ domA and for every m ≥
∥∥A0x

∥∥
sup

ξ∈NSm (x)
〈ξ,−A0x〉 ≤ 0;

(iv) for any x ∈ S ∩ domA and every m ≥
∥∥A0x

∥∥
sup

ξ∈NSm (x)
inf

x∗∈(−Ax)∩B(θ,m)
〈ξ, x∗〉 ≤ 0.

Proof. As in the proof of Corollary 6, the implications (ii) =⇒ (iii) and (iii) =⇒ (iv with NSm
= NF

Sm
) =⇒

(iv with NSm
= NP

Sm
) are immediate. For the implication (i) =⇒ (ii), we assume that S is an invariant set 

of (14). If x ∈ S ∩ domA, then for a given m ≥
∥∥A0x

∥∥ we have

∥∥A0x(t;x)
∥∥ =

∥∥∥∥d+x(t;x)
dt

∥∥∥∥ ≤
∥∥∥∥d+x(0;x)

dt

∥∥∥∥ =
∥∥A0x

∥∥ ≤ m, for all t ≥ 0.

Hence, x(t; x) ∈ Sm for all t ≥ 0 and we deduce that −A0x = d+x(0;x)
dt ∈ TSm

(y), yielding (ii). Finally, the 
implication (iv with NSm

= NP
S ) =⇒ (i) is direct from Theorem 4. �

m
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To show how can our Theorem 4 be applied we consider the following example, which is treated in details 
in [5] in order to study the existence and the stability of solutions of differential inclusions involving the 
normal cone to a prox-regular set.

Recall that a closed set C ⊂ H is said to be uniformly r-prox-regular (r > 0) if for every x ∈ C and 
ξ ∈ NP

C(x) ∩B(θ, 1) we have [21]

〈ξ, y − x〉 ≤ 1
2r ‖y − x‖2 for all y ∈ C.

Example 1. Let C ⊂ H be a uniformly r-prox-regular set and consider the associated differential inclusion

ẋ(t) ∈ g(x(t)) − NC(x(t)), a.e. t ∈ [0, T ], x(0) = x0 ∈ C, (15)

where g is a Lipschitz mapping on H. According to [5, Lemma 6(c)], let T : H ⇒ H be a maximal monotone 
operator such that for some m ≥ 0 it holds, for all y ∈ C,

NC(y) ∩B(0,m) + m

r
y ⊂ T (y) ⊂ NC(y) + m

r
y,

and consider the associated differential inclusion

ẋ(t) ∈ g(x(t)) + m

r
x(t) − Tx(t), a.e. t ∈ [0, T ], x(0) = x0 ∈ C (⊂ domT ). (16)

This inclusion perfectly fits the form of differential inclusion (1). Then we make appeal to Theorem 4 to 
prove that the set C is invariant for (1), so that

ẋ(t) ∈ g(x(t)) + m

r
x(t) − Tx(t) ⊂ g(x(t)) − NC(x(t)),

providing us with a solution for (15). We refer to [5] for more details.

4. Lyapunov pairs and functions

In this section, we apply the results of the previous section to derive different criteria for a-Lyapunov 
pairs with respect to differential inclusion (1):

ẋ(t) ∈ f(x(t)) −A(x(t)), t ∈ [0,∞), x(0) = x0 ∈ domA,

whose unique solution is written x(·; x0). Similar criteria to ours have been established recently in [3,4] in 
the case of weakly lsc Lyapunov pairs.

Definition 2. We say that a pair (V, W ) of proper lsc functions V, W : H → R with W ≥ 0, is (or forms) an 
a-Lyapunov pair (a ≥ 0) with respect to system (1) if, for every x0 ∈ domA,

eatV (x(t;x0)) +
t∫

s

W (x(τ ;x0))dτ ≤ easV (x(s;x0)), for all t ≥ s ≥ 0.

Observe that (V, W ) is an a-Lyapunov pair with respect to system (1) iff for every x0 ∈ domA there 
exists a t > 0 such that (see, e.g., [3, Proposition 3.2])
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easV (x(s;x0)) +
s∫

0

W (x(τ ;x0))dτ ≤ V (x0), for all s ∈ [0, t] .

We may assume without loss of generality that W is Lipschitz continuous on every bounded set (see, e.g., 
[3, Lemma 3.1] or [14, Theorem 1.5.1]). While, concerning function V , one need to suppose the following 
condition

V (x) = lim inf
y
dom A→ x

V (y) for every x ∈ domV, (17)

which is in fact necessary for V to be a Lypunov function in many important cases (for instance, when 
differential inclusion (1) possesses a strong solution).

Theorem 9. Given two proper lsc functions V : H → R satisfying (17), W : H → R+, and a real number 
a ≥ 0, we assume that for every x ∈ domV ∩ domA there are m, r > 0 such that ‖PAx(f(x))‖ ≤ m and, 
for all y ∈ B(x, r),

sup
ξ∈∂P (V +IAm )(y)

inf
y∗∈Ay∩B(θ,m)

〈ξ, f(y) − y∗〉 + aV (x) + W (x) ≤ 0.

Then (V, W ) forms an a-Lyapunov pair with respect to system (1).

Proof. We fix T > 0 and x0 ∈ domV ∩ domA. Following the discussion made before the current theorem 
we may suppose without loss of generality that W is Lipschitz continuous on every bounded set containing 
the trajectory {x(t; x0), t ∈ [0, T ]}.

Let us define the maximal monotone operator Â : H × R
4 ⇒ H × R

4 and the Lipschitz function f̂ :
H × R

4 → H × R
4 as

Â(x, μ) := (Ax, θR4), f̂(x, μ) := (f(x), 1, 0, 1, 0),

and, given a fixed μ0 ∈ R
4, consider the associated differential inclusion given in H × R

4 by

ẏ(t) ∈ f̂(y(t)) − Â(y(t)), a.e. t ∈ [0, T ]; y(0) = (x0, μ0), (18)

whose unique solution is y(t) := (x(t), t, 0, t, 0) + (θ, μ0), t ∈ [0, T ] (with x(t) := x(t; x0)).
For each n ≥ 1, we consider the lsc function Vn : H × R

3 → R defined as

Vn(x, α, β, γ) := eaγV (x) + (α− β)gn(α) + l

2(α− β)2, (19)

where gn is an l-Lipschitz extension of the function W (x(·; x0)) − 1
n from [0, T ] to [−1, T + 1]; hence,

∂Cgn(α) ⊂ B(0, l) for all α ∈ [0, T + 1]. (20)

We denote

S := epiVn,

so that S = S ∩ dom Â, by (17), and

epi(Vn + IAm×R3) = S ∩ Âm =: Sm. (21)
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We also denote y0 := (x0, θR3 , V (x0)) ∈ S ∩ dom Â. Let m, r > 0 be as in the current assumption, corre-
sponding to x0, and choose r̄ < r small enough such that for all (x, α, β, γ) ∈ B((x0, θR3), ̄r)

gn(α) − eaγW (x) + 2l |α− β| ≤ −1
2n . (22)

Take y := (y1, μ1) ∈ B(y0, ̄r) ∩ Sm, with y1 := (x1, α1, β1, γ1), and pick (ξ, −κ) ∈ NP
Sm

(y). Due to (21) and 
[14, Exercise 1.2.1],

(ξ,−κ) ∈ NP
Sm

(y) = NP
epi(Vn+IAm×R3 )(y) ⊂ NP

epi(Vn+IAm×R3 ) (y1, Vn(y1)) ;

hence, κ ≥ 0. If κ > 0, say κ = 1 for simplicity, then ξ ∈ ∂P (Vn + IAm×R3)(y1) and, thanks to (19), we find 
ξ1 ∈ ∂P (V + IAm

)(x1) and ς ∈ ∂P gn(α1) ⊂ ∂Cgn(α1) such that

ξ ∈ (eaγ1ξ1, gn(α1) + (α1 − β1)(ς + l),−gn(α1) + l(β1 − α1), aeaγ1V (x1)) .

Since y ∈ B(y0, ̄r) ∩Sm we have that x1 ∈ B(x0, ̄r) ∩Am ∩domV and, so, by the current assumption, there 
exists an x∗

1 ∈ Ax1 ∩B(θ, m) (this last set being weak*-compact) such that

〈ξ1, f(x1) − x∗
1〉 + aV (x1) + W (x1) ≤ 0.

Then we obtain (recall (20) and (22))

〈(ξ,−1), (f(x1) − x∗
1, 1, 0, 1, 0)〉 = 〈eaγ1ξ1, f(x1) − x∗

1〉 + gn(α1)

+ (α1 − β1)(ς + l) + aeaγ1V (x1)

= eaγ1 (〈ξ1, f(x1) − x∗
1〉 + aV (x1) + W (x1))

+ gn(α1) − eaγ1W (x1) + (α1 − β1)(ς + l)

≤ gn(α1) − eaγ1W (x1) + 2l |α1 − β1| ≤
−1
2n . (23)

If κ = 0, then thanks to (19) we find ξ2 ∈ H such that ξ = (ξ2, θR3), with the property that there are 

sequences λk ↓ 0, zk
V +IAm−→ x1, ζk ∈ ∂P (V + IAm

)(zk) such that λkζk → ξ2 as k → ∞. By the current 
assumption, for each large enough k so that zk ∈ B(x0, r) there exists z∗k ∈ Azk ∩B(θ, m) such that

〈ζk, f(zk) − z∗k〉 + aV (zk) + W (zk) ≤ 0.

Because A is maximal monotone and (z∗k)k is bounded, we can find an x∗
2 ∈ Ax1 ∩ B(θ, m) such that 

〈ξ2, f(x1) − x∗
2〉 ≤ 0; hence, by multiplying the last inequality above by λk and taking the limit as k → ∞,

〈(ξ, 0), (f(x1) − x∗
2, 1, 0, 1, 0)〉 = 〈ξ, f(x1) − x∗

2〉 ≤ 0. (24)

According to Corollary 5, (23) and (24) imply the existence of some t̄ := t̄(n) ∈ (0, T ] such that for every 
t ∈ [0, ̄t ],

(x(t), t, 0, t, V (x0)) ∈ S;

in other words, eatV (x(t)) + tgn(t) + l t2 ≤ V (x0) and, so, for every t ∈ [0, ̄t ]
2
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eatV (x(t)) +
t∫

0

W (x(τ))dτ ≤ eatV (x(t)) +
t∫

0

(g(t) + l(t− τ))dτ + t

n
≤ V (x0) + t

n
. (25)

Now, we claim that for all t ∈ [0, T ]

eatV (x(t)) +
t∫

0

W (x(τ))dτ ≤ V (x0) + e(1+a)t

n
. (26)

To prove this claim we define

t∗ := sup{t ∈ [0, T ] | inequality (26) holds on [0, t]}.

Indeed, from (25) and the lsc of V , it follows that (26) holds at t∗. If t∗ < T , we denote y∗ :=
(x(t∗), θR3 , V (x(t∗))) and we easily check that y∗ ∈ S ∩ dom Â. Then, arguing as with y0 above, we ar-
rive at a relation which is similar to (25); that is, there is some t̂ > 0 such that for all t ∈ [0, ̂t ]

eatV (x(t;x(t∗))) +
t∫

0

W (x(τ ;x(t∗)))dτ ≤ V (x(t∗)) + t

n
. (27)

Hence,

ea(t+t∗)V (x(t + t∗)) +
∫ t+t∗

0 W (x(τ))dτ

≤ ea(t+t∗)V (x(t + t∗)) +
∫ t+t∗

0 W (x(τ))dτ + (eat∗ − 1)
∫ t

0 W (x(τ + t∗))dτ

= eat
∗(eatV (x(t + t∗)) +

∫ t

0 W (x(τ + t∗))dτ − t
n ) +

∫ t∗

0 W (x(τ))dτ + eat∗ t
n

≤ eat
∗
V (x(t∗)) +

∫ t∗

0 W (x(τ))dτ + eat∗ t
n

≤ V (x0) + e(1+a)t∗

n + eat∗ t
n .

Consequently, due to the inequality eγ ≥ 1 + γ, we obtain that for all t ∈ [0, ̂t ]

ea(t+t∗)V (x(t + t∗)) +
t+t∗∫
0

W (x(τ))dτ ≤ V (x0) + e(1+a)(t+t∗)

n
,

leading us to a contradiction with the definition of t∗.
Now, the claim being true, we take the limit in (26) as n goes to +∞ to obtain that

eatV (x(t)) +
t∫

0

W (x(τ))dτ ≤ V (x0) for all t ∈ [0, T ].

Finally, if x0 ∈ domV , then by the current assumption (17), there exists a sequence (xk)k≥1 ⊂ domV ∩
domA such that xk

V→ x0. Thus, from the last inequality above we conclude that

eatV (x(t;xk)) +
t∫

0

W (x(τ ;xk))dτ ≤ V (xk) for all t ∈ [0, T ] and all k ≥ 1.

Hence, as k goes to +∞, the lsc of V and Proposition 2 ensure that
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eatV (x(t;x0)) +
t∫

0

W (x(τ ;x0))dτ ≤ V (x0) for all t ∈ [0, T ],

showing that (V, W ) is an a-Lyapunov pair. �
As in the case of the invariance of closed sets, the criterion of Theorem 9 takes a more simpler form when 

the maximal monotone operator A, or its minimal norm section, A0, is locally bounded (see (10)). Here, 
∂V stands for either ∂PV or ∂FV .

Corollary 10. Given two proper lsc functions V, W : H → R, such that W ≥ 0 and (17) holds, and a number 
a ≥ 0, we assume that A is minimally locally bounded relative to domV . Then the following statements are 
equivalent.

(i) (V, W ) is an a-Lyapunov pair for (1);
(ii) for any x ∈ domV ∩ domA

sup
ξ∈∂V (x)

〈ξ, (f(x) −Ax)0〉 + aV (x) + W (x) ≤ 0;

(iii) for any x ∈ domV ∩ domA

V ′(x; (f(x) −Ax)0) + aV (x) + W (x) ≤ 0;

Moreover, if in addition, (11) holds, then the above statements are also equivalent to
(iv) for any x ∈ domV ∩ domA

sup
ξ∈∂V (x)

inf
x∗∈Ax

〈ξ, f(x) − x∗〉 + aV (x) + W (x) ≤ 0;

(v) for any x ∈ domV ∩ domA

inf
v∈Ax

V ′(x; f(x) − v) + aV (x) + W (x) ≤ 0.

Proof. First, the implications (iii) (with ∂ = ∂F ) ⇒ (iii) (with ∂ = ∂P ) ⇒ (ii) follow since that ∂P ⊂ ∂F
and σ∂FV (x) ≤ V ′(x; ·).

(i) ⇒ (iii). Fix x0 ∈ domV ∩ domA. Since (V, W ) is an a-Lyapunov for (1), we have that for all t > 0

V (x(t;x0)) − V (x0)
t

+ eat − 1
t

V (x(t;x0)) + 1
t

t∫
0

W (x(τ ;x0))dτ ≤ 0,

while Proposition 3 ensures that

lim
t↓0

x(t;x0) − x0

t
= d+x(0;x0)

dt
= (f(x0) −Ax0)0.

Hence, using the lsc of V together with the continuity of x(·, x0),

V ′(x0; (f(x0) −Ax0)0) ≤ lim inf
t↓0

V (x(t;x0)) − V (x0)
t

≤ −aV (x0) −W (x0), (28)

leading us to (ii).
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(ii) (with∂ = ∂P ) ⇒ (i). We fix x0 ∈ domV ∩domA. From the one hand, by the boundedness assumption 
of A0, for a large m ≥ 0 there exists an r > 0 such that

B(x0, r) ∩ domV ∩ domA ⊂ Am. (29)

On the other hand, we have that

∂P (V + IAm
)(x) ⊂ ∂PV (x) for all x ∈ B(x0,

r

2). (30)

Indeed, if ξ ∈ ∂P (V + IAm
)(x) for x ∈ B(x0, r2 ), there exist δ > 0 and ρ ∈ (0, r2 ) such that

(V + IAm
)(z) ≥ V (x) + 〈ξ, z − x〉 − δ‖z − x‖2 ∀ z ∈ B(x, ρ).

Take z ∈ B(x, ρ4 ) ∩ domV (⊂ B(x0, r)). By (17) together with (29), there exists a sequence (zn)n ⊂
B(x, ρ) ∩domV ∩Am such that zn → z and V (zn) → V (z). Since each zn satisfies the last inequality above, 
by taking the limit as n → ∞ we arrive at V (z) ≥ V (x) + 〈ξ, z − x〉 − δ‖z − x‖2 and the inclusion (30)
follows.

At this stage, from (29) and the Lipschitzianity of f there exists some M ≥ m such that, for all x ∈
B(x0, r),

‖PAx(f(x))‖ ≤ ‖f(x)‖ + ‖A◦x‖ ≤ ‖f(x)‖ + m ≤ M,

which shows that (f(x) −Ax)0 ∈ f(x) −Ax ∩B(θ, M). Since ∂P (V + IAM
) ⊂ ∂P (V + IAm

), in view of (30), 
assumption (ii) (with∂ = ∂P ) implies that, for every x ∈ B(x0, r2 )

sup
ξ∈∂P (V +IAM

)(x)
inf

x∗∈Ax∩B(θ,M)
〈ξ, f(x) − x∗〉 + aV (x) + W (x) ≤

sup
ξ∈∂PV (x)

〈ξ, (f(x) −Ax)0〉 + aV (x) + W (x) ≤ 0.

Thus, (i) follows from Theorem 9.
Finally, if A is locally bounded on domV , then from the first part of the proof one only needs to verify 

the implication (iv) =⇒ (i), the proof of which is similar to the one of “(ii) ⇒ (i)” that we did above. �
In the following corollary we provide criteria for a-Lyapunov pairs, which use the Moreau–Yoshida ap-

proximation of A.

Corollary 11. Let V, W and a be as in Corollary 10, and let ∂ be such that ∂P ⊂ ∂ ⊂ ∂C . If there exist 
λ0 > 0 such that for all λ ∈ (0, λ0]

sup
ξ∈∂V (x)

〈ξ, f(x) −Aλx〉 + aV (x) + W (x) ≤ 0, ∀x ∈ domV,

then (V, W ) is an a-Lyapunov pair for (1).

Proof. Fix x0 ∈ domV and t ≥ 0. If xλ(·; x0) is the solution of the differential equation

ẋλ(t) = f(xλ(t)) −Aλ(xλ(t)), xλ(0) = x0 (λ ∈ (0, λ0]), (31)

then, according to Corollary 10(ii), the pair (V, W ) is an a-Lyapunov pair of (31); that is,



1034 S. Adly et al. / J. Math. Anal. Appl. 457 (2018) 1017–1037
eatV (xλ(t)) +
t∫

0

W (xλ(τ))dτ ≤ V (x0) for all t ≥ 0.

Hence, the conclusion follows as λ ↓ 0. �
We consider now the case when f ≡ 0 so that differential inclusion (1) reads

ẋ(t) ∈ −A(x(t)), x(0) = x0 ∈ domA. (32)

In the following theorem ∂ stands for either ∂P or ∂F .

Corollary 12. Let V, W : H → R be two proper lsc functions, such that W ≥ 0 and (17) holds, and let a ≥ 0. 
Then the following statements are equivalent:

(i) (V, W ) is an a-Lyapunov pair for (32);
(ii) for every x ∈ domV ∩ domA and every m ≥

∥∥A0x
∥∥

sup
ξ∈∂(V +IAm )(x)

〈ξ,−A0x〉 + aV (x) + W (x) ≤ 0;

(iii) for every x and m as in (ii)

sup
ξ∈∂(V +IAm )(x)

inf
x∗∈−Ax∩B(θ,m)

〈ξ, x∗〉 + aV (x) + W (x) ≤ 0;

(iv) for every x and m as in (ii)

(V + IAm
)′(x;−A0x) + aV (x) + W (x) ≤ 0;

(v) for every x and m as in (ii)

inf
v∈−Ax∩B(θ,m)

(V + IAm
)′(x; v) + aV (x) + W (x) ≤ 0.

Proof. The implications (ii) ⇒ (iii), (iv) ⇒ (v), (iv) ⇒ (ii), and (v) ⇒ (iii) are immediate. To prove that 
(i) ⇒ (iv), we fix x0 ∈ domV ∩ domA and m ≥

∥∥A0x0
∥∥. According to Proposition 2, for any t ≥ 0 we have 

that

∥∥−A0(x(t;x0))
∥∥ =

∥∥∥∥d+x(t;x0)
dt

∥∥∥∥ ≤
∥∥∥∥d+x(0;x0)

dt

∥∥∥∥ =
∥∥−A0x0

∥∥ ≤ m;

that is, x(t, x0) ∈ Am for all t ≥ 0. Hence, since x(t,x0)−x0
t → −A0x0 as t ↓ 0, provided that (V, W ) is an 

a-Lyapunov pair for (32) we obtain, by arguing as in the proof of (28)),

(V + IAm
)′(x0;−A0x0) ≤ lim inf

t↓0

(V + IAm
)(x(t;x0)) − (V + IAm

)(x0)
t

= lim inf
t↓0

V (x(t;x0)) − V (x0)
t

≤ −aV (x) −W (x),

giving rise to (iv).
Finally, the conclusion of the corollary follows because the implication (iii) ⇒ (i) holds according to 

Theorem 9. �
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We obtain the following corollary, which can be find in [17]; the original version of this result was 
established in [19]

Corollary 13. Let V, W : H → R be two proper lsc functions, such that W ≥ 0, and let a ≥ 0. If condition 
(17) and, for every x ∈ domV ,

lim inf
λ↓0

V (Jλ(x)) − V (x)
λ

+ aV (x) + W (x) ≤ 0,

then (V, W ) is an a-Lyapunov pair for (32).

Proof. We fix x ∈ domV ∩ Am for some large m ≥ 1. Since Aλx ∈ A(Jλx) and ‖Aλx‖ ≤ ‖A◦x‖ ≤ m, we 
infer that Jλx ∈ Am and, so, using the current assumption,

(V + IAm
)′(x0;−A0x0) ≤ lim inf

t↓0

V (Jλ(x)) − V (x)
t

≤ −aV (x) −W (x).

The conclusion follows then from Corollary 12(iv). �
Corollary 10 obviously covers the case when A is the null operator, where (1) becomes a usual differential 

equation stated in the Hilbert space H as

ẋ(t) = f(x(t)), a.e. t ≥ 0, x(0) = x0 ∈ H. (33)

The following characterization is known when ∂ is the viscosity subdifferential as defined in [17, Defini-
tion 2.7], while the case of weakly lsc a-Lyapunov pairs can be found in [3].

Corollary 14. Let V, W and a be as in Corollary 10, and let ∂ be such that ∂P ⊂ ∂ ⊂ ∂C . Then the following 
statements are equivalent:

(i) (V, W ) is an a-Lyapunov pair for differential equation (33),
(ii) for every x ∈ domV

sup
ξ∈∂V (x)

〈ξ, f(x)〉 + aV (x) + W (x) ≤ 0, (34)

(iii) for every x ∈ domV

V ′(x; f(x)) + aV (x) + W (x) ≤ 0.

Proof. In view of Corollary 10, we only need to check that (i) =⇒ (ii) (with ∂ = ∂C), and this easily 
follows from the relation ∂CV = co{∂LV + ∂∞V }. Indeed, assume that (i) holds and take ξ ∈ ∂LV (x) and 

ζ ∈ ∂∞V (x). By the definition of ∂LV (x) we choose sequences ξk ∈ ∂PV (xk) such that xk
V→ x and ξk ⇀ ξ. 

Then, by (i),

〈ξk, f(xk)〉 + aV (xk) + W (xk) ≤ 0 for all k ≥ 1,

and, so, as k → ∞, we deduce that 〈ξ, f(x)〉 + aV (x) + W (x) ≤ 0. Similarly, we choose sequences xk
V→ x

and λk ↓ 0 such that ζk ∈ ∂PV (xk) and λkζk ⇀ ζ. Then, by arguing as above we deduce that 〈ζ, f(x)〉 ≤ 0, 
which in turn yields
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〈ξ + ζ, f(x)〉 + aV (x) + W (x) ≤ 0,

and this gives us (ii) (with ∂ = ∂C) by convexification. �
We close this section by analyzing a typical example of Lyapunov pairs.

Example 2. Assume that a function V : H → R is a proper, convex and lsc, and consider the differential 
inclusion

ẋ(t) ∈ −∂V (x(t)).

Then the pair (V, 
∥∥(∂V )0

∥∥2) is a Lyapunov pair, so that for every x0 ∈ domV

V (x(t, x0)) +
t∫

0

‖ẋ(τ, x0)‖2
dτ ≤ V (x0) for all t > 0.

To see this fact we fix x ∈ domV ∩ dom ∂V . Since Aλ(x) ∈ A(Jλ(x)) for every λ > 0 (A = ∂V ), condition 
(17) holds and one has that

V (Jλ(x)) − V (x) ≤ −〈Aλ(x), x− Jλ(x)〉 = − 1
λ
‖x− Jλ(x)‖2

.

Hence,

lim inf
λ↓0

V (Jλ(x))−V (x)
λ +

∥∥A0x
∥∥2 ≤ lim inf

λ↓0

(
V (Jλ(x))−V (x)

λ + 1
λ2 ‖x− Jλ(x)‖2

)
≤ 0,

and Corollary 13 (together with Proposition 2) applies.

5. Conclusion and further research

We gave different conditions for the invariance of closed sets, which only involve the input data, repre-
sented by the maximal monotone operator and the Lipschitz mapping. These conditions are applicable to 
a large variety of closed sets which do not need to be convex or smooth. The current work extends and 
improves some of the results given in [3,4] and dealing with weakly closed invariant sets and weakly lower 
semi-continuous a-Lypunov pairs. It will be our aim in a forthcoming work to apply the current results to 
specific differential equations/inclusions where the underlying maximal monotone operator is not known 
explicitly. This will make the access to the corresponding semi-group more easier, namely regarding the 
behaviour at infinity of trajectories.
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