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Abstract This paper presents an algorithm for simulating

Gaussian random fields with zero mean and non-stationary

covariance functions. The simulated field is obtained as a

weighted sum of cosine waves with random frequencies

and random phases, with weights that depend on the

location-specific spectral density associated with the target

non-stationary covariance. The applicability and accuracy

of the algorithm are illustrated through synthetic examples,

in which scalar and vector random fields with non-sta-

tionary Gaussian, exponential, Matérn or compactly-sup-

ported covariance models are simulated.

Keywords Turning bands � Fourier transform � Spectral
density � Non-stationary covariance

1 Introduction

Geostatistical simulation is increasingly used in the earth

and environmental sciences to characterize the uncertainty

in the values of regionalized variables at locations where

no measurement is available. Simulation relies on inter-

preting the regionalized variable as a realization of a parent

random field, which can be characterized by its finite-di-

mensional distributions or, more synthetically, by its first-

order moments (Chilès and Delfiner 2012).

Most of the time, an assumption of stationarity is made

for inferring the model parameters (such as the expected

value, the covariance or the univariate distribution) needed

for simulation (Matheron 1971; Journel 1986). Stationarity

states that the finite-dimensional distributions are invariant

under a spatial translation and implies some form of spatial

homogeneity of the random field under study. Although it

is convenient, the use of stationary models may be ques-

tionable in some circumstances, as it may not allow

accounting for local changes in the mean value (spatial

trends), in the dispersion (proportional effects) or in the

spatial continuity (e.g., local ranges of correlation, or local

anisotropies explained by the presence of folded structures

in geological formations such as petroleum reservoirs or

ore deposits) of the regionalized variable under study.

For regionalized variables that exhibit a spatial trend,

non-stationarity often concerns the first-order moment of

the underlying random field, i.e., its expected value at each

location, which can be modeled by expert knowledge or by

fitting a trend model to the available data (Goovaerts 1997;

Deutsch and Journel 1998; Costa 2009). In some occasions,

the second-order moment (covariance function) is also

assumed non-stationary, a situation that turns out to be

more complex in relation with the definition of valid

covariance models, with the inference of its parameters

from a set of data and with the simulation of the random

field. The first two problems (model definition and infer-

ence) are out of the scope of this paper. Varied theoretical

and practical solutions have been proposed by Haas (1990),

Monestiez and Switzer (1991), Sampson and Guttorp

(1992), Guttorp and Sampson (1994), Smith (1996), Hig-

don et al. (1999), Damian et al. (2000), Sampson et al.
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(2001), Higdon (2002), Nychka et al. (2002), Pintore and

Holmes (2005), Stein (2005), Stephenson et al. (2005),

Paciorek and Schervish (2006), Harris et al. (2010), Sch-

lather (2010), Zhu and Wu (2010), Machuca-Mory and

Deutsch (2013), Fouedjio et al. (2016) and Fouedjio and

Séguret (2016), among others. Concerning the last problem

(simulation), to date, several algorithms have been

designed for constructing realizations of random fields with

non-stationary covariances under an assumption that the

finite-dimensional distributions are multivariate Gaussian:

sequential simulation (Boisvert and Deutsch 2011), sum-

mation of Gaussian random fields with locally varying

parameters (Fuentes 2002), dilution with locally varying

kernel functions (Chilès and Delfiner 2012), moving

averages and convolution approaches (Liang and Marcotte

2016), or Gibbs sampling (Fouedjio et al. 2016; Fouedjio

and Séguret 2016).

In this context, this paper aims to present an alternative

algorithm for simulating Gaussian random fields with non-

stationary covariance functions, based on a decomposition

of the field into cosine waves, and to illustrate the appli-

cability of this algorithm through simple examples. Sec-

tion 2 hereafter is devoted to the univariate case (scalar

random fields), while the simulation of non-stationary

vector random fields will be addressed in Sect. 3. A general

discussion and conclusions follow in Sect. 4.

2 Univariate simulation

2.1 Spectral-turning bands simulation

of a stationary random field

Consider a second-order stationary Gaussian random field

defined in the d-dimensional Euclidean space, Y = {Y(x):

x [ Rd}, with zero mean, unit variance and covariance

function C(h), where h stands for a separation vector

between two locations of Rd. Provided that this covariance

function is continuous and absolutely integrable, it can be

written as the Fourier transform of a probability density

function f(u), with u defined on Rd, called the spectral

density of C(h) (Bochner 1933):

8h 2 Rd;CðhÞ ¼ FffgðhÞ ¼
Z
Rd

cosð ujhh iÞf ðuÞdu; ð1Þ

where F indicates the Fourier transform and ujhh i ¼
uTh is the usual dot product in Rd. This property of the

covariance function allows simulating Y by a cosine wave

of the form (Shinozuka 1971; Lantuéjoul 2002)

8x 2 Rd; YðxÞ ¼
ffiffiffi
2

p
cosð ujxh i þ /Þ; ð2Þ

where u is a random vector in Rd with probability density f

and / is an independent random variable uniformly

distributed in [0, 2p]. Based on the central limit theorem,

one can obtain a random field with approximately Gaussian

finite-dimensional distributions by adding and rescaling

many of such independent cosine waves (Lantuéjoul 2002):

8x 2 Rd; YðxÞ ¼
ffiffiffi
2

L

r XL
l¼1

cosð uljxh i þ /lÞ; ð3Þ

where L is a large integer, {ul: l = 1, …, L} are mutually

independent random vectors with probability density f, and

{/l: l = 1, …, L} are mutually independent random vari-

ables uniformly distributed in [0, 2p], independent of {ul:
l = 1, …, L}.

This method appears as a particular case of the turning

bands algorithm (Matheron 1973) and allows simulating

stationary Gaussian random fields based on the spectral

density of their covariance functions. Shinozuka (1971)

and Shinozuka and Jan (1972) proposed a variant of this

method, by simulating the random vectors {ul: l = 1, …,

L} according to a uniform distribution instead of the

spectral distribution, then adequately weighting the cosine

waves. However, this approach is approximate unless the

spectral density f has a bounded support. Emery et al.

(2016) propose replacing the uniform distribution by

another one, say g, with a support containing that of f, in

the following fashion:

8x 2 Rd; YðxÞ ¼ 1ffiffiffi
L

p
XL
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
2f ðulÞ
gðulÞ

s
cosð uljxh i þ /lÞ; ð4Þ

where {ul: l = 1, …, L} are mutually independent random

vectors with probability density g and {/l: l = 1, …, L}

are mutually independent random variables uniformly

distributed in [0, 2p], independent of {ul: l = 1, …, L}. It

can be shown that the random field Y so defined is second-

order stationary, with zero mean and covariance function

C(h) and, if L is large, its finite-dimensional distributions

are nearly Gaussian (Emery et al. 2016).

Unlike Eq. (3), Eq. (4) dissociates the choice of the

distribution of the frequency vectors {ul: l = 1, …, L}

(density g) from the choice of the covariance function of

the target random field (density f), which amounts to an

importance sampling strategy. This strategy allows gener-

alizing the spectral algorithm to the simulation of random

fields with stationary increments or generalized increments

(Emery and Lantuéjoul 2008; Arroyo and Emery 2017). In

the following subsection, we will adapt it to the simulation

of random fields with non-stationary covariance functions.

2.2 A proposal for simulating a non-stationary

random field

Let us now define a random field Y in the d-dimensional

Euclidean space as follows:
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8x 2 Rd; YðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2fxðuÞ
gðuÞ

s
cosð ujxh i þ /Þ; ð5Þ

where u is a random vector with density g, / is an inde-

pendent uniform random variable in [0, 2p] and fx now

depends on the target location x. Because / is uniform, the

mean value of Y is zero. The covariance between two

variables Y(x) and Y(x0) is

Cðx;x0Þ :¼cov YðxÞ;Yðx0Þf g

¼E
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fxðuÞfx0 ðuÞ

p
gðuÞ cos ujxh iþ/ð Þcos ujx0h iþ/ð Þ

( )

¼E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fxðuÞfx0 ðuÞ

p
gðuÞ cos ujx�x0h ið Þ

( )

¼
Z
Rd

cos ujx�x0h ið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fxðuÞfx0 ðuÞ

p
du: ð6Þ

This is the Fourier transform of the geometric average of

the spectral densities associated with locations x and x0:

Cðx; x0Þ ¼ F
ffiffiffiffiffiffiffiffi
fxfx0

pn o
ðx� x0Þ: ð7Þ

If one denotes by -x the Fourier transform of
ffiffiffiffi
fx

p
, one also

has:

Cðx; x0Þ ¼ ð-x � -x0 Þðx� x0Þ; ð8Þ

where * stands for the convolution product.

By virtue of the central limit theorem, to obtain a ran-

dom field whose finite-dimensional distributions are

approximately multivariate-Gaussian, it is necessary to add

numerous independent components as in Eq. (4):

8x 2 Rd; YðxÞ ¼ 1ffiffiffi
L

p
XL
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fxðulÞ
gðulÞ

s
cos uljxh i þ /lð Þ; ð9Þ

where L is a large integer, {ul: l = 1,…, L} are mutually inde-

pendent random vectors with probability density g, and {/l:

l = 1, …, L} are mutually independent random variables uni-

formly distributed in [0, 2p], independent of {ul: l = 1,…, L}.

This is but a special case of the turning bandsmethod, where the

random vectors {ul: l = 1,…, L} define a set of lines that span

Rd and a cosine wave is simulated along each line.

2.3 Examples

2.3.1 Geometric anisotropy modeling

In this section, we are interested in simulating random

fields whose covariance functions have a geometric ani-

sotropy with locally varying scale factors and/or anisotropy

directions. A stationary covariance function C(h) with a

geometric anisotropy is obtained by combining a stationary

isotropic covariance function C0(h) and a d 9 d symmetric

positive semi-definite matrix R (Journel and Huijbregts

1978; Chilès and Delfiner 2012):

8h 2 Rd;CðhÞ ¼ C0ðR�1=2hÞ: ð10Þ

In the following, R will be referred to as the anisotropy

matrix. Let f0 be the spectral density of C0. Then

CðhÞ ¼ C0ðR�1=2hÞ

¼
Z
Rd

cos ujR�1=2h
D E� �

f0ðuÞdu

¼
Z
Rd

cos R�1=2ujh
D E� �

f0ðuÞdu

¼ jRj1=2
Z
Rd

cos vjhh ið Þf0ðR1=2vÞdv;

ð11Þ

where |R| stands for the determinant of R. Accordingly, the
spectral density of C is

f ðuÞ ¼ jRj1=2f0ðR1=2uÞ: ð12Þ

This result agrees with the one presented by Marcotte (2015).

2.3.2 Non-stationary Gaussian covariance

Consider a stationary isotropic Gaussian covariance func-

tion with unit variance and unit scale factor

8h 2 Rd;CG
0 ðhÞ ¼ expð�hThÞ: ð13Þ

The spectral density of CG
0 is (Lantuéjoul 2002):

f G0 ðuÞ ¼
1

ð2
ffiffiffi
p

p
Þd
exp � 1

4
uTu

� �
: ð14Þ

Let us now simulate a non-stationary randomfield as inEq. (9),

by considering the spectral density f GRx
of aGaussian covariance

associated with an anisotropy matrix Rx that depends on x.

Because of Eqs. (7) and (12), the covariance of the simulated

field at two given locations x and x0 is

CGðx; x0;Rx;Rx0 Þ ¼ F
ffiffiffiffiffiffiffiffiffiffiffiffi
f GRx

f GRx0

qn o
ðx� x0Þ; ð15Þ

with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f GRx

ðuÞf GRx0
ðuÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRxj1=2jRx0 j1=2f G0 R1=2

x u
� �

f G0 R1=2
x0 u

� �r

¼ jRxj1=4jRx0 j1=4
1

ð2
ffiffiffi
p

p
Þd

� exp � 1

4
uT

Rx þ Rx0

2

	 

u

� �

¼ jRxj1=4jRx0 j1=4f G0
Rx þ Rx0

2

	 
1=2

u

 !

¼ jRxj1=4jRx0 j1=4
Rx þ Rx0

2

����
����
�1=2

f GðRxþRx0 Þ=2ðuÞ;

ð16Þ
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where f GðRxþRx0 Þ=2
is the spectral density of the Gaussian

covariance with anisotropy matrix
RxþRx0

2
(Eq. 12).

Accordingly, the non-stationary covariance of the simu-

lated field is proportional to this anisotropic Gaussian

covariance:

CGðx; x0;Rx;Rx0 Þ ¼ jRxj1=4jRx0 j1=4
Rx þ Rx0

2

����
����
�1=2

� exp �ðx� x0ÞT Rx þ Rx0

2

	 
�1

ðx� x0Þ
( )

:

ð17Þ

This non-stationary Gaussian covariance model has already

been introduced by Paciorek and Schervish (2006). The

proposed spectral algorithm (Eq. 9) therefore provides a

simple way to simulate a Gaussian random field with such

a covariance.

As an example, consider a regular grid with 201 9 201

nodes and unit internode distance in the two-dimensional

space, and an anisotropy matrix depending on the y-coor-

dinate only, such that the practical range in all directions is

equal to 5 for y = 0 and to 30 for y = 200 (recall that the

practical range of a Gaussian covariance is defined as
ffiffiffi
3

p

times its scale factor). Figure 1a displays a map of one

realization obtained with the proposed spectral algorithm

(Eq. 9) using L = 5000 lines and taking g as the spectral

density of an isotropic Matérn covariance with scale factor

3 and shape parameter 0.3 (Lantuéjoul 2002). Figure 1b

plots the experimental cumulative distribution functions of

one hundred realizations, together with the theoretical

standard Gaussian cumulative distribution function. It is

seen that the former fluctuate around the latter, with an

almost perfect match on average over the realizations.

Figure 1c (resp. Fig. 1d) plots the experimental variograms

of one hundred realizations, calculated between the grid

nodes with coordinates (x, 100) and (x, 100 - h) (resp. (x,

200) and (x, 200 - h)), where x goes from 0 to 200, for lag

separation distances h varying between 0 and 30, together

with the theoretical variogram derived from Eq. (17) for

the same pairs of coordinates. On average over all the

realizations, the match between experimental and theoret-

ical variograms is almost perfect, which corroborates the

correctness of the proposed simulation algorithm. As

expected, the fluctuations of the experimental variograms

around the theoretical model are small at small lag dis-

tances and become larger and larger when this distance

increases (Matheron 1971, 1989; Chilès and Delfiner

2012). The spread of these statistical fluctuations may call

the attention to readers who are familiar with the simula-

tion of stationary Gaussian random fields on a so large grid

in relation to the practical range of correlation. This is

explained because, in the stationary case, the experimental

variogram at a given lag separation distance h would be

calculated on the basis of 201 9 (201 - h) pairs of grid

nodes, whereas in the present case we are calculating local

variograms on the basis of only 201 pairs of grid nodes,

which irremediably yields greater fluctuations.

2.3.3 Non-stationary exponential covariance

Consider now a stationary isotropic exponential covariance

function with unit variance and unit scale factor:

CE
0 ðhÞ ¼ expð�

ffiffiffiffiffiffiffiffi
hTh

p
Þ: ð18Þ

The spectral density of CE
0 is (Lantuéjoul 2002):

f E0 ðuÞ ¼
Cðdþ1

2
Þ

pðdþ1Þ=2
1

ð1þ uTuÞðdþ1Þ=2 : ð19Þ

If one considers the spectral density f ERx
of an exponential

covariance with an anisotropy matrix Rx that depends on x

(Eq. 12) and plug it into Eq. (7), the resulting covariance

function is no longer an exponential function. To avoid this

inconvenience, an alternative is to view the exponential

covariance as a scale mixture of Gaussian covariances,

where the scale factor is twice the square root of a standard

gamma random variable with shape parameter 0.5 (Emery

and Lantuéjoul 2006):

CE
0 ðhÞ ¼

1

Cð1=2Þ

Z þ1

0

CG
0

h

2
ffiffiffi
a

p
	 


a�1=2 expð�aÞda: ð20Þ

The simulation can therefore be performed by using, in

Eq. (9), a Gaussian spectral density associated with an

anisotropy matrix that depends not only on the target

location x, but also on the line index l. Specifically, for

l [ {1, …, L}, one should simulate a standard gamma

random variable al with shape parameter 0.5, then rescale

the anisotropy matrix at any location x, Rx, by four times

the scale factor al, i.e., use the local density

f G4alRx
ðuÞ ¼ j4alRxj1=2f G0 ð4alRxÞ1=2u

n o
: ð21Þ

For a given realization of al, the cosine wave simulated

along the line with index l has therefore the following

Gaussian covariance (Eq. 17):

CG x; x0; 4alRx; 4alRx0ð Þ ¼ jRxj1=4jRx0 j1=4
Rx þ Rx0

2

����
����
�1=2

� CG
0 4al

Rx þ Rx0

2

	 
�1=2

ðx� x0Þ
 !

:

ð22Þ

Based on Eq. (20), the prior covariance (when averaging

over all the possible values of al weighted by their

respective densities) is found to be:
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CEðx; x0;Rx;Rx0 Þ

¼ 1

Cð1=2Þ

Z þ1

0

CG x; x0; 4aRx; 4aRx0ð Þa�1=2 expð�aÞda

¼ jRxj1=4jRx0 j1=4

Cð1=2Þ
Rx þ Rx0

2

����
����
�1=2

�
Z þ1

0

CG
0 4a

Rx þ Rx0

2

	 
�1=2

ðx� x0Þ
 !

a�1=2 expð�aÞda

¼ jRxj1=4jRx0 j1=4
Rx þ Rx0

2

����
����
�1=2

CE
0

Rx þ Rx0

2

	 
�1=2

ðx� x0Þ
 !

:

ð23Þ

Equivalently:

CEðx; x0;Rx;Rx0 Þ ¼ jRxj1=4jRx0 j1=4
Rx þ Rx0

2

����
����
�1=2

� exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0ÞT Rx þ Rx0

2

	 
�1

ðx� x0Þ

s8<
:

9=
;;

ð24Þ

which coincides with the non-stationary exponential

covariance introduced by Paciorek and Schervish (2006).

An experiment similar to that of Fig. 1 is presented in

Fig. 2, where here the simulated field has an isotropic

exponential covariance with a practical range equal to 5 for

y = 0 and to 30 for y = 200 (the practical range of an

exponential covariance is defined as 3 times its scale fac-

tor). The realization on the 201 9 201 grid mapped in

Fig. 2a is obtained by using L = 5000 lines and the spec-

tral density of an isotropic Matérn covariance with scale

factor 3 and shape parameter 0.3 for g. The experimental

cumulative distribution functions of one hundred realiza-

tions are plotted in Fig. 2b, while Fig. 2c (resp. Fig. 2d)

displays their experimental variograms calculated between

the grid nodes with coordinates (x, 100) and (x,

100 - h) [resp. (x, 200) and (x, 200 - h)], where x goes

Fig. 1 a Realization of a random field with non-stationary Gaussian covariance with varying practical range, b cumulative distribution functions

of 100 realizations, and c, d local variograms of 100 realizations
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from 0 to 200, for lag separation distances h varying from 0

to 30. It is observed that, on average over all the realiza-

tions, the experimental distributions and the experimental

variograms match their respective theoretical models.

Interestingly, the spreads of their statistical fluctuations are

smaller than the ones observed in the experiment made

with the Gaussian covariance (Sect. 2.3.2). Such a differ-

ence can be explained because of the smoothness of the

random fields with a Gaussian covariance (as opposed to

random fields with an exponential covariance), an effect

already discussed by Matheron (1971) and Chilès and

Delfiner (2012).

2.3.4 Non-stationary Matérn covariance

In the previous subsection, if one uses a standard gamma

random variable al with shape parameter l[ 0 instead of

0.5, one obtains a Matérn covariance with shape parameter

l, as a scale mixture of Gaussian covariances (Emery and

Lantuéjoul 2006):

CMðx; x0;Rx;Rx0 ; lÞ

¼ jRxj1=4jRx0 j1=4

CðlÞ
Rx þ Rx0

2

����
����
�1=2

�
Z þ1

0

CG
0 4a

Rx þ Rx0

2

	 
�1=2

ðx� x0Þ
 !

al�1 expð�aÞda

¼ jRxj1=4jRx0 j1=4
Rx þ Rx0

2

����
����
�1=2

CM x� x0;
Rx þ Rx0

2
; l

	 

;

ð25Þ

where CMðh;R; lÞ ¼ 1
2l�1CðlÞ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hTR�1h

p
ÞlKlð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hTR�1h

p
Þ is

the stationary Matérn covariance with anisotropy matrix R
and shape parameter l, and Kl is the modified Bessel

function of the second kind of order l.

Fig. 2 a Realization of a random field with non-stationary exponential covariance with varying practical range, b cumulative distribution

functions of 100 realizations, and c, d local variograms of 100 realizations
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However, this construction does not allow the shape

parameter l to vary in space. To overcome this limitation,

let us consider the use, for the line with index l [ {1, …,

L}, of a scale factor al drawn from a standard gamma

distribution with shape parameter 1 (i.e., al is a realization

of an exponential variable) and a spectral density of the

following form:

f MRx;lðxÞ;alðuÞ ¼
a
lðxÞ�1
l

CðlðxÞÞ f
G
4 al Rx

ðuÞ

¼ a
lðxÞ�1
l

CðlðxÞÞ j4alRxj1=2f G0 ð4alRxÞ1=2u
n o

; ð26Þ

where l(x) is a positive scalar that depends on location x.

The covariance between the variables simulated at two

locations x and x0 (Eq. 25) becomes:

CMðx; x0;Rx;Rx0 ;lðxÞ;lðx0ÞÞ

¼ jRxj1=4jRx0 j1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðlðxÞÞCðlðx0ÞÞ

p Rx þ Rx0

2

����
����
�1=2

�
Z þ1

0

a
lðxÞþlðx0 Þ

2
�1CG

0 4a
Rx þ Rx0

2

	 
�1=2

ðx� x0Þ
 !

expð�aÞda

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðlðxÞÞCðlðx0ÞÞ

p C
lðxÞ þ lðx0Þ

2

	 


� CM x; x0;Rx;Rx0 ;
lðxÞ þ lðx0Þ

2

	 

:

ð27Þ

This is a Matérn covariance, with unit variance

(CMðx; x;Rx;Rx; lðxÞ; lðxÞÞ ¼ 1 for any x), anisotropy

matrix
RxþRx0

2
and shape parameter

lðxÞþlðx0Þ
2

.

As an illustration, consider the previous regular 2Dgridwith

201 9 201 nodes and define an isotropic Matérn covariance

with constant scale factor 10 and varying shape parameter

l(x) = l(x, y) that varies linearly with the ordinate y, such that
l(x, 0) = 0.5 and l(x, 200) = 1.5. As previously, the spectral

simulation is performed with L = 5000 lines and with the

spectral density of an isotropic Matérn covariance with scale

factor 3 and shape parameter 0.3 for g. One realization is

mapped in Fig. 3a, where one observes smoother spatial vari-

ations in the top of the map (explained because of the higher

shape parameter) and rougher spatial variations in the bottom

part (because of the lower shape parameter). The experimental

cumulative distribution functions of one hundred realizations

are displayed in Fig. 3b, while their experimental variograms,

calculated between the grid nodeswith coordinates (x, 100) and

(x, 100 - h) [resp. (x, 200) and (x, 200 - h)], where x goes

from 0 to 200, for lag separation distances h varying between 0

and30, are displayed inFig. 3c (resp. Fig. 3d).Again, nobias is

perceptible in the reproduction of the distribution and of the

spatial correlation structure, since the average of the experi-

mental cumulative distribution functions and the average of the

experimental variograms coincide with their respective theo-

retical models.

One can easily simulate Gaussian random fields with more

complex non-stationary Matérn covariance functions, for

which not only the shape parameter, but also the scale factors

and anisotropy directions (codified into the anisotropy matrix

Rx) vary in space. For instance, consider an anisotropicMatérn

covariance with the largest (respectively, the smallest) scale

factor that linearly varies from 3 (respectively, 1) for x = 0 to 9

(respectively, 3) for x = 200, so that the anisotropy ratio

remains equal to 3 everywhere, a shape parameter that linearly

varies from 0.5 for y = 0 to 1.5 for y = 200, and a local azi-

muth for the direction with the largest scale factor as shown in

Fig. 4b. One realization of a Gaussian randomfieldwith such a

non-stationary Matérn covariance is mapped in Fig. 4a, where

the spatial variations combine a progressive increase of the

scale factor when moving from left to right, a progressive

decrease of the smoothness when moving from top to bottom,

and a vortex-type anisotropy.

2.3.5 Non-stationary compactly supported covariance

All the previous covariance models (Gaussian, exponential

and Matérn) have an unbounded support, i.e. they vanish

asymptotically with the lag separation distance but remain

different from zero everywhere. To obtain a compactly

supported covariance model, a simple option is to consider

the spectral density of, say, an isotropic spherical covari-

ance CS
a with range a in the 3D space (Lantuéjoul 2002):

f Sa ðuÞ ¼
3a3

4pðuTuÞ3=2
J23=2 a

ffiffiffiffiffiffiffiffi
uTu

p

2

 !
: ð28Þ

Up to a normalization factor, the spherical covariance with

range a is the auto-convolution of the indicator of a 3D ball

with diameter a:

CS
aðhÞ ¼ ð-a � -aÞðhÞ; ð29Þ

where -a is the Fourier transform of
ffiffiffiffi
f Sa

p
(Eq. 8). If the

range, now denoted as a(x), varies in space, then one

obtains a non-stationary covariance of the form

CSðx; x0; aðxÞ; aðx0ÞÞ ¼ ð-aðxÞ � -aðx0ÞÞðx� x0Þ; ð30Þ

which coincides with the volume of the intersection of two

balls, with respective diameters a(x) and a x0ð Þ, centered at

x and x0, rescaled in such a way that CS(x, x, a(x), a(x)) = 1

for any x. Such a volume is (Liang and Marcotte 2016)

Vðx; x0Þ ¼

p
6
ðminfaðxÞ; aðx0ÞgÞ3

if 0\2jjx� x0jj\maxfaðxÞ � aðx0Þ; aðx0Þ � aðxÞg

p aðxÞþaðx0Þ
2

� jjx� x0jjð Þ2 jjx� x0jj2 þ 2jjx� x0jjaðxÞþaðx0Þ
2

� 3ðaðxÞ�aðx0Þ
2

Þ2
� �

12jjx� x0jj
if maxfaðxÞ � aðx0Þ; aðx0Þ � aðxÞg\2jjx� x0jj\aðxÞ þ aðx0Þ
0 otherwise:

8>>>>>>>>>><
>>>>>>>>>>:

ð31Þ
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Accordingly, the covariance is

CSðx; x0; aðxÞ; aðx0ÞÞ ¼ Vðx; x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðx; xÞVðx0; x0Þ

p : ð32Þ

Chilès and Delfiner (2012) and Liang and Marcotte (2016)

propose dilution and moving average algorithms to simu-

late a random field with such a non-stationary covariance.

A realization obtained with the proposed spectral method

on a 201 9 201 regular grid (with the same implementa-

tion parameters as previously: L = 5000 and g is the

spectral density of a Matérn covariance with scale factor 3

and shape parameter 0.3) is mapped in Fig. 5a, where the

range varies linearly with the ordinate axis, from a(x,

0) = 5 to a(x, 200) = 30. As for the previous experiments,

the experimental cumulative distribution functions of one

hundred realizations fluctuate without bias around the

theoretical model (Fig. 5b), and the same happens with

their experimental variograms calculated between the grid

nodes with coordinates (x, 100) and (x, 100 - h) [resp. (x,

200) and (x, 200 - h)], where x goes from 0 to 200, for lag

separation distances h varying between 0 and 30 (Fig. 5c,

d), indicating an accurate reproduction of the desired spa-

tial correlation structure.

3 Multivariate simulation

3.1 Methodology

One can extend the previous spectral algorithm to the

simulation of a non-stationary vector random field with P

cross-correlated components, by considering a P 9 P

matrix of spectral densities fx (a Hermitian, positive semi-

Fig. 3 a Realization of a random field with non-stationary Matérn covariance with varying shape parameter, b cumulative distribution functions

of 100 realizations, and c, d local variograms of 100 realizations
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definite matrix) instead of a scalar spectral density fx.

Specifically, let us define a non-stationary vector random

field as follows:

8x 2 Rd;YðxÞ ¼
XP
p¼1

ax;pðupÞ cos upjx
� 

þ /p

� �
; ð33Þ

where {up: p = 1,…, P} are mutually independent random

vectors with density g, {/p: p = 1, …, P} are mutually

independent uniform random variables in [0, 2p], inde-
pendent of {up: p = 1, …, P}, and {ax,p: p = 1, …, P} are

vector functions with P real-valued components that

depend on the target location x.

It is straightforward to show that the vector random field

Y so defined has a zero mean. The covariance between

Y(x) and Y(x0) is

Cðx; x0Þ :¼ E YðxÞYðx0ÞT
� �

¼
XP
p¼1

XP
q¼1

E ax;pðupÞaTx0;qðuqÞ cos upjx
� 

þ /p

� �n

� cos uqjx0
� 

þ /q

� ��

¼
XP
p¼1

XP
q¼1

E ax;pðupÞaTx0;qðuqÞ
n

�cos upjx
� 

� uqjx0
� 

þ /p � /q

� �
þ cos upjx

� 
þ uqjx0
� 

þ /p þ /q

� �
2

�
:

ð34Þ

Since {/p: p = 1, …, P} are mutually independent and

uniformly distributed in [0, 2p], the cosine terms in the

previous expression have a zero expectation, except for

p = q. Equation (34) therefore simplifies into:

Cðx; x0Þ ¼ E
1

2

XP
p¼1

ax;pðupÞaTx0;pðupÞ cos upjx� x0
� � �( )

¼ 1

2

Z
Rd

AxðuÞAT
x0 ðuÞ cos ujx� x0h ið ÞgðuÞdu

¼ F
Ax A

T
x0

2
g

n o
ðx� x0Þ;

ð35Þ

where Ax(u) and Ax0 ðuÞ are the P 9 P matrices whose p-th

columns are ax,p(u) and ax0;pðuÞ, respectively.
To obtain a vector random field with multivariate

Gaussian finite-dimensional distributions, again it is nec-

essary to sum numerous independent components defined

as in Eq. (33):

8x 2 Rd;YðxÞ ¼ 1ffiffiffi
L

p
XL
l¼1

XP
p¼1

ax;pðul;pÞ cos ul;pjx
� 

þ /l;p

� �
;

ð36Þ

where L is a large integer, {ul,p: l = 1, …, L; p = 1, …, P}

are mutually independent random vectors with density g,

and {/l,p: l = 1, …, L; p = 1, …, P} are mutually inde-

pendent random variables uniformly distributed in [0, 2p],
independent of {ul,p: l = 1, …, L; p = 1, …, P}.

3.2 First example: vector random field with non-

stationary Gaussian covariance

Let us simulate a vector random field Y with P = 2

components by using the following 2 9 2 matrix Ax(u):

Fig. 4 a Realization of a random field with non-stationary Matérn covariance with varying scale factors, anisotropy directions and shape

parameter. b Vectors indicating the local anisotropy azimuth for the direction with the largest scale factor
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8x 2 Rd;AxðuÞ

¼
ffiffiffiffiffiffiffiffiffi
2

gðuÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
f G
R11
x

ðuÞ
q

0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f G
R22
x

ðuÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

f G
R22
x

ðuÞ
q

0
@

1
A; ð37Þ

where R11
x and R22

x are symmetric positive semi-definite

matrices, f GR is the spectral density of the Gaussian

covariance with anisotropy matrix R (Eqs. 12 and 14), g is

the probability density function of u and q [ [-1, 1].

According to Eq. (35), the covariance between Y(x) and

Y(x0) is:

CG x; x0;R11
x ;R11

x0 ;R
22
x ;R22

x0 ; q
� �

¼ F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f G
R11
x

ðuÞf G
R11
x0
ðuÞ

q
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f G
R11
x

ðuÞf G
R22
x0
ðuÞ

q

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f G
R22
x

ðuÞf G
R11
x0
ðuÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f G
R22
x

ðuÞf G
R22
x0
ðuÞ

q
0
@

1
Aðx� x0Þ:

ð38Þ

One finds (Eq. 15):

CGðx; x0;R11
x ;R11

x0 ;R
22
x ;R22

x0 ; qÞ

¼ CGðx; x0;R11
x ;R11

x0 Þ qCG x; x0;R11
x ;R22

x0
� �

qCGðx; x0;R22
x ;R11

x0 Þ CG x; x0;R22
x ;R22

x0
� �

	 

:

ð39Þ

All the direct and cross covariances are Gaussian, with ani-

sotropy matrices that depend on both locations x and x0. The
scalar q is nothing else than the correlation coefficient between

the two components of Y at the same location x. Note that

there is no specific restriction on the anisotropy matrices, other

than being positive semi-definite, or on the correlation coeffi-

cient, other than belonging to the interval [-1, 1].

For instance, consider a bivariate random field on a

regular two dimensional grid with 201 9 201 nodes, where

the first component has an anisotropic Gaussian covariance

Fig. 5 a Realization of a random field with non-stationary spherical covariance with varying range, b cumulative distribution functions of 100

realizations, and c, d local variograms of 100 realizations
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with the largest (resp. smallest) practical range that linearly

varies from 25 (resp. 10) for x = 0 to 75 (resp. 30) for

x = 200, while the second component has an anisotropic

Gaussian covariance with the largest (resp. smallest)

practical range that linearly varies from 50 (resp. 10) for

x = 0 to 150 (resp. 30) for x = 200, so that the anisotropy

ratio remains constant in space for each component. Also,

consider spatially varying azimuths for the directions with

largest practical ranges, as indicated in Fig. 4b, and a

collocated correlation coefficient between both compo-

nents equal to 0.7. A realization of such a bivariate random

field, constructed by using L = 5000 lines and the spectral

density of a Matérn covariance with scale factor 3 and

shape parameter 0.3 for g, is mapped in Fig. 6.

3.3 Second example: vector random field with non-

stationary Matérn covariance

To end up, let us modify the previous construction as

follows:

8x 2 Rd;Ax;lðuÞ

¼
ffiffiffiffiffiffiffiffiffi
2

gðuÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f M
R11
x ;l11ðxÞ;al

ðuÞ
q

0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f M
R22
x ;l22ðxÞ;al

ðuÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f M
R22
x ;l22ðxÞ;al

ðuÞ
q

0
B@

1
CA;

ð40Þ

where l = 1, …, L is the line index, al is a realization of an

exponential variable, l11(x) and l22(x) are positive scalars

that depend on x, and f MR;l;aðuÞ ¼ al�1

CðlÞ f
G
4aRðuÞ (Eq. 26). The

covariance between Y(x) and Y(x0) becomes:

where the expected value is taken with respect to the

exponential variable al. It comes (Eq. 27):

The direct and cross covariance functions turn out to be

Matérn covariances, with spatially varying anisotropy

matrices and shape parameters. As an illustration, consider

a regular grid with 201 9 201 nodes and define a bivariate

covariance model, where the first direct covariance is a

stationary and isotropic Matérn covariance with scale

parameter 10 and constant shape parameter l11 = 0.5, the

second direct covariance is an isotropic Matérn covariance

with scale parameter 10 and shape parameter l22(x, y) that
varies linearly with y, such that l22(x, 0) = 0.5 and l22(x,
200) = 1.5, and the collocated correlation coefficient q is

0.6. Spectral simulation is performed with L = 5000 lines

and with the spectral density of an isotropic Matérn

covariance with scale factor 3 and shape parameter 0.3 for

g. Figure 7 shows the map of one realization, in which the

first component (Fig. 7a) looks homogeneous in space with

rough spatial variations, while the second component

(Fig. 7b) looks heterogeneous, with progressively

smoother spatial variations when getting closer to the top

of the map (higher shape parameter). Figure 8a, c, e (resp.

Fig. 8b, d, f) compare the experimental direct and cross

variograms of one hundred realizations, calculated between

the grid nodes with coordinates (x, 100) and (x,

100 - h) [resp. (x, 200) and (x, 200 - h)], where x goes

from 0 to 200, for lag separation distances h varying

between 0 and 30, with the corresponding theoretical var-

iograms. In both cases, the average of the experimental

variograms matches quite well the corresponding theoret-

ical model, indicating an accurate reproduction of the

coregionalization model.

CMðx; x0;R11
x ;R11

x0 ;R
22
x ;R22

x0 ; l11ðxÞ; l11ðx0Þ; l22ðxÞ; l22ðx0Þ; qÞ

¼ E F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f M
R11
x ;l11ðxÞ;al

ðuÞf M
R11
x0 ;l11ðx

0Þ;al
ðuÞ

q
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f M
R11
x ;l11ðxÞ;al

ðuÞf M
R22
x0 ;l22ðx

0Þ;al
ðuÞ

q

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f M
R22
x ;l22ðxÞ;al

ðuÞf M
R11
x0 ;l11ðx0Þ;al

ðuÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f M
R22
x ;l22ðxÞ;al

ðuÞf M
R22
x0 ;l22ðx0Þ;al

ðuÞ
q

0
B@

1
CA

8><
>:

9>=
>;ðx� x0Þ;

ð41Þ

CMðx; x0;R11
x ;R11

x0 ;R
22
x ;R22

x0 ; l11ðxÞ; l11ðx0Þ; l22ðxÞ; l22ðx0Þ; qÞ

¼ CMðx; x0;R11
x ;R11

x0 ; l11ðxÞ; l11ðx0ÞÞ qCMðx; x0;R11
x ;R22

x0 ; l11ðxÞ; l22ðx0ÞÞ
qCMðx; x0;R22

x ;R11
x0 ; l22ðxÞ; l11ðx0ÞÞ CMðx; x0;R22

x ;R22
x0 ; l22ðxÞ; l22ðx0ÞÞ

 !
:

ð42Þ
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4 Discussion and conclusions

The algorithm presented in this paper is an extension to the

non-stationary framework of the spectral-turning bands

algorithm developed by Emery et al. (2016) and stands out

for its versatility, accuracy and low computational

requirements. Indeed:

1. Because one has a functional expression of the

simulated field as a weighted sum of cosine waves

(Eqs. 9 and 36), realizations of this field can be

constructed at as many locations as desired, irrespec-

tive of whether these locations are evenly spaced or

not.

2. Many non-stationary covariance models can be repro-

duced, as illustrated in the examples throughout this

paper. In particular, the models developed by Paciorek

and Schervish (2006) can be viewed as scale mixtures

of non-stationary Gaussian covariances and simulated

in a way similar to the one indicated in Sects. 2.3.3 and

2.3.4. The extension to multivariate models is also

straightforward, as shown in Sect. 3.

3. Simulation is accurate, in the sense that the desired

spatial correlation structure (non-stationary covariance

function) is reproduced without any bias. The only

approximation lies in the use of a finite set of turning

lines, which makes the finite-dimensional distributions

of the simulated random field not perfectly multivari-

ate Gaussian.

4. The process time is proportional to the number L of

lines and to the number of target locations and can be

improved by resorting to parallel computing. Storage

requirements are also minimal, insofar as the field can

Fig. 6 Realization of a vector random field with non-stationary Gaussian direct and cross covariances. a first component, b second component

Fig. 7 Realization of a vector random field with non-stationary Matérn direct and cross covariances. a first component, b second component
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Fig. 8 Local variograms of 100 realizations of vector random field with non-stationary Matérn covariances: a, b direct variograms for first

component, c, d cross variograms, and e, f direct variograms for second component
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be simulated at any subset of target locations and the

results stored, without the need for knowing the values

at the other locations.

The setting of the algorithm turns out to be particularly

simple and its applicability has been illustrated through

varied numerical examples, where scalar and vector ran-

dom fields with non-stationary Gaussian, exponential,

Matérn or compactly-supported covariance models have

been simulated. As a suggestion for future researches, one

may focus on analyzing the convergence of the simulated

fields to Gaussian random fields, as a function of the

number L of lines and the chosen density g for the fre-

quency vectors. Indeed, these two parameters (L and g) can

have an impact on the spread of statistical fluctuations, as

well as on the spatial behavior of the simulated field that

can be qualitatively assessed by mapping the realizations.

In our experience, it is more convenient to choose a density

g that favors the occurrence of large frequencies (for

instance, the density of a Matérn covariance with small

shape parameter, such as the one taken in the presented

numerical experiments), thus a better reproduction of the

short-scale behavior of the simulated field for a given

number L of lines.
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