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a b s t r a c t

We consider the problem of analyzing the structure of spectroscopic cubes using unsupervised machine
learning techniques. We propose representing the target’s signal as a homogeneous set of volumes
through an iterative algorithm that separates the structured emission from the background while not
overestimating the flux. Besides verifying some basic theoretical properties, the algorithm is designed to
be tuned by domain experts, because its parameters have meaningful values in the astronomical context.
Nevertheless, we propose a heuristic to automatically estimate the signal-to-noise ratio parameter of the
algorithm directly from data. The resulting light-weighted set of samples (≤1% compared to the original
data) offer several advantages. For instance, it is statistically correct and computationally inexpensive
to apply well-established techniques of the pattern recognition and machine learning domains; such as
clustering and dimensionality reduction algorithms. We use ALMA science verification data to validate
our method, and present examples of the operations that can be performed by using the proposed
representation. Even though this approach is focused on providing faster and better analysis tools for
the end-user astronomer, it also opens the possibility of content-aware data discovery by applying our
algorithm to big data.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Even though there is a large body of work regarding 2D image
analysis, most of the techniques do not directly scale up to more
dimensions. There are specific-purpose algorithms in astronomy
to deal with 3D data, such as clump finding algorithms for spec-
troscopic data cubes (Williams et al., 1994; Stutzki and Guesten,
1990; Berry, 2015), yet the current state of the practice requires
a huge effort in terms of storage space, computational time and
actually human–machine interaction to generate useful products
for astronomers (McMullin et al., 2007). Moreover, data growth in
sensitivity and resolution with each new instrument, so the next-
generation of projects in Astronomywill produce several terabytes
of data every night (Ivezic et al., 2009; Dewdney et al., 2008), mak-
ing impossible to perform analysis without automatically reducing
its dimensionality.

Machine learning, and other advanced statisticalmethods, have
been a source of success for astronomers (Vanderplas et al., 2012;
Richards et al., 2011; Gibson et al., 2012): learning and inference
are powerful tools to represent data in a compact way that al-
lows us to make automatic decisions. Machine learning methods
for classification, model-based regression, clustering and feature
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selection (Bishop, 2007), often rely on samples being independent
and identically distributed (i.i.d.), which is not the case for the
pixels of an image. Therefore, applying state-of-the-art machine
learning techniques usually involves adapting the method or pre-
processing the data to comply with this assumption.

Wepropose representing spectroscopic data cubes as a compact
and homogeneous set of volumes, that can be treated directly as
samples of the underlying signal of interest to achieve two goals:

• reduce the size of the cube representation to limit computa-
tional and memory resources needed to perform astronom-
ical analysis, and
• comply with the i.i.d. assumption allowing astronomers to

use machine learning and statistical analysis tools that are
based on this assumption.

In this article we focus on spectroscopic data cubes, and
specifically on interferometric synthesized spectral cubes on the
millimeter/sub-millimeter range, but this work could be straight-
forwardly applied to 2D images. Moreover, new acquisition tech-
niques are now producing even higher dimensional data with axes
such as polarization, spatial depth or time series. For instance, the
data that is currently generated by the ALMA observatory (Testi
et al., 2010) are actually 4D data hypercubes. Again, our algorithm
can work with these higher dimensions without major changes.
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The outline of the article is the following. In Section 2 we de-
scribe the problem of analyzing spectroscopic cubes by reviewing
current approaches to do this. Section 3 presents a homogeneous
compact representation for spectroscopic cubes, while Section 4
presents the experimental results of computing this representa-
tion. In Section 5 we show how to use our representation for
data analysis. Finally, we conclude in Section 6 giving remarks and
discussing future work.

2. From 2D to 3D and beyond

The high dimensionality and high sensitivity of new detectors
and instruments arise new problems for storage, processing and
transferring astronomical data. The Big Data problem in astronomy
is not only aboutmanaging a large number of observations, but also
to deal with files of large size.

The research on 2D image analysis techniques, such as segmen-
tation (Russ, 2006) and denoising (Motwani et al., 2004), has been
largely addressed using the standard pixel-based representation.
The use of these techniques is widely spread in astronomy (Starck
and Murtagh, 2002), including specialized packages that directly
produce catalogs from observations (Bertin and Arnouts, 1996).

However, extending these algorithms to more dimensions is a
non-trivial task. The main problem is the curse of dimensional-
ity (Donoho et al., 2000): not only the amount of data growths
exponentially in terms of bytes with more dimensions, but the
algorithms used for 2D images become intrinsicallymore complex.
Between the difficulties for extending 2D algorithms to more di-
mensions we want to highlight:

• Resulting Images: pixel-based representations can give us
high level information in 2D images, such as colored seg-
ments, thresholded views and contour images. However
they become hard to visualize, annotate, store and transfer
in more dimensions (Kozak et al., 2015). A clear example
is pixel-based segmentation (Russ, 2006), which assigns a
class to each (significant) pixel. Unfortunately, in spectro-
scopic cubes a pixel-based segmentation1 result is almost
as hard to store, transport and analyze than the original
cube, because users can onlyworkwith 2Dprojections of the
result. Additionally, merging different cubes requires extra
steps like rotating, down-sampling and interpolating data,
which could affect the content of the cube.
• Pixel Vicinity: the complexity of the vicinity of pixels strongly

depends on the dimensionality. For example, a connectivity
by contact in a 2D image consist only of 8 pixels (4 edges
and 4 vertices), but this becomes 26 pixels for 3D cubes (6
squares, 12 edges and 8 vertices) and 80 pixels for 4D cubes
(8 cubes, 24 squares, 32 edges and 16 vertices). Complex
statistical models, such as Markov random fields (Kato and
Zerubia, 2012), will not only increase its computational time
due to augmented number of pixels, but also by the non-
linear increase of pixel connectivity.Moreover, pixel vicinity
becomes a hard problem when two cubes with different
resolutions need to be merged.
• Intensity Dilution: the intensity of a phenomenon observed

in more dimensions dilutes, so some structures can be de-
tected only statistically due to the low signal-to-noise ratio.
A clear example of this problem arises in thresholding tech-
niques, where large structures that can be easily detected in
low dimensional projections of the cube might be neglected
because most of their components fall below the applied
threshold.

1 Weuse pixels as the generic name for elements of a n-dimensional array, rather
than voxels or other dimensionality-dependent names.

To tackle these problems, astronomers perform data prepro-
cessing operations such as binning, resampling and integrating
data, which allow them to analyze lower-dimensional projections
of data. Also, astronomers use content-based operations to such
as background filtering, pixel masking, or automatic region-of-
interest detection, in order to analyze more compact represen-
tations of data. For example, a very simple detection method is
thresholding, which allow us to select those pixels that are over
some flux value (e.g., the RMS) and discard the rest in the same
way that is done for 2D images. This can be combined with a low-
pass filter to smooth the signal and select regions of interest rather
than isolated pixels. More advanced methods use morphological
transformations (structured elements or kernel-density functions)
and edge detection techniques such as in Araya et al. (2016).

An interesting family of detection methods is pixel-based
clumping algorithms for spectroscopic data cubes, which sepa-
rate the signal not only from background, but clusterize pixels
in different emission sources. The clumpy structure of molecular
clouds and other extended objects in astronomy, allows separating
sources to analyze them independently or to find the astrophysical
relationships between them. The most known method in this cat-
egory is ClumpFind (Williams et al., 1994), which uses contours at
different RMS levels to define clumps. A relatively newer method
is FellWalker (Berry, 2015), that uses hill-climbing and cellular
automata techniques to offer a more intelligent separation. These
methods select those pixels (or regions) that are unlikely explained
by the background. However, it is difficult to determine howmuch
flux of each pixel can be explained by the signal or by the back-
ground.

Gaussclumps (Stutzki and Guesten, 1990) is an almost 30 years
old method that iteratively fit Gaussian structures directly in both
spatial and spectral dimensions. Themethod is verywellmotivated
in the sense that emissions and clump structures can often be
accurately represented using Gaussians. The fitting is done using
non-linear optimization under several soft constraints that emerge
from astrophysical restrictions, based on a simple radiative emis-
sion model (Stahler and Palla, 2008). Unfortunately, the algorithm
is complex to analyze from an algorithmic perspective and difficult
to use in practice. First, the algorithm is composed by several itera-
tive heuristics and optimization steps, each onewithmulti-criteria
halting conditions that depend of free parameters. This prevents a
proper analysis of the convergence and computational complexity
of the algorithm, because the number of variables to analyze are
toomany. Moreover, most of the parameters aremeaningless from
the astrophysical point of view, making them hard to tune. For ex-
ample, the number of consecutive iterations where the non-linear
optimizer failed to converge, is a halting parameter that is unlikely
to be tuned a priori, and its connection to astrophysical parameters
is very weak or non-existent. In addition, there are more than
thirty parameters in the off-the-shelf implementation (Berry et al.,
2007). Thus, performing a thorough sensitivity analysis becomes
impractical.

However, is important here to distinguish between model and
method: while the model is well motivated and sound, the algo-
rithm used for finding the Gaussian components does not offer
theoretical guarantees and is hard to tune.

3. Homogeneous compact representation

Our proposal is a simple yet powerful approach to spectral cube
analysis, which consists in decomposing the data in several iden-
tical volumes that represent the actual signal of the cube, similar
to kernel density estimation. As target signals are relatively sparse
in a 3D space, this method will produce a compact representation
with homogeneous components that are easier to fit in memory
and to process compared to the original data.
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For the sake of generality, we define that an cube C as a n-
dimensional matrix of scalars that can be decomposed by linear
combination of kernel instances Ĉ plus a noise (Eq. (1)).

C(x) ≃ Ĉ(x; θ )+ ϵ =

k∑
i

αiK (x, yi)+ ϵ, (1)

where x ∈ X is a coordinate of the cube, X ⊂ Nd is the set
of all pixels coordinates of the cube, K (·, ·) ↦→ [0, 1] is a kernel
function, yi ∈ Rd are kernel location points, αi are positive scalars
and ϵ is a random-noise variable. We denote by θ the set of model
parameters, in this case yi and αi. In general, the kernel function
could be replacedwith any functionwith arbitrary parameters that
can be added to θ , for instance by a structured Gaussian function
like in Stutzki and Guesten (1990). However, as our objective is
to produce a compact representation, we constraint the functions
to kernels with location points in the same X space.2 To simplify
even more the model we propose choosing constant intensities in
the linear combination, i.e.αi = σ ,∀i. Accordingly, our representa-
tion is homogeneous, because each volume has the same structure
(kernel) and contains the same energy (constant intensity). Also,
the kernel should comply with K (x, x) = 1 for convenience.

We assume that ϵ is Gaussian, but we constraint the noise
only to positive values because the background noise is additive in
astronomy. This constraint can be modeled by letting ϵ ∼ f (σ ) be
half-normally distributed – a zero-mean normal distribution with
positive values only – where the σ parameter can be estimated
from data (e.g., computing the RMS). Please note that this positivity
constraint is only applied to the noise model, allowing the cube
to have negative values due to flux calibration or continuum sub-
traction. Under these assumptions, the generic emission detection
problem can be casted as the maximization of the log-likelihood
function:

argmax
θ

[ln (L(C |θ, σ ))]

= argmax
θ

[∑
x∈X

ln
(
f (C(x)− Ĉ(x; θ ); σ )

)]

= argmin
y1,...,yk

⎡⎣∑
x∈X

(
C(x)− σ

k∑
i

K (x, yi)

)2
⎤⎦ , (2)

s.t. σ

k∑
i

K (x, yi) ≤ C(x),∀x ∈ X , (3)

In summary, the problem consist in solving a least-squared
problem (Eq. (2)) with a positivity constraint (Eq. (3)).

If the cube is sparsewith respect to the noise level, we expect to
produce significantly less parameters in θ than the number of orig-
inal pixels in X , keeping in the representation enough information
to perform data analysis.

For example, consider that we use only the pixels above a flux
level τ , and choose K (x, y) = 1 if x = y and 0 elsewhere.
Then, Eq. (2) can be solved by representing the cube as a set
of homomorphic box volumes, in which each pixel i above τ is
represented by ni boxes. Formally, Eq. (2) reduces to

argmax
θ

[ln (L(C |θ, σ ))]

= argmin
y1,...,yk

⎡⎣∑
x∈X

(
C(x)− σ

k∑
i

I(x, yi)

)2
⎤⎦

2 Formally, both variables are not in the same space because y lives in a continu-
ous space while X is discrete, but both represent positions.

= argmin
n∈Nk

[∑
x∈X

(C(x)− σnx)
2

]
,

s.t. σnx ≤ C(x),∀σnx > τ,

and its optimal solution is

θ = {nx = ⌊C(x)/σ⌋ | C(x) > τ, x ∈ X },

where ⌊·⌋ indicates the floor function (i.e. integer part of the real
expression).

This pixel-based homogeneous representation already reduces
the size of the representation with almost no computational effort
(refer to Section 4.1 for more details). However, smaller and better
representations can be found with the following algorithm.

3.1. Iterative bubble subtraction algorithm

For spread kernels, the squared difference of Eq. (2) could be
solved using non-linear constrained optimization. However, as k
depends on the emission structure, signal-to-noise ratio (SNR), and
intensity, among other factors, its value is unknown. Moreover,
as the problem is non-convex, the use of numerical solvers is
computationally expensive. Even by constraining the collection of
location points to yi ∈ X we end up with a hard combinatorial
optimization problem.

We propose using a simple iterative algorithm that subtract
at each step the volume formed by the kernel within a forced
compact support. The ‘‘bubble’’ is subtracted from the position
that holds the maximum safe energy with respect to the kernel,
constraining the subtraction to a fixed intensity σ . This leads to
a fast algorithm that produce a homogeneous representation of
the signal. The main feature of the representation is that each
component is compactly represented only by its location yi ∈ X .

The safe energy at each point is the maximum intensity of the
bubble that can be subtracted from the cube without surpassing
the actual flux of the pixels. Let R be the residual cube (i.e., a
working copy of the original C cube), K the kernel and Kx the set
of pixels of the compact support of the kernel around x. Then, the
safe energy cube E is computed by dividing the residual by each
element of the bubble Eq. (4).

E(x) = min
p∈Kx

[
R(p)

K (p, x)

]
,∀x ∈ X . (4)

Algorithm 1 Update Energy
1: function Update-Energy(R, E, y)
2: if y == None then # if no center is given,
3: S ← X # compute for the whole cube
4: else
5: S ← Ky # update only the modified section
6: end if
7: for each x ∈ S do
8: E(x) = minp∈Kx

R(p)
K (p,x) # safe energy

9: end for
10: end function

We present here a high-level version of the Update-Energy
function (see Algorithm 1) that is simple to grasp yet inefficient
in practice. To speed-up calculations, the bubble can be pre-
computed, properties of the kernel can be exploited, and fast ma-
trix operations can be used instead of iterations. In fact, to compute
the initial energy of a 3D cube we actually divide the elements of
R by each element of an eighth of the pre-computed bubble (sym-
metrical kernel), mapping the correct indices to find the energy at
each coordinate. In addition, please note that updating E after a
subtraction with forced compact support is very fast, because we
need to compute only the neighbor elements in the Kx set.
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Algorithm 2 Bubble-Detect
1: function Bubble-Detect(C, K , σ , τ )
2: Y ← {}
3: R← C # working copy
4: y← None
5: repeat
6: Update-Energy(R, E, y)
7: y← argmaxx∈X [E(x)] # maximum safe energy
8: if E(y) ≤ σ then # exit if the maximum energy is lower than

the noise level
9: break
10: end if
11: for each x ∈ Ky do # subtract a bubble from the residual
12: R(x)← R(x)− a · K (x, y)
13: end for
14: Y ← Y ∪ {y} # save the bubble position
15: until E(y) ≤ τ # stop when the energy is less than a threshold
16: return Y
17: end function

The Bubble-Detect function (see Algorithm 2) subtracts bub-
bles until the maximum safe energy falls below a τ threshold. It
returns a set of pixel locations Y , each one represented by a single
integer value if the correct encoding is chosen.

The parameters of the algorithm are designed to be meaning-
ful for astronomers. The σ parameter corresponds to the noise
level of the observation. In our implementation this is equal to
the empirical RMS, but the parameter could be overwritten by
the astronomer with a better estimation, for example when the
source is as extended as to dominate the signal of the whole cube.
The τ parameter is the target minimum signal that the algorithm
should consider as a detection. This means that τ

σ
is the signal-

to-noise ratio frontier where the signal is indistinguishable from
noise. This also strongly depends on the astronomer knowledge
about the nature of the signal and the noise. A τ = σ means
that we stop subtracting bubbles when a bubble intensity reaches
the noise limit. In our experiments we introduce a heuristic to
estimate τ .

Our algorithm verify some basic properties regardless the ker-
nel used.

Theorem 1 (Upper Bounded Iterations). Let Fτ and nτ be both the
integrated flux and the number of pixels with intensity greater than
τ respectively. The number of steps (and solution size) nBD of the
Bubble-Detect algorithm is finite, deterministic and upper bounded
by Fτ−nτ (τ−σ )

σ
.

Proof. The algorithm is deterministic because the internal state
(i.e. residual and energy) is only modified by constants and pre-
computed values (bubble). Please be aware that here we have
made the reasonable assumption that maximum and minimum
operators are deterministic. The values of the residual and the en-
ergy matrix monotonically decreases at each step, so the sequence
of bubble subtraction is finite.

The solution Y of the algorithm can be represented by a sparse
vector of integers n, where nx corresponds to the number of times
that a bubble was subtracted at the index x. Note that if C(x) < τ

the maximum possible energy at that point is

E(x) ≤
R(x)

K (x, x)
≤ C(x) < τ, (5)

implying that nx = 0. For all the other nx, the algorithm can
subtract at most the number of identity kernels under the same
threshold, which correspond to

⌊ C(x)−τ

σ

⌋
bubbles from x, because

nearby kernels can only reduce this number, k(x, x) = 1, and the
E(x) ≤ C(x)− Ĉ(x).

Then, the number of elements of the solution is bounded by

nBD =
∑
x∈X

nx ≤
∑

x∈{x∈X |C(x)≥τ }

⌊
C(x)− τ

σ

⌋
≤

∑
x∈{x∈X |C(x)≥τ }

C(x)− τ + σ

σ
=

Fτ − nτ (τ − σ )
σ

□ (6)

3.2. Diagonal Gaussian kernel

Selecting the right kernel is an important issue for this repre-
sentation because accuracy, compactness and computational time
are heavily affected by the type of kernel chosen. More complex
kernels usually require to be smooth functions, because resolved
astronomical sources, such as clouds of dust and gas, usually
decay smoothly. A natural choice is to use Gaussian functions,
because both spatial densities and spectral lines can be efficiently
represented by Gaussian mixtures (Stutzki and Guesten, 1990).
Gaussians could potentially have any shape, but we recommend
using a diagonal co-variance matrix that captures the resolution
of the detector or instrument used for acquiring the data. In addi-
tion, Gaussians have no compact support. We propose forcing the
compact support of a Gaussian approximation kernel, by using the
resolution information from themetadata of the cube (e.g., spectral
resolution, beam size, LAS, etc.).

Formally, let ∆ be a resolution vector containing the number of
pixels from the center that defines the compact support for each
dimension. Then, a Gaussian kernel co-variance matrix Σ that has
a contour of γ at the resolution boundary can be computed as:

Σ =
1

−2 log(γ )

⎡⎢⎢⎢⎣
∆2

1 0 . . . 0
0 ∆2

2 . . . 0
...

...
. . .

...

0 0 . . . ∆2
n

⎤⎥⎥⎥⎦ , (7)

where the Gaussian approximation kernel correspond to:

K (x, y) = exp{−0.5(x− y)⊤Σ−1(x− y)},∀x ∈ Ky, (8)

and Ky = {x ∈ X | x ∈ [y − ∆, y + ∆]}. ∆ defines the
size of the bubble in pixels per dimension, and the minimum
values of it should depend on the instrumentation or physical
limitations (e.g., beam size, point spread function or minimum
expected broadening). Larger values will produce a less precise
approximationwith less elements, but not forcedly in less time due
to energy computations. In other words,∆ controls the granularity
of the approximation.

γ controls the contour level of the Gaussian kernel, which can
be understood as the degree of ‘‘smoothness’’ that we want in the
solution. γ should comply with 0 < γ < 1, where 0 means
maximal smoothing and 1 means maximal sharpness. Please note
that if the kernel want to be used as continuous approximation
of the data, then the values of γ should be small. By default our
implementation uses γ = 0.1.

4. Empirical evaluation

To illustrate the benefits of the proposed representation, we
consider in our experiments a set of spectroscopic cubes from the
ALMA Science Verification dataset (Hills, 2011). We have chosen
these observations because they are thoroughly validated, and
obtained from well-known sources for different type of science
cases. In Table 1 the summary of the dimensions and resolutions
of the selected cubes are presented. The first cube covers a region
of ∼30 × 30′′ towards the Kleinmann–Low Nebula (i.e., Orion
KL); a massive star-forming region, in which methanol has been
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Table 1
Summary of the data used in our experiments. The first column describes the name of the source and the observed
spectral line. The next four columns summarize the dimensions of the cubes. The column denoted by ‘‘valid’’ shows
how many pixels have actual flux. The last three columns show angular resolution (ARes), minor beam size (BSize) and
spectral resolution (SRes).

Name RA pix DEC pix FREQ pix Total pix Valid ARes ′′ BSize ′′ SRes MHz

Orion-KL-CH3OH 100 100 41 410000 100% 0.40 1.38 0.49
TW-Hya-CO(3-2) 100 100 118 1180000 100% 0.30 1.53 0.14
M100-CO(1-0) 600 600 40 14400000 58% 0.50 2.48 3.90
IRAS16293-220 GHz 220 220 480 23232000 54% 0.20 0.99 0.49

Fig. 1. SNR estimation. The blue lines correspond to the RMS computed after
thresholding the cube using τ . The dotted line is the lowest value that the RMS can
take, the black line shows the slope of the RMS and the red line is the SNR selected
by the heuristic.

observed as a tracer of hot dense gas. Then we have TW Hya; a
young star with a transitional disk (in evolution between the states
of protoplanetary and debris disks), where a CO detection traces
the outer cold disk. The M100 source is a ‘‘grand-design’’ spiral
galaxy, forwhich a CO linewas used as a tracer of the distribution of
molecular hydrogen in the spiral arms. At last, IRAS16293-2422 is a
protostar (dense core) that is actually a multiple system for which
a cube around 220 GHz was obtained to explore the different lines
and chemistry of the envelopes of the components.

For each of these cubes, an automatic transformation procedure
was followed. First, the fluxes of all the valid pixel are standardized
in the [0, 1] range to ensure numerical stability. Then, the param-
eter σ of the algorithm is estimated as the RMS of the cube, and an
estimation of the signal-to-noise ratio (SNR) is performed to obtain
the τ parameter.3 At last, we compute the Pixel-based Homoge-
neous Representation (PHR) using the identity kernel, and then
the Gaussian-basedHomogeneous Representation (GHR) using the
Gaussian kernel and Algorithm 2 (Bubble-Detect).

To tune τ we propose a heuristic that explores the relation
between RMS and the threshold. We start at τ = σ and stop at
τ = 3σ , assuming that no flux detection can be done below σ , and

3 Even though the algorithm is resistant to aberrant pixels when using spread
kernels, the RMS and SNR estimations can be largely affected by outliers. For a
robust estimationwe recommend a bad pixel treatment of the cube before this step.

that everything over 3σ is a detection. In Fig. 1 we can see the SNR
curve. We find the inflection point by looking for the maximum
in ∆RMS. The key insight of the heuristic is that the change on
the RMS slope reflects the threshold point where the remaining
pixels are not longer dominated by noise. We can notice that for
Orion KL the RMS curve decreases monotonously. This behavior
could be explained by a bad estimation of σ : the intensity of the
signal in this cube could bias the RMS estimation away from the
noise level. Regardless, we will still use this value to show that
the performance of the algorithm does not fall too much when the
noise is overestimated.

4.1. Pixel-based homogeneous representation (PHR)

Separating signal from noise is the first step in any data analysis
task. Usually, this is done by conducting data thresholding, obtain-
ing a data product of the same size but with several values in zero.
Our proposal uses sparsification to produce a lighter representa-
tion that can be used for data analysis.

Results of the signal-noise separation using our pixel-based
homogeneous representation are reported in Figs. 2 and 3. We can
observe that the sources have different nature (i.e., star forming
region, protoplanetary disk, spiral galaxy, protostar binary system),
and for all of them the representation already captures the spatial
structure and the line spectra of the sources. For instance, M100
shows a clear spiral form in the zero-th moment and a very large
FWHM and complex spectrum, while the TW Hya shows a very
defined protoplanetary disk in the images with a narrow and a
Gaussian shaped spectral line. Even though some residuals may
show significant structures in their zeroth moments, please note
that they are always below the noise level, meaning that no rele-
vant flux is left in the residual.

Table 2 shows that the number of points are near the bound
and uses one or two orders of magnitude less points than the valid
pixels of the original cube. Please note that this representation is
not a sparse representation of the pixels above a threshold, but
a scatter set of independent and identically distributed (i.i.d.)
samples of the signal. This means that the representation is not
only (relatively) compact, but it is also ready for all the statistical
analysis techniques that rely on this assumption.

A PHR is very fast to compute but it has a major drawback: it
does not use a priori information about the effective resolution of
the cube. For instance, in ALMA data, a pixel with high intensity
that is surrounded only by pixels below the noise level it is with
high probability an imaging artifact, because the beam size is
usually larger than a pixel. Unfortunately, a PHR will consider the
point as relevant flux for the representation.

4.2. Gaussian-based homogeneous representation (GHR)

Consider now using the Gaussian kernel and the proposed
Bubble-Detect method (Algorithm 2). In Figs. 2 and 3 we also
report the GHR zeroth moments and spectra in order to compare
themwith the PHR representation. Even though these results seem
very similar at first sight, there are several differences that we
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Fig. 2. Noise/Signal Separation using PHR and GHR. For each cube the zero-th moments for the original data, the projection of the representations over an empty cube, and
the residuals are reported.

explore in this section. First, we can notice that GHR images and
spectra are much smoother than for PHR, because the kernel act
as a smoothing operator over the representation, leaving high-
frequency noise and artifacts in residuals rather than in signals.
Also, we can observe that GHR residuals hold a less identifiable

structure and less variance than for PHR, resemblingmore towhite
noise.

As Table 3 shows, GHRs are more compact than PHRs. Here
we can observe that we reduce to 10% of the size of PHRs and
between 0.1% and 2% of the original valid pixels. However, this is
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Table 2
PHR Solutions Summary. We report here the number of points used by the representation, including the RMS and the
estimated SNR used to obtain it. In addition, the proportion with respect to the theoretical bound and with respect to
the number of valid pixels are reported. The last column shows the time spent in computing the representation.

Name RMS (σ ) SNR (τ/σ ) PHR PHR/Bound PHR/Valid Time (s)

Orion-KL-CH3OH 2.60e−06 1.010 55964 0.83 0.14 0.36
TW-Hya-CO(3-2) 8.99e−07 1.118 23796 0.92 0.02 0.11
M100-CO(1-0) 9.18e−08 1.592 101890 0.98 0.01 1.02
IRAS16293-220 GHz 5.90e−08 1.410 328044 0.94 0.03 3.74

Fig. 3. Spectra of the Noise/Signal Separation using PHR and GHR. The integrated
spectra of the same cubes of Fig. 2 are presented as radial velocities with respect to
the reported rest frequency in the file header.

not cost free: the last column reports the time used to compute
the representation.4 Note that computational times are meant to
be spent once, as the representation is data persistent. Compared
to the theoretical bounds reported in Table 2, we can see that the
desired SNR is obtained much earlier.

An important result that we want to highlight is that the size
and computational speed of both the PHR andGHR representations
depend on the complexity of the cube, and not only on the resolu-
tion or size of the original data. This can be observed by comparing
the results for TW Hya and Orion KL. Even though the number of
pixels in Orion KL is nearly a third of the pixels in TW Hya, the
complex structure of the star forming region requires 4.5 times
more GHR elements than the protoplanetary disk (3.6 times for
PHR), with a similar proportion for the computational time.

4 Single-thread execution on a 2.80 GHz i7 processor.

Table 3
GHR Solutions Summary. In this table we include the number of elements in the
GHR solution, and the ratios with respect to the PHR solution size and valid pixels
of the original cube. We also report the time spent computing this solution.

Name GHR GHR/PHR GHR/Valid Time [s]

Orion-KL-CH3OH 7026 0.13 0.017 37
TW-Hya-CO(3-2) 1550 0.07 0.001 15
M100-CO(1-0) 12098 0.12 0.001 187
IRAS16293-220 GHz 34511 0.11 0.003 598

Fig. 4. Vertical decomposition of Orion-KL’s GHR in 25 levels, each one with the
same total flux.

5. Applications of GHR

In this section we use the GHR introduced in Section 3 to give a
few examples of its possible data analysis usages.

To recapitulate, themain advantage of GHRwith respect to PHR
is that the cube is now represented by a set of elements that can be
seen as independent and identically distributed (i.i.d.) samples of
the underlying signal. Consequently, a vast number of statistical
and machine learning techniques found in packages like scikit-
learn (Pedregosa et al., 2011) can be directly applied to the
representation.

5.1. Vertical thresholding and clumping

Let us consider the Orion KL data presented in Section 3. In
pixel-based representations, thresholding implies removing all the
flux of some pixels and maintain the complete flux of the rest of
them. Our representation allows performing vertical thresholding,
because the samples are produced in flux decreasing order. Fig. 4
shows a decomposition of the data in 25 levels, each one with the
same total flux. Please note that this is done over 3D representa-
tions and then projected to 2D images. This allow us to visualize
the profile of the emission, and select data vertically. For example,
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Fig. 5. Detected Clumps in Orion KL using Spectral Clustering. The image shows the
contours of the 3D clumps projected over three views: stacked frequency, stacked
right-ascension and stacked declination). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Detected clumps in TWHya using Mean Shift. The image shows the contours
of the 3D clumps projected over three views (stacked frequency, right-ascension
and declination). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

we selected the first 10 levels for the next step, not only performing
denoising as in traditional thresholding, but also reducing the size
of the representation.

Detecting clumps is an important application that is strongly
simplified by our representation, because it reduces to a clustering
problem. For the Orion KL data we have selected spectral clus-
tering (Shi and Malik, 2000), a well-known technique for image
segmentation.We conducted spectral clustering using an arbitrary
number of clusters equal to 5. Fig. 5 shows clumps projections
to 2D views. For example, we can observe the detection of com-
ponents that differ from the core spatially and due to thinner
broadening (orange), red/blue-shifted components (yellow/green),
and extended ones with a few peaks that suggest more clusters
are needed. This paper does not address the problem of finding
the number of clusters automatically, but provides a light-wighted

Fig. 7. Spectra of Clumps in TWHya. The colors of the clumps coincides with Fig. 6.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 8. Synthesized manifold of TW Hya, including isometric (top) and side view-
points (bottom).

representation that can be used for re-clustering at will for manual
or automatic parameter tuning.

5.2. Source selection and manifold representation

Let us consider now the TW Hya data. Even though this might
look as a unique source, the data contains other non-centered
emissions. Therefore, we can use a non-parametric clustering al-
gorithm called mean shift (Cheng, 1995) that finds local maxima
and construct clusters around them. The algorithm automatically
segments the data in 19 clusters showed in Fig. 6. We select only
the highest emission cluster (magenta) for the next step, because
the individual fluxes of all the other clumps aremarginal compared
to that one. In fact, we can see in Fig. 7 that the other clusters have
a very small and indistinguishable flux spectra compared to the
magenta line.

The selected cluster have a clear shape both in spatial and
spectral dimensions. Accordingly, we can synthesize a manifold
to represent it. To do this we use an artificial neural network
technique called self organizing maps (SOM), that represents the
data by a bi-dimensional grid of connected neurons5 (Kohonen,
1982). In Fig. 8 themanifold representation of the source is shown,
starting from a planar grid. This representation might help, for
example, to better understand the topology of the source when
comparing with theoretical models.

5 We use the SOMPY package that can be found in github: https://github.com/
sevamoo/SOMPY.

https://github.com/sevamoo/SOMPY
https://github.com/sevamoo/SOMPY
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Fig. 9. Clustering stages for M100. The left image shows the projections of the clusters obtained by DBSCAN. Similarly, the center image shows only the 10 brightest clusters,
and the right image shows the 50 clusters obtained by K-Means from the filtered data.

Fig. 10. Schematic Graph of M100. This figure shows the projected schematic
graph representation of the galaxy, plotted over a heat-map version of the zero-th
moment.

5.3. Filtering and reduction by clustering

Clustering algorithms are not only useful to detect clumps or
sources, but can work as tools for filtering and summarizing data.
For the M100 data, we use the non-parametric DBSCAN algo-
rithm (Ester et al., 1996) to form clusters of neighboring points
while discarding the unconnected ones (ϵ = 7[pix]). In a second
stage we selected only the 10 brightest clusters to discard very
small clusters. At last, we use K-Means to summarize the data
in only 50 points. This process is shown in Fig. 9, and the final
result is reported in the schematic representation of Fig. 10. In
this representation the size of each node represents the flux, the
color of each node represents the radial velocity, and the edges
correspond to a ‘‘gravity’’ connection (i.e., ∝ FiFj

d2
) between nodes.

The spiral structure and the velocity gradients of M100 can be
easily observed in the figure. For example, this representation
might help to seed a n-body simulation starting from real data.

5.4. Gaussian clumps and parameter estimation

A key difference of the GaussClump algorithm (Stutzki and
Guesten, 1990) compared to the pixel-based ones is that each
Gaussian clump is represented by a very compact set of parameters
with astrophysical meaning. The main problem is that clumps are
usuallymore complex structures thanGaussians. Even though they

can be efficiently represented by a mixture, analyzing a complexly
blended structure of several components can be a hard task.

However, there are some cases where independent clumps can
be accurately represented by Gaussians, like in the IRAS16293 data
presented in Section 4. For this data we first run a DBSCAN with
ϵ = 1.5[pix] because each component is very compact, discarding
noise or very low-energy lines in the data, as can be seen in Fig. 11.
Then we use the Expectation Maximization algorithm (Dempster
et al., 1977) to fit a Gaussian Mixture of 100 components. The
results are shown in Fig. 11.

Please note that the obtainedGaussianmixture is in the space of
our homogeneous bubbles, and not in the pixel domain. However,
as every bubble is a Gaussian function, we can use analytic ex-
pressions to compute the moment preserving parameters of each
Gaussian cluster (Crouse et al., 2011). Let us denote the position
vector of the ith bubble in the cluster asµi,Σ0 be the bubble shape
and c be its integrated energy. Then, the moments of the cluster Ω

can be computed as indicated in Eq. (9).

cΩ =

∑
i

c = c|Ω|

µΩ =

∑
i µi

|Ω|

ΣΩ = Σ0 +

∑
i µiµ

⊤

i

|Ω|
(9)

Now we can compute the parameters used in GaussClumps by
solving a determined system of linear equations. The parameters
are clump intensity (N), center position (RA, DEC and FREQ), spatial
FWHM semiaxes (SA 1 and 2), spatial orientation (ANGLE), spectral
FWHM, and the gradients ∂RA/∂FREQ (GRA) and ∂DEC/∂FREQ
(GDEC). As an example of these results, we report all the clumps
(lines) with a spectral FWHM larger than 3[pix] in Table 4.

6. Conclusions

We introduced a representation based on homogeneous vol-
umes that enables data analysis techniques to be directly applied
to spectroscopic cubes. The algorithm obtains this representation
by subtracting homogeneous volumes from the original cube. Our
experiments show that the proposal has a good behavior in terms
of signal and noise separation. Even though we show examples
only for 3D data, the technique could be used for any dimension-
ality by configuring an appropriate kernel. The algorithm proves
to have some basic properties that can help to be accepted by the
astronomical community (i.e., determinism, bounded iterations,
positivity constrain, etc.) and produces a compact representation
of the data (≤1%) in a reasonable time, while maintaining enough
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Fig. 11. IRAS16293-220 GHz clustering results. The left figure shows the clustering result using DBSCAN and the right figure shows the clustering result using K-Means. The
spectral lines are shown for sources A and B of the system separately.

Table 4
Detected clumps with a spectral FWHM larger than 3[pix]. The parameters of each Gaussian clump follows the Stutzki
and Guesten (1990) model. For simplicity we have not converted these results to WCS, so they are expressed in pixels.

ID |Ω| µRA µDEC µFREQ SA1 SA2 ANGLE FWHM GRA GDEC

3 408 121.22 108.51 39.71 2.98 3.58 30.81 3.37 −0.17 −0.09
33 291 135.66 127.66 43.91 2.98 5.26 0.13 3.54 −0.09 −0.01
66 291 112.84 106.62 258.88 2.75 3.36 51.16 3.03 −0.15 0.16
87 252 116.95 108.46 290.49 2.79 3.63 −20.11 3.09 −0.12 −0.02
51 222 117.49 108.27 231.05 2.61 3.49 −8.95 4.37 −0.18 −0.07
44 192 114.39 108.20 158.50 2.74 3.33 7.45 3.05 −0.05 0.09
67 189 132.94 127.89 243.11 2.98 3.41 −21.98 3.16 0.10 0.25
31 177 118.20 107.76 329.36 2.61 3.34 16.79 3.38 −0.04 0.18
26 135 118.40 108.44 15.07 2.70 2.97 6.32 4.08 −0.41 0.29

information to perform analysis. Computational time and com-
pactness depend on the target SNR that want to be achieved. Thus,
we presented a heuristic to estimate this parameter.

In addition, we presented a few examples of usages of the
representation, trying to cover different astronomical objects and
techniques, showing the versatility of the proposed representation.
These examples did take at most a few seconds of computation
time in a general-purpose computer due to the compactness of the
representation.

6.1. Future work

This work opens several research directions both in the theo-
retical and the practical aspects. First of all, our results show that
the presented bound is clearly very loose for the Gaussian kernel.
We believe that a tighter bound can be found specifically for GHR.
Formally, we have only shown that the desired SNR is reached,
but no statistics on the residual cube are given. We believe that
the properties of the algorithm can be explored more deeply if
information-theory measures (e.g. mutual information) are com-
puted for the residual, which will require to produce reasonable
synthetic data to compare to a ground-truth reference. Also from
the theoretical point of view, the forced compact support of the
Gaussian function will produce an accumulative error when the
bubbles are used for estimation. Here, the compact support could
be analytically forced by convolving the Gaussian kernel with
an appropriate smooth step function in all directions. Another
interesting follow up could be to study and improve the SNR
estimation heuristic by using the current advances on background

estimation. From amore practical point of view, the current article
does not address the problem of propagating uncertainties. The
measurements are usually accompanied by their uncertainties, and
each data reduction process, such as the GHR representation or
the Gaussian Mixture fitting, incorporates more uncertainty to the
final data. This is a very interesting research line that it must be
studied if our representation gains popularity.

A more specific yet very interesting improvement can be made
for interferometric data: the compact representation could be
combined with the image synthesis procedure to reduce error
propagation. Interferometric data cubes are synthetic data prod-
ucts obtained by an incomplete inverse transformation from a
Fourier plane (visibilities). More precisely, the image synthe-
sis (Thompson et al., 2008) is usually done by interpolating the
non-uniform visibilities coordinates into a grid where the fast
Fourier transform can be applied. Then the cube is improved by
an iterative process called CLEAN (Högbom, 1974) that selects the
brightest pixel, conducts a convolution with a unique functional
component, and finally it subtracts it from the residual. This is very
similar to the process we apply for obtaining homogeneous repre-
sentations, sowe suspect our algorithm can bemergedwith CLEAN
to obtain a method that preserves the simplicity of CLEAN, adds
the positivity constraint of our method, and produce a compact
representation that can be used for analysis with less accumulative
error.

We strongly believe that our representation can be used for
boosting astronomical research, so we plan to use it in real-world
science cases that needs advanced statistical analysis, such as emis-
sions with very low SNR, too many or blended spectral lines, too
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many dimensions, very large mosaics, etc. Also, we plan to address
the content-aware data discovery problem: even though there are
plenty of services that provide data discovery nowadays (e.g. VO
services), almost all of them are based in the annotated metadata
rather than in the image content. Our representation could provide
a compact representation that is fast to analyze as we show in this
article, allowing the astronomer to search for data that fulfill more
complex properties than the ones declared in the metadata. For
this application in particular, the kernel size could be increased
producing compact representations with less precise information
in order to cope with a large number of files.
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