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ALMOST SHARP NONLINEAR SCATTERING IN

ONE-DIMENSIONAL BORN-INFELD EQUATIONS ARISING IN

NONLINEAR ELECTRODYNAMICS

MIGUEL A. ALEJO AND CLAUDIO MUÑOZ

Abstract. We study decay of small solutions of the Born-Infeld equation in
1+1 dimensions, a quasilinear scalar field equation modeling nonlinear elec-
tromagnetism, as well as branes in String theory and minimal surfaces in
Minkowski space-times. From the work of Whitham, it is well-known that
there is no decay because of arbitrary solutions traveling to the speed of light
just as linear wave equation. However, even if there is no global decay in 1+1
dimensions, we are able to show that all globally small Hs+1

×Hs, s > 1

2
so-

lutions do decay to the zero background state in space, inside a strictly proper
subset of the light cone. We prove this result by constructing a Virial iden-
tity related to a momentum law, in the spirit of works [12, 13], as well as a

Lyapunov functional that controls the Ḣ1
× L2 energy.

1. Introduction and main results

1.1. The model. This note is concerned with the Born-Infeld [3] equation (BI) in
R

1+1:
(1− (∂tu)

2)∂2
xu+ 2∂xu ∂tu∂

2
txu− (1 + (∂xu)

2)∂2
t u = 0,

(t, x) ∈R1+1.
(1.1)

Here and along this paper u = u(t, x) ∈ R is a scalar field. BI equation was orig-
inally derived by Born and Infeld in 1934 to describe nonlinear electrodynamics, a
generalization of the standard (linear) Maxwell equations, see [8] for a detailed in-
troduction to the field. A particular form of an electromagnetic plane wave solution
to the original, three dimensional BI equations, leads to the quasilinear equation
(1.1).

Although strictly nonlinear, equation (1.1) shares many similitudes with the
classical linear wave equation. Given any C2 real-valued profile φ = φ(s), both

u±(t, x) := φ(x ± t) (1.2)

are solutions to (1.1) [25], just as the D’Alembert solution is to linear wave. This
simple fact reveals that no standard decay estimates are expected in 1 + 1 dimen-
sions. Additionally, a form of “two-soliton” solution was found by E. Schrödinger
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2 Born-Infeld decay estimates

[23]. A Lax-pair representation for (1.1), just as in the case of Euler equations, was
found in [6].

From a physical point of view, the Born-Infeld equation (1.1) can be derived as
the Euler-Lagrange equation associated to the Lagrangian density [6]

L[∂µu] := (1 + ∂µu∂µu)
1/2 = (1 + (∂xu)

2 − (∂tu)
2)1/2, (1.3)

whose critical points also represents standard “minimal surfaces” in Minkowski
geometry. More precisely, a simple computation reveals that (1.1) can be written
as the minimal surface equation

∂t

(
∂tu

(1 + (∂xu)2 − (∂tu)2)1/2

)
− ∂x

(
∂xu

(1 + (∂xu)2 − (∂tu)2)1/2

)
= 0. (1.4)

This equation can be also recast as a mass conservation dynamics, which formally
implies that the quantity

∫
∂tu

(1 + (∂xu)2 − (∂tu)2)1/2
,

is conserved along the dynamics. From this particular point of view, Lindblad [15]
showed global existence for small data and decay estimates of order t−(n−1)/2 for the
equivalent version of (1.4) in R

1+n Minkowski space-time, provided n ≥ 1. Similar
results were also proved by Chae and Huh [7] in more generality. Both results
are strongly influenced by vector field techniques [10], as well as the treatment of
key null forms (such as Q(u, v) := ∂µu∂µv), present in (1.4). In the case n = 1,
Lindblad [15] constructs global small solutions by assuming sufficiently smooth,
compactly supported data. However, as far as we understand, no decay estimate
is given in this particular setting (n = 1), which remains the only case where no
result of this type was available.

Additionally, the study of (1.1) has gained a large impulse in String theory in the
last years because gauge fields on a D-brane (that arise from attached open strings)
are described by the same type of Lagrangian as (1.3); see [11] and references therein
for more details. The literature on the above subjects is huge; a fairly incomplete
set of references on the “critical” submanifold problem from different points of view
is given by [4, 5, 22, 14, 9].

1.2. Main result. In this paper we consider the remaining case n = 1, where no
decay is present because the existence of arbitrary solutions moving to the speed
of light. However, we will show that all sufficiently smooth and small solutions to
(1.1) must decay to zero inside a slightly proper subset of the light cone.

Theorem 1.1. Let C > 0 be an arbitrary constant. Assume that for ε > 0 suffi-

ciently small the solution (u, ∂tu)(t) of (1.1) satisfies

sup
t∈R

‖(u, ∂tu)(t)‖(Hs+1×Hs)(R) < ε, s >
1

2
. (1.5)

Then, given the time-depending interval I(t) :=
(

−C|t|
log2 |t|

, C|t|
log2 |t|

)
, |t| ≥ 2, one has

lim
t→±∞

‖(u, ∂tu)(t)‖(Ḣ1×L2)(I(t)) = 0. (1.6)
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Decay estimate (1.6) in Theorem 1.1 is almost sharp, in the sense that solution
u±(t, x) given in (1.2) are natural counterexamples to time-decay, with both solu-
tions moving along extremal light cones. The interval I(t) can be slightly improved,
see [21] for more details, but it seems hard to obtain decay inside the whole light
cone |x| ≤ t − a, for some a > 0. Complementing these results, strictly outside
of the light cone, it is clear that no interesting dynamics occurs (because of finite
speed of propagation).

Stability condition (1.5) is ensured for instance by applying Lindblad’s second
theorem in [15]; note that it is highly unlikely to obtain (1.6) for data in the “energy
space” H1 ×L2 only because of the scaling critical regularity in dimension n given
byHn/2+1×Hn/2. Actually, from the proof, and because of the Sobolev embedding,
we will only need (1.5) to be satisfied in Ḣs+1 × Ḣs, s > 1

2 . See also Stefanov [24]
for a detailed account of equation (1.1) posed on Sobolev spaces only; in that case
only results for dimensions n ≥ 3 are available.

As a by-product of Theorem 1.6, one can also get a mild rate of decay for the
solution. It can be proved (see (2.18)) that for any c0 > 0,

∫ ∞

2

∫
e−c0|x|((∂xu)

2 + (∂tu)
2)(t, x)dxdt .c0 ε2,

which describes an averaged rate of local L2 decay for the dynamics.

We prove this result by following very recent developments concerning the decay
of solutions in 1 + 1 dimensional scalar field models. Kowalczyk, Martel and the
second author showed in [12, 13] that well chosen Virial functionals can describe
in great generality the decay mechanism for models where standard scattering is
not available (i.e. there is modified scattering), either because the dimension is
too small, or the nonlinearity is long range. Moreover, this decay mechanism also
describes “nonlinear scattering”, in the sense that solutions like (1.2) are also dis-
carded by Theorem 1.1 inside I(t), t → +∞. Previous Virial-type decay estimates
were obtained by Martel-Merle and Merle-Raphaël [16, 20] in the case of gener-
alized KdV and nonlinear Schrödinger equations. Moreover, the results proved in
this note and in [12, 13, 16, 20] apply to equations which have long range nonlin-
earities, as well as very low or null decay rates. In this sense, Theorem 1.1 shows
(local) decay even when there is no general decay, and as far as we know, it is a
first application of these new methods to quasilinear equations. See also [21] for
another application of this technique to the case of Boussinesq equations, a fourth
order wave-fluid model. Additionally, unlike other wave-like models [1], no small
solitary wave nor breather-like solution persists in time inside the proper light cone
I(t).

1.3. Organization of this paper. This note is planned as follows. In Section 2
we present some preliminary lemmas, proving a Virial identity (Lemma 2.1), which
we will need in the proof of the Main Theorem. In Section 2.3 we show that the
Ḣ1 × L2 local norm of the solution must be integrable in time; finally Section 3
deals with the end of the proof of Theorem 1.1.
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2. Integration of the dynamics

2.1. Virial identity. The purpose of this section is to present a new Virial identity
which we will need in the proof of Theorem 1.1.

In what follows, we consider t ≥ 2 only, and

λ(t) :=
Ct

log2 t
,

λ′(t)

λ(t)
=

1

t

(
1− 2

log t

)
. (2.1)

We introduce a new Virial identity for the Born-Infeld equation (1.1). Indeed,
let ϕ := tanh, and let I be defined as

I(t) := −
∫

ϕ
( x

λ(t)

) ∂tu ∂xu

(1 + (∂xu)2 − (∂tu)2)1/2
. (2.2)

Clearly I(t) is well defined as long as (1.5) is satisfied. Here we use the fact that
both ∂xu and ∂tu are small in L∞ thanks to the Sobolev embedding. Moreover.

sup
t∈R

|I(t)| . ε2.

Note additionally that the denominator in (2.2) contains the gradient of u con-
tracted with the standard Minkowski metric. A time-dependent weight was also
considered in [19], but with different goals.

The choice of I(t) is partly motivated by the energy identity that one obtains in
(2.8).

Lemma 2.1 (Virial identity). We have

d

dt
I(t) = 1

λ(t)

∫
ϕ′
( x

λ(t)

)(
1− 1− (∂tu)

2

(1 + (∂xu)2 − (∂tu)2)1/2

)

+
λ′(t)

λ(t)

∫
x

λ(t)
ϕ′
( x

λ(t)

) ∂tu ∂xu

(1 + (∂xu)2 − (∂tu)2)1/2
.

(2.3)

Proof. We readily have

d

dt
I(t) = −

∫
ϕ
( x

λ(t)

)
Q(∂tu, ∂xu, ∂

2
t u, ∂

2
txu)

+
λ′(t)

λ(t)

∫
x

λ(t)
ϕ′
( x

λ(t)

) ∂tu ∂xu

(1 + (∂xu)2 − (∂tu)2)1/2
,

(2.4)

where

Q(∂tu, ∂xu, ∂
2
t u, ∂

2
txu) :=

=
(∂2

txu ∂tu+ ∂xu ∂
2
t u)(1 + (∂xu)

2 − (∂tu)
2)− (∂xu ∂

2
txu− ∂tu ∂

2
t u)∂xu ∂tu

(1 + (∂xu)2 − (∂tu)2)3/2
.

(2.5)
The second term in (2.4) is already present in (2.3), so we focus only on the first
term leading to the numerator Q(∂tu, ∂xu, ∂

2
t u, ∂

2
txu). We rewrite it in the following

compact form:

(∂2
txu ∂tu+ ∂xu ∂

2
t u)(1 + (∂xu)

2 − (∂tu)
2)− (∂xu ∂

2
txu− ∂tu∂

2
t u)∂xu ∂tu =

= −(1 + (∂xu)
2 − (∂tu)

2)∂x(1− (∂tu)
2)

+ (1− (∂tu)
2)∂x

(1
2
(1 + (∂xu)

2 − (∂tu)
2)
)
.

(2.6)
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We assume this identity, see below for the proof. Hence, using (2.6) we simplify
d
dtI(t) as follows:

d

dt
I(t) =

∫
ϕ
( x

λ(t)

) (1 + (∂xu)
2 − (∂tu)

2)∂x(1 − (∂tu)
2)

(1 + (∂xu)2 − (∂tu)2)3/2

−
∫

ϕ
( x

λ(t)

) (1− (∂tu)
2)∂x

(
1
2 (1 + (∂xu)

2 − (∂tu)
2)
)

(1 + (∂xu)2 − (∂tu)2)3/2

+
λ′(t)

λ(t)

∫

R

x

λ(t)
ϕ′
( x

λ(t)

) ∂tu ∂xu

(1 + (∂xu)2 − (∂tu)2)1/2

= A1 +A2 +B.

(2.7)

The important term above is A1 +A2. We have

A1 +A2 = −
∫

ϕ
( x

λ(t)

) ∂x((∂tu)
2)

(1 + (∂xu)2 − (∂tu)2)1/2

− 1

2

∫
ϕ
( x

λ(t)

)
(1− (∂tu)

2)
∂x(1 + (∂xu)

2 − (∂tu)
2)

(1 + (∂xu)2 − (∂tu)2)3/2

= −
∫

ϕ
( x

λ(t)

) ∂x((∂tu)
2)

(1 + (∂xu)2 − (∂tu)2)1/2

+

∫
ϕ
( x

λ(t)

)
(1− (∂tu)

2)∂x

(
1

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)
.

Now integrating by parts the second integral we get

A1 +A2 = −
∫

ϕ
( x

λ(t)

) ∂x((∂tu)
2)

(1 + (∂xu)2 − (∂tu)2)1/2

− 1

λ(t)

∫
ϕ′
( x

λ(t)

)
(1− (∂tu)

2)

(
1

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)

+

∫
ϕ
( x

λ(t)

)
∂x((∂tu)

2)

(
1

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)
.

We continue simplifying,

A1 +A2 = − 1

λ(t)

∫
ϕ′
( x

λ(t)

)
(1− (∂tu)

2)

(
1

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)

−
∫

ϕ
( x

λ(t)

)
∂x((∂tu)

2).

Finally, integrating again by parts the second integral, we obtain

A1 +A2 = − 1

λ(t)

∫
ϕ′
( x

λ(t)

)(
(1− (∂tu)

2)

(
1

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)
− (∂tu)

2

)

=
1

λ(t)

∫
ϕ′
( x

λ(t)

)(
1− 1− (∂tu)

2

(1 + (∂xu)2 − (∂tu)2)1/2

)
.

Collecting A1 +A2 +B we get the desired result. �
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Proof of (2.6). We have

(∂2
xtu∂tu+ ∂xu∂

2
t u)(1 + (∂xu)

2 − (∂tu)
2)− (∂xu∂

2
xtu− ∂tu∂

2
t u)∂xu∂tu =

= ∂2
xtu∂tu(1 + (∂xu)

2 − (∂tu)
2) + ∂xu∂

2
t u(1 + (∂xu)

2 − (∂tu)
2)

− ∂xu∂tu(∂xu∂
2
xtu− ∂tu∂

2
t u)

= ∂2
xtu∂tu(1 + (∂xu)

2 − (∂tu)
2) + ∂xu∂

2
t u(1 + (∂xu)

2)− ∂xu∂
2
t u(∂tu)

2

− (∂xu)
2∂tu∂

2
xtu+ ∂xu(∂tu)

2∂2
t u

= ∂2
xtu∂tu(1 + (∂xu)

2 − (∂tu)
2) + ∂xu((1− (∂tu)

2)∂2
xu+ 2∂xu∂tu∂

2
xu)

− (∂xu)
2∂tu∂

2
xtu

= ∂2
xtu∂tu(1 + (∂xu)

2 − (∂tu)
2) + (1 − (∂tu)

2)∂xu∂
2
xu+ 2(∂xu)

2∂tu∂
2
xtu

− (∂xu)
2∂tu∂

2
xtu

= (∂xu)
2(2∂tu∂

2
xtu) + ∂tu∂

2
xtu(1− (∂tu)

2) + (1− (∂tu)
2)∂xu∂

2
xu

= (∂xu)
2(2∂tu∂

2
xtu) + (2∂tu∂

2
xtu)(1− (∂tu)

2)

+ (1 − (∂tu)
2)(∂xu∂

2
xu− ∂tu∂

2
xtu)

= (1 + (∂xu)
2 − (∂tu)

2)(2∂tu∂
2
xtu) + (1 − (∂tu)

2)(∂xu∂
2
xu− ∂tu∂

2
xtu)

= −(1 + (∂xu)
2 − (∂tu)

2)∂x(1− (∂tu)
2)

+ (1 − (∂tu)
2)∂x

(1
2
(1 + (∂xu)

2 − (∂tu)
2)
)
.

�

2.2. Energy identity. Let consider φ := ϕ′2 = sech4. The following Lemma will
be useful to prove the integral estimate (2.3) in Section 2.3.

Lemma 2.2. Let (u, ∂tu) be a global small solution of (1.1). Then,

d

dt

∫
φ
( x

λ(t)

)( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)
=

= − 1

λ(t)

∫
φ′
( x

λ(t)

) ∂xu ∂tu

(1 + (∂xu)2 − (∂tu)2)1/2

− λ′(t)

λ(t)

∫
x

λ(t)
φ′
( x

λ(t)

)( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)
.

(2.8)

Proof. We have

d

dt

∫
φ
( x

λ(t)

)( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)

=

∫
∂t

(
φ
( x

λ(t)

))( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)

+

∫
φ
( x

λ(t)

)
∂t

(
1 + (∂xu)

2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)

=: E1 + E2.
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As for E1, we easily have
∫

∂t

(
φ
( x

λ(t)

))( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)
=

= −λ′(t)

λ(t)

∫
x

λ(t)
φ′
( x

λ(t)

)( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)
,

which is the second term in the right hand side of (2.8).

Now, for E2 we have

E2 =

∫
φ
( x

λ(t)

)
∂t

(
1 + (∂xu)

2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)

=

∫
φ
( x

λ(t)

)
Q̃(∂xu, ∂tu, ∂

2
t u, ∂

2
txu),

(2.9)

where

Q̃(∂xu, ∂tu, ∂
2
t u, ∂

2
txu) :=

=

(
2∂2

xtu ∂xu(1 + (∂xu)
2 − (∂tu)

2)− (1 + (∂xu)
2)(∂xu ∂

2
xtu− ∂tu ∂

2
t u)

(1 + (∂xu)2 − (∂tu)2)3/2

)
.

(2.10)
Similarly to (2.5), using (1.1) we have

2∂2
xtu ∂xu(1 + (∂xu)

2 − (∂tu)
2)− (1 + (∂xu)

2)(∂xu ∂
2
xtu− ∂tu ∂

2
t u)

= 2∂2
xtu ∂xu(1 + (∂xu)

2)− 2∂2
xtu ∂xu(∂tu)

2

+ ∂tu(1 + (∂xu)
2)∂2

t u − (1 + (∂xu)
2)∂xu ∂

2
xtu

= 2∂2
xtu ∂xu(1 + (∂xu)

2)− 2∂2
xtu ∂xu(∂tu)

2

+ ∂tu
(
(1− (∂tu)

2)∂2
xu+ 2∂xu ∂tu ∂

2
xtu
)
− (1 + (∂xu)

2)∂xu ∂
2
xtu

= ∂2
xtu ∂xu(1 + (∂xu)

2) + ∂tu(1− (∂tu)
2)∂2

xu

= ∂2
xtu ∂xu(1 + (∂xu)

2 − (∂tu)
2) + ∂xu ∂

2
xu (∂tu)

2

+ ∂tu (1 + (∂xu)
2 − (∂tu)

2)∂2
xu− ∂tu(∂xu)

2∂2
xu

= (∂2
xtu ∂xu+ ∂tu ∂

2
xu)(1 + (∂xu)

2 − (∂tu)
2) + ∂xu ∂tu(∂

2
xtu ∂tu− ∂xu ∂

2
xu)

= ∂x(∂tu ∂xu)(1 + (∂xu)
2 − (∂tu)

2)− 1

2
∂xu ∂tu ∂x(1 + (∂xu)

2 − (∂tu)
2).

Replacing this last identity in E2 in (2.9),

E2 =

∫
φ
( x

λ(t)

)( ∂x(∂tu ∂xu)

(1 + (∂xu)2 − (∂tu)2)1/2

+ ∂xu ∂tu ∂x

( 1

(1 + (∂xu)2 − (∂tu)2)1/2

))
.

Integrating by parts,

E2 =− 1

λ(t)

∫
φ′
( x

λ(t)

) ∂xu ∂tu

(1 + (∂xu)2 − (∂tu)2)1/2
,

as desired. �
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2.3. Integration of the dynamics. The purpose of this subsection is to show the
following integral estimate, which gives us a proper control of the dynamics in time
of the norm of the solution of (1.1):

Lemma 2.3. For λ(t) given as in (2.1), and (u, ∂tu)(t) satisfying (1.5), we have

the averaged estimate

∫ ∞

2

1

λ(t)

∫
sech2

( x

λ(t)

)
((∂tu)

2 + (∂xu)
2)(t, x)dxdt . ε2. (2.11)

Moreover, there exists an increasing sequence of times tn → +∞ such that

lim
n→+∞

∫
sech2

( x

λ(tn)

)
((∂tu)

2 + (∂xu)
2)(tn, x)dx = 0. (2.12)

This result roughly states that, all global small solutions must decay locally in
space. The exact region of decay is determined by the scaling parameter λ(t),
chosen in (2.1).

In order to show Lemma 2.3, we use the new Virial identity for (2.2) presented
for the Born-Infeld equation (1.1).

Proof. From (2.3), we have the identity

d

dt
I(t) = 1

λ(t)

∫
ϕ′
( x

λ(t)

)(
1− 1− (∂tu)

2

(1 + (∂xu)2 − (∂tu)2)1/2

)

+
λ′(t)

λ(t)

∫
x

λ(t)
ϕ′
( x

λ(t)

) ∂tu ∂xu

(1 + (∂xu)2 − (∂tu)2)1/2

=: I1 + I2.

We will estimate each term above separately. First, we claim
∣∣∣∣1−

1− (∂tu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

2
((∂xu)

2 + (∂tu)
2)

∣∣∣∣ ≤ (∂xu)
4 + (∂tu)

4. (2.13)

This is a simple consequence of the inequality
∣∣∣∣

1− a

(1 + b − a)1/2
− 1 +

1

2
(a+ b)

∣∣∣∣ ≤ a2 + b2,

valid for all a, b ≥ 0 sufficiently small. Consequently,

I1 ≥ 1

2λ(t)

∫
ϕ′
( x

λ(t)

)
((∂xu)

2 + (∂tu)
2)

− 1

λ(t)

∫
ϕ′
( x

λ(t)

)
((∂xu)

4 + (∂tu)
4)

≥ 1

4λ(t)

∫
ϕ′
( x

λ(t)

)
((∂xu)

2 + (∂tu)
2), (see (1.5)).

On the other hand, from the estimate

(1 + (∂xu)
2 − (∂tu)

2)1/2 ≥ 1

2
, (2.14)
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and the value of λ(t) in (2.1), we have

|I2| ≤
2

t

∫ |x|
λ(t)

ϕ′
( x

λ(t)

)
|∂tu||∂xu|

≤ Cλ(t)

t2
sup
x∈R

( |x|2
λ2(t)

ϕ′
( x

λ(t)

))∫
(∂tu)

2 +
1

8λ(t)

∫
ϕ′
( x

λ(t)

)
(∂xu)

2

≤ Cε2

t log2 t
+

1

8λ(t)

∫
ϕ′
( x

λ(t)

)
(∂xu)

2.

We collect the estimates on I1 and I2 to obtain

d

dt
I(t) ≥ 1

8λ(t)

∫
ϕ′
( x

λ(t)

)
((∂xu)

2 + (∂tu)
2)− Cε2

t log2 t
.

After integration in time we get (2.11). Finally, (2.12) is obtained from (2.11) and
the fact that λ−1(t) is not integrable in [2,∞). �

2.4. A final estimate. We finish this Section with a small result.

Lemma 2.4. Under the conclusions of Lemma 2.3, we have

lim
n→+∞

∫
sech4

( x

λ(tn)

)( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1
)
(tn) = 0. (2.15)

Proof. Proceeding as in the proof of estimate (2.13), we have
∣∣∣∣

1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1− 1

2
((∂xu)

2 + (∂tu)
2)

∣∣∣∣ ≤ (∂xu)
4 + (∂tu)

4. (2.16)

Using (1.5), we are lead to the estimate
∫

sech4
( x

λ(tn)

)( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1
)
(tn)

.

∫
sech2

( x

λ(tn)

)
((∂xu)

2 + (∂tu)
2)(tn),

which shows (2.15). �

Remark 2.1. Lemma 2.3 can also be obtained using a new and different functional.
Consider now the slightly modified Virial term

J (t) := −
∫

ϕ
( x

λ(t)

) ∂tu ∂xu

1 + (∂xu)2
. (2.17)

The main difference with respect to (2.2) is that J (t) is defined in the larger space

(u, ∂tu) ∈ Ḣ1 × L2, because the denominator is never zero. It is not difficult to
show, using the ideas in (2.3), that the following cleaner identity holds

d

dt
J (t) =

1

2λ(t)

∫
ϕ′
( x

λ(t)

)( (∂xu)
2 + (∂tu)

2

1 + (∂xu)2

)

+
λ′(t)

λ(t)

∫
x

λ(t)
ϕ′
( x

λ(t)

) ∂tu ∂xu

1 + (∂xu)2
,

which reveals a slightly better control of the local L2 norm of the pair (∂xu, ∂tu).
However, unless we ensure that ∂xu is small in certain uniform sense, this last
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identity cannot be used to prove Lemma 2.3 for data in Ḣ1 × L2 only. This is
certainly another key signature of quasilinear models, as the BI equation (1.1).

Remark 2.2. Finally, note that by choosing λ(t) = λ0 > 0 fixed in (2.17), we have
the better integral estimate

∫ ∞

2

∫
sech2

( x

λ0

)
((∂xu)

2 + (∂tu)
2)(t, x)dxdt . λ0ε

2. (2.18)

We can recast this integral as an averaged decay estimate for the local L2-norm
of (∂xu, ∂tu), meaning that formally, and locally in space, both decay better than
1/

√
t. However, note also that (2.18) describes nonlinear scattering, in the sense

that even nonlinear objects, solutions to (1.1), depart far away from every compact
subset of space.

3. Proof of Theorem 1.1

We start with the following energy estimate.

Lemma 3.1. Let (u, ∂tu) be an H2 ×H1 solution to (1.1) satisfying (1.5). Then

we have ∣∣∣∣∣
d

dt

∫
φ
( x

λ(t)

)( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)∣∣∣∣∣

.
1

λ(t)

∫
sech2

( x

λ(t)

)
((∂xu)

2 + (∂tu)
2).

(3.1)

Remark 3.1. The choice of functional in (3.1) is motivated by the “energy”

∫ (
1 + (∂xu)

2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)
,

which is formally conserved by the dynamics. This energy controls the Ḣ1 × L2

norm if (∂xu)
2 − (∂tu)

2 is small, in the sense that

∫ (
1 + (∂xu)

2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)
∼
∫
((∂xu)

2 + (∂tu)
2);

see more details in (3.2) below.

Proof of Lemma 3.1. Using Lemma 2.2, we show estimate (3.1) above. First of all,
using (2.14) we have

∣∣∣∣
1

λ(t)

∫
φ′
( x

λ(t)

) ∂xu ∂tu

(1 + (∂xu)2 − (∂tu)2)1/2

∣∣∣∣

.
1

λ(t)

∫
sech2

( x

λ(t)

)
((∂xu)

2 + (∂tu)
2).
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Finally, using (2.16), (2.1), and the fact that φ = sech4 satisfies the estimate∣∣∣ x
λ(t)φ

′( x
λ(t) )

∣∣∣ . sech2( x
λ(t) ),

∣∣∣∣∣
λ′(t)

λ(t)

∫
x

λ(t)
φ′
( x

λ(t)

)( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)∣∣∣∣∣

.
1

t

∫
sech2

( x

λ(t)

)
((∂xu)

2 + (∂tu)
2)

.
1

λ(t)

∫
sech2

( x

λ(t)

)
((∂xu)

2 + (∂tu)
2).

Collecting these two estimates we get (3.1).
�

We finish the proof of Theorem 1.1.

Proof of Theorem 1.1. We have from (3.1), and for t < tn,
∣∣∣∣∣

∫
φ
( x

λ(tn)

)( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)
(tn)

−
∫

φ
( x

λ(t)

)( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)
(t)

∣∣∣∣∣

.

∫ tn

t

1

λ(s)

∫
sech2

( x

λ(s)

)
((∂xu)

2 + (∂tu)
2)dxds.

Sending n to infinity, and using (2.15), we get
∣∣∣∣
∫

φ
( x

λ(t)

)( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1
)
(t)

∣∣∣∣

.

∫ ∞

t

1

λ(s)

∫
sech2

( x

λ(s)

)
((∂xu)

2 + (∂tu)
2)dxds,

which implies, thanks to Lemma 2.3,

lim
t→+∞

∣∣∣∣∣

∫
φ
( x

λ(t)

)( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)
(t)

∣∣∣∣∣ = 0.

Finally, from the inequality (2.16) we get the lower bound
∫

φ
( x

λ(t)

)
((∂xu)

2 + (∂tu)
2)(t)

.

∫
φ
( x

λ(t)

)( 1 + (∂xu)
2

(1 + (∂xu)2 − (∂tu)2)1/2
− 1

)
(t),

(3.2)

which finally shows the validity of Theorem 1.1. �

Remark 3.2 (Final remarks). It is expected that some of these results hold for
larger dimensions, with probably difficult proofs. However, in view of the already
well-known results [15] for dimensions n ≥ 2, we believe that the main new contri-
bution in this note is given in the treatment of the scattering problem in the one
dimensional case.
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Departamento de Ingenieŕıa Matemática and CMM UMI 2807-CNRS, Universidad de

Chile, Santiago, Chile

E-mail address: cmunoz@dim.uchile.cl

http://arxiv.org/abs/1707.02616

	1. Introduction and main results
	1.1. The model
	1.2. Main result
	1.3. Organization of this paper

	2. Integration of the dynamics
	2.1. Virial identity
	2.2. Energy identity
	2.3. Integration of the dynamics
	2.4. A final estimate

	3. Proof of Theorem 1.1
	References

