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P. Coppi9

1Departamento de Astronomia, Universidad de Chile, Casilla 36D, Santiago, Chile
2European Southern Observatory, Casilla 19001, Santiago 19, Chile

3Kavli Institute for Astronomy and Astrophysics, PekingUniversity, Beijing 100871, China
4Department of Astronomy, School of Physics, Peking University, Beijing 100871, China

5Instituto de Fisica y Astronomia, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretana No. 1111, Playa Ancha, Valparaiso,
Chile

6Korea Astronomy and Space Science Institute, Daejeon 305-348, Republic of Korea
7Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701, Korea

8Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
9Yale Center for Astronomy and Astrophysics, 260 Whitney Avenue, New Haven, CT 06520, USA

ABSTRACT

We present our statistical analysis of the connection between active galactic nuclei (AGN) variability

and physical properties of the central supermassive black hole (SMBH). We constructed optical light

curves using data from the QUEST-La Silla AGN variability survey. To model the variability, we

used the structure function, among the excess variance and the amplitude from Damp Random Walk

(DRW) modeling. For the measurement of SMBH physical properties, we used public spectra from

the Sloan Digital Sky Survey (SDSS). Our analysis is based on an original sample of 2345 sources

detected in both SDSS and QUEST-La Silla. For 1473 of these sources we could perform a proper

measurement of the spectral and variability properties, and 1348 of these sources were classified as

variable (91.5%). We found that the amplitude of the variability (A) depends solely on the rest frame

emission wavelength and the Eddington ratio, where A anti-correlates with both λrest and L/LEdd.

This suggests that AGN variability does not evolve over cosmic time, and its amplitude is inversely

related to the accretion rate. We found that the logarithmic gradient of the variability (γ) does not

correlate significantly with any SMBH physical parameter, since there is no statistically significant

linear regression model with an absolute value of the slope higher than 0.1. Finally, we found that the

general distribution of γ measured for our sample differs from the distribution of γ obtained for light

curves simulated from a DRW process. For 20.6% of the variable sources in our sample, a DRW model

is not appropriate to describe the variability, since γ differs considerably from the expected value of

0.5.
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1. INTRODUCTION

Active Galactic Nuclei (AGN) show time-variable

emission in every waveband in which they have been

studied. The characteristic time-scales of the variability

range from hours to years, with the shortest time-scales

being associated with shorter emission wavelengths.

This can be understood in the context of the current

AGN structure models, where ultraviolet (UV) and op-

tical emission are originated in an accretion disk around

a super-massive black hole (SMBH), and non-thermal

X-ray emission is produced in a inner hot plasma com-

ponent (corona), which is geometrically much smaller

and more concentrated than the accretion disk, and

therefore able to show more rapid variability. Inten-

sive monitoring of nearby AGN suggests that short

term variability from the UV to the near-IR could be

driven by the rapid changes in the X-ray flux, which

illuminates the accretion disk producing the short term

UV/optical variations, since small lags between opti-

cal and X-ray bands have been found in reverberation

mapping (RM) analyses. However, it has been noticed

that at time-scales of months or years, the amplitude

of the UV/optical variability is larger than the ampli-

tude of the X-ray variability, which implies that X-ray

reprocessing is not the main source of the UV/optical

variations, and intrinsic variability from the accretion

ar
X

iv
:1

80
8.

00
96

7v
2 

 [
as

tr
o-

ph
.G

A
] 

 2
7 

A
ug

 2
01

8



2 Sánchez-Sáez et al.

disk is required (Krolik et al. 1991; Arévalo et al. 2008;

Lira et al. 2015; Edelson et al. 2015).

Even though variability is one of the defining charac-

teristics of AGN we do not completely understand the

mechanisms that drive such variations. In particular

it is not clear yet how physical properties of the cen-

tral engine (e.g., luminosity, black hole mass, Edding-

ton ratio, etc) are related to variability properties of the

system (e.g., characteristic time-scale, variability ampli-

tude, etc). If we can establish a firm statistical correla-

tion between certain AGN variability features and some

SMBH physical properties, we will be able to use the

variability as a tool in the future to derive physical prop-

erties for huge samples of objects from dedicated synop-

tic surveys such as the Large Synoptic Survey Telescope

(LSST; Ivezic et al. 2008). Several efforts have been

made in the past to assess this issue, some of them re-

stricting the analysis to small numbers of well sampled

light curves (e.g. Kelly et al. 2009, 2013; Simm et al.

2016; Smith et al. 2018), or studying large samples of

sources through ensemble light curve analysis, assum-

ing that sources with similar physical properties would

have similar variability features (e.g. Wilhite et al. 2008;

Bauer et al. 2009; MacLeod et al. 2010; Caplar et al.

2017). In order to test whether this assumption is cor-

rect, we need to perform an analysis of well sampled

individual AGN light curves, with known physical prop-

erties. Hence, long and intensive campaigns are crucial.

An anti-correlation between the amplitude of the UV-

optical variability and luminosity has been consistently

observed by previous studies (e.g Angione & Smith 1972;

Hook et al. 1994; Cristiani et al. 1997; Vanden Berk et al.

2004; Wilhite et al. 2008; Bauer et al. 2009; Kelly et al.

2009; MacLeod et al. 2010; Kelly et al. 2013; Simm et al.

2016; Caplar et al. 2017). However, the existence of cor-

relation between the amplitude of the variability and the

black hole mass or the Eddington ratio is not clear yet.

Wold et al. (2007) used a sample of ∼ 100 quasars from

the Quasar Equatorial Survey Team, Phase 1 (QUEST1)

variability survey (Rengstorf et al. 2004). They found

a positive correlation between the black hole mass and

the amplitude of the variability. Wilhite et al. (2008)

found a positive correlation between the amplitude of

the variability with black hole mass, and proposed that

this could be explained by an anti-correlation with the

Eddington ratio. MacLeod et al. (2010) also found a

positive correlation with black hole mass, and propose

that the anti-correlation between the amplitude of the

variability and the Eddington ratio exists, but an ad-

ditional dependence on luminosity or black hole mass

is required. Kelly et al. (2009) found no evidence of

correlation between the amplitude of the variability and

the black hole mass or the Eddington ratio, and Kelly

et al. (2013) found a scattered correlation between the

amplitude and the black hole mass, and a weak anti-

correlation with the Eddington ratio. Simm et al. (2016)

found no correlation with the black hole mass, and an

anti-correlation with Eddington ratio. More recently, Li

et al. (2018) used a large sample of quasars (∼ 105) to

perform an ensemble variability analysis. They found

that the amplitude of the variability correlates posi-

tively with redshift, and negatively with bolometric lu-

minosity, rest-frame wavelength and Eddington ratio.

They also found that the correlation with black hole

mass was uncertain. This uncertainty can be produced

by the use of ensemble light curves and also by the

large uncertainties that might be present in the black

hole mass estimations used in their analysis (taken from

Koz lowski 2017b), since they are calculated by using lu-

minosities derived from broadband extinction-corrected

magnitudes obtained from the Sloan Digital Sky Survey

(SDSS; York et al. 2000), and by using the full width at

half maximum (FWHM) of the lines obtained by Pâris

et al. (2017b). It is clear that all these results on the

correlation with black hole mass and Eddington ratio

are inconsistent, most likely due to the shortcomings on

the samples used, as highlighted before.

Rakshit & Stalin (2017) used a large sample of narrow-

line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1)

from the Catalina Real Time Transient Survey (CRTS;

Drake et al. 2009). The light curves used in their analy-

sis have a minimum of 50 epochs of data spanning 5 to

nine years, thus they could perform a variability anal-

ysis for individual light curves. They found a strong

anti-correlation between the amplitude of variability and

the Eddington ratio, and they proposed that the accre-

tion disk is the main driver of the variability observed

in both broad and narrow line Seyfert 1 galaxies. How-

ever, since Rakshit & Stalin (2017) used Damp Random

Walk (DRW) modelling to measure the variability am-

plitude, which has several limitations for the analysis of

ground-based light curves, since they tend to have gaps

and time coverages of a few months or years (see section

3.1), their results must be confirmed using a different

method (e.g. the structure function).

Between 2010 and 2015 we carried out an AGN vari-

ability survey using the wide-field QUEST camera on

the 1m ESO-Schmidt telescope at La Silla Observatory,

observing five extragalactic fields: Stripe82, Elais-S1,

COSMOS, ECDFS and XMM-LSS. These are some the

most intensively observed regions in the sky, with a

huge amount of ancillary data ranging from X-rays to

radio waves. The aims of our survey are: 1) to test

and improve variability selection methods of AGN, and
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find AGN populations missed by other optical selection

techniques (Schmidt et al. 2010; Butler & Bloom 2011;

Palanque-Delabrouille et al. 2011), which is the subject

of a forthcoming paper; 2) to obtain a large number

of well–sampled light curves, covering time-scales rang-

ing from days to years; 3) to study the link between

the variability properties (e.g., characteristic time-scales

and amplitudes of variation) with physical parameters

of the system (e.g., black-hole mass, luminosity, and

Eddington ratio). Cartier et al. (2015) presented the

technical description of the survey, the full characterisa-

tion of the QUEST camera, and a study of the relation

of variability with multi-wavelength properties of X-ray

selected AGN in the COSMOS field.

In this paper we present our statistical analysis of the

connection between AGN variability and physical prop-

erties of SMBH. For the variability analysis we used light

curves from the QUEST-La Silla AGN variability sur-

vey, and derived physical properties from spectra taken

from SDSS. We perform the spectral fitting using the

procedure of Mej́ıa-Restrepo et al. (2016) (MR16 here-

after), from which we could derive physical parameters

and also line fitting properties such as the FWHM of

the emission lines and continuum luminosities. For the

variability analysis, we used the same approach as in

Sánchez et al. (2017) (S17 hereafter). In this work, we

used single object light curves, in order to test the claim

that sources with similar physical properties have simi-

lar variability behaviors (like proposed by Vanden Berk

et al. 2004; Wilhite et al. 2008; MacLeod et al. 2010;

Caplar et al. 2017, among others).

The paper is organized as follows. In section 2 we de-

scribe the optical imaging and spectroscopic data used

for the analysis. In section 3 we describe the different

variability features used, and we report the results of

the variability analysis for our sample. In section 4 we

explain the procedure followed to obtain the physical

properties from the SDSS spectra, and show the distri-

bution of these parameters for our sample. In section 5

we define the different sub-samples used in our analysis.

In section 6 we show the results of our statistical analysis

done to connect the variability and physical properties.

In section 7 we analyse the differences in the variability

parameters of sources classified as Broad Line QSO and

normal sources, and sources classified as radio-loud and

radio-quiet. Finally, in section 8 we discuss the physi-

cal implications of our findings and summarize the main

results. The photometry reported here is in the AB sys-

tem. We adopt the cosmological parameters H0 = 70

km s−1 Mpc−1, Ωm = 0.3 and ΩΛ = 0.7.

2. DATA

2.1. Optical light curves

We reduced the data from the QUEST–La Silla AGN

variability survey (hereafter QUEST) using our own

customized pipeline, following the same procedure de-

scribed by Cartier et al. (2015). The survey uses a

broadband filter, the Q-band, similar to the union of

the g and r SDSS filters. Our QUEST fields are much

bigger than just COSMOS, ELAIS, etc., even though we

use the same names for them, with a surveyed area of

∼ 7 deg2 per field. One of the advantages of our sur-

vey over other surveys was the very intense monitoring,

observing the fields every possible night (although with

large observing gaps from 2010 to 2012 due to telescope

failures). In average we obtained between 2 to 5 obser-

vations per night, per every observable field. Individual

images reached a limiting magnitude between r ∼ 20.5

and r ∼ 21.5 mag for a exposure time of 60 seconds or

180 seconds, respectively.

To calibrate the photometry, we used public photo-

metric SDSS catalogs (Gunn et al. 1998; Doi et al. 2010)

for the COSMOS, Stripe82 and XMM-LSS fields, and

public catalogs from the Dark Energy Survey (DES; Ab-

bott et al. 2018) for the ELAIS-S1 and ECDFS fields.

We then constructed light curves for all the sources

from the SDSS and DES catalogs with detections in the

QUEST data, using the same methodology as in Cartier

et al. (2015). We decided to bin our light curves ev-

ery three days, in order to reduce the noise in our light

curves, produced by changes in atmospheric conditions,

the relatively low quality of the QUEST camera, among

other factors. We generated a total of ∼ 450.000 binned

light curves.

2.2. SDSS spectra

Three of our fields (COSMOS, Stripe82 and XMM-

LSS) have spectroscopic information from the SDSS sur-

vey. We used the SDSS Data Release 14 Quasar cata-

log (DR14Q) (Pâris et al. 2017a), in order to identify

sources with a detection in QUEST already classified

as quasars. We found 2345 sources with both QUEST

light curves and SDSS spectra, classified as quasars in

DR14Q, this sample inherits the selection criteria of

SDSS spectroscopic survey. We downloaded the cali-

brated SDSS spectra from the SDSS Catalog Archive

Server, and then corrected the spectra by Galactic ex-

tinction using the maps of Schlegel et al. (1998) and the

model of Cardelli et al. (1989). The wavelength coverage

of the SDSS spectra ranges from 3800 to 9200 Å for the

SDSS survey and from 3650 to 10400 Å for the BOSS

survey (Dawson et al. 2013), with a spectral resolution

of 1500 at 3800 Å, and 2500 at 9000 Å.
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From the SDSS quasar catalogs we obtained the spec-

troscopic redshift (z) for every source. We then used

these redshifts to transform every light curve to the

AGN rest frame: trest = tobs/(1 + z), where trest is the

light curve time at the rest frame in days and tobs is the

observed time. The following analysis has been done

considering the light curves in rest frame time.

3. VARIABILITY ANALYSIS

3.1. Variability features

To characterize the variability of our sources, we used

the same approach as S17. We used two parameters

related to the amplitude of the variability: Pvar and

the excess variance (σrms), and two methods related to

the structure of the variability: the Structure Function

and the Damped Random Walk process (DRW). Here

we describe briefly every feature. For further details see

S17 and references therein.

Pvar (McLaughlin et al. 1996; Paolillo et al. 2004;

Young et al. 2012; Lanzuisi et al. 2014; Cartier et al.

2015; Sánchez et al. 2017) corresponds to the probabil-

ity that the source is intrinsically variable. It considers

the χ2 of the light curve, and calculates the probabil-

ity Pvar = P (χ2) that a χ2 lower or equal to the ob-

served value could occur by chance for an intrinsically

non-variable source.

σrms (Nandra et al. 1997; Turner et al. 1999; Allevato

et al. 2013; Lanzuisi et al. 2014; Cartier et al. 2015;

Simm et al. 2016; Sánchez et al. 2017) is a measure of

the intrinsic variability amplitude. It is calculated as

σ2
rms = (σ2

LC − σ2
m)/m2, where (σLC is the standard

deviation of the light curve, σm is the mean photometric

error, and m is the mean magnitude. We can associate

an error for σrms due to Poisson noise, err(σ2
rms) =

SD/(x̄
2N

1/2
obs ), where

S2
D =

1

Nobs

Nobs∑
i=1

{[(xi − x̄)2 − σ2
err,i]− σ2

rmsx̄
2}2.

Following S17, we classify a source as variable if

its light curve satisfies Pvar ≥ 0.95 and (σ2
rms −

err(σ2
rms)) > 0.

Kelly et al. (2009) proposed that a DRW process can

be a good descriptor for AGNs light curves. This process

model a light curve with a stochastic differential equa-

tion that includes a damping term that pushes the signal

back to its mean: dX(t) = − 1
τX(t)dt+σDRW

√
dt ε(t)+

b dt with τ, σDRW , t > 0. τ corresponds to the “relax-

ation time” of the process or the characteristic time for

the time series to become roughly uncorrelated, and has

units of days, σDRW corresponds to the amplitude of the

variability at short time-scales (t << τ), and has units

of mag/day1/2. The long time-scale variability (SFinf)

is calculated as σDRW
√
τ/2. Koz lowski (2017a) and

S17 demonstrated the limitations of the use of DRW

processes for short light curves. For light curves with

trest < 10 × τ , the correct value of τ cannot be deter-

mined. Since our light curves have an observed time

coverage of tobs 6 5 years, while the characteristic time-

scale is expected to be of the order of hundred of days,

we decided to excluded τ from our analysis.

The Structure Function (SF) (Cristiani et al. 1996;

Giveon et al. 1999; Vanden Berk et al. 2004; de Vries

et al. 2005; Rengstorf et al. 2006; Schmidt et al. 2010;

Palanque-Delabrouille et al. 2011; Graham et al. 2014;

Cartier et al. 2015; Koz lowski 2016; Caplar et al. 2017;

Sánchez et al. 2017) is a measure of the amplitude of the

variability as a function of the time lapse between com-

pared observations (τ). There are several definitions in

the literature for SF (see Koz lowski 2016 for a good sum-

mary), however S17 demonstrated that the best defini-

tion of SF for irregularly sampled and noisy light curves

is the bayessian definition of Schmidt et al. (2010). They

model the structure function with a power-law using a

Markov Chain Monte Carlo (MCMC) method, where

SF(τ) = A
(
τ

1yr

)γ
. In this case A corresponds to the

amplitude of the variability at 1 year in the rest frame,

and γ is the logarithmic gradient of this change in mag-

nitude, which is directly related to the power spectral

density (PSD) slope. For a DRW process we expect

γ = 0.5.

3.2. Sample filtering by light curves properties

Since we want to study individual light curves, we

have to consider only those sources with sampling dense

enough to get statistically significant variability fea-

tures. Figure 1 shows the distribution of the number

of epochs (#epochs) and rest frame time length of our

2345 light curves with SDSS spectra. Following a simi-

lar approach than S17, we selected for our analysis those

light curves with trest > 200 days, and in order to ensure

a high number of epochs, we also selected those light

curves with #epochs > 40. In the figure we can see that

most of our sources satisfy these conditions. After we

filter our sample by the number of epochs and the length

of the light curve, we ended with 1751 sources. Here-

after, we refer to it as the ‘well-sampled’ sub-sample.

3.3. Biases of the variability features

Figure 2 shows the different measured variability fea-

tures versus the light curve properties (i.e. the number

of epochs or the length in days). We can see that the

SF parameters γ and A are practically unaffected by the

light curve length and the number of epochs. The ex-



Connection between AGN variability and black hole physical properties 5

0 200 400 600 800 1000 1200 1400

trest

25

50

75

100

125

150

175

200

# 
ep

oc
hs

Figure 1. Number of epochs vs. rest frame time length
of the 2345 light curves with SDSS spectra. The red verti-
cal dashed line shows the position where trest ≡ 200 days,
and the red horizontal dashed line shows the position where
#epochs ≡ 40.

cess variance σrms is also unaffected by the light curve

sampling. On the other hand, σDRW is affected by the

length of the light curve and strongly affected by the

number of epochs. This is quantified by the Spearman’s

rank coefficient which gives values of -0.59 (pval <1e-8),

-0.3 (pval <1e-8) and -0.41 (pval <1e-8) for the correla-

tions of σDRW and #epochs, trest, and tobs, respectively.

We decided to use A and γ as the main features for our

analysis, and use σDRW and σrms as references.

3.4. Variability of simulated light curves

In this work, we used the parameters of the structure

function as the main variability features, therefore it is

important to understand how these parameters respond

to different factors.

In order to understand how the sampling of a given

light curve affects the measurement of its SF parameters,

we simulated artificial light curves, following a similar

approach than S17 (see their sections 5.3 and 5.4). We

simulated light curves using the same sampling of the

light curves shown in Figure 3. The light curve at the

top of the figure (short light curve), has a length of 492

days and 39 observing epochs. The light curve at the

bottom (long light curve) has 175 observing epochs and

a length of 1659 days.
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Figure 2. Variability features vs. light curve properties.
The Spearman’s rank correlation coefficient is shown as ref-
erence for every pair of variables.
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Figure 3. Light curves with different number of epochs and
length, but similar cadence.

We simulated light curves from a DRW process with

τ = 300 days and SFinf = 0.2 mag. For each long and

short light curves, we simulated 1000 light curves. Fig-

ure 4 shows the results of the SF parameters measured

for the short and long simulated light curves. First of

all, we can see that the distributions of the parameters

measured for the short light curves have a larger disper-

sion than the values measured for the long light curves.

For the case of the short light curves, the median, mean
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and standard deviation of A are 0.19, 0.22 and 0.12 re-

spectively, and for γ are 0.3, 0.32 and 0.21 respectively.

For the case of the long light curves, the median, mean

and standard deviation of A are 0.22, 0.23 and 0.07 re-

spectively, and for γ are 0.37, 0.37 and 0.14 respectively.

From Figure 4, we can also see that there is a correla-

tion between the measured parameters. For the case of

the short light curves the Spearman’s rank coefficient is

ρs = 0.91 (pval <1e-8), and for the long light curves we

have ρs = 0.87 (pval <1e-8).

We tested whether other definitions of the SF show the

same behavior, using the definition of Koz lowski (2016)

and the “traditional” definition of Schmidt et al. (2010).

The results were consistent with what was found for

the Bayesian method of Schmidt et al. (2010). In addi-

tion, we simulated artificial light curves with a power-

law PSD (assuming different values for the exponent),

following the same approach of S17, and we found sim-

ilar results.

We also tested whether longer light curves can solve

the degeneracy between the SF parameters. We sim-

ulated 1000 light curves from a DRW process with

τ = 300 days and SFinf = 0.2 mag, with 7000 days and

700 epochs, and with a similar cadence than the long

light curve of figure 3. The Spearman’s rank coefficient

of A versus γ is ρs = 0.88 (pval <1e-8), therefore, the

parameters are still correlated. The median, mean and

standard deviation of A are 0.24, 0.24 and 0.04 respec-

tively, and for γ are 0.39, 0.39 and 0.07 respectively. In

order to see whether the previous results are produced

by the gaps in the data, we simulated 1000 light curves

from a DRW process with τ = 300 days and SFinf = 0.2

mag, with 7000 days of length and with observations ev-

ery 10 days, obtaining similar results for the correlation

between A and γ.

We simulated white noise light curves, with a stan-

dard deviation of 0.2 mag, in order to test whether the

correlation between the SF parameters is also present

for light curves with a constant PSD. The Spearman’s

rank coefficient for the short light curves is ρs = 0.23

(pval <1e-8), and for the long light curves is ρs = 0.23

(pval <1e-8). In this case, we also see a broader distri-

bution of the parameters for the short light curves. For

the case of the short light curves, the median, mean and

standard deviation of A are 0.29, 0.29 and 0.04 respec-

tively, and for γ are 0.02, 0.02 and 0.02 respectively. For

the case of the long light curves, the median, mean and

standard deviation of A are 0.28, 0.28 and 0.02 respec-

tively, and for γ are 0.006, 0.007 and 0.005 respectively.

We also simulated white noise light curves, with a stan-

dard deviation of 0.02 mag and we found similar results.

1.2 1.0 0.8 0.6 0.4 0.2

log10(A)

2.0

1.5

1.0

0.5

lo
g 1

0(
)

short lc
long lc

0.00

0.05

0.10

0.00 0.05 0.10

Figure 4. SF parameters measured for 1000 light curves
simulated from a DRW process with τ = 300 days and
SFinf = 0.2 mag, with short and long samplings. Along the
axes we show the histograms of every parameter.

In order to test whether the distribution of A and

γ values measured for the real light curves is simply

produced by this degeneracy and scatter, we compare

the regions in the A − γ plane covered by the real and

simulated light curves. We simulated DRW light curves

with τ = 300 days and with different values of SFinf. For

every amplitude we simulated 1000 light curves, with

the same sampling of the long light curve in Figure 3.

Figure 5 shows the measured values of A and γ for three

different values of SFinf (0.05, 0.1, and 0.2). In the figure

we can see that there is no change in the distribution of

γ for different values of SFinf. We can also see that

independently of the value of SFinf, the measured values

of γ range from 0.0 to 0.75. Therefore, if we measure

a value of γ between this range for a given light curve,

we cannot discard a DRW process as the best model

to describe the variability. However, the distribution of

gamma values is significantly different for the simulated

and real light curves, so as a population the AGN light

curves are not well represented by a DRW model, at

least because it incorporates many outliers

As can be seen in Figure 5, no single value of the in-

trinsic amplitude SFinf reproduces the entire parameter

space, from where we conclude that the measured values

of the amplitude correlate on average with the intrinsic

amplitude.

Figure 6 shows the distribution of measured values of

A for different input SFinf. We can see that we can
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Figure 5. SF parameters measured for light curves simu-
lated from a DRW process with τ = 300 days and differ-
ent values of SFinf (with the long sampling). The blue cir-
cles correspond to light curves simulated with SFinf = 0.05,
the red triangles correspond to light curges simulated with
SFinf =0.1, and the yellow squares correspond to light curves
simulated with SFinf = 0.2. Along the axes we show the
histograms of every parameter for the different SFinf. The
green solid line shows the position where γ = 0.75, and the
magenta dashed line show the position where γ = 0.5, the
expected value for a DRW process. We show with black
stars the measurments done for the variable sources of the
well-sampled sub-sample.

recover the input amplitude value, but with larger dis-
persions for larger values of SFinf. Therefore, we can say

that the amplitude measured with the structure function

is a good estimator of the intrinsic variability amplitude,

albeit with significant scatter due to the A− γ degener-

acy.

We also tested the effects of the source redshift in the

measured parameters, since sources at higher redshifts

have shorter rest frame light curves for a given observed

light curve (trest = tobs/(1+zspec)). We simulated DRW

light curves with τ = 300 days and SFinf = 0.2. In or-

der to account for the redshift of the source, we use the

sampling of the long light curve of Figure 3, dividing the

time by (1+zspec), for different values of zspec. We sim-

ulated 1000 light curves per every value of zspec. Figures

7 and 8 show the results for A and γ respectively. We

can see that both values do not change with zspec, but

the dispersion of the measured values increase a little

0.1 0.2 0.3 0.4 0.5

SFinf

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A o
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Figure 6. A measured for light curves simulated from a
DRW process with τ = 300 days and different values of SFinf

(with the long sampling). The circles correspond to the me-
dian value measured, and the error bars correspond to the
15.9 and 84.1 percentiles. The red dashed line shows the
expected value of A (1:1 relation).

bit with redshift. We can also see that the measured

value of A is close to the input value (red dashed line

in the figure), but the measured value of γ is below the

expected value. This is consistent with the findings of

S17 (see their Figure 7).

From all these results, we can conclude that the A−γ
degeneracy is much lower for the case of light curves with

a constant PSD. For the case of stochastic light curves,

the broad distribution of the measured parameters is

produced by the fact that light curves with a few months

or years of coverage are not a well representation of the

general behavior of variability with decorrelation time-

scales of months or years, or with power-law PSD, and

by the A − γ degeneracy. The correlation between the

measured SF parameters is present independently on the

SF definition used. We can reduce the effects of this

degeneracy by using light curves with several years of

length. Besides, we can conclude that the values of the

amplitude of the variability obtained from the SF, are

a good estimation of the real amplitude, independently

of the redshift of the source. On the other hand, for the

case of γ, we must consider that if we measure a value

between 0.0 and 0.75 we cannot discard a DRW process

as the best model to describe the variability.

3.5. Variability of the QUEST light curves

Following the criteria that sources with Pvar ≥ 0.95

and (σ2
rms − err(σ2

rms)) > 0 are classified as variable,
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Figure 7. A measured for light curves simulated from a
DRW process with τ = 300 days and SFinf = 0.2 mag The
circles correspond to the median value measured, and the
error bars correspond to the 15.9 and 84.1 percentiles. The
red dashed line shows the expected value A = 0.2.
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Figure 8. γ measured for light curves simulated from a
DRW process with τ = 300 days and SFinf = 0.2 mag The
circles correspond to the median value measured, and the
error bars correspond to the 15.9 and 84.1 percentiles. The
red dashed line shows the expected value γ = 0.5.

1579 of the well-sampled light curves are variable, which

corresponds to the 90.2% of the sample. Figure 9 shows

the distribution of the SF parameters, for the variable

sources of the well-sampled sub-sample. The weighted

2.5 2.0 1.5 1.0 0.5 0.0

log10(A)
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Normal
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Figure 9. Distribution of the SF parameters A and γ for
the variable and well sampled sources. Along the axes we
show the histograms of every parameter. We plot in red
the sources classified as BAL QSO, and in blue rest of the
sample. The black solid line shows the expected value of γ
for a DRW process. The green dashed lines show the median
of the parameters. The green shaded regions show the 15.9
to 84.1 percentile range.

average of the parameters are Ā = 0.21 ± 0.12 and

γ̄ = 0.64 ± 0.22. The median, and the percentiles 15.9

and 84.1 of the measured values of A are 0.19, 0.11,

and 0.34 respectively. The median, and the percentiles

15.9 and 84.1 of γ are 0.53, 0.39, and 0.80 respectively.

The measured values of A are consistent with previous

findings for optical variability (e.g. Schmidt et al. 2010;

MacLeod et al. 2010; Cartier et al. 2015; Suberlak et al.

2017; Rakshit & Stalin 2017). From Figure 5 we can see

that our measurements are consistent with amplitudes

ranging between 0.05 and 0.2, however there are some

sources with larger amplitudes.

For a DRW process, the expected value of γ is 0.5,

however, in section 3.4, we showed that the Bayesian

method tend to underestimate the value of γ (see Fig-

ures 5 and 8). From Figure 5, we can see that the distri-

bution of γ measured for the well-sampled sub-sample

(black stars) differs from the distribution of γ obtained

for light curves simulated from a DRW process with dif-

ferent amplitudes. Therefore we cannot say that a DRW

process can explain the general behavior of the variabil-

ity in our sample.
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Figure 10 shows the correlations of the variable fea-

tures (2D distributions) and their individual distribu-

tions (1D distributions) for all the sources classified as

variable in the well-sampled sub-sample. Our results

for σDRW are consistent with Kelly et al. (2009). Our

measurement of σ2
rms can be characterized by a mean

and standard deviation of (2.8 ± 3.3) × 10−5, which is

smaller than the values reported by previous analyses

(e.g. Cartier et al. 2015; Simm et al. 2016). When we

compare the results for σ2
rms, we must consider that it

depends on the length of the light curve, since this pa-

rameter consider the total variance of the light curve,

and also it depends on the photometric errors, since

with low photonetric errors we can detect lower vari-

ability amplitudes. It is also important to consider the

differences in the deffinition of the excess variance used

by different authors. For example, Cartier et al. (2015)

used a non-normalized version of the excess variance for

optical light curves measured in magnitudes and with a

shorter coverage in time compared to our light curves,

but with the same photometric errors, since they used

QUEST-La Silla data. If we correct their measurements

by the mean magnitude, we obtain consistent results.

Simm et al. (2016) used optical light curves measured

in flux and with different coverage in time, which intro-

duces differences with our results.

We can also see from Figure 10 that the strongest

correlation is shown between A and σ2
rms. This can be

produced by the sampling of the light curve, since sev-

eral light curves has lengths in rest frame close to 1 year

(see Figure 1).

From Figures 9 and 10, we can see that the SF param-

eters are correlated. The Spearman’s rank correlation

coefficient for A versus γ is ρs = 0.62 (pval <1e-8). In

section 3.4 we showed that this correlation is a product

of the degeneracy in the SF parameters, produced by the

stochastic nature of the light curves, the sampling of the

light curves, and the structure function method by itself.

Therefore it does not have any physical implication.

4. SPECTRAL ANALYSIS

4.1. Host galaxy subtraction

For low redshift sources (zspec ≤ 0.8) we can have a

significant degree of host galaxy contamination in the

optical SDSS spectra, depending on the brightness of

the nucleus. We follow the simple procedure to substract

the galactic continuum of Greene & Ho (2005) and Kim

et al. (2006), where the stellar continuum is modelled

using the scaled spectrum of a K giant star. In order to

know how much starlight must be subtracted from the

spectra, we use the equivalent width (EW) of the Ca II

K absorption line (λ = 3934).

We isolated the AGN component only for those ob-

jects with zspec ≤ 0.8 (349 sources), since for sources

with zspec > 0.8 we can ensure the presence of the Mg

II line in the SDSS spectra, and the Hβ line would be

located in the edges of the spectra. For 304 of these 349

sources, the quality of the spectra was good enough to

obtain the AGN and host galaxy components (i.e. with

S/N(Ca II K)> 10).

4.2. Spectral fitting and measurement of physical

properties

We used the procedure proposed by MR16 to estimate

the black hole masses (MBH), the luminosity at 5100Å

(L5100), the accretion rate (Ṁ), and the Eddington ra-

tio (L/LEdd) for our AGN. MR16 proposed new calibra-

tions for the measurement of these physical properties

from single-epoch spectrum, by fitting the Hα, Hβ , Mg II

λ2798 and C IV λ1549 lines. Their method relies on the

assumption of virialized BLR kinematics and consider

the FWHM of the line as a proxy to the virial velocity

of the gas in the BLR (VBLR). Additionally, the contin-

uum luminosity in the proximity of the emission line is

used to estimate the BLR radius by means of the empir-

ical luminosity-radius relationship derived from several

reverberation mapping experiments (e.g. Bentz et al.

2013). Their method model the broad emission lines

with two broad Gaussian components, and for the case

of doublet lines (Mg II and C IV) they use two additional

Gaussians, which are separated by the theoretical wave-

length doublet separation, and are forced to have the

same profiles and intensity of the other two Gaussians,

which is valid for optically thick BLR clouds. For the

case of Hα and Hβ their method also includes a third

narrow line component, modelled with a single Gaus-

sian, which account for the narrow line emitting region.

To model the continuum emission of the AGN, they

followed the local approach described in MR16 which

consists of fitting a single power-law limited within two

narrow pseudo-continuum windows around the emission

line. For the case of the Hβ and Mg II lines, their method

also includes the modelling of an iron pseudo-continuum,

using an iron template, which originates from a large

number of blended features of Fe II and Fe III (for fur-

ther details see MR16).

The black hole mass is calculated as MBH =

fG−1RBLRV
2
BLR = K(λLλ)αFWHM2. The values of

K and α for every line can be found in Table 7 of

MR16. The accretion rate is estimated from equation 1

of Netzer & Trakhtenbrot (2014), as follows

4πD2
LFν = f(θ)[M8Ṁ ]2/3

[
λ

5100Å

]−1/3

erg s−1Hz−1,
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Figure 10. Correlations of the variable features for all the variable and well sampled sources. The diagonal shows the individual
distributions. As a reference we provide the Spearman’s rank correlation coefficient for every pair of variables.

where M8 corresponds to MBH measured in units of

108M�, Ṁ is the accretion rate in units of M�/year, DL

is the luminosity distance, and f(θ) is the inclination-

dependent term, that describes the orientation of the

accretion disk to the line of sight.

We used the calibrations derived by MR16 to estimate

L5100 from L6200, L3000 and L1450 (see their Table 5).

From this, we estimated Eddington ratio as

L/LEdd =
CBOLL5100

1.5× 1038(MBH/M�)
,

where CBOL is the bolometric correction. In this anal-

ysis we adopted CBOL = 9.26 (see Shen et al. 2008;

MacLeod et al. 2010 and references therein).

Mej́ıa-Restrepo et al. (2018a) proposed new correc-

tions for the estimation of MBH, which intend to ac-

count for the effect of the unknown distribution of the
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gas clouds in the BLR. They suggest that the virial cor-

recting factor is inversely proportional to the width of

the broad emission line used to compute MBH. This

can be explained either by line of sight inclination ef-

fect on a planar BLR or by radiation pressure effects on

the BLR gas distribution (Kollatschny & Zetzl 2013).

The corrected black hole mass is calculated as MC
BH =

fMBH, with f = (FWHMobs(line)/FWHM0
obs)

β , where

FWHMobs(line) is the FWHM of the emission line.

FWHM0
obs and β are parameters calculated per every

line (see Table 1 in Mej́ıa-Restrepo et al. 2018a). We

computed MC
BH for our sample, and used it to calculate

the corrected Eddington ratio (L/LEdd)C . In the next

sections we will compare our results when using both

the original and the corrected black hole masses.

4.3. Spectral properties of the selected SDSS spectra

We have a total of 2345 sources with SDSS spectra,

however not all of them have a signal to noise (S/N)

high enough to allow the fitting of the emission lines.

In our analysis we only consider those spectra with a

mean S/N per pixel, in the continuum region around

the emission line of interest, larger or equal to 10. We

also exclude from our analysis those sources classified as

Broad Line Absorption QSO (BAL) in the catalogs of

Shen et al. (2011), Pâris et al. (2017b) and Pâris et al.

(2017a), with strong absorption lines in the region of

the emission line under analysis. After we eliminated

sources from our sample with low S/N and classified as

BAL QSO, we end with 102 sources having Hα inside the

SDSS wavelength coverage, 304 sources with Hβ , 1561

sources with Mg II, and 801 sources with C IV. Most of

our sources have more than one line available.

We fit the Hα and Hβ lines for sources with zspec ≤
0.8). For 81 sources we could obtain a fit of Hα and

for sources 224 we obtained a fit of Hβ . Besides, we

obtained a fit of Mg II for 1487 objects, and a fit of C

IV for 718.

After the line fitting, we calculated MBH, L5100, Ṁ ,

and L/LEdd using the equations given in section 4.2. We

considered only those line fits where the height to noise

(H/N) of the line is H/N ≥ 5, with the height defined

as the distance between the peak of the line fitted and

the continuum. This is done to avoid the fit of fake lines

when the broad lines are weak or are not present. Since

for some objects we have more than one line available,

we decided to estimate the final MBH as the weighted

average of the measured MBH for the different lines, with

the exception of the C IV line. It is well known that the

C IV line width is not a good estimator of VBLR, and

therefore the measurements done using this line must

be taken carefully (see MR16 and references therein).

Therefore, whenever a source has C IV and other lines

available, we excluded C IV from the estimation of MBH,

and we only consider the results of C IV when there is

no other line available. In the next sections, the analyses

are done with and without the results of the C IV fitting.

Following the previous procedure, we computed MBH

for 1899 sources, and L5100 for 1951 sources. Figure 11

shows the correlations and individual distributions of

MBH, L5100, Ṁ , and L/LEdd, for all the sources with

both MBH and L5100 available (1899 sources). We mea-

sure the MBH in units of solar masses [M�], L5100 in

units of [erg s−1], Ṁ in units of [M�/year], while L/LEdd

is dimensionless. Our range covered for MBH, L5100,

and L/LEdd is similar than in previous variability anal-

ysis (e.g Wilhite et al. 2008; Kelly et al. 2009; MacLeod

et al. 2010; Simm et al. 2016; Caplar et al. 2017).

The strongest correlations in Figure 11 are: a) Ṁ

and L/LEdd, which is explained by the not particularly

broad distribution of MBH; b) L5100 and both MBH an

Ṁ , which is related with the use of L5100 in the determi-

nation of both quantities; and c) zspec with L5100, MBH,

and M�, which are mostly caused by a selection effect

coming from the flux limited nature of the observations.

Figure 12 shows the comparison of the MBH and

L/LEdd measured using the standard single-epoch

method, versus the measurements obtained using the

new method proposed by Mej́ıa-Restrepo et al. (2018a).

5. FINAL SAMPLE DEFINITION

Our final sample is composed by all those sources

for which we could measure MBH, L5100, Ṁ , and

L/LEdd, and have light curves with trest > 200 days

and #epochs > 40. We have 1473 sources in our origi-

nal sample that satisfy all these conditions. We call this

sub-sample the “QUEST-SDSS sample”. 1348 of these

sources are variable (91.5%).

We also define another sub-sample composed by all

the sources with MBH determined from Hα, Hβ , or Mg

II line fitting. We call these sub-sample as the “not – C

IV sample”. There are 1204 sources in this sub-sample,

and 1112 are variable (92.4%).

The sub-sample composed by all the sources with

MBH determined from Mg II line fitting is called the

“Mg II sample”. There are 1108 sources in this sub-

sample, and 1029 are variable (92.9%). For 107 of the

sources of this sample, the Hβ line was available, and

used along with the Mg II line to estimate MBH.

Finally we define the sub-sample composed by all

those sources whose only available emission line is C

IV. We call this sample the “C IV sample”. 236 of the

269 sources in this sub-sample are variable (87.7%).
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Figure 11. Correlations of the spectroscopic parameters for all the sources with MBH and L5100 available. The diagonal shows
the individual distributions. As a reference we provide the Spearman’s rank correlation coefficient for every pair of variables.
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Figure 12. Comparison of MBH vs. MC
BH, and L/LEdd vs.

(L/LEdd)C . The black dashed lines shows the 1:1 relations.

6. VARIABILITY PARAMETERS VERSUS

PHYSICAL PROPERTIES

In this section we discuss the different correlations be-

tween the physical parameters measured from the SDSS

spectra and the variability features measured from the

QUEST light curves. For this analysis, we considered

the different sub-samples defined in section 5, but in

general, we worked with the most statistically significant

results, which are found for the “not – C IV sample”.

6.1. Bivariate correlations

We first analysed the bivariate correlations between

the variability features and the spectral properties, using

the Spearman’s rank correlation coefficient (ρs), which

does not consider errors measurements in the variables.

It is important to remember that variability features

can depend on more than one spectral property, and

they would define an hyperplane which is not seen “on-

edge” but instead through a projection onto specific

axis. Therefore, some correlations can present large dis-

persions, even when there is a dependency of the vari-

ability feature on the spectral property.

Figure 13 shows the bivariate correlations between the

variability features and the spectral properties. From

the figure we can see that γ shows no correlation with

zspec, Ṁ and L/LEdd, and a very weak correlation with

MBH and L5100. We also see that σDRW correlates

weakly with zspec and anti-correlates weakly with MBH,

L5100, Ṁ and L/LEdd. This is consistent with the find-

ings of Kelly et al. (2009), however we have to consider

the strong effect of the light curve properties in this pa-

rameter when we interpret these results. Finally, from

the figure we see that σ2
rms anti-correlates weakly with

Ṁ and L/LEdd.

Crucially, we see that A correlates weakly with zspec
and MBH, and anti-correlates weakly with Ṁ and

L/LEdd. These weak correlations can be driven by

the large dispersion produced by correlations with other

variables. Moreover, we see a lack of correlation with

L5100, which is contrary to previous findings. It must

be considered that the A parameter is measured for

sources located at different redshifts and therefore the

wavelength of rest frame emission (λrest) is different

for every source. It is well known that the amplitude

of the variability anti-correlates with rest frame wave-

length (see S17 and references therein), which implies a

positive correlation with redshift. Since L5100 correlates

with zspec (Figure 11), the anti-correlation between A

and L5100 can be hidden by the positive correlation of

A with redshift. Therefore, in order to detect correla-

tions between A and any physical property, instead of

looking for bivariate correlations, we must perform a

multivariate analysis.

6.2. Principal Component Analysis

Principal Component Analysis (PCA, Francis & Wills

1999) is a mathematical tool used to reduce the dimen-

sionality of a data set, and it is useful to understand

the correlations present in multivariate data. PCA de-

compose the sample into a set of linearly independent

Eigenvectors that are linear combinations of the origi-

nal variables. We performed a PCA on our data set,

for the case of the “not – C IV sample”, in order to see

the dependencies between the different SMBH physical

properties and the AGN variability features. We homog-

enized the data set by subtracting the mean values and

normalizing by the variance. In the analysis we did not

include the accretion rate (Ṁ) and the excess variance

(σrms), since these variables are highly correlated with
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Figure 13. Bivariate correlations between the variability features and the spectral properties, for the “not – C IV sample”.
The Spearman’s rank correlation coefficient is shown as reference for every pair of variables.

the Eddington ratio (L/LEdd) and the amplitude of the

SF (A) respectively, and including them in the analy-

sis produces principal components dominated by these

correlations.

Table 1 shows the results of performing a PCA on the

normalized variables. We show the first five principal

components (PCs). The first row gives the variances

(eigenvalues) associated with every PC. The second row

gives the percentage of contribution of every PC to the

total variance. The third row shows the cumulative per-

centage of variance carried by each eigenvector. It can

be seen that the first four PC together contribute ∼ 95%

of the variance. In Table 1 we also show for each PC

the weights associated to every input variable (eigen-

vectors). It can be seen that the first PC is dominated

by the positive correlations between redshift, luminos-

ity and BH mass. These correlations with redshift are

produced by a selection effect, since at higher redshifts

our sample will naturally contain more luminous and

massive sources. The second PC is dominated by the

anti-correlation between L/LEdd and the amplitude of

the variability, either measured from the SF or the DRW

process. The third PC is dominated by γ, and the fourth

by L/LEdd. The fifth component is not very informa-

tive, since it contributes a small fraction of the total

variance.

In order to have a better idea of the degree of cor-

relation between the input variables, we computed the
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Table 1. PCA results: Eigenvectors and Eigenvalues.

PC1 PC2 PC3 PC4 PC5

Eigenvalue 2.457 1.808 1.346 1.029 0.257

Percentage 35.1% 25.8% 19.2% 14.7% 3.7%

Cumulative 35.1% 60.9% 80.1% 94.8% 98.5 %

Variable PC1 PC2 PC3 PC4 PC5

log10(1+zspec) -0.520 -0.118 0.231 -0.318 0.706

log10(L5100/1044) -0.520 -0.387 -0.046 -0.118 -0.414

log10(MBH/108) -0.572 -0.001 0.171 0.366 -0.262

log10(L/LEdd) 0.131 -0.478 -0.289 -0.644 -0.158

log10(A) -0.271 0.540 -0.331 -0.280 -0.332

log10(γ) -0.202 0.213 -0.749 0.097 0.343

log10(σDRW ) -0.022 0.521 0.403 -0.499 -0.089

Spearmans rank coefficients between the input variables

and the first four PCs. The results are shown in Table 2.

We can see again that the first PC is dominated by the

positive correlation between zspec, L5100 and MBH. The

second PC is dominated by the anti-correlation of the

amplitude of the variability (A and σDRW ) with L/LEdd

and L5100. The third PC is dominated by γ, and demon-

strates the positive correlation between γ and A. Be-

sides, the third PC shows a possible correlation between

γ and L/LEdd. Finally, the fourth PC is dominated by

L/LEdd, and demonstrates an anti-correlation between

L/LEdd and MBH, which is expected from the definition

of L/LEdd. From these results we can conclude that the

most important correlation between variability features

and physical properties is for the case of the amplitude

of the variability with L/LEdd and L5100.

6.3. Multiple Linear Regression

In the previous section we showed that the amplitude

of the variability anti-correlates with L/LEdd and L5100,

however from our PCA we cannot say whether the am-

plitude of the variability is mainly driven by L/LEdd or

L5100. Besides, is still not clear whether γ correlates

with any physical property, but from the PCA there is

a possible positive correlation between γ and L/LEdd.

In order to have a better idea of the correlations be-

tween variability parameters and physical properties we

computed Bayesian multiple linear regression. We used

the Bayesian linear regression procedure of Kelly (2007),

which takes into account the measurement uncertainties

of every variable and includes the intrinsic scatter in-

herent to the relation. The following sections give the

results of this analysis.

6.3.1. Trends of the amplitude of the SF with physical
properties

In the previous section we showed that A presents an

anti-correlation with L/LEdd and L5100, a multiple lin-

ear regression analysis can help us to differentiate which

physical property drives these anti-correlations.

S17 showed that there is a positive correlation between

A with zspec, which is produced by an anti-correlation

between A with λrest (see Figure 11 in S17). Therefore,

given the wide range in redshift of our sample, we must

always consider the correlation with redshift when we

analyse correlations with any other physical parameter.

Table 3 shows the results of the Bayesian multiple lin-

ear regression for A as the dependent variable, and dif-

ferent combinations of the spectral properties as inde-

pendent variables. In the table, every column gives the

value of the intercept (α), the slope (β) associated with

a given physical property, and the intrinsic scatter as-

sociated to the regression model (ε). When the value of

the slope is replaced by X, it means that the parameter

was not included in the regression model.

Regressions #1 to #5 in Table 3 correspond to models

with one single independent variable. We see that the

most significant correlations are for zspec, L/LEdd and

MBH. Since Ṁ and L/LEdd are highly correlated (see

Figure 11), and including these two variables together

can produce multicollinearity in the regression model,

we decided to exclude Ṁ from the regression models,

and keep L/LEdd.

For the regressions #6 to #10, we decided to include

always zspec as one of the independent variables, be-

cause we are analysing light curves observed in a fixed

photometric band (Q), which implies that the rest frame

wavelength of every light curve will depend on the red-

shift of the source. Besides, we do not include in Table 3

a regression model with zspec, L5100, MBH, and L/LEdd

as independent variables, because the multicollinearity

of the variables does not allow the Bayesian method to

converge and return confident regression coefficients.

Regression #6 shows that when the model includes

zspec, MBH and L5100, the slopes for MBH and L5100

satisfy (within 1 σ) the relation: βL5100 ∼ −βMBH . This

would be expected if L/LEdd is the driver of the ampli-

tude variability.

Regression #11 corresponds to a model which includes

both the Eddington ratio and redshift. We can see that

the coefficients are statistically significant, and thus we

propose this model as the best regression model for the

amplitude of the variability. This can be confirmed when

we see regressions #7 and #8, where adding L5100 or

MBH in the model, besides L/LEdd and redshift, gives

statistically insignificant slopes for MBH or L5100.
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Table 2. PCA results: Spearman correlation coefficients between the input variables and the four first principal components
(PC1, PC2, PC3, and PC4). the p-values of the coefficients are given in parentheses.

Variable PC1 PC2 PC3 PC4

log10(1+zspec) -0.670 (<1e-8) -0.251 (<1e-8) 0.161 (1e-7) 0.006 (0.836)

log10(L5100/1044) -0.808 (<1e-8) -0.615 (<1e-8) -0.085 (0.005) 0.034 (0.252)

log10(MBH/108) -0.932 (<1e-8) -0.066 (0.027) 0.243 (<1e-8) 0.643 (<1e-8)

log10(L/LEdd) 0.192 (<1e-8) -0.712 (<1e-8) -0.465 (<1e-8) -0.831 (<1e-8)

log10(A) -0.325 (<1e-8) 0.626 (<1e-8) -0.426 (<1e-8) -0.045 (0.131)

log10(γ) -0.315 (<1e-8) 0.275 (<1e-8) -0.802 (<1e-8) 0.057 (0.058)

log10(σDRW ) 0.130 (1e-5) 0.591 (<1e-8) 0.317 (<1e-8) -0.173 (<1e-8)

Table 3. Linear Regression α, β and ε coefficients for A as the dependent variable (for the not – C IV sample). The columns
headed by physical quantities refer to their slope in the regression model (β).

# α log10(1+zspec) log10(L5100/1044) log10(MBH/108) log10(L/LEdd) log10(Ṁ) ε

1 -0.88 ± 0.03 0.44 ± 0.08 X X X X 0.26 ± 0.01

2 -0.74 ± 0.01 X 0.03 ± 0.02 X X X 0.26 ± 0.01

3 -0.77 ± 0.01 X X 0.12 ± 0.02 X X 0.25 ± 0.01

4 -0.93 ± 0.03 X X X -0.19 ± 0.02 X 0.25 ± 0.01

5 -0.79 ± 0.01 X X X X -0.09 ± 0.02 0.26 ± 0.01

6 -0.87 ± 0.03 0.52 ± 0.11 -0.21 ± 0.03 0.18 ± 0.03 X X 0.25 ± 0.01

7 -1.08 ± 0.04 0.50 ± 0.11 -0.02 ± 0.03 X -0.18 ± 0.03 X 0.25 ± 0.01

8 -1.14 ± 0.06 0.57 ± 0.11 X -0.04 ± 0.03 -0.22 ± 0.03 X 0.25 ± 0.01

9 -0.92 ± 0.03 0.72 ± 0.10 -0.10 ± 0.03 X X X 0.25 ± 0.01

10 -0.83 ± 0.03 0.18 ± 0.10 X 0.09 ± 0.02 X X 0.25 ± 0.01

11 -1.09 ± 0.04 0.45 ± 0.07 X X -0.19 ± 0.02 X 0.25 ± 0.01

Figure 14 shows the dependency of A with zspec and

L/LEdd. We can see the anti-correlation of A with

L/LEdd, and the positive correlation of A with redshift.

The trend with L/LEdd is more significant.
In order to break the effects of the A− γ degeneracy,

we re-computed the regression model #11 of Table 3,

but considering only variable sources whose measured γ

range between γmed ± 0.1, where γmed corresponds to

the median value of γ measured for the well-sampled

sub-sample (0.53), i.e. we consider those sources with

0.43 ≤ γ ≤ 0.63. Selecting a narrow range in mea-

sured γ allows us to better discriminate between differ-

ent intrinsic values of the amplitude A, as can be seen

in Figure 5. There are 322 variables sources from the

not – C IV sample in this range of γ. In this case,

the results of the regression are: α = −1.06 ± 0.05,

βlog10(1+zspec) = 0.45±0.1, βlog10(L/LEdd) = −0.22±0.03,

and ε = 0.14 ± 0.01. The results for the slopes of zspec
and L/LEdd are consistent with what we found for the

whole not – C IV sample, at 1σ level. However, there

is a considerable reduction in the intrinsic scatter mea-

sured for the reduced sample. This implies that a large

part of the scatter measured in the different regression

models of Table 3 comes from the A− γ degeneracy.

Table 4 gives the linear regression coefficients for zspec
and L/LEdd considering the different samples defined in

section 5. From the table we can see that the results

for the C IV sample are different from the results ob-

tained for the other three samples. For the QUEST-

SDSS sample, we can see a decrement in the slope of

L/LEdd, produced by the presence of sources with C IV

measurements. The slope of L/LEdd is consistent for the

not – C IV and Mg II samples, but the slope for zspec
changes. This can be produced by the reduced dynamic

range in redshift for the Mg II sample, in comparison

with the not – C IV sample. Moreover, from Figure 14

we can see that when we only consider sources from the

Mg II sample (sources above the red dashed line), we

lose most of the sources with low variability.

Table 4 also shows the linear regression coefficient for

a model with redshift, L5100 and MBH. We can see that,

as we showed in Table 3, for the not – C IV sample
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Figure 14. Left: Mean value of A in a grid of zspec and L/LEdd, for bins with 3 or more sources. Right: number of sources
per bin of zspec and L/LEdd. The red dashed line shows the redshift from which we have available the Mg II line in the SDSS
spectra (0.42).

Table 4. Linear Regression α, β and ε coefficients for A as the dependent variable (for standard black hole masses). The
columns headed by physical quantities refer to their slope in the regression model (β).

sample α log10(1+zspec) log10(L/LEdd) ε

QUEST-SDSS -1.01 ± 0.03 0.41 ± 0.06 -0.13 ± 0.02 0.25 ± 0.01

not – C IV -1.09 ± 0.04 0.45 ± 0.07 -0.19 ± 0.02 0.21 ± 0.01

Mg II -1.02 ± 0.04 0.23 ± 0.09 -0.21 ± 0.03 0.24 ± 0.01

C IV -0.47 ± 0.20 -0.37 ± 0.36 0.02 ± 0.04 0.25 ± 0.01

sample α log10(1+zspec) log10(L5100/1044) log10(MBH/108) ε

QUEST-SDSS -0.86 ± 0.02 0.52 ± 0.08 -0.17 ± 0.03 0.13 ± 0.02 0.25 ± 0.01

not – C IV -0.87 ± 0.03 0.52 ± 0.11 -0.21 ± 0.03 0.18 ± 0.03 0.25 ± 0.01

Mg II -0.79 ± 0.04 0.43 ± 0.11 -0.26 ± 0.03 0.18 ± 0.03 0.24 ± 0.01

C IV -0.51 ± 0.20 -0.16 ± 0.34 -0.08 ± 0.09 -0.02 ± 0.04 0.25 ± 0.01

the slopes of L5100 and MBH satisfy βL5100
∼ −βMBH

.

However, for the QUEST-SDSS and Mg II samples, the

relation between the slopes is not so evident. Again, for

the case of the QUEST-SDSS sample we have contam-

ination from C IV. The difference between the results

for the Mg II and not – C IV samples can be driven

by the change in the dynamic range of zspec (see Figure

11), and the strong correlation between zspec and L5100

(produced by a selection effect), since the slope for zspec
also increases when we include L5100 in the model.

In order to see whether smaller ranges of redshift

can reduce the effects in the regression analysis of the

zspec versus L5100 correlation, we computed the regres-

sion models again, but considering sources from the not

– C IV sample with 1.5 ≤ zspec ≤ 1.8, since in this

range of redshift the correlation between zspec and L5100

is smaller (ρs = 0.12, pval = 0.09). We found simi-

lar results, but the results are less statistically signifi-

cant due to the low number of sources considered (there

are 213 variable sources in this range of redshift). For

the case of the regression model with zspec, L5100 and

MBH, the results of the regression are: α = 0.03± 0.55,

βlog10(1+zspec) = 1.51±1.30, βlog10(L5100) = −0.20±0.08,

βlog10(MBH) = −0.12 ± 0.07, and ε = 0.21 ± 0.01. And
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for the case of the regression with zspec and L/LEdd,

the results of the regression are: α = −0.22 ± 0.56,

βlog10(1+zspec) = 1.50 ± 1.29, βlog10(L/LEdd) = −0.15 ±
0.06, and ε = 0.21 ± 0.01. From these results, we can

see that βlog10(L5100) ∼ −βlog10(MBH) at 1σ level, and

that the anti-correlation between A and (L/LEdd) is still

present.

As mentioned in section 4.2, Mej́ıa-Restrepo et al.

(2018a) proposed new corrections for the estimation of

MBH. We show in Table 5 the linear regression coeffi-

cients for a model with zspec and (L/LEdd)C , and for a

model with zspec, L5100, and MC
BH, for the different sam-

ples of section 5. We can see that the slopes for zspec
and (L/LEdd)C increase for the QUEST-SDSS, not –

C IV, and C IV samples, but the errors in the slopes

also increase. The slopes for (L/LEdd)C are more sim-

ilar for the different samples than the slopes for zspec.

This can be related with the difference in the dynamic

ranges of zspec for different samples. For the regression

model with zspec, L5100, and MC
BH, the slopes of L5100

and MC
BH satisfy the relation βL5100

∼ −βMC
BH

for the

QUEST-SDSS, not – C IV and Mg II samples (at 1σ).

This supports our idea that L/LEdd is the driver of the

variability amplitude. The difference of these results

with what we showed in Table 4 can be given by the re-

duction of the scatter in the determined black hole mass

when we use the corrections proposed by Mej́ıa-Restrepo

et al. (2018a).

Table 6 shows three linear regression models that con-

sider different spectral properties of the Mg II line as the

independent variable. The first regression model corre-

sponds to a model with LMg II/L3000, which is a proxy

of the EW of the line. Previous analysis have found that

there is a strong anti-correlation between the equivalent

width of Mg II and L/LEdd (see Netzer 2013 and refer-

ences therein). Our results shows a positive correlation

between LMg II/L3000 and A, which supports our inter-

pretation that L/LEdd is the driver of the amplitude.

The second and third regression models of Table 6 in-

clude the spectral slopes L5100/L3000 and L3000/L1450.

We can see that there is not statistically significant cor-

relation between the amplitude of the variability and

these spectral slopes.

We looked for correlations between A and parameters

derived from the line fitting. Table 7 shows the regres-

sion coefficients for models that consider the FWHM and

continuum luminosity (λLλ) for the Hα, Hβ , Mg II and

C IV lines. For the case of Hα, the statistics is poor given

the low number of variable sources with this line avail-

able in the SDSS spectra. Despite that, we can see a pos-

itive correlation between A and FWHM(Hα). For the

case of Hβ , the results are similar, with a positive corre-

lation between A and FWHM(Hβ). Mg II has the best

statistics, with 1063 variable sources available. In this

case we also see a correlation between A and FWHM(Mg

II), but also an anti-correlation between A and L3000.

The results for C IV are completely different, with no

significant correlation between A and FWHM(C IV) or

L1450. This can be related with the known problems of

using the C IV line to measure black hole masses, since

the line profile deviates considerably from Keplerian-

type motion, and can be influenced by winds emanating

from the accretion disk (see Netzer 2013; Mej́ıa-Restrepo

et al. 2018b, and references therein).

The positive correlations between A and the FWHM

of Hα, Hβ , and Mg II are expected for a variability

process whose amplitude is driven by L/LEdd, since

L/LEdd ∝ FWHM−2(λLλ)1−α (following the equa-

tions of section 4.2). Under this assumption, the anti-

correlation between A and L3000 is also expected. The

lack of correlation between A and L6200, and L5100 can

be given by the differences in the continuum luminosity

range covered by these lines compared to Mg II.

6.3.2. Trends of other amplitude features with physical
properties

We tested whether σ2
rms and σDRW also show corre-

lations with zspec and L/LEdd or L5100 and MBH. The

results are shown in Table 8. For the case of σ2
rms, we

see a significant anti-correlation with L/LEdd, which is

consistent with what we found for A. We also found a

lack of significant correlation with zspec. This can be

given by the positive correlation between the amplitude

of the variability and zspec and the negative correlation

between the length of the light curve and zspec. Since

σ2
rms considers the variance of the whole light curve, for

sources at high redshift we observe shorter light curves

than at low redshift, and therefore the correlation with

zspec is considerably diminished.

For the case of σDRW , we see an anti-correlation with

L/LEdd and a positive correlation with zspec. This is in

contrast with the results reported by Kelly et al. (2009),

who found no correlation between L/LEdd and σDRW .

This can be given by the strong dependency of σDRW
on the sampling of the light curve, and the considerably

small number of sources, with respect to our sample,

used by Kelly et al. (2009). Our results also show that

σDRW correlates negatively with L5100 and has no cor-

relation with MBH. Kelly et al. (2009) found a similar

slope for L5100 for their model with zspec included (see

their Eq. 25). Since we found no correlation with MBH,

we propose that the anti-correlation between σDRW and

L/LEdd is given by the anti-correlation between σDRW
and L5100. We must consider the implication of these

results with caution, since σDRW is strongly affected by
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Table 5. Linear Regression α, β and ε coefficients for A as the dependent variable (for corrected black hole masses). The
columns headed by physical quantities refer to their slope in the regression model (β).

sample α log10(1+zspec) log10((L/LEdd)C) ε

QUEST-SDSS -1.19 ± 0.08 0.48 ± 0.07 -0.28 ± 0.06 0.25 ± 0.01

not – C IV -1.22 ± 0.08 0.56 ± 0.08 -0.28 ± 0.06 0.25 ± 0.01

Mg II -1.16 ± 0.12 0.36 ± 0.10 -0.30 ± 0.08 0.25 ± 0.01

C IV 4.33 ± 20.35 -2.08 ± 11.80 4.11 ± 21.21 0.23 ± 0.04

sample α log10(1+zspec) log10(L5100/1044) log10(MC
BH/108) ε

QUEST-SDSS -0.84 ± 0.03 0.42 ± 0.09 -0.29 ± 0.05 0.31 ± 0.06 0.25 ± 0.01

not – C IV -0.88 ± 0.03 0.55 ± 0.11 -0.28 ± 0.05 0.29 ± 0.06 0.25 ± 0.01

Mg II -0.81 ± 0.04 0.48 ± 0.12 -0.27 ± 0.06 0.20 ± 0.08 0.25 ± 0.01

C IV -0.59 ± 2.2 -0.33 ± 4.23 2.00 ± 6.28 -2.73 ± 8.26 0.23 ± 0.04

Table 6. Linear Regression α, β and ε coefficients for A as
the dependent variable, for spectral properties derived from
Mg II. The columns headed by physical quantities refer to
their slope in the regression model (β).

α log10(1+zspec) log10(LMg II/L3000) ε

0.02 ± 0.09 0.29 ± 0.09 0.44 ± 0.05 0.24 ± 0.01

α log10(1+zspec) log10(L5100/L3000) ε

-0.67 ± 0.21 -0.55 ± 0.93 -0.19 ± 0.13 0.22 ± 0.02

α log10(1+zspec) log10(L3000/L1450) ε

-0.64 ± 0.26 -0.06 ± 0.55 0.21 ± 0.15 0.27 ± 0.01

the light curve sampling. Particularly, Figure 2 shows

that σDRW anti-correlates with the number of epochs

and the length of the light curve. More luminous sources

have higher probabilities to be detected in more epochs

than fainter sources. In fact, the Spearman’s rank cor-

relation coefficient for L5100 and the number of epochs

is 0.45 (pval =1e-4). Therefore, the anti-correlation

between σDRW and L5100 can be just a reflection of

the anti-correlation between σDRW and the number of

epochs.

6.3.3. Trends of the logarithmic gradient of the variability
(γ) with physical properties

In section 6.1 we showed that γ correlates very weakly

with L5100 and MBH (see Figure 13), and from the PCA

there is evidence of a positive correlation between γ and

L/LEdd. In order to test whether any of these correla-

tions exists, we performed a linear regression analysis.

Table 9 shows the linear regression coefficients for γ,

when we consider spectral features as single indepen-

dent variables in the regression model, for the case of

the not – C IV sample. We can see that γ does not have

statistically significant correlation with any physical pa-

rameter, since the absolute values of the slopes for every

the regression model are small (lower than 0.1) and/or

have high errors compared to the measured values.

Some sources have values of γ that are inconsistent

with a DRW process. In section 3.4 we showed that if

a measured value of γ range between 0.0 and 0.75, we

cannot discard a DRW process as the best model to de-

scribe the variability. In the well-sampled sub-sample,

325 of the 1579 variable sources have values of γ higher

than 0.75 (20.6% of the sample). For these sources, the

value of γ differs considerably from 0.5, and therefore,

a DRW model is not sufficient to model the variability.

When we compare the distributions of the SMBH phys-

ical properties of a) the 325 sources with γ > 0.75, and

b) the rest of the sample; we do not observe any differ-

ence between the populations. We also do not observe

differences in the light curve sampling of these two pop-

ulations, we can therefore discard an observational bias

in the distribution of γ.

6.4. Differences between variable and non-variable

sources

From the QUEST-SDSS sample, 1348 sources are vari-

able and 125 are non-variable. Figure 15 shows the nor-

malized distribution of the different physical properties

considered in this work, for the variable and non-variable

sources. In the figure we can see that the distributions of

L5100, MBH and L/LEdd are similar, but for the case of

non-variable sources, the distribution of zspec is in gen-

eral shifted towards higher values of redshift, with the

exception of a few sources located at low zspec. This dif-

ference in redshift can be related with the fact that high

redshift sources have shorter rest frame light curves, be-

cause of the time dilation. In Figure 16 we show the

normalized distribution of the light curve properties of

variable and non-variable sources from the QUEST sam-

ple. In the figure we can see that non-variable sources

tend to have lower number of epochs, shorter light curves
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Table 7. Linear Regression α, β and ε coefficients for A as the dependent variable (spectral properties per emission line). The
columns headed by physical quantities refer to their slope in the regression model (β).

line α log10(1+zspec) log10(FWHM) log10(λLλ/1044) ε

Hα (57) -8.76 ± 5.20 1.29 ± 1.65 0.39 ± 0.16 0.14 ± 0.12 0.26 ± 0.03

Hβ (172) -2.76 ± 2.31 1.62 ± 0.46 0.23 ± 0.08 0.02 ± 0.05 0.24 ± 0.01

Mg II (1063) 3.50 ± 1.11 0.44 ± 0.11 0.34 ± 0.05 -0.12 ± 0.02 0.24 ± 0.01

C IV (460) 3.60 ± 1.93 0.02 ± 0.23 -0.08 ± 0.08 -0.09 ± 0.04 0.26 ± 0.01

Note. In parentheses we show the number of variable sources considered per line.

Table 8. Linear Regression α, β and ε coefficients for other amplitude features as dependent variables (not – C IV sample).
The columns headed by physical quantities refer to their slope in the regression model (β).

feature α log10(1+zspec) log10(L/LEdd) ε

σDRW -2.20 ± 0.02 0.26 ± 0.04 -0.16 ± 0.01 0.12 ± 0.004

σ2
rms -5.07 ± 0.07 -0.13 ± 0.14 -0.34 ± 0.05 0.48 ± 0.01

feature α log10(1+zspec) log10(L5100/1044) log10(MBH/108) ε

σDRW -2.13 ± 0.01 1.04 ± 0.05 -0.33 ± 0.01 0.06 ± 0.01 0.09 ± 0.0034

σ2
rms -4.64 ± 0.06 -0.31 ± 0.21 -0.29 ± 0.06 0.35 ± 0.05 0.48 ± 0.01

Table 9. Linear Regression α, β and ε coefficients for γ as
the dependent variable (not – C IV). The columns headed
by physical quantities refer to their slope in the regression
model (β).

α log10(1+zspec) ε

-0.32 ± 0.03 0.01 ± 0.08 0.28 ± 0.01

α log10(L5100/1044) ε

-0.37 ± 0.01 0.09 ± 0.02 0.28 ± 0.01

α log10(MBH/108) ε

-0.35 ± 0.01 0.08 ± 0.02 0.28 ± 0.01

α log10(L/LEdd) ε

-0.34 ± 0.03 -0.01 ± 0.03 0.28 ± 0.01

α log10(Ṁ) ε

-0.30 ± 0.02 0.03 ± 0.02 0.28 ± 0.01

in rest frame, and fainter mean magnitudes. Therefore,

in our sample, the light curve properties are more rel-

evant for the classification of variable and non-variable

sources than the physical properties of the SMBH.

7. VARIABILITY BEHAVIOR OF DIFFERENT

CLASSES OF AGN

7.1. BAL QSO

We used the catalogs of Shen et al. (2011), Pâris et al.

(2017b) and Pâris et al. (2017a) to classify 133 sources of

our sample as BAL QSO. 99 of these sources have light

curves with good sampling, and 86 are variable (86,9%).
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Figure 15. Normalized histogram of the physical properties
of variable (blue) and non-variable (red) sources from the
QUEST-SDSS sample.

In Figure 9 we show in red the distribution of A and γ

for the well sampled and variable BAL QSO, we can see

that there is no evident difference in the SF parameters.
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Figure 16. Normalized histogram of the light curve proper-
ties (number of epochs, trest, and mean magnitude) of vari-
able (blue) and non-variable (red) sources from the QUEST-
SDSS sample.

In order to have a more quantitative comparison of

the distribution of the SF parameters of BAL QSO

and the rest of the sample, we performed a two-sample

Anderson-Darling test (Pettitt 1976) for the A and γ

parameters. Since the Anderson-Darling test does not

take into account the errors of the parameters, we only

considered in the test those variable sources with a mea-

sured parameter having a signal to noise ratio higher

than 3. According to the test, the distributions of the

A parameter are the same at a 99.5% significance level,

with a pval of 0.9, and the distributions of the γ param-

eter are different, with a pval of 0.02. The difference in

the distributions of γ are related with the fact that for

the rest of the sample, most of the sources are concen-

trated around γ = 0.5, but for the case of BAL QSO,

the sources are more homogeneously distributed in the

SF parameter space. Nevertheless, we do not see that

the values of γ for BAL QSO are systematically different

than the rest of the sample.

7.2. Radio Classification

We divided our sources as radio-loud (RL) or radio-

quiet (RQ) according to their radio and optical emis-

sions. We used data from the Faint Images of the Radio

Sky at Twenty cm survey (FIRST, Becker et al. 1994)

to obtain fluxes at 20 cm of our sources. FIRST used

the Very Large Array (VLA) to produce a map of the 20

cm (1.4 GHz) sky with a beam size of 5”.4 and an rms

sensitivity of about 0.15 mJy beam−1. The last version

of the FIRST survey catalog (14Dec17 Version1), pro-

vides all the sources detected with a threshold of 1 mJy.

We cross-matched our QUEST-SDSS sample with the

FIRST catalog, using a radius of 1”.

We classified our sources as RL and RQ using the

ratio:

R =
Fν(5 GHz)

Fν(4400 Å)
(1)

where Fν(5 GHz) is the radio flux density of the source

measured at 5 GHz and Fν(4400 Å) is the flux density

at 4400 Å (Kellermann et al. 1989). We applied K-

corrections to the photometry provided by the SDSS

and FIRST catalogs, considering that the radio and op-

tical emissions follow a power-law like F ∝ ν−0.8 and

F ∝ ν−0.44 respectively. Then, we estimate Fν(5 GHz)

from the measurements at 1.4 GHz provided by FIRST,

and Fν(4400 Å) from the g SDSS band (4770 Å) mea-

surements. Therefore, the final flux values used to de-

termine R were:

Fν(5 GHz)rest = Fν(1.4 GHz)obs

(
1.4

5

)0.8

(1 + z)−0.2

Fν(4400 Å)rest = Fν(4770 Å)obs

(
6.29

6.81

)0.44

(1 + z)−0.56(2)

All the sources of the QUEST-SDSS sample are lo-

cated in regions mapped by FIRST, however not all of

them have a radio detection associated. 55 objects from

the QUEST-SDSS sample have a FIRST counterpart.

For those sources without a detection reported, we as-

sumed that the measured flux corresponds to the detec-

tion threshold of 1 mJy. Then, we classify sources as RL

1 http://sundog.stsci.edu/first/catalogs/readme.html#coverage
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Figure 17. Distribution of the SF paramenters A and γ,
for sources classified as RL (red circles), RQ (blue stars),
and sources without radio classification (None, black dots).
Along the axes we show the histograms of every parameter,
for the case of RL (blue) and RQ sources (red).

if they have R ≥ 10 and are detected by FIRST, and we

classify sources as RQ if they have R < 10.

From the QUEST-SDSS sample, 373 sources are clas-

sified as RQ and 354 are variable (94,9 %). 48 are

classified as RL and 38 are variable (79.2%). Figure

17 shows the distribution of the SF parameters for RL

and RQ sources, and also for sources without radio clas-

sification. In the Figure we can see that there is no
evident difference in the distributions of RL and RQ

sources. For a more quantitative comparison, we per-

formed an Anderson-Darling test comparing the SF pa-

rameters distributions of the RL and RQ sources. As

before, we only considered those variable sources with a

measured parameter having a signal to noise ratio higher

than 3. According to the test, the distributions of A and

γ are the same for RQ and RL sources, with pval of 0.64

for A and 0.22 for γ. This could imply that the radio

loudness may not be relevant for the optical variability

of type I AGN.

8. DISCUSSION AND CONCLUSIONS

In section 3.5 we showed that there is a correlation be-

tween A and γ, however in section 3.4 we demonstrated

that such a correlation is produced by the stochastic

nature of the light curves together with the light curve

sampling. We might need longer light curves to reduce

this degeneracy, however, having access to long (decades

of coverage) and well sampled light curves for large sam-

ples of sources is not possible currently. In section 6 we

demonstrated that A anti-correlates with both λrest and

L/LEdd, but γ does not correlate with any of the phys-

ical parameters studied. This confirms our assumption

that the correlation between A and γ is produced by

the light curve properties, and by the stochastic nature

of the variability. Nonetheless, the structure function

is the best option that we have today to analyse typi-

cal ground-based light curves (i.e. with a few years of

coverage, a few epochs, and with gaps), since other tech-

niques, like Fourier analyses, requires well sampled light

curves (i.e. with several epochs, and without gaps).

In sections 4.3 and 6.2 we reported that our data set

presents correlations between the SMBH physical prop-

erties. Some of these correlations are produced by se-

lection effects, since our sample is flux limited. For

example, the correlations of redshift with luminosity,

BH mass, and accretion rate, are produced by the fact

that at higher redshifts our sample will naturally contain

sources with higher luminosities, higher SMBH masses

and higher accretion rates.

The results shown in section 6 tell us that the observed

amplitude of the variability depends on two variables,

zspec and L/LEdd, which means that, at a fixed zspec,

sources with similar L/LEdd will have similar variability

amplitudes. The positive correlation with redshift can

be interpreted as an anti-correlation with the wavelength

of rest frame emission. MacLeod et al. (2010) analysed

ugriz light curves of ∼ 9000 spectroscopically confirmed

SDSS S82 quasars. Since they had multiple bands for

each quasar, they could separate the dependency of the

amplitude of the variability with redshift and λrest, find-

ing an anti-correlation with λrest and no correlation with
zspec. S17 analysed the near infrared variability of X-ray

selected AGN. They also found a correlation between the

amplitude of the variability and redshift. By comparing

the trends between A and zspec for two different bands

(Y and J), they showed that the correlation with zspec
is explained by an anti-correlation with the wavelength

of emission. From this, and other previous results (e.g.

Koz lowski et al. 2010), we conclude that the positive

correlation of A with zspec is produced by a dependency

on λrest, and is not given by evolution over cosmic time.

This anti-correlation between λrest and A can be ex-

plained considering that the innermost regions of the

disk can be the most variable, either intrinsically or by

reprocessing. Since at shorter wavelengths a larger frac-

tion of the disc emission is produced by the innermost

region, it follows that shorter wavelengths display larger
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amplitudes of variability (Arévalo et al. 2008; Lira et al.

2011, 2015; Edelson et al. 2015; Fausnaugh et al. 2016).

We found an anti-correlation between A and L/LEdd.

When we used the standard method to determine black

hole masses from single epoch spectra we found a slope

of βL/LEdd
= −0.19 ± 0.02 for the regression model

with A as the dependent variable, and L/LEdd and zspec
as the independent variables, for the not – C IV sam-

ple. When we apply the corrections proposed by Mej́ıa-

Restrepo et al. (2018a), which intend to account for the

effect of the unknown distribution of the gas clouds in

the BLR, we found a slope of β(L/LEdd)C = −0.28±0.06.

An anti-correlation between L/LEdd and the amplitude

of the variability has also been reported by previous

works (e.g. Wilhite et al. 2008; MacLeod et al. 2010;

Simm et al. 2016; Rakshit & Stalin 2017). MacLeod

et al. (2010) reported a power-law slope of −0.23±0.03.

This value was calculated by binning the parameter

space of MBH and Mi (absolute magnitude), and us-

ing ensemble light curves, which can explain the small

difference with the value found by us.

MacLeod et al. (2010) also proposed that an addi-

tional dependency with luminosity or black hole mass

is needed in order to explain their findings. Here we

conclude that such a dependency is not necessary when

intrinsic scatter is included in the model. In fact, in Ta-

ble 3 we can see that the value of the intrinsic scatter

found with our method is pretty stable, and that in-

cluding L5100 or MBH in the regression model with zspec
and L/LEdd produces statistically insignificant slopes

for L5100 or MBH. From the results of sections 3.4 and

6.3.1 we can say that the main contributors to this scat-

ter are the A−γ degeneracy (produced by the stochastic

nature of the AGN variability), the definition of the SF

by itself, the light-curve sampling, and the fact that light

curves with coverage of a few years are not a good rep-

resentation of the whole variability behavior. We could

notice in section 6.3.1 that when we performed the linear

regression model with zspec and L/Edd as independent

sources, selecting only those sources from the not–C IV

sample whose measured values of γ were in the range

between 0.43 and 0.63, the measured scatter in the re-

gression was reduced considerably. This confirm our as-

sumption that the A− γ degeneracy is one of the main

contributors to the measured scatter in the regression

models.

Possible interpretations of the inverse dependency of

the amplitude of the variability with L/LEdd are dis-

cussed by Wilhite et al. (2008), MacLeod et al. (2010),

Simm et al. (2016), and Rakshit & Stalin (2017). One

explanation can be that L/LEdd is a proxy of the age

of the AGN (e.g. Martini & Schneider 2003; Haas 2004;

Hopkins et al. 2005). Sources with lower L/LEdd can

suffer from a dwindling of the fuel supply, as they be-

come old, thus, the accretion flow can be more variable,

producing larger amplitude in the variability. But, the

time-scales of the amplitudes measured in this work are

∼ 1 year, and therefore, it is unlikely that the variability

amplitudes observed are given by variations in the exter-

nal fuel supply, which requires much longer time-scales

to be effective (105 to 107 days).

Other possible interpretation is that sources with

higher L/LEdd have hotter accretion disks, as predicted

by classical accretion physics (Shakura & Sunyaev 1973).

For typical values of black hole mass and accretion rate,

it is expected that the innermost part of the disk emits

in the far UV. Because of its smaller size, this region

is also the one showing the largest variability ampli-

tude. For lower accretion rates however, the disk be-

comes cooler, and the innermost, most variable region

will shift its emission from the UV to optical wavebands

(rλ ∝ M
2/3
BH (L/LEdd)1/3λ4/3). This would be true re-

gardless of whether the variation of the disk emission

is produced by intrinsic processes or by reprocessing

of highly variable X-ray emission by the disk surface.

MacLeod et al. (2010) discarded this assumption be-

cause the time-scales (τ) that they measured were not in

agreement with this scenario. However, they used DRW

modelling to find τ , while it is now clear that DRW mod-

els cannot be used to properly describe the time-scales

of typical ground-based light curves (see section 3.1).

A third possible explanation for the anti-correlation

between A and L/LEdd can be related with the posi-

tive correlation between L/LEdd and the ratio of the

UV/optical-to-X-ray flux (αox) reported by several stud-

ies (e.g. Shemmer et al. 2008; Grupe et al. 2010; Lusso

et al. 2010; Jin et al. 2012). If the UV/optical vari-

ability is produced by reflection of the variable X-ray

emission, then disks located in systems with higher αox

values will receive fractionally less X-ray radiation, and

therefore the amplitude of the variability detected in the

UV/optical range will be small. On the other hand, for

sources with lower αox, the disk will be irradiated with

more X-ray light, and therefore we will detect higher

UV/optical variability amplitudes. Kubota & Done

(2018) developed a new spectral model for the SED of

AGN that includes a hot corona, an inner warm optically

thick Comptonising region and an outer disk. Consider-

ing this model, they studied the UV/optical variability

resulting from the reprocessing of the rapidly variable

X-ray flux. Their model predicts an anti-correlation

between the amplitude of the variability and L/LEdd.

However their model also predicts a much lower amount

of UV/optical variability than what is observed by our
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analysis and previous studies (e.g. MacLeod et al. 2010)

at time-scales of 1 year or longer. This means that the

model needs an extra source of UV/optical variability in

order to explain the amplitudes observed at long time-

scales, as has been found by previous analyses (Krolik

et al. 1991; Arévalo et al. 2008; Lira et al. 2015; Edelson

et al. 2015). Therefore, the anti-correlation between A

and L/LEdd, cannot be solely explain by the correlation

between L/LEdd and (αox).

In this work, we also found that the logarithmic gradi-

ent of the variability (γ) does not correlate significantly

with any of the physical parameter studied, and that the

general distribution of γ measured for our sample differs

from the distribution of γ obtained for light curves sim-

ulated from a DRW process. We showed in sections

3.5 and 6.3.3 that 20,6% of the light curves have values

of γ higher than 0.75, for which a DRW model is not

appropriate to explain the variability. Kasliwal et al.

(2015) and Smith et al. (2018) used Kepler light curves

to study whether DRW modelling is sufficient to explain

the variability of light curves with high cadence. They

concluded that most of the Kepler AGN light curves

analysed cannot be described by a simple DRW model.

Smith et al. (2018) also proposed that it is possible

that DRW modelling can be correct for ground-based

quasar light curves, which in general study different time

regimes than Kepler. We need larger samples of high ca-

dence light curves, to see whether the results of Kasliwal

et al. (2015) and Smith et al. (2018) are representative

for the whole AGN population.
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