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Abstract. Faceted browsing has become a popular paradigm for user
interfaces on the Web and has also been investigated in the context
of RDF graphs. However, current faceted browsers for RDF graphs
encounter performance issues when faced with two challenges: scale,
where large datasets generate many results, and heterogeneity, where
large numbers of properties and classes generate many facets. To address
these challenges, we propose GraFa: a faceted browsing system for het-
erogeneous large-scale RDF graphs based on a materialisation strategy
that performs an offline analysis of the input graph in order to identify a
subset of the exponential number of possible facet combinations that are
candidates for indexing. In experiments over Wikidata, we demonstrate
that materialisation allows for displaying (exact) faceted views over mil-
lions of diverse results in under a second while keeping index sizes rela-
tively small. We also present initial usability studies over GraFa.

1 Introduction

The Semantic Web community has overseen the publication of a rich collection of
datasets on the Web according to a variety of proposed standards [12]. However,
current interfaces for accessing such datasets are not generally designed nor
intended for end users to interact with directly. The Semantic Web community
still lacks effective methods by which end users can interact with such datasets;
or as Karger [18] phrases it: “The Semantic Web’s potential to deliver tools that
help end users capture, communicate, and manage information has yet to be
fulfilled, and far too little research is going into doing so.”

On the other hand, faceted search [32]1 has become a familiar mode of inter-
action for many Web users, popularised in particular by e-Commerce websites
like Amazon and eBay. Such interaction is characterised by iteratively refining
the active result-set through filter conditions – called facets – typically defined to
be an attribute (e.g., type, brand, country) and value (e.g., Toothbrush, Samsung,
India) that the filtered results should have. Such interaction enables end users
to find specific results corresponding to concrete criteria known in advance, or
simply to explore and iteratively refine results based on available options.
1 Also known as “faceted browsing”, “faceted navigation”, etc.
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While the queries that can be formulated through an iterative selection of
facets are generally less expressive than those that can be specified through a
structured query language such as SPARQL, faceted browsing is more accessible
to a broader range of users unfamiliar with such query languages; furthermore,
the end user need not be as familiar with the content or schema of the dataset
in question since the facets offered denote the possible filters that can be applied
and the number of results to be expected, helping users to avoid empty results.

Adapting faceted search for a Semantic Web context is then a natural idea,
where various authors have explored faceted navigation over RDF graphs [7,28]
as a potential way to bridge from Semantic Web to end-users. Such works –
discussed in more detail in the following section on related work – have explored
core themes relating to faceted navigation, including query expressivity, ranking,
usability, indexing, performance, reasoning, complexity, etc. However, despite the
breadth of available literature on the topic, we argue that more work is required,
in particular for faceted browsing over RDF graphs that are large-scale (with
many triples) and diverse (with many properties and classes).

The work presented in this paper was motivated, in particular, by the idea
of providing faceted search for Wikidata [29]: a large, collaboratively-edited
knowledge-base where users can directly add and curate structured knowledge
relating to the Wikipedia project. Though a variety of interfaces exist for inter-
acting with Wikidata2, including a SPARQL endpoint, query builders, and so
forth, none quite cover the main characteristics of a faceted browser (e.g., only
displaying options with non-empty results). On the other hand, despite the
breadth of works on faceted browsing, we could not find an available system
that could load the full (“truthy”) Wikidata graph available at the time of writ-
ing.

We thus propose a novel faceted browser for diverse, large-scale RDF graphs
called GraFa – Graph Facets – that we demonstrate is able to handle the
scale and diversity of a dataset such as Wikidata. An initial result set in the
system is generated through either keyword search or by selecting an entity type
(e.g., person, building, etc.). Thereafter, a result set can be refined by selecting
a particular property–value (facet) that all entities in the next result set should
have. A combination of auto-completion and ranking features help ensure that
the user is presented with relevant facets and results. Furthermore, at each stage
of interaction, only options that lead to non-empty results are returned; this
aspect in particular proves the most challenging to implement.

Similar to previous faceted systems [5,31], the GraFa system is based on
Information Retrieval (IR)-style indexes that combines unstructured (text) and
semi-structured (facet) information. However, unlike previous such systems, we
propose a novel materialisation technique to enable interactive response times
at higher levels of scale. The core hypothesis underlying this technique is that
although there is a potentially exponential (in the size of the graph) number of
combinations of facets that could be considered, few combinations will lead to
large result sets that cause slow response times. Hence we propose a technique to

2 https://wikidata.org/wiki/Wikidata:Tools/External tools; retr. 2018/04/05.
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perform an offline analysis of the graph to select facets that are then materialised.
Our results show that materialisation can improve worst-case response times by
orders of magnitude using a modestly-sized index of precomputed facet views.

To assess the usability of our system, we also present the results of two initial
studies. The first user study compares the GraFa system and the Wikidata
Query Helper (WQH) interface provided by the Wikidata SPARQL endpoint,
asking participants to solve a number of tasks using both systems. Based on the
results of this first study, we then made some improvements to the GraFa sys-
tem, where in the second study, we asked members of the Wikidata community
to use the modified GraFa system and to answer a questionnaire to rate the
usability, usefulness, responsiveness, novelty etc., of the system.

Outline: Section 2 first discusses related work. Section 3 defines the inputs and
interactions considered in our faceted browsing framework. Section 4 describes
the base indexing scheme used to support these interactions, and Sect. 5 describes
the materialisation strategies we use to improve worst-case response times. Turn-
ing to evaluation, Sect. 6 focuses on performance, while Sect. 7 focuses on usabil-
ity. Finally Sect. 8 concludes and discusses future work.

2 Related Work

Various faceted browsers have been proposed for RDF over the years [7,28,32].
Some earlier works include mSpace [23], Ontogator [20], BrowseRDF [21],
/facet [15], with later proposals including gFacet [13,14], Explorator [2],
Rhizomer [6], Facete [25], ReVeaLD [17], Sparklis [8] and Hippalus [27].
These works describe evaluations or use-cases involving domain-specific data
of low heterogeneity, such as multimedia [20,23,26], suspect descriptions [21],
movies [6], cultural heritage [15,20], tweets [1], places [25], biomedicine [17], fish
species [27], etc.; furthermore, many of these works delegate data management
and query processing to an underlying triple-store/SPARQL engine, and rather
focus on issues such as expressiveness, ranking and usability, etc.

Recently Petzka et al. [22] proposed a benchmark for SPARQL systems to
test their ability to support faceted browsing capabilities, but again the dataset
(referring to transport) contains in the order of tens of classes and properties
and we could not find details on the scale of data used for experiments.

A number of later works have explored faceted navigation over more het-
erogeneous RDF datasets, such as VisiNav [11] operating on RDF data (19
million triples with 21 thousand classes and properties) crawled and integrated
from numerous sources on the Web; however, aside from brief discussion of top-k
ordering of facets, performance issues were not discussed in detail. Another more
scalable proposal is the Neofonie [10] system, proposed for faceted search over
DBpedia; however, only a small selection of target facets are displayed and no
performance results are provided. A more recent scalable approach is that of
eLinda [33], which allows for real-time browsing of DBpedia; however, naviga-
tion is not based on facets but rather on interactive bar-charts.
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A number of approaches have proposed to use indexing techniques developed
for Information Retrieval (IR) to support faceted browsing for RDF. The Sem-
plore system [31] builds faceted browsing on top of IR-indexes, where facets for
the current result set are computed from types, as well as incoming and outgo-
ing relations; a set of top-k facets are constructed by count. Experiments were
conducted over DBpedia [19] and LUBM [9] datasets in the order of 100 million
triples, showing mean sub-second response times faster than those achievable
over selected triple stores. Though this system is along similar lines to what
we wish to achieve, the size of the result-sets for which facets are generated in
the evaluation is not specified, nor is the value of k for the top-k generation;
we could not find materials online to replicate these results, but using a similar
implementation later on a more modern version of the same IR engine (Lucene),
we find that construction of the full set of facets takes minutes over large result-
sets with millions of results. Wagner et al. [30] likewise propose IR-style indexing
to support faceted browsing and conduct evaluation over DBpedia, but perfor-
mance issues are explicitly considered out of scope; however, for their evaluation,
we note that the authors mention use of caching to speed-up response times for
selected tasks, though no further details are provided.

To the best of our knowledge, the closest published results we found for
faceted search over RDF data at the scale of Wikidata was the Broccoli sys-
tem [4,5], which is also based on IR indexes. Though the system has a slightly
different focus to ours (semantic search over Wikipedia text enriched with Free-
base relations), an index over relations is defined to enable faceted search. The
authors propose caching methods to identify and re-use sub-combinations of
facets that are frequently required; unlike our approach, this LRU cache is built
online from user-queries, whereas we materialise query results offline.3

The SemFacet [3] system addresses a number of issues with respect to
faceted browsing for RDF graphs, including reasoning, expressiveness, complex-
ity and efficiency. Though their system can process facets for tens of millions
of answers in about 2 s, this requires having all data indexed in memory, which
limits scale; hence their evaluation is limited to 20% of DBpedia [19] (3.5 mil-
lion triples), as well as selected slices of YAGO [16] that fit in memory. Though
the system is available for download, we failed to load Wikidata with it. Later
work by Sherkhonov et al. [24] discusses the addition of other features to faceted
navigation, such as aggregation and recursion, but focuses on studying the com-
plexity of query answering and containment.

3 Faceted Browsing

We now outline the faceted browsing interactions that the GraFa system cur-
rently supports. Beforehand we provide preliminaries for RDF graphs considered
as input to the system, mainly to establish notation and nomenclature.
3 We did not find source code for the system to be able to perform tests

for Wikidata, though a Freebase demo is available demonstrating interactive
runtimes on large result sets: http://broccoli.informatik.uni-freiburg.de/demos/
BroccoliFreebase/; retr. 2018/04/05.

http://broccoli.informatik.uni-freiburg.de/demos/BroccoliFreebase/
http://broccoli.informatik.uni-freiburg.de/demos/BroccoliFreebase/
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RDF Triples and Graphs: An RDF triple (s, p, o) is an element of IB× I× IBL,
where I is a set of IRIs, L a set of literals, and B a set of blank nodes; the sets I,
L and B are considered pairwise disjoint. The positions of the triple are called
subject, predicate, and object, respectively. An RDF graph G is a set of triples.
Letting πs(G) = {s | ∃p, o : (s, p, o) ∈ G} project the (“flat”) set of all subjects
of G, and letting πp(G) and πo(G) likewise project the set of all predicates and
objects of G, we call πs(G) ∪ πo(G) the nodes of G, πs(G) ∩ I the entities of G,
and πp(G) the set of properties of G. Given an entity s and a property p, we call
any o such that (s, p, o) ∈ G the value of property p for entity s.

Keyword Selection: We assume most entities to have values for a label prop-
erty (e.g., rdfs:label, skos:prefLabel, skos:altLabel) and/or a descrip-
tion property (e.g., rdfs:comment, schema:description); we also assume that
the system is configured with a list of such properties. To generate an initial
result-set, users can specify a keyword search, returning a set of entities whose
label/description values match the search. Notation-wise, we will denote key-
word search as a function κ : 2G × S → 2πs(G), where S denotes the set of
strings (keyword searches). However, to simplify notation, we will consider the
input graph as fixed throughout this paper. Hence we abbreviate the function
as κ : S → 2πs(G), taking a string and returning a set of entities according
to a keyword-matching function (we discuss implementation of the function in
Sect. 4).

Type Selection: To generate an initial set of results, rather than use the keyword
search function, a user may prefer to select entities of a given type (e.g., human,
movie, etc.). We define a type (aka. class) to be any value of a type property (e.g.,
rdf:type, wdt:P31[instance of]) for any entity; we assume that a fixed set of type
properties PT are preconfigured in the system. We then denote the set of types
in a graph G as T (G) := {o | ∃s, p : (s, p, o) ∈ G and p ∈ PT }. We denote type
selection as τ : T (G) → 2πs(G), where τ(t) := {s | ∃p ∈ PT such that (s, p, t) ∈
G}. In summary, τ(t) returns the set of all entities with the type t ∈ T (G). Note
that we do not currently consider type/class hierarchies.

Facet Selection: Given a current set of results, a user may select a facet to further
restrict the presented results. Such a facet is here defined to be a property–
value pair – e.g., (director,Kurosawa) – that each entity in the next result set
must have. More formally, given a current result set of entities E ⊆ πs(G),
we denote by E(G) := {(s, p, o) ∈ G | s ∈ E} the projection from G of all
triples with a subject term in E. Now we can define the facet selection function
ζ : 2πs(G) × πp(G) × πo(G) → 2πs(G) where ζ(E, p, o) := {s | (s, p, o) ∈ E(G)}.

Faceted Navigation: We call a sequence of selections of either of the following
forms a faceted navigation, initiated by keyword or type selection, respectively:

– ζ(ζ(. . . (ζ(κ(q), p1, o1) . . . , pn−1, on−1), pn, on)
– ζ(ζ(. . . (ζ(τ(t) , p1, o1) . . . , pn−1, on−1), pn, on)
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We remark that the ζ function is commutative: we can apply the facet selections
in any order and receive the same result. Hence, with some abuse of notation,
we can unnest and thus more clearly represent the above navigation sequences
as a conjunction of criteria, where we use [·] to represent optional criteria:

– κ(q) [∧ ζ(p1, o1) ∧ . . . ∧ ζ(pn, on)]
– τ(t) [∧ ζ(p1, o1) ∧ . . . ∧ ζ(pn, on)]

Type and Facet Interactions: The type selection and facet selection interactions
take as input a type t and a facet (p, o) respectively. However, the users may
not know the corresponding identifier, hence GraFa will offer auto-completion
search on the labels and aliases of types and the values of facet properties. For
example, a user typing al* into the auto-completion box for type selection will
receive suggestions such as album, alphabet, military alliance, etc.

Result Display: For each result we display its label, description, and an associated
image if available (again we assume that image properties are preconfigured). We
further assume that entity identifiers are dereferenceable IRIs, which we can use
to offer a link to further information about the entity from the source dataset.
We also present the available facets for the current results.

Ranking: We combine three forms of ranking: frequency, relevance and centrality.
Frequency indicates the number of results generated by a particular selection.
Relevance is particular to keyword-search and uses a TF–IDF style measure to
indicate how well a given entity’s label(s) and description(s) match a keyword.
Centrality measures the importance of a node in the graph, where we use PageR-
ank: we consider each triple (s, p, o) ∈ G∩(I×I×I) in the graph to be a directed
edge s → o and then apply a standard PageRank algorithm to derive ranks for
all nodes. Thereafter, we use these measures in the following way:

– Entities in result pages generated directly from a keyword selection are ranked
according to a combination of TF–IDF and PageRank score.

– Entities in result pages generated directly from a type or facet selection are
ranked purely according to PageRank score.

– Types suggested by auto-completion are ranked according to PageRank.4 The
count of entities in each type are also displayed.

– Properties displayed in the list of facets are ordered by frequency: the number
of entities in the current results with some value for that property.

– Auto-completed facet values are ordered by PageRank.

4 We originally implemented type ranks per frequency (number of results generated),
but noted that certain popular types featured undesirably low in this ordering; for
example, the type country has 207 entities, whereas third-level administrative country
subdivision has 3792 entities. Hence we changed this ranking to consider PageRank.
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Multilingual Support: Where language-tagged labels and descriptions are provided
for entities in multiple languages (e.g., ‘‘Denmark’’@en, ‘‘Dinamarca’’@es),
GraFa can support multiple languages: the user can first select the desired
language where search matches text from that language and where labels from
that language are used to generate results views. The current online demo of
GraFa supports English and Spanish; language can be switched at any time.

4 Indexing Scheme

The GraFa system is implemented on top of standard IR-style inverted indexes.
More specifically, we base our indexing scheme on Apache Lucene (Core): a
popular open source library offering various IR-style indexes, measures, etc.

Fig. 1. Example SPARQL queries to compute facet properties and values over Wiki-
data; the left query would generate the facet properties and their frequencies for current
results representing male humans; the right query would generate the facet values and
their frequencies if the property occupation were then selected

Why not SPARQL? The first reason relates to the features supported, where
GraFa requires keyword search, prefix search (for auto-completion), and ranking
primitives; though SPARQL vendors often provide keyword search functionality,
these are non-standard and cannot be easily configured; additionally ranking
measures based on, for example, PageRank would need to be implemented by
reordering (not top-k). Furthermore, to generate, rank and display facet proper-
ties and values, our index needs to be able to cope with aggregate queries such
as shown in Fig. 1; on the Wikidata Query Service running BlazeGraph, the
left query times out, while the right query takes in the order of 37 s. In a locally
built index on the same version of Wikidata that we use in our evaluation, Vir-
tuoso requires 4 min for the left query and 16 s for the right query. Hence we
build custom indexes on top of Lucene, offering us the required features such as
keyword search, prefix search, ranking, etc.

Indexing Schemes: We base our search on two (initial) inverted indexes:

– The entity index stores an entry (doc.) for each entity. Each entry stores fields
to search entities by IRI, labels, description, type IRIs, property IRIs, and
property–value pairs. The PageRank value of each entity is also stored.
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– The type index stores an entry for each type. Each entry stores fields to search
types by IRI and labels. The PageRank value of each type is also stored along
with its frequency.

Note that types are also entities, and thus types will be included in both indexes.
We use a separate types index to quickly find types according to an auto-
complete prefix string; furthermore, the types index additionally contains the
frequency of (number of entities associated with) a type. We highlight that prop-
erties are described by the entity index and are associated with labels, descrip-
tions and defining properties (e.g., sub-property-of ), etc.

Query Processing: For each type of interaction, we perform the following:

– Keyword selection (κ(q)): we perform a keyword search on the labels and
descriptions fields of the entity index.

– Type selection (τ(t)):
• Given a user-specified prefix (e.g., “al*”) generated by an auto-complete

request, we perform a prefix search on label field of the type index and
return a list of labels, frequencies and IRIs for matching types.

• Given a type IRI t selected by the user from the previous auto-complete
options, we perform a lookup on the type field of the entity index.

– Facet generation/selection (φ ∧ ζ(p, o), where φ generates current results E):
• For the current result set E, we must generate all possible facet properties:

their IRIs, labels and frequency with respect to E. We thus iterate over
E and generate the required information from the property field.

• Once a p is selected, we must generate all possible facet values: their
IRIs, labels, frequency and PageRanks. Let ε(p) denote a query to find all
entities with some value for property p executed over the property field
of the entity index. We thus generate and execute the conjunctive query
φ ∧ ε(p) to find all entities in E with property p, and from these results
we generate the list of all pertinent values.

• Once a (p, o) is selected, we execute the conjunctive query φ ∧ ζ(p, o).

To generate the results for any page (for keyword, type or facet selection), the
first step of facet generation must be applied to generate the next possible steps.

Performance: Lucene implements efficient intersection algorithms to apply con-
junctions. Hence performance issues rather occur when large sets of results are
present and the facet selection must find (only) the properties present in E and
their frequency with respect to E. For example, given a query τ(human) in
Wikidata, the above process would require scanning 3.6 million results and com-
puting the frequencies of 358 properties. Next, when a property is selected to
restrict E with, we may still have to scan many results to compute the available
values for p in the set E (and their frequencies). For example, when we execute
τ(human)∧ ε(occupation), we would now need to scan 3.3 million results to find
the values of occupation. Hence the challenge for performance is not due to the
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difficulty of query processing, but rather the amount of results generated. Under
initial experiments with the above indexing scheme, generating the facet prop-
erties for type human took 135 s; furthermore, such queries are very common as
an entry point onto the data. Hence we require optimisations.

5 Materialisation Strategy

To address the aforementioned performance issues, we propose a selective
materialisation strategy. This strategy enumerates, off-line, all queries of the
form τ(t)[∧ ζ(p1, o1) ∧ . . . ∧ ζ(pn, on)] that generate greater than or equal
to a given threshold α of results. More specifically, the goal is to identify
all queries generating a high number (≥α) of results, such as τ(human), or
τ(human) ∧ ζ(gender,male), or τ(human) ∧ ζ(gender,male) ∧ ζ(country,U.S.),
etc.; the facet properties and values for these queries can then be materialised
and indexed.

Choice of Threshold: When selecting α, we are faced with a classical time–space
trade-off: we should select a value for α such that queries generating fewer than
α results can be processed efficiently using the base indexes, while there are as
few as possible queries generating α results to avoid exploding the index. The
underlying hypothesis here is that such a value of α exists, which is non-trivial
and requires empirical validation (as we will provide in Sect. 6). We say that this
is non-trivial since a relatively low value of α can generate a huge number of
queries: let πpo(G) = {(p, o) | ∃s : (s, p, o) ∈ G} project the property–value facet
pairs from G and let π∗

po(G) denote πpo(G) but removing pairs (p, o) where p is
a type property. Recall that we denote by T (G) the types of G. For α = 0, we
would have |T (G)| × 2|π∗

po(G)| possible queries to contend with containing every
combination of type with the powerset of π∗

po(G). For α = 1, we could still have
the same number (if, e.g., G contains a single subject). More generally:

Lemma 1. Let α ≥ 1. Given an RDF graph G with m triples, the total number
of queries of the form τ(t)[∧ ζ(p1, o1) ∧ . . . ∧ ζ(pn, on)] generating more than α
results is bounded by the interval [0, 2� m

α � − 1].

Proof. If |πs(G)| < α, then no query can generate more than α results, giving the
lower bound. Towards the upper-bound, let πα

po(G) denote the property–value
pairs with more than α subjects and let Πα

po(G) ⊆ 2πα
po(G) denote all sets of such

pairs that cooccur on more than α subjects; these are the queries we need to
materialise. We now construct a worst-case G that maximises the value |Πα

po(G)|
with a budget of m triples. To do this, for each subject in G, we will assign the
same set of (pairwise distinct) property–value pairs {(p1, o1), . . . , (pk, ok)}. In
this case, |Πα

po(G)| = 2k, representing the powerset of the k property–value
pairs. We then need to maximise k; given the inequality k|πs(G)| ≤ m for m
the budget of triples, we thus need to minimise the number of subjects |πs(G)|.
But we know that |πs(G)| ≥ α, otherwise no queries return more than α results;
hence we should set |πs(G)| = α, which gives us k = �m

α � and |Πα
po(G)| = 2� m

α �.
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With respect to types, note that we can consider this as any other facet by, e.g.,
setting p1 to a type property; the only modification required is to not consider
the empty set in Πα

po(G), which leads us to the upper bound 2� m
α � − 1. �

Algorithm: We outline the algorithm to compute the queries generating more
than α results. Note that for brevity, we will consider type as a facet. Let
σs=x(G) := {(s, p, o) ∈ G | x = s} select the triples in G whose subject is
x. In order to compute Πα

po(G) representing the set of all queries with at least α
results, a naive algorithm would be to compute from each subject x the powerset
of all its property–value pairs 2πpo(σs=x(G)) containing at least one type property
and then count these sets over all subjects, outputting those with a count of at
least α. However, in a dataset such as Wikidata, some subjects have hundreds
of property–value pairs, where the powerset for such a subject would be clearly
unfeasible to materialise. Instead, we optimise for the fact that a property–value
pair with fewer than α subjects can never appear in a conjunctive query with
more than α subjects: we compute a restricted powerset 2πpo(σs=x(G))∩πα

po(G) that
only considers individual (p, o) pairs on each subject x with at least α subjects in
G. Thereafter, we can then count the number of subjects for each query and add
those with more than α subjects to Πα

po(G). The number of queries generated is
still, of course, potentially exponential, and hence it will be important to select
a relative high value of α to minimise the set πα

po(G), and thus the exponent.

Indexing: For each query in Πα
po(G) computed in the previous stage, we compute

its result set offline, and from that set, we compute the set of facet properties,
their frequencies, and the sets of their values. Thus we have precomputed the
information needed to generate the results page of each such query (with an
index lookup), and to facilitate explorations of the facets on that page.

Keyword Selections: Note that for κ(q), given that the number of possible key-
word queries q is not bounded, our materialisation approach is not applicable,
where we rather simply restrict κ(q) to return the top-α results.

6 Performance Evaluation

We now discuss the performance of indexing, materialisation and querying.

Data and Machine: We take the “truthy” dump of Wikidata from 2017/09/13,
containing 1.77 billion triples and 74.1 million entities. However, given that we
do not consider datatype values, nor labels and descriptions in other languages,
the number of Wikidata triples used by GraFa is 195 million (120 million (p, o)
pairs; 75 million labels and descriptions in English and Spanish). The machine
used for all experiments has 2× Intel Xeon 4-Core E5-2609 V3 CPUs (@1.9 GHz),
32 GB of RAM, and 2× 2 TB Seagate 7200 RPM 32 MB Cache SATA hard-
disks (RAID-1). The code used is available online: https://github.com/joseignm/
GraFa/.

https://github.com/joseignm/GraFa/
https://github.com/joseignm/GraFa/
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Threshold Selection: The selection of the threshold α must find a balance: too
high and queries just under the threshold will take too long to run; too low
and the number of queries to materialise will explode exponentially. We choose
three seconds as a reasonable worst-case response time, which from initial exper-
iments suggested a value of α = 50, 000. To verify that this would not require
materialising too many queries, we counted the subjects associated with each
(p, o) ∈ πpo(G) and found that 149

10,348,199 ≈ 0.001% of (p, o) pairs were associated
with more than 50,000 subjects. Ultimately we materialise 141 queries.

Indexing Times: In Table 1, we provide the details of all indexing times. The ini-
tial PageRank computation takes 04:30 (hh:mm) and creating the base indexes
requires 06:52. Computing the set Πα

po(G) for α =50,000 took 04:16, while build-
ing an index of the properties and their frequency for each such query took 01:13.
The most expensive step in the process is materialising the values of such prop-
erties, which took 107:18 (4.5 days), where, for each query, we need to build a
list of all values for each property. This index of values contains 16,048 query–
property keys in total (one for each facet property of a materialised query).
An important question is then: is an index on values necessary or could it be
optimised? Without indexing values, if a user selects a property on a materi-
alised query with lots of results, where the majority of results have some value
for that property, we may still require scanning all the results to generate the
value list. For example, if the query is τ(:Human) (3.6 million results) and the
user selects ε(:occupation) (3.3 million results), without an index for values,
all people with some occupation must be scanned to generate all possible values
for that property, which would again take minutes. However, some compromise
may be possible to reduce this indexing time; one idea is to not materialise val-
ues for properties with a low frequency, where of the 358 properties associated
with :Human for example, only 31 have more than α results; another idea is to
index values for properties independent of the current query, thus potentially
suggesting values that may lead to empty results (e.g., on a query for human
males, suggesting first lady for occupation). For now, we simply accept the longer
indexing time. On disk, the base index takes up 6 GB of space, the properties
index requires 5 MB, while the values index requires 1 GB.

Table 1. Times of all index-creation steps

Process Time (s) Time (hh:mm)

Computing PageRank 15,595 004:20

Creating base indexes 24,756 006:52

Identifying queries to materialise 15,382 004:16

Indexing properties 4,356 001:13

Indexing values 386,304 107:18
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Query Performance Testing: To test online query performance over these
indexes, we created sequential queries simulating user sessions. Each session
starts with τ(person), which offers a lot of results and facet properties; from this
initial interaction, the index returns the top 50 ranked results and facet prop-
erties for all results. The session then randomly selects a property from the top
20 ordered by frequency (ε(p));5 the system must then respond with the list of
values for that property on the full result set. The session continues by selecting
a random value (ζ(p, o)); the system then generates the next results set and list
of facet properties for that result set. This process is iterated until there is only
one result or there is no further interaction possible, at which point the session
terminates.

Query Performance Results: One thousand such sessions were executed. Figure 2
presents the response times for generating results pages with facet properties
(τ and ζ queries), while Fig. 3 presents the response times for selecting the
values for a property (ε queries). These figures show times in milliseconds plotted
against the number of results generated (entities or values, resp.); note that the
x-axis of Fig. 2 is presented in log-scale and the dashed vertical line indicates the
selected value for the α-threshold. In the worst case, a query interaction takes
approximately 3 s (for queries just below α), while value selection is possible
in all cases under 500 ms. To the right of the α line, we see that materialised
queries can be executed in under a second despite large result sizes; without
materialisation, these queries took upwards of 2 min to process.

Data: Please note that we make evaluation data, queries, etc., available at
https://github.com/joseignm/GraFa/tree/master/misc.

Fig. 2. Times to load result pages (τ , ζ) Fig. 3. Times to load facet values (ε)

5 We thus avoid the majority of facet properties with few results, selecting from those
with the most results (and thus those more prominently displayed to users).

https://github.com/joseignm/GraFa/tree/master/misc
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7 User Evaluation

While the previous section establishes performance results for indexing, materi-
alisation and querying, we now present an initial usability study of the GraFa
system. For this, we implemented a prototype of a user interface as a Java servlet
with Javascript enabling interactive client-side features, such as auto-completion.
A demo (for Wikidata) is available at http://grafa.dcc.uchile.cl.

User Study Design: We chose a task-driven user study where we give participants
ten questions in natural language; for this, we selected the questions and question
text from the example queries provided for the Wikidata Query Service (selecting
examples answerable as faceted navigations).6 We list the question text provided
to the user and the expected queries they should generate in Table 2; these reflect
the SPARQL query and its description in the source.

User Study Baseline: In order to establish a baseline for the tasks, we selected the
Wikidata Query Helper (WQH) provided on the official Wikidata SPARQL
Endpoint7; this interface first provides auto-completion on the labels of values
and automatically proposes an associated property. For example, a user typing
‘‘mal’’ may be suggested male organism, male, etc.; upon selecting the latter,
the property sex or gender is automatically selected, though it can be changed
through another auto-completion dialogue. The user can add several property–
value pairs in this manner. Suggestions generated through auto-completion are
not restricted in a manner that assures non-empty results.

Participants and Instructions: We attained 11 volunteers (students of a Semantic
Web course) for a study. Given the question text, we asked the volunteers to use
either GraFa or WQH (switching on every second question) to find the results

Table 2. User study tasks, with question text and expected query to be generated

Question text Expected query

‘‘Plays’’ τ(plays)

‘‘Lakes in Cameroon’’ τ(lake) ∧ ζ(country, Cameroon)

‘‘Lighthouses in Norway’’ τ(lighthouse) ∧ ζ(country, Norway)

‘‘Popes’’ τ(human) ∧ ζ(position held, Pope)

‘‘Women born in Wales’’ τ(human) ∧ ζ(gender, female) ∧ ζ(place-of-birth, Wales)

‘‘Papers about Wikidata’’ τ(scientific article) ∧ ζ(main subject, Wikidata)

‘‘Law & Order episodes’’ τ(TV series episode) ∧ ζ(series, Law&Order)

‘‘Fictional characters from Marvel Universe’’ τ(fictional character) ∧ ζ(from fictional universe,

Marvel Universe)

‘‘People dying by burning’’ τ(human) ∧ ζ(manner of death, death by burning)

‘‘Mosquito species’’ τ(taxon) ∧ ζ(parent-taxon, Culicidae) ∧ ζ(taxon-rank, species)

6 https://wikidata.org/wiki/Wikidata:SPARQL query service/queries/examples;
retr. 2018/04/05.

7 https://query.wikidata.org/; retr. 2018/04/05.

http://grafa.dcc.uchile.cl
https://wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples
https://query.wikidata.org/
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and submit the URL, or click skip if they felt unable to find the results; the next
task would then be loaded. Half of the participants began with GraFa and the
other half with WQH. They were not instructed on how to use either of the two
systems. Afterwards they responded to a brief questionnaire.

User Task Results: We collected results for 55 tasks per system ( 10×11
2 ). Of these,

23
55 ≈ 42% were solved correctly in GraFa, while 37

55 ≈ 67% were solved correctly
in WQH. This was unambiguously a negative result for GraFa. Investigating the
errors further, for GraFa (32 errors), 10 involved users typing questions directly
into the keyword-query text field rather than using type selection as intended; 3
involved selecting incorrect types/facets/values; 19 responses were skipped/left
blank/invalid. On the other hand, for WQH (18 errors), 11 responses selected
incorrect types/facets/values, while 7 were left blank. Through this study we
found a variety of interface issues that we subsequently fixed. We additionally
realised that users had a difficult time starting with a type selection; an example
is ‘‘Popes’’ where users typed ‘‘pope’’ into the GraFa type selection (rather
than ‘‘human’’ or ‘‘person’’); on the other hand, in WQH, typing ‘‘pope’’
in the value selection suggested the value Pope and, upon selection, the correct
property position held. On the other hand, in WQH, users sometimes selected
the incorrect property, where for a query such as Women born in Wales, neither
the value woman nor Wales, when selected, suggests the correct property.

User Questionnaire: After the task, we asked users to answer a brief ques-
tionnaire rating the responsiveness and usability of both systems on a Likert
1–7 scale; users rated GraFa with a mean of 4.5/7 for usability and 4.7/7 for
responsiveness; WQH had an analogous mean rating of 5.5/7 for usability and
6.0/7 for responsiveness. Again in this case WQH scored considerably higher
than GraFa. Regarding responsiveness, with subsequent investigation we found
that the Javascript libraries for auto-completion were creating lag in the client
browser, where we implemented smaller thresholds for suggestions.

Community Questionnaire: Based on the results of this user study, we fixed a
number of interface issues in the system, blocking on the selection of a type or

Table 3. Responses to Wikidata community questionnaire

Statement 1 2 3 4 5 6 7 Mean

The system is useful 0 0 0 2 2 4 1 5.4/7

The system offers a novel way to query Wikidata 0 0 0 1 3 4 1 5.6/7

The system is usable 0 1 1 2 2 1 2 4.8/7

Knowledge of Wikidata is not required 0 1 1 2 3 1 1 4.6/7

Load-times did not affect interactivity 0 0 2 2 2 1 2 4.9/7

Ranking of results is intuitive 0 0 1 2 2 4 0 5.0/7

Ranking of facets is intuitive 0 0 3 1 2 2 1 4.7/7
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value suggestion, separating type/keyword selection in the interface and so forth.
We created a questionnaire that we sent to the Wikidata mailing list asking to
try the GraFa system and then answer a set of 12 questions, where we received
nine responses. The results of the questionnaire are presented in Table 3, where
most responses were moderately positive about the system. We further asked if
they would use the system in future (yes|maybe|no): 4 said yes, while 5 said
maybe. We made some further improvements based on text comments received,
such as to add placeholder examples in the text fields for auto-suggestions.

8 Conclusion

Motivated by the goal of providing users with a faceted interface over Wikidata
– and the lack of current techniques and tools by which this could be achieved –
in this paper, we have presented methods to enable faceted browsing over large-
scale, diverse RDF graphs. A key contribution is our proposed materialisation
strategy, which identifies facet queries that are good candidates for indexing.
With this technique, worst-case response times drop from minutes to seconds
at the cost of increased indexing time. To the best of our knowledge, GraFa
is the only faceted browsing system demonstrated at this level of scale while
filtering suggestions that would lead to empty results. With the current system,
the faceted browser could be updated for Wikidata on a weekly basis.

On the other hand, the results of our usability experiments were mixed:
GraFa was outperformed by the legacy WQH system in our task-driven user
study. Some superficial issues were then fixed, such as blocking auto-complete
fields until a selection is made. Though the results were more negative than
hoped, we also drew more general conclusions, key amongst which is that, in
a diverse graph like Wikidata, users unfamiliar with the dataset may struggle
to select types, properties and values corresponding to their intent (e.g., is a
pope a type or a value?; is fictional character a property or a type?). After some
improvements to the system, a questionnaire issued to the Wikidata community
generated moderately positive results regarding usefulness, novelty, usability, etc.

There are various directions in which this work could be continued. An impor-
tant aspect for improvement is usability, where based on the aforementioned user
study, we conclude that the system should offer more flexible selections; e.g., to
automatically detect that pope is a value, not a type. The system could also be
extended to support more expressive queries, such as ranges on datatype val-
ues, value selections, inverses, nested facets, and so forth. Other features – such
as reasoning – would yield further challenges at the proposed scale. Further-
more, indexing time is currently prohibitive: investigating incremental indexing
schemes would be an important practical contribution. Another important next
step would be performing evaluations for other RDF datasets.

In conclusion, although there are various avenues for future work in terms
of performance, expressiveness and usability, we hope that by enabling faceted
browsing over RDF graphs at new levels of scale, GraFa already makes a sig-
nificant step towards making the Semantic Web more accessible to end users.
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