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1 INTRODUCTION

The Runtime of Randomized Algorithms. Since the early days of computing, randomization has
been an important tool for algorithm design. It is used to obtain an efficient randomized algorithm,
possibly at the cost of sacrificing correctness with low probability. The Rabin-Miller primality
test and Freivalds’ matrix multiplication are prime examples of this principle. Randomization is
also used to accelerate existing deterministic algorithms. Randomly selecting the pivot in Hoare’s
quicksort algorithm lowers the quadratic worst-case runtime to O (N · logN ), where N is the
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size of the input. Furthermore, some problems inherently require randomized solutions, e.g.,
self-stabilization in anonymous distributed systems.
Randomized algorithms are conveniently described by probabilistic programming languages

that (on top of the usual language constructs) offer the possibility of sampling values from a prob-
ability distribution. Sampling can be used in assignments as well as in Boolean guards. The interest
in probabilistic computations has been rapidly growing recently. This is mainly due to their wide
applicability [16]. Randomized algorithms are, e.g., used in security to describe cryptographic con-
structions and security notions. In machine learning, probabilistic programs are used to describe
distribution functions that are analyzed using Bayesian inference.
The runtime of a randomized algorithm is affected by the outcomes of the samplings (aka coin

tosses). Technically speaking, the runtime is a random variable, assuming value t1 with probability
p1, t2 with probability p2, and so on. An important measure is the average or expected runtime∑

i pi ti .
1 In that, one does not average with respect to a distribution of program inputs but rather

with respect to the randomness that is inherent in the algorithm.

Expected Runtimes Are Intricate. Reasoning about the expected runtime of randomized algo-
rithms is subtle and full of nuances. Let us illustrate this by discussing three phenomena of ran-
domized algorithms:

(1) They may have diverging runs but have a finite expected runtime.
(2) They may terminate with probability one but have an infinite expected runtime.
(3) Having a finite expected runtime is not preserved under sequencing.

(1) A single diverging run of an ordinary, i.e., nonprobabilistic, algorithm yields the program to
have an infinite runtime. This is not true for randomized algorithms. They may admit arbitrarily
long and even infinite runs while still having a finite expected runtime. The program

Cgeo : b := 1;

while(b = 1){
b :≈ 1/2 ·〈0〉 + 1/2 · 〈1〉 }

keeps flipping a fair coin until observing the first heads (represented by 0). The programCgeo admits
arbitrarily long runs, since the probability of not seeing a heads in the first n trials is nonzero. This
holds for every n. It even admits a nonterminating run (occurring with probability zero), namely,
the one in which the outcome of all coin flips is tails. The runtime of the programCgeo, however, is
geometrically distributed and therefore its expected runtime is finite: on average, it terminates after
two loop iterations. It is worth mentioning that the decision problem “does a program terminate
with probability one in finite expected time (on all inputs)?” is Π0

3-complete in the arithmetical
hierarchy, and thus strictly harder than the universal halting problem for ordinary programs [27].
(2) The program Cgeo terminates with probability one and its expected time until termination

is finite. For ordinary sequential programs, termination always implies finite runtime. For proba-
bilistic programs this is not always true. Consider the program

Crw : x := 10;

while(x > 0){
x :≈ 1/2 · 〈x−1〉 + 1/2 · 〈x+1〉},

which models a one-dimensional random walk of a particle: starting from position 10, in each step
the particle moves randomly one step to the left or one step to the right, until reaching position 0.

1If the program does not terminate with some probability greater than zero, its expected runtime is infinity.
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The particle reaches position 0 with probability one, but doing so requires infinitely many steps
on average (cf. [26, Chapter 3.7.3]).
(3) In the classical setting, running two programs with finite runtime in a row yields a program

with a finite runtime. For probabilistic programs this closure property breaks down. Consider the
pair of programs

C1 : x := 1; b := 1; C2 : while(x > 0){
while(b = 1){ x := x − 1}
b :≈ 1/2 ·〈0〉 + 1/2 ·〈1〉;
x := 2x }.

As the loop in C1 terminates on average in two iterations, it has a finite expected runtime. From
any initial state in which x is nonnegative, C2 makes x iterations, and thus its expected runtime
is finite too. However, the programC1;C2 has an infinite expected runtime—even though it almost
surely terminates; i.e. it terminates with probability one. This is intuitively due to the fact that the
expected value of x after termination of C1 is infinite and C2 needs x steps to terminate.

Determining Expected Runtimes. Bounds on the expected runtime of randomized algorithms are
typically obtained using classical probability theory, mostly with arguments relying on random
variable expectations or martingales [15, 39]. These runtime bounds are nonetheless obtained par-
tially following an ad hoc reasoning, which, moreover, usually takes for granted nontrivial re-
lationships between the involved random variables. This constitutes a somewhat deficient proof
methodology that often yields incomplete proof arguments. This article proposes an alternative
using formal reasoning as typically used in deductive verification.
A naive approach toward a rigorous, formal reasoning about expected runtimes equips the pro-

gram at hand with a runtime counter, say, rc. The variable rc is initially set to 0 and incremented
for each basic operation that consumes time. The expected value of runtime counter rc is then
obtained using existing verification techniques for randomized algorithms, such as Kozen’s proba-
bilistic propositional dynamic logic (PPDL) [32] or the weakest pre-expectation calculus byMcIver
and Morgan [36]. This approach is, however, unsound as the expected value of counter rc may not
coincide with the expected runtime.
Let us illustrate this by an example: applying the above principle to the certainly diverging

program while(true ){skip} results (assuming skip consumes one time unit) in the program

Cdiv : rc := 0

while(true){
skip; rc := rc + 1}.

PPDL and the weakest pre-expectation calculus would both yield zero as the expected value of rc:
since no run ofCdiv terminates, the average value of rc upon termination is an empty sum, i.e. zero.
However, the program’s expected runtime is infinite as every program run executes a statement
that consumes time infinitely often. This is not just a corner case: in fact, the expected value of
rc may assume an arbitrary positive integer value different from the actual expected runtime.
Consider the program

Chalfdiv : rc := 0;

b :≈ 1/2 ·〈0〉 + 1/2 ·〈1〉;
� := 2k ; // consume 2k time units
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while(� > 0){
� := � − 1; rc := rc + 1};

while (b = 1){
skip; rc := rc + 1}

that first flips a fair coin to set the variable b to either 0 or 1. Afterward, the first while-loop
performs 2k loop iterations before the second while-loop either terminates (if b = 0) or diverges
(if b = 1). The variable rc counts the total number of loop iterations. Using the weakest pre-
expectation calculus (or PPDL), one can show that for positive k , the expected value of rc for
program Chalfdiv is upper bounded by 1/2 · 2�k� + 1/2 · 0 = �k�, although the actual expected run-
time of Chalfdiv is infinite for any k .

The Approach of This Article. The inability of the weakest pre-expectation calculus and PPDL to
soundly reason about expected runtimes, the manifold intricacies in the runtime analyses in the
presence of randomization, and the deficiency of various ad hoc runtime analyses in the litera-
ture necessitate a more rigorous, systematic, and compelling approach for the runtime analysis
of randomized algorithms. This article proposes a technique based on formal program verification.
This technique derives runtime claims from first principles only. It consists of a wp-style calculus
à la Dijkstra [12]. In a similar vein to Dijkstra’s predicate transformers, our wp-style calculus uses
runtime transformers. The core of this calculus is the transformer ert:

ert[C](t ) (σ )

gives the expected runtime of program C when started in initial state σ , under the assumption
that t captures the expected runtime of the computation following C . In particular, the expected
runtime of program C on initial state σ is given by ert[C](0) (σ ), where 0 is the constantly zero
runtime.
Our calculus is defined over a simple probabilistic imperative language with recursive proce-

dures. For most control structures, it is defined in a straightforward compositional manner. The
action of the transformer on guarded loops and recursive procedures is given using fixed-point
techniques. To avoid the tedious reasoning about such fixed points and enhance the calculus’s
usability, we provide invariant-based proof rules that establish bounds on the expected runtime of
loops and of recursive programs.
At the theoretical level, we validate our wp-style calculus in two ways: First, we show that

the calculus corresponds to a simple, intuitive operational model of probabilistic programs based
on Markov chains. Second, we show that the calculus is a conservative extension of Nielson’s
approach for reasoning about the runtime of ordinary, nonprobabilistic programs [41]. On the
more practical side, we use our calculus to perform a formal runtime analysis of a one-dimensional
random walk, the coupon collector’s problem [37], and a Sherwood variant of the binary search
algorithm [35].
We stress two important assets of our approach: First, our calculus for expected runtimes is

amenable to a large degree of automation. For several cases, loop invariants can be synthesized
from previously provided templates and our proof rules allow for mechanical verification of pro-
posed invariants. An implementation of our calculus in the theorem prover Isabelle/HOL has re-
cently been reported [23], certifying all the theoretical results in this article.
A second asset is that our calculus enables determining whether the expected runtime of a

randomized algorithm (for all possible inputs) is finite or not. In combination with almost-sure
termination, this is a very relevant property. To the best of our knowledge, this is the first formal
verification framework that can handle both (universal) almost-sure termination (does a program
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terminate with probability one on every input?) and (universal) positive almost-sure termination
(does a program terminate with probability one in finite expected time on every inputs?).

Main Contributions of this Article. To summarize, this article presents a calculus for reasoning
about the—finite or possibly infinite—expected runtime of randomized algorithms

(1) with a set of invariant-based proof rules for obtaining bounds on the expected runtime of
loops and recursive procedures,

(2) which corresponds to a simple operational program model using Markov chains,
(3) which conservatively extends a calculus [41] for runtime analysis of ordinary programs,

and
(4) which is applied to analyze the runtime of the coupon collector’s problem, a one-

dimensional random walk, and a randomized binary search.

Organization of the Article. Section 2 defines our probabilistic programming language. Section 3
presents the transformer ert and studies its elementary properties. Section 4 presents proof rules
for obtaining upper and lower bounds on the expected runtime of loops. Section 5 shows that
the ert-transformer coincides with the expected runtime in a Markov chain that acts as an oper-
ational program model. Section 6 proves that the ert-transformer is a conservative extension of
Nielson’s approach for obtaining upper bounds on deterministic programs. Section 7 extends the
ert-calculus with recursion. Section 8 establishes a connection between transformer ert and the
weakest precondition semantics of probabilistic programs. Section 9 discusses three case studies
in detail. Section 10 summarizes related work, and Section 11 concludes.
The proofs of the results that do not proceed by a tedious induction on the program structure

are provided in the article body. All inductive proofs as well as the detailed calculations for the
case studies are provided in the appendix. The material presented in this article unifies and extends
[28] and [44].

2 A PROBABILISTIC PROGRAMMING LANGUAGE
FOR RANDOMIZED ALGORITHMS

In this section, we present the probabilistic programming language used throughout the article,
together with its runtime model. For ease of presentation, we treat nonrecursive programs first
and extend our calculus with recursion in Section 7. To model randomized algorithms, we employ
a standard imperative language à la Dijkstra’s Guarded Command Language [12] with two distin-
guished features: We allow distribution expressions in assignments and guards to be probabilistic.
For instance, we allow for probabilistic assignments like

y :≈ Unif[1 . . . x],

which endows variable y with a uniform distribution in the interval [1 . . . x]. Notice that x is
another program variable, so the resulting distribution of y depends on the current program state.
We also allow for a program like

x := 0;

while (p ·〈true〉 + (1−p) ·〈false〉) {
x := x + 1},

which uses a probabilistic loop guard to simulate a geometric distribution with success proba-
bility p; i.e., the loop guard evaluates to true with probability p and to false with the remaining
probability 1−p.
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Formally, the set of probabilistic programs pGCL is given by the grammar

C ::= empty empty program
| skip effectless operation
| halt immediate termination
| x :≈ μ probabilistic assignment
| C;C sequential composition
| if (ξ ) {C} else {C} probabilistic conditional choice
| while (ξ ) {C} probabilistic guarded while-loop

Here x represents a program variable inVar, μ a distribution expression inDExp, and ξ a distribution
expression over the truth values, i.e., a probabilistic guard, inDExp. We assume distribution expres-
sions in DExp to represent discrete probability distributions with a (possibly infinite) support of
total probability mass 1. Let p1·〈a1〉 + · · · + pn ·〈an〉 denote the distribution expression that assigns
probability pi to ai . For instance, the distribution expression 1/2 ·〈true〉 + 1/2 ·〈false〉 represents the
toss of a fair coin. Deterministic expressions over program variables such as x − y or x − y > 8 are
special instances of distribution expressions; they are understood as Dirac probability distributions
that assign the total probability mass, i.e., one, to a single point.
To describe the effect of the different language constructs, we use some preliminaries. A program

state σ is a mapping from program variables to values in Val. Let

Σ � {σ | σ : Var → Val}

be the set of all program states. We assume an interpretation function � · � : DExp → (Σ →
D (Val)) for distribution expressions, with D (Val) being the set of discrete probability distribu-
tions over Val. For μ ∈ DExp, �μ� maps each program state to a probability distribution of values.
Let �μ : v� be a shorthand for the function mapping each program state σ to the probability that
distribution �μ�(σ ) assigns to value v , i.e.,

�μ : v�(σ ) � Pr�μ�(σ ) (v ),

where Pr denotes the probability operator on distributions over values.
The effect of pGCL program constructs and their assumed timing is as follows:

• empty has no effect and its execution consumes no time.
• skip has also no effect but consumes, in contrast to empty, one unit of time.
• halt aborts any further program execution and consumes no time.
• x :≈μ is a probabilistic assignment that samples a value from �μ� and assigns it to variable

x . The sampling and assignment consume (altogether) one unit of time.
• C1;C2 is the sequential composition of programsC1 andC2; i.e. firstC1 is executed, thenC2.
The composition itself consumes no additional time.

• if (ξ ) {C1} else {C2} is a probabilistic conditional branching: with probability �ξ : true�
program C1 is executed, whereas with probability �ξ : false� = 1 − �ξ : true� program C2

is executed. Evaluating (or more rigorously, sampling a value from) the probabilistic guard
requires an additional unit of time.

• while (ξ ) {C} is a probabilistic while loop: with probability �ξ : true� the loop body C is
executed followed by a recursive execution of the loop, whereas with probability �ξ : false�
the loop terminates immediately. As for conditionals, each evaluation of the guard consumes
one unit of time.

Alternative Runtime Models. We stress that the above runtime model is a design decision for the
sake of concreteness. All our development can be easily adapted to capture alternative models.
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These include, for instance, the model where only the number of assignments in a program run
or the model where only the number of loop iterations are of relevance. We can also capture more
fine-grained models, where for instance the runtime of an assignment depends on some notion of
size of the distribution expression being sampled.

Example 2.1 (Race between tortoise and hare). To illustrate the use of our programming language,
consider the following program adopted from [9]:

h :≈ 0; t :≈ 30;

while (h ≤ t ) {

if
(
1/2 ·〈true〉 + 1/2 ·〈false〉

)
{

h :≈ h + Unif[0 . . . 10] }
else {empty};
t :≈ t + 1 }.

It models a race between a tortoise and a hare; the variables h and t represent their respective po-
sitions. The tortoise starts with a lead of 30 and in each round (i.e., in each loop iteration) advances
one step forward. The hare with probability 1/2 advances a random number of steps between 0 and
10 (governed by a uniform distribution) and with the remaining probability remains still. The race
ends when the hare passes the tortoise.
Regarding the runtime, the program requires two units of time for the initial assignments. In

every loop iteration, the program consumes either three or four units of time: it always takes one
unit of time to evaluate the loop guard, evaluate the probabilistic conditional, and update variable
t , respectively. If the probabilistic conditional is evaluated to true, an additional unit of time is
consumed to update the value of variable h. 


We conclude this section by fixing some notational conventions. To keep our program notation
consistent with standard usage, we write x := μ instead of x :≈ μ whenever μ represents a Dirac
distribution given by a deterministic expression over program variables. For instance, in the pro-
gram in Example 2.1 above, we shall write t := t + 1 instead of t :≈ t + 1. Likewise, when ξ is a
probabilistic guard given as a deterministic Boolean expression over program variables, we use
�ξ � to denote �ξ : true� and �¬ξ � to denote �ξ : false�. For instance, we write �b = 0� instead of
�b = 0 : true�.

3 A CALCULUS OF EXPECTED RUNTIMES

Our goal is to associate to any program C a function that maps each state σ to the average or
expected runtime of executing C on initial state σ . To model these functions, we use the function
space of runtimes:

T �
{
t ��� t : Σ → R∞≥0

}
.

Here, R∞≥0 represents the set of nonnegative real numbers extended with ∞. Let k denote the
constant runtime λσ •k for k ∈ R∞≥0.
We express the expected runtime of programs in a continuation-passing style by means of the

transformer

ert[ · ] : pGCL → (T→ T).

Concretely, ert [C] (t ) (σ ) gives the expected runtime of executing program C on initial state σ
assuming that t captures the runtime of the computation that follows C . The function t is usually
referred to as the continuation and we can think of it as being evaluated in the final states that are
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Table 1. Rules for Defining the Expected Runtime Transformer ert

C ert [C] (t )

empty t

skip 1 + t

halt 0

x :≈ μ 1 + λσ • E�μ�(σ ) (λv• t[x/v](σ ))

C1;C2 ert[C1](ert[C2](t ))

if (ξ ) {C1} else {C2} 1 + �ξ : true� · ert[C1](t ) + �ξ : false� · ert[C2](t )

while (ξ ) {C ′} lfpX · 1 + �ξ : false�• t + �ξ : true� · ert[C ′](X )

1 is the constant runtime λσ • 1; Eμ (h) � ∑
v Prμ (v ) · h (v ) represents the expected value of (random vari-

able) h w.r.t. distribution μ ; t [x/v] � λσ • t (σ [x/v]), where σ [x/v] is the state obtained by updating in

σ the value of x to v ; finally lfp X • F (X ) represents the least fixed point of transformer F : T→ T with
respect to the pointwise ordering on T.

reached upon termination ofC . Thus, ert [C] (0) (σ ) gives the plain expected runtime of executing
program C on initial state σ .
The transformer ert is defined by induction on the structure ofC following the rules in Table 1.

The rules correspond to the runtime model introduced in Section 2. That is, ert[C](0) captures the
expected number of assignments, guard evaluations, and skip statements. Most rules in Table 1
are self-explanatory. ert[empty] behaves as the identity since empty does not modify the program
state and its execution consumes no time. On the other hand, ert[skip] adds one unit of time to any
continuation since this is the time required by the execution of skip. ert[halt] yields always the
constant runtime 0 since halt aborts any subsequent program execution (making their runtime
irrelevant) and consumes no time. The definition of ert on random assignments is more involved:
ert[x :≈ μ](t ) (σ ) = 1 +

∑
v Pr�μ�(σ ) (v ) · t (σ [x/v]) is obtained by adding one unit of time (due to

the distribution sampling and assignment of its outcome) to the sum of the runtime of each possible
subsequent execution, weighted according to their probabilities.
As for the composite statements, ert[C1;C2] applies ert[C1] to the expected runtime obtained

from the application of ert[C2] to the continuation t . ert[if (ξ ) {C1} else {C2}] adds one unit of
time (for the guard evaluation) to the weighted sum of the runtime of the two branches.
The ert of a loop is given as the least fixed point (with respect to the pointwise order in T) of a

runtime transformer F : T→ T, defined in terms of the runtime of the loop body. To guarantee the
existence of such a fixed point, we use a standard argument (see, e.g., [50, Ch. 5]): we endow Twith
the structure of an ω-complete partial order (ω-cpo for short) and we prove that F is continuous.
Since the transformer F is used repeatedly in the rest of our development, we use the following
notation:

Definition 3.1 (Characteristic functional of a loop). Given loop while (ξ ) {C} and runtime t ∈ T,
let

F
〈ξ ,C〉
t : T→ T, X �→ 1 + �ξ : false� · t + �ξ : true� · ert[C](X )

be the characteristic functional of the loop with respect to (continuation) t . 


When the loop is understood from the context, we simply write Ft for F
〈ξ ,C〉
t . Using this defini-

tion, the ert of a loop can be recast as

ert[while (ξ ) {C}](t ) = lfp F
〈ξ ,C〉
t .
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The two steps that we take to guarantee the existence of lfp F
〈ξ ,C〉
t are as follows: First, we

endow T with the structure of an ω-cpo: runtimes are ordered pointwise, i.e., t1 � t2 if and only if
t1 (σ ) ≤ t2 (σ ) for all σ ∈ Σ; the supremum of ω-chains is also defined pointwise, i.e., for t1 � t2 �
· · · , supn tn � λσ • supn tn (σ ); finally, the bottom element of the ω-cpo is the constant runtime 0.

Second, we prove that the characteristic functional F
〈ξ ,C〉
t is continuous. The Kleene Fixed Point

Theorem (Theorem A.3) ensures the existence of lfp F
〈ξ ,C〉
t . It follows that the action of ert on

loops is well defined. The continuity of F
〈ξ ,C〉
t follows immediately from the continuity of ert[C],

established below.

Lemma 3.2 (Continuity of ert). For every program C ∈ pGCL, ert[C] : T→ T is continuous;

i.e., for every ω-chain of runtimes t0 � t1 � · · · we have

ert[C]
(
supn tn

)
= supn ert[C](tn ).

Proof. By induction on the structure of C; see Appendix B.1. �

We now illustrate the use of the ert transformer by analyzing the runtime of a program that
simulates a truncated geometric distribution.

Example 3.3 (Truncated geometric distribution). Program Ctrunc repeatedly flips a fair coin until
observing the first heads (represented by true in the probabilistic guards) or completing the second
unsuccessful trial:

Ctrunc : if
(
1/2 ·〈true〉 + 1/2 ·〈false〉

)
{

succ := true }
else {

if
(
1/2 ·〈true〉 + 1/2 ·〈false〉

)
{

succ := true }
else {

succ := false } }.
The calculation of the expected runtime ert[Ctrunc](0) of the program goes as follows:

ert[Ctrunc](0) = 1 + 1
2 · ert[succ := true](0)

+ 1
2 · ert[if (. . .) {succ := true} else {succ := false}](0)

= 1 + 1
2 · ert[succ := true](0)

+ 1
2 ·

(
1 + 1

2 · ert[succ := true](0) + 1
2 · ert[succ := false](0)

)

= 1 + 1
2 · (1 + 0) + 1

2 ·
(
1 + 1

2 · (1 + 0) + 1
2 · (1 + 0)

)
= 5

2 .

Therefore, the execution of Ctrunc takes, on average, 2.5 units of time. 


Note that the calculation of the expected runtime in the example above is straightforward as the
program is loop-free. Computing the runtime of loops requires the calculation of least fixed points,
which is generally not feasible in practice. To circumvent this, in the next section we present proof
rules based on loop invariants.
The ert transformer possesses several algebraic properties:

Theorem 3.4 (Basic properties of the ert transformer). For any program C ∈ pGCL, any

constant runtime k with k ∈ R≥0 and any runtimes t , t ′ ∈ T, it holds:

Journal of the ACM, Vol. 65, No. 5, Article 30. Publication date: August 2018.



30:10 B. L. Kaminski et al.

Monotonicity: t � t ′ implies ert[C](t ) � ert[C](t ′);

Constant propagation: ert[C](k + t ) = k + ert[C](t ), provided C is halt–free;

Preservation of∞: ert[C](∞) = ∞, provided C is halt–free.

Proof. Monotonicity follows from continuity (see Lemma 3.2). For the proof of constant propa-
gation, see Appendix B.2. Finally, preservation of infinity follows from monotonicity and constant
propagation since together they entail

ert[C](∞) � ert[C](k) = k + ert[C](0) � k

for every k ∈ R≥0. This immediately yields ert[C](∞) = ∞. �

The ert transformer is not linear in general, but it satisfies the weaker properties of subadditivity
and subscalability, which are discussed in Section 8.

4 EXPECTED RUNTIME OF LOOPS

Asmentioned earlier, reasoning about the runtime of loop-free programs involves mostly syntactic
reasoning. The runtime of a loop, however, is given in terms of a least fixed point. It can thus be
obtained by fixed-point iteration, but the fixed point need not be reached within a finite number
of iterations. To overcome this problem, we study invariant-based proof rules for approximating
the runtime of loops.
We present two families of proof rules that differ in the kind of invariants they build upon. In

Section 4.1, we present a proof rule that rests on the presence of an invariant approximating the
entire runtime of a loop in a global manner, while in Section 4.2 we present two proof rules that
each rely on a parameterized invariant that approximates the runtime of a loop in an incremental
fashion. In Section 4.3, we discuss how to tighten the runtime bounds yielded by any of these proof
rules.

4.1 Proof Rule Based on Global Invariants

Our first proof rule allows for bounding the expected runtime of loops from above and rests on
the notion of upper invariants:

Definition 4.1 (Upper invariants). Runtime I ∈ T is an upper invariant of loop while (ξ ) {C} with
respect to t if and only if

F
〈ξ ,C〉
t (I ) � I . 


Such an upper invariant readily establishes an upper bound of the loop’s runtime:

Theorem 4.2 (Upper Bounds from Upper Invariants). If I ∈ T is an upper invariant of

while (ξ ) {C} with respect to t , then

ert[while (ξ ) {C}](t ) � I .

Proof. The theorem follows by an application of Park’s Theorem (Theorem A.4), which in our

case, given that F
〈ξ ,C〉
t is continuous (see Lemma 3.2), states that

F
〈ξ ,C〉
t (I ) � I implies lfp F

〈ξ ,C〉
t � I .

The left-hand side of the implication is equivalent to I being an upper invariant, while the right-
hand side is equivalent to ert[while (ξ ) {C}]( f ) � I . �
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Example 4.3 (Geometric distribution). Consider the loop

Cgeo : while (c = 1) {
c :≈ 1/2 · 〈0〉 + 1/2 · 〈1〉 }

whose runtime is geometrically distributed. Its characteristic functional with respect to continua-
tion t = 0 is

F0 (X ) = 1 + �c � 1� · 0 + �c = 1� · ert[c :≈ 1/2 · 〈0〉 + 1/2 · 〈1〉](X ).

By the calculations below, we verify that I = 1 + �c = 1� · 4 is an upper invariant of the loop (with
respect to 0):

F0 (I ) = 1 + �c � 1� · 0 + �c = 1� · ert[c :≈ 1/2 · 〈0〉 + 1/2 · 〈1〉](I )

= 1 + �c = 1� ·
(
1 + 1

2 · I [c/0] +
1
2 · I [c/1]

)
= 1 + �c = 1� ·

(
1 + 1

2 · (1 + �0 = 1� · 4︸������������︷︷������������︸
= 1

) + 1
2 · (1 + �1 = 1� · 4︸������������︷︷������������︸

= 5

)
)

= 1 + �c = 1� · 4 = I � I .

By applying Theorem 4.2, we obtain

ert
[
Cgeo

]
(0) � 1 + �c = 1� · 4.

In words, the expected runtime of Cgeo is at most 1 + 4 = 5 from any initial state where c = 1 and
at most 1 + 0 = 1 from any other state. 


Notice that if the loop body is itself loop-free, as in the above example, verifying that some I ∈ T
is an upper invariant is usually fairly easy. Inferring the invariant, in contrast, is one of the most
involved parts of the verification effort.
The invariant-based technique to reason about the runtime of loops presented in Theorem 4.2 is

complete in the sense that there always exists an upper invariant that establishes the exact runtime
of the loop at hand:

Theorem 4.4. There exists an upper invariant I of while (ξ ) {C} with respect to t such that

ert[while (ξ ) {C}](t ) = I .

Proof. It suffices to show that ert[while (ξ ) {C}](t ) itself is an upper invariant of the loop.

Since ert[while (ξ ) {C}](t ) = lfp F
〈ξ ,C〉
t , this amounts to showing that

F
〈ξ ,C〉
t

(
lfp F

〈ξ ,C〉
t

)
� lfp F

〈ξ ,C〉
t ,

which holds by definition of lfp. �

Intuitively, the proof of this theorem shows that ert[while (ξ ) {C}](t ) itself is the tightest upper
invariant that the loop admits.

4.2 Proof Rules Based on Parameterized Invariants

We now study a second family of proof rules that builds on the notion ofω-invariants for bounding
the runtime of loops from both above and below.

Definition 4.5 (ω-Invariants). Letn ∈ N. The parameterized runtime In ∈ T is a lowerω-invariant

of loop while (ξ ) {C} with respect to t if and only if

I0 � F
〈ξ ,C〉
t (0) and In+1 � F

〈ξ ,C〉
t (In ), for all n ≥ 0.
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Dually, In is an upper ω-invariant if and only if

F
〈ξ ,C〉
t (0) � I0 and F

〈ξ ,C〉
t (In ) � In+1, for all n ≥ 0. 


Intuitively, a lower (upper) ω-invariant In represents a lower (upper) bound for the expected
runtime of those program runs that finish within n+1 iterations, weighted according to their prob-
abilities. Therefore, we can use the asymptotic behavior of In to approximate from below (above)
the expected runtime of the entire loop.

Theorem 4.6 (Bounds from ω-invariants).

(1) If In is a lower ω-invariant of loop while (ξ ) {C} with respect to t and the limit limn→∞ In
exists2, then

ert[while (ξ ) {C}](t ) � lim
n→∞

In .

(2) If In is an upper ω-invariant of loop while (ξ ) {C} with respect to t and the limit limn→∞ In
exists, then

ert[while (ξ ) {C}](t ) � lim
n→∞

In .

Proof. We prove only the case of lower ω-invariants since the other case follows by a dual
argument. Let Ft be the characteristic functional of the loop with respect to t and let Fn

t denote
the n-fold composition of Ft with itself, i.e., the function Ft ◦ . . . ◦ Ft (n times). By the Kleene
Fixed Point Theorem (Theorem A.3 in Appendix A), ert[while (ξ ) {C}](t ) = supn Fn

t (0), and since
F 0t (0) � F 1t (0) � · · · forms an ω-chain, by the Monotone Sequence Theorem (Theorem A.2 in Ap-
pendix A), supn Fn

t (0) = limn→∞ Fn
t (0). Then the result follows from showing that Fn+1

t (0) � In .
We prove this by induction on n. The base case (i.e., n = 1) holds, since F 1t (0) � I0 holds by the
assumption that In is a lower ω-invariant. For the inductive case we reason as follows:

Fn+2
t (0) = Ft

(
Fn+1

t (0)
)
� Ft (In ) � In+1.

Here the first inequality follows by I.H. and monotonicity of Ft (recall that ert[C] is mono-
tonic by Theorem 3.4), while the second inequality holds by the assumption that In is a lower
ω-invariant. �

Example 4.7 (Lower bounds for Cgeo). Reconsider loop Cgeo from Example 4.3. We use Theo-
rem 4.6 (1) to show that 1 + �c = 1� · 4 is also a lower bound of its runtime. Let us first show that
In = 1 + �c = 1� · (4 − 3/2n ) is a lower ω-invariant of the loop with respect to 0:

F0 (0) = 1 + �c � 1� · 0 + �c = 1� · ert[c :≈ 1/2〈0〉 + 1/2〈1〉](0)

= 1 + �c = 1� ·
(
1 + 1

2 · 0[c/0] + 1
2 · 0[c/1]

)
= 1 + �c = 1� · 1 = 1 + �c = 1� ·

(
4 − 3/20

)
= I0 � I0

F0 (In ) = 1 + �c � 1� · 0 + �c = 1� · ert[c :≈ 1/2〈0〉 + 1/2〈1〉](In )

= 1 + �c = 1� ·
(
1 + 1

2 · In[c/0] +
1
2 · In[c/1]

)
= 1 + �c = 1� ·

(
1 + 1

2 · (1 + 0) + 1
2 ·

(
1 +

(
4 − 3

2n

)))
= 1 + �c = 1� ·

(
4 − 3

2n+1

)
= In+1 � In+1.

2The limit limn→∞ In is to be understood pointwise on R∞≥0, i.e., limn→∞ In = λσ • limn→∞ In (σ ) and limn→∞ In (σ ) = ∞
is considered a valid value.
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Then from Theorem 4.6 (1) we obtain

ert
[
Cgeo

]
(0) � lim

n→∞

(
1 + �c = 1� ·

(
4 − 3

2n

))
= 1 + �c = 1� · 4.

Combining this result with the upper bound ert
[
Cgeo

]
(0) � 1 + �c = 1� · 4 we had established in

Example 4.3, we conclude that 1 + �c = 1� · 4 is the exact runtime ofCgeo. Observe, however, that
the above calculations show that In is both a lower and an upper ω-invariant (exact equalities
F0 (0) = I0 and F0 (In ) = In+1 hold). Then we can apply Theorem 4.6 (1) and 4.6 (2) simultaneously
to derive the exact runtime without having to resort to the result from Example 4.3.

Invariant Synthesis. In order to obtain invariant In = 1 + �c = 1� · (4 − 3/2n ), we used template
In = 1 + �c = 1� · an and observed that under this template the definition of lower ω-invariant
reduces to a0 ≤ 1, an+1 ≤ 2 + 1

2an , with solution an = 4 − 3/2n . 


Example 4.8 (Almost-sure termination at infinite expected runtime). Recall the program from the
introduction that had an infinite expected runtime, despite being the concatenation of two pro-
grams with finite expected runtime:

C : 1: x := 1; b := 1;

2: while (b = 1) {b :≈ 1/2〈0〉 + 1/2〈1〉; x := 2x };
3: while (x > 0) {x := x − 1}

Now we apply Theorem 4.6 to formally analyze its runtime. We show that ert[C](0) � ∞. In the
course of doing so, we use Ci to denote the ith line of C . Since

ert[C](0) = ert[C1](ert[C2](ert[C3](0))),

we start by analyzing the runtime of the loop C3. Using the lower ω-invariant

Jn = 1 + �0 < x < n� · 2x + �x ≥ n� · (2n − 1),

we conclude that ert[C3](0) � 1 + �x > 0� · 2x = limn→∞ Jn . Next we show that

ert[C2](1 + �x > 0� · 2x ) � 1 + �b � 1� ·
(
1 + �x > 0� · 2x

)
+ �b = 1� ·

(
7 + �x > 0� · ∞

)
by means of the lower ω-invariant

In = 1 + �b � 1� ·
(
1 + �x > 0� · 2x

)
+ �b = 1� ·

(
7 − 5

2n + n · �x > 0� · 2x
)
.

Let F be the characteristic functional of loopC2 with respect to 1 + �x > 0� · 2x . The calculations
to establish that In is a lower ω-invariant go as follows:

F (0) = 1 + �b � 1� ·
(
1 + �x > 0� · 2x

)
+ �b = 1� ·

(
1 + 1

2 · (1 + 0[x ,b/2x , 0]) + 1
2 · (1 + 0[x ,b/2x , 1])

)
= 1 + �b � 1� ·

(
1 + �x > 0� · 2x

)
+ �b = 1� ·

(
1 + 1

2 · 1 + 1
2 · 1

)
= 1 + �b � 1� ·

(
1 + �x > 0� · 2x

)
+ �b = 1� · 2 = I0 � I0
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F (In ) = 1 + �b � 1� ·
(
1 + �x > 0� · 2x

)
+ �b = 1� ·

(
1 + 1

2 · (1 + In[x ,b/2x , 0]) +
1
2 · (1 + In[x ,b/2x , 1])

)
= 1 + �b � 1� ·

(
1 + �x > 0� · 2x

)
+ �b = 1� ·

(
1 + 1

2 · (3 + �2x > 0� · 4x ) + 1
2 ·

(
9 − 5

2n + n · �2x > 0� · 4x
))

= 1 + �b � 1� ·
(
1 + �x > 0� · 2x

)
+ �b = 1� ·

(
7 − 5

2n+1
+ (n+1) · �x > 0� · 2x

)
= In+1 � In+1.

Now we can complete the runtime analysis of program C:

ert[C](0) = ert[C1](ert[C2](ert[C3](0)))

� ert[C1]
(
1 + �b � 1� ·

(
1 + �x > 0� · 2x

)
+ �b = 1� ·

(
7 + �x > 0� · ∞

))
= ert[x := 1]

(
ert[b := 1]

(
1 + �b � 1� ·

(
1 + �x > 0� · 2x

)
+ �b = 1� ·

(
7 + �x > 0� · ∞

)))
= ert[x := 1](8 + �x > 0� · ∞) = 8 +∞ = ∞.

Overall, we obtain that the expected runtime of program C is infinite even though it terminates
with probability one. Notice furthermore that both subprograms C2 and C3 have finite expected
runtimes since

ert[C2](0) = 1 + �b = 1� · 4 and ert[C3](0) = 1 + �x > 0� · 2x .

Invariant Synthesis. In order to synthesize the ω-invariant In of loop C2, we propose the tem-
plate In = 1 + �b � 1� · (1 + �x > 0� · 2x ) + �b = 1� · (an + bn · �x > 0� · 2x ) and from the defi-
nition of lowerω-invariants we obtain a0 ≤ 2, an+1 ≤ 7/2 + 1/2 · an and b0 ≤ 0, bn+1 ≤ 1 + bn . These
recurrences admit solutions an = 7−5/2n and bn = n. 


Just like the proof rule based on upper invariants, the proof rules based on ω-invariants are
complete too: given loop while (ξ ) {C} and runtime t , it is enough to consider the ω-invariant
In = Fn+1

t (0), where Fn
t is defined as in the proof of Theorem 4.6 to yield the exact runtime

ert[while (ξ ) {C}](t ) from an application of Theorem 4.6.We formally capture this result bymeans
of the following theorem:

Theorem 4.9. There exists a sequence In that is both a lower and an upper ω-invariant of

while (ξ ) {C} with respect to t , such that

ert[while (ξ ) {C}](t ) = lim
n→∞

In .

Theorem 4.9 together with Theorem 4.4 shows that the set of invariant-based proof rules pre-
sented in this section are complete. Next we study how to refine invariants to make the bounds
that these proof rules yield more precise.

4.3 Refinement of Bounds

An important property of both upper and lower bounds of the runtime of loops is that they can be
easily refined by repeated application of the characteristic functional. This works as follows. Ifu is

an upper bound of ert[while (ξ ) {C}](t ) and F
〈ξ ,C〉
t (u) � u, then F

〈ξ ,C〉
t (u) is also an upper bound
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at least as precise as u. Dually, if l is a lower bound and F
〈ξ ,C〉
t (l ) � l , then F

〈ξ ,C〉
t (l ) is also a lower

bound at least as precise as l . Formally, we have the following theorem:3

Theorem 4.10 (Refinement of bounds).

(1) If ert[while (ξ ) {C}](t ) � u and F
〈ξ ,C〉
t (u) � u, then ert[while (ξ ) {C}](t ) � F

〈ξ ,C〉
t (u) �

u .
(2) If l � ert[while (ξ ) {C}](t ) and l � F

〈ξ ,C〉
t (l ), then l � F

〈ξ ,C〉
t (l ) � ert[while (ξ ) {C}](t ).

Proof. We prove the first case only, as the proof for lower bounds is analogous. If u is an upper

bound of ert[while (ξ ) {C}](t ), then lfp F
〈ξ ,C〉
t � u. By the monotonicity of F

〈ξ ,C〉
t (recall that ert is

monotonic by Theorem 3.4) and from F
〈ξ ,C〉
t (u) � u we obtain

ert[while (ξ ) {C}](t ) = lfp F
〈ξ ,C〉
t = F

〈ξ ,C〉
t (lfp F

〈ξ ,C〉
t ) � F

〈ξ ,C〉
t (u) � u,

which means that F
〈ξ ,C〉
t (u) is also an upper bound, possibly tighter than u. �

Notice that if I is an upper invariant of while (ξ ) {C}, then I fulfills all necessary conditions of
Theorem 4.10. In practice, Theorem 4.10 provides a means of iteratively improving the precision
of bounds yielded by Theorems 4.2 and 4.6. For instance, for upper invariant I we have

ert[while (ξ ) {C}](t ) � · · · � F
〈ξ ,C〉
t

(
F
〈ξ ,C〉
t (I )

)
� F

〈ξ ,C〉
t (I ) � I .

If In is an upper (lower, respectively) ω-invariant, applying Theorem 4.10 requires checking that

F
〈ξ ,C〉
t (L) � L (and F

〈ξ ,C〉
t (L) � L, respectively), where L = limn→∞ In . This proof obligation can be

discharged by showing that In forms an ω-chain, i.e., that In � In+1 for all n ∈ N.
This concludes our presentation of the ert-calculus for pGCL programs. In the next sections, we

validate the calculus twofold. In Section 5, we show that the calculus corresponds to an intuitive
operational model of pGCL programs based on Markov chains. Section 6 shows in detail that
the ert-calculus is a conservative extension of Nielson’s approach—basically an adaptation of
Hoare triples—for obtaining upper bounds on the runtime of ordinary, i.e., nonprobabilistic, pro-
grams.

5 AN OPERATIONAL MODEL FOR EXPECTED RUNTIMES

We prove the soundness of the expected runtime transformer with respect to a simple operational
model for our probabilistic programming language. This model is defined in terms of a reward
Markov chain. We first briefly recall all essential notions. For a more comprehensive treatment,
see [2, Ch. 10].
A discrete-time Markov chain (MC, for short) is a tupleM = (S,P, sinit , rew), whereS is a count-

able, nonempty set of control states; P : S × S → [0, 1] is a transition probability function such that
for all states s ∈ S, ∑

s ′ ∈S
P(s, s ′) = 1;

sinit ∈ S is the initial state; and rew : S → R≥0 is a reward function. Intuitively, for each pair of
states s, s ′, the transition probability function specifies the probability P(s, s ′) to take a transition

from s to s ′. We often write s
p
−→ s ′ instead of P(s, s ′) = p. Our operational model captures the

runtime of probabilistic programs in terms of rewards. Thus, computing expected rewards of MCs
along a path is essential. Formally, a path in an MC M is a finite sequence π = s1 . . . sn such

3A reader familiar with abstract interpretation will recognize this as applying a widening or narrowing step.
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that P(si , si+1) > 0 for each 1 ≤ i < n. The set of all paths inM (starting in state s) is denoted by
Paths(M) (Paths(M, s ). Moreover, given a set of target states T , we define the set of all paths
starting in state s that reach a state in T as Paths(M, s,T ) = Paths(M, s ) ∩ (S \ T )�T . For a
path π = s1 . . . sn , the cumulative reward of π and the probability of π are given by

rew (π ) �
n∑

k=1

rew (sk ) and P(π ) �
n−1∏
k=1

P(sk , sk+1).

With these notions readily available, we can define the expected reward of an MCM eventually
reaching a set of target states from its initial state.

Definition 5.1 (Expected rewards over MCs). Let M = (S,P, sinit , rew) be a Markov chain and
T ⊆ S a nonempty set of target states. The expected reward of M eventually reaching T from
sinit is given by

ExpRewM (T ) �
∑

π ∈Paths(M,sinit ,T )

P(π ) · rew (π )

if T is reached almost surely from sinit , i.e., if∑
π ∈Paths(M,sinit ,T )

P(π ) = 1.

Otherwise, we set ExpRewM (T ) � ∞.
If T = {s} is a singleton, we often write ExpRewM (s ) instead of ExpRewM ({s}). We now turn

to our operational model of probabilistic programs. For simplicity, we assume a canonical labeling
for each program statement C ∈ pGCL. We collect the labels used in a given program C in Lab∗,
including a special symbol ↓ to denote successful program termination. These labels will—together
with the set of program states Σ—form the state space of our operational model. Furthermore, we
employ the following auxiliary functions between program statements and labels:

• init : pGCL → Lab∗ provides the label corresponding to the beginning of a program.
• stmt : Lab∗ → (pGCL ∪ {↓}) yields the statement associated with a program label.
• first, second : Lab∗ → Lab∗ give the first and second successor of a program label. If no such
successor exists, we define first(�) = ↓ and second(�) = ↓, respectively.

Example 5.2. Consider the following program C where each statement is annotated with its
canonical program label:

C : while
(
[1/2 ·〈true〉 + 1/2 ·〈false〉]1

)
{

[succ := true]2

};
[succ := false]3 .

Thus, Lab∗ = {↓, 1, 2, 3}. The definition of the auxiliary functions is straightforward:
init(C ) = 1 stmt(1) = while (. . .) {succ := true} first(1) = 2 second(1) = 3

stmt(2) = succ := true first(2) = 1 second(2) = ↓
stmt(3) = succ := false first(3) = ↓ second(3) = ↓
stmt(↓) = ↓ first(↓) = ↓ second(↓) = ↓.

Definition 5.3 (MC of a pGCL program). For initial state σ0 ∈ Σ and t ∈ T, the operational Markov

chain of C ∈ pGCL is given byMt
σ0
�C� = (S,P, sinit, rew), where:
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Fig. 1. Rules for the transition probability function of operational MCs.

Table 2. The Reward Function rew : S → R≥0 of Operational MCs

s stmt(�) rew(s )

〈�,σ 〉 ↓ t (σ )

〈�,σ 〉 skip, x :≈ μ, if (ξ ) {C1} else {C2}, 1

or while (ξ ) {C}
〈�,σ 〉 empty, halt 0

〈 sink 〉 0

• S = {〈�,σ 〉 | � ∈ Lab∗, σ ∈ Σ} ∪ {〈 sink 〉},
• the transition probability function P is given by the rules in Figure 1,
• sinit = 〈init(C ),σ0〉, and
• the reward function rew : S → R≥0 is defined according to Table 2. 


Most of the rules in Figure 1 defining the transition probability function of a program’s MC are
self-explanatory. As an example, consider the following rule for while loops:

stmt(�) = while (ξ ) {C} �ξ : true�(σ ) = p > 0 first(�) = �′

〈�,σ 〉
p
−→ 〈�′,σ 〉

[while−true].

To apply this rule, we first have to determine the probability p of the loop’s guard being true. If
p > 0, then the MC contains a transition to move with probability p from its current state to the
first statement contained in the loop’s body, i.e., first(�). Analogously, by the rule [while−false],
there is a transition to leave the loop, i.e., move to second(�), with probability 1−p, the likelihood
of the guard being false.
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Fig. 2. The operational MC ExpRewMt
σ �Ctrunc� (〈 sink 〉) corresponding to the truncated geometric distribu-

tion. For each state, the corresponding reward is provided in gray.

Let us explain the difference between state 〈 sink 〉 and states of the form 〈↓,σ 〉. The state 〈 sink 〉
is reached after either successful program termination or premature halting; states of the form
〈↓,σ 〉 are reached only upon successful program termination. After halting a program run, the
MC immediately evolves to the sink state (see rule [halt] in Figure 1). Note that the continuation
t ∈ T of a program contributes to the cumulative reward to reach the sink state only upon states
of the form 〈↓,σ 〉 (see first row of Table 2).

Example 5.4 (MC for truncated geometric distribution). Recall the probabilistic program Ctrunc

from Example 3.3 together with its canonical labeling:

Ctrunc : if
(
[1/2 ·〈true〉 + 1/2 ·〈false〉]1

)
{[succ := true]2} else {

if
(
[1/2 ·〈true〉 + 1/2 ·〈false〉]3

)
{[succ := true]4}

else {[succ := false]5}
}.

Figure 2 depicts the MCMt
σ �Ctrunc� for an initial program state σ ∈ Σ and an arbitrary contin-

uation t ∈ T. Here labeled edges denote the value of the transition probability function for the
respective states, while the reward of each state is provided in gray next to the state. To improve
readability, edge labels are omitted if the probability of a transition equals one.
A brief inspection of Figure 2 reveals that Mt

σ �Ctrunc� contains three finite paths reaching
〈 sink 〉 from initial state 〈1,σ 〉:

π1 = 〈1,σ 〉〈2,σ 〉〈↓,σ [succ/true]〉〈 sink 〉,
π2 = 〈1,σ 〉〈3,σ 〉〈4,σ 〉〈↓,σ [succ/true]〉〈 sink 〉, and
π3 = 〈1,σ 〉〈3,σ 〉〈5,σ 〉〈↓,σ [succ/false]〉〈 sink 〉.

These paths correspond to the results of the two probabilistic guards in C . Hence, the expected
reward ofMt

σ �Ctrunc� eventually reaching 〈 sink 〉 is given by
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ExpRewMt
σ �Ctrunc� (〈 sink 〉) =

∑
π ∈Paths(Mt

σ �Ctrunc�,〈1,σ 〉,〈 sink 〉)
P(π ) · rew (π )

= P(π1) · rew (π1) + P(π2) · rew (π2) + P(π3) · rew (π3)

=
(
1
2 · 1 · 1

)
· (1 + 1 + t (σ [succ/true]))

+
(
1
2 ·

1
2 · 1 · 1

)
· (1 + 1 + 1 + t (σ [succ/true]))

+
(
1
2 ·

1
2 · 1 · 1

)
· (1 + 1 + 1 + t (σ [succ/false]))

= 5
2 +

3
4 · t (σ [succ/true]) + 1

4 · t (σ [succ/false]),

as the probability of reaching 〈 sink 〉 (through these three paths) sums up to one.
Observe that for t = 0, the expected reward ExpRewMt

σ �Ctrunc� (〈 sink 〉) and the expected runtime
ert[C](t ) (σ ) (cf. Example 3.3) coincide, both yielding 5/2. 


As the previous example suggests, the expected reward ExpRewMt
σ �C� (〈 sink 〉) to reach the

sink state in the MCMt
σ �C� of program C coincides with the expected runtime ert[C](t ) (σ ) as

given by the ert-transformer. Formally:

Theorem 5.5 (Soundness of the ert transformer). Let C ∈ pGCL. Then for each initial pro-

gram state σ ∈ Σ and continuation t ∈ T,

ExpRewMt
σ �C� (〈 sink 〉) = ert[C](t ) (σ ).

Proof. By induction on the structure of pGCL programs. See Appendix B.3. �

Hence, the expected runtime transformer ert is sound with respect to our operational program
model based on Markov chains.

6 RUNTIME OF DETERMINISTIC PROGRAMS

Nielson [41, 42] has extended Hoare logic [21] so as to obtain a formal verification framework to
reason about upper bounds on the runtime of deterministic programs, i.e., programs containing
neither probabilistic guards nor probabilistic assignments. Whereas Hoare logic originally focuses
on partial correctness, Nielson considered the variant for total correctness (see, e.g., [34]). We show
in this section that applying ert to deterministic programs results in the tightest upper bound on
the runtime obtained in Nielson’s approach.
The language GCL of deterministic programs considered in [42] is given by the grammar

C ::= skip | x := E | C;C | if (B) {C} else {C} | while (B) {C}.

Here E is a deterministic expression and B is a deterministic guard; i.e., �E�(σ ) and �B�(σ ) are Dirac
distributions for each σ ∈ Σ. For simplicity, we slightly abuse notation and write �E�(σ ) to denote
the unique value v ∈ Val such that �E : v�(σ ) = 1. Analogously, �B�(σ ) denotes the unique value
b ∈ {true, false} such that �B : b�(σ ) = 1.
Nielson’s calculus [41, 42] aims at verifying total program correctness while in addition estab-

lishing upper bounds on the program runtime. A correctness property in this extended calculus is
of the form

{ P } C { E ⇓ Q },
where C ∈ GCL, E is a deterministic expression over the program variables, and P ,Q are as-
sertions expressed in first-order logic. The symbol ⇓ is just a separator between the postcondi-
tion Q and the (bound on the) runtime E. Intuitively, the triple { P } C { E ⇓ Q } is valid, written
|=E { P } C { E ⇓ Q }, if and only if there exists a natural number k such that from each initial state
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Fig. 3. Nielson’s [41] inference system for order of magnitude of runtime of deterministic programs.

σ satisfying precondition P , programC terminates after at most k ·�E�(σ ) steps in a state satisfying
postcondition Q . Note that E is evaluated in the initial state σ .
The inference rules in Figure 3 are taken verbatim from [42] except for minor changes to

match our notation. Let us briefly explain the inference rules. Most of the inference rules are
self-explanatory extensions of the standard extension of Hoare calculus for total correctness of
deterministic programs [34], which is obtained by omitting the gray parts. The runtime of skip
and x := E is one time unit. Since guard evaluations are assumed to consume no time in this calcu-
lus, any upper bound on the runtime of both branches of a conditional is also an upper bound on
the runtime of the conditional itself; cf. rule [if]. The rule of consequence allows one to increase
an already proven upper bound on the runtime by an arbitrary constant factor. The runtime of the
sequential composition of C1 and C2 is, intuitively, the sum of their runtimes E1 and E2. However,
runtimes are expressions that are evaluated in the initial state. Thus, the runtime of C2 has to be
expressed in the initial state of C1;C2. Technically, this is achieved by adding a fresh (and hence
universally quantified) variable u that is an upper bound on E2 and at the same time equals a new
expression E ′2 in the precondition ofC1;C2. The runtime ofC1;C2 is then given by E1+E

′
2. The same

principle is applied to each loop iteration. Here, the runtime of the loop body is given by E1 and
the runtime E ′ of the remaining z loop iterations is expressed in the initial state by using a fresh
variable u. Any upper bound of E ≥ E1+E

′ bounds the runtime of z loop iterations from above.
For deterministic programC ∈ GCL, let �E { P } C { E ⇓ Q } denote that the correctness property

{ P } C { E ⇓ Q } is provable in Nielson’s calculus. Analogously, provability of a total correctness
property { P }C { ⇓ Q } in the standardHoare calculus is denoted by � { P }C { ⇓ Q }. Our first result
concerning Nielson’s calculus asserts that a correctness proof ofC in standard Hoare logic and the
ert of C can be combined into a proof in Nielson’s proof system.

Theorem 6.1 (Soundness of ert w.r.t. Nielson’s calculus). For all deterministic programs

C ∈ GCL and assertions P ,Q , we have

� { P }C { ⇓ Q } implies �E { P } C { ert[C] (0) ⇓ Q }.
Proof. By structural induction on C . See Appendix B.4 for a detailed proof. �
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Hence, our notion of ert is sound with respect to Nielson’s proof system. The next theorem
asserts that no tighter bound can be derived in Nielson’s calculus. We cannot get a more precise
relationship due to different runtime models: while guard evaluations are assumed to consume no
time in Nielson’s logic, we assume each guard evaluation to consume one unit of time.

Theorem 6.2 (Completeness of ert w.r.t. Nielson’s calculus). For all deterministic programs

C ∈ GCL, assertions P ,Q, and deterministic expressions E:

�E { P } C { E ⇓ Q } implies ert[C](0) (σ ) ≤ k ·�E�(σ ),

for some k ∈ N and all program states σ ∈ Σ satisfying P .

Proof. By induction on C’s structure; see Appendix B.5 for a detailed proof. �

Theorem 6.1 together with Theorem 6.2 shows that ert is a conservative extension of Nielson’s
approach for reasoning about the runtime of deterministic programs. In particular, given a correct-
ness proof of a deterministic programC in Hoare logic, it suffices to compute ert[C](0) in order to
obtain a corresponding proof in Nielson’s proof system.

7 RECURSION

We now extend the results of the previous sections to be able to reason about the expected runtime
of recursive randomized algorithms. For achieving that, we extend the transformer ert to allow for
recursive procedures. We also prove that this extension preserves all properties studied earlier
(such as continuity, etc.) and present a set of proof rules to effectively reason about the runtime of
recursive procedure calls. As for an operational semantics, we show that probabilistic programs
with recursive procedures can be interpreted as push-down Markov chains and we show that the
result from Theorem 5.5 relating the wp-based and the operational approach remains valid for
recursive programs.

7.1 A Recursive Probabilistic Language

As a first step, we extend pGCL with recursive programs by incorporating procedure calls. For
simplicity, we assume the presence of only a single procedure, say, P . We defer the treatment of
multiple (possibly mutually recursive) procedures to Section 7.5. The syntax of our probabilistic

Recursive Guarded Command Language (pRGCL) thus extends the syntax of pGCL (see Section 2)
by an atomic statement for procedure calls:

call P .

We assume that the procedure P manipulates the global program state and we thus dispense with
local variables, parameters, and return statements for passing information across procedure calls.
The declaration of P consists of a procedure body (much like a loop body), which is written in
pRGCL syntax. In particular, the body of a procedure can itself contain procedure calls and thus
procedures can recursively invoke themselves. We denote by

P � C

that procedure P has body C ∈ pRGCL. A pRGCL program is a pair 〈C,D〉, where C ∈ pRGCL is
the “main” command and D : {P } → pRGCL is the declaration of P .4

4The declaration of P is a mapping from a singleton and not the mere body of P because this minimizes the changes to

accommodate the subsequent treatment of multiple procedures.
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Table 3. Inductive Definition for the Runtime Transformer ert[ · ,D] for Recursive Programs

C ert[C,D](t )

empty t

skip 1 + t

halt 0

x :≈ μ 1 + λσ • E�μ�(σ ) (λv• t[x/v](σ ))

C1;C2 ert[C1,D]
(
ert[C2,D](t )

)
if (ξ ) {C1} else {C2} 1 + �ξ : true� · ert[C1,D](t ) + �ξ : false� · ert[C2,D](t )

while (ξ ) {C ′} lfpX • 1 + �ξ : false� · t + �ξ : true� · ert[C ′,D](X )

call P
(
lfpη• 1 ⊕ ert[D (P )]�η

)
(t )

Example 7.1 (Faulty recursive factorial). Consider the following recursive procedure for (erro-
neously) computing the factorial of a natural number stored in x :

Pfact � if (x ≤ 0) {y := 1} else {
if (5/6 · 〈true〉 + 1/6 · 〈false〉) {

x := x − 1; call Pfact; x := x + 1

} else {
x := x − 2; call Pfact; x := x + 2

};
y := y · x

}.

In each recursive call, variable x is decreased by either one or two, with probability 5/6 and 1/6,
respectively. Therefore, some factors might be missing in the computation of the factorial of x . 


Concerning pRGCL’s runtime model, we assume that invoking a procedure (i.e., the procedure
call itself) consumes one unit of time. The overall runtime of a procedure call is then one plus the
runtime of the procedure’s body.

7.2 The ert Transformer for Recursive Randomized Algorithms

Since declarations are part of recursive programs, the ert transformer on pRGCL now has shape

ert[C,D] : T→ T.

As a consequence, the rules in Table 1 giving the inductive definition of the transformer must be
slightly adapted so that it also propagates declarations. The adaptation for all constructs (except
procedure calls) is quite straightforward; see Table 3.
It remains to define the runtime of procedure calls. In the same way as for loops, the action of

the transformer on procedure calls is defined using fixed-point techniques. Procedure calls require,
however, higher-order fixed points and the use of a subsidiary transformer:

ert[C]�η : T→ T.
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This transformer behaves exactly as the ert transformer (see Table 1) for all programs except pro-
cedure calls. For those, it reverts to a provided runtime environment η in

RtEnv �
{
η | η : T→ Tiscontinuous

}
,

instead of the procedure declaration. We can think of such an environment η as a lookup table, in

which the transformer ert[C]�η can look up how to handle the effects of procedure calls. With this
in mind, we define

ert[call P]
�
η (t ) � η(t ).

Using the subsidiary transformer ert[ · ]�η , we can (implicitly) define the action of ert[ · ,D] on
procedure calls using the equation

ert[call P,D] = 1 ⊕ ert[D (P )]�
ert[call P,D]

.

Here, 1 � λt • 1 represents the constantly 1 runtime transformer and “⊕” the pointwise sum be-

tween runtime transformers; i.e., for γ1,γ2 : T→ T, we let (γ1 ⊕ γ2) (t ) � γ1 (t ) + γ2 (t ). This equa-
tion immediately leads to the (fixed point) characterization

ert[call P,D] � lfpη• 1 ⊕ ert[D (P )]�η (1)

as in Table 3. To guarantee the existence of the above fixed point, we follow the same strategy as
for loops: we endow the set of runtime environments with the structure of anω-cpo (RtEnv,�) and

we prove that the environment transformer λη• 1 ⊕ ert[D (P )]�η is continuous. Kleene’s Fixed Point
Theorem ensures that the transformer’s fixed point is well defined; for details, see Appendix B.6.
As a next step, we show that all the transformer properties for programs with loops in Section 3

remain valid for recursive programs.

Theorem 7.2 (Basic properties of ert for recursive programs). For any recursive program

〈C,D〉 ∈ pRGCL, any constant runtime k with k ∈ R≥0, any runtimes t , t ′ ∈ T, and any ω-chain

t0 � t1 � · · · of runtimes in T:

Continuity: supn ert[C,D](tn ) = ert[C,D](supn tn );

Monotonicity: t � t ′ ⇒ ert[C,D](t ) � ert[C,D](t ′);

Constant propagation: ert[C,D](k + t ) = k + ert[C,D](t ), provided C is halt-free;

Preservation of∞: ert[C,D](∞) = ∞, provided C is halt-free.

Proof. For the proof of continuity see Appendix B.7. Monotonicity follows from continuity.
Preservation of constants is proved in Appendix B.8. Preservation of infinity follows by the same
argument as for nonrecursive programs (see the proof of Theorem 3.4). �

7.3 Proof Rules for Recursion

As for while loops, the runtime of recursive procedures is defined using fixed points. However,
reasoning about recursive procedures is typically more involved than reasoning about loops since
recursive procedures involve higher-orderfixed points [19]—the runtime of a loop requires the fixed
point of a runtime transformer, while the runtime of a recursive procedure requires the fixed point
of an environment transformer. To alleviate this, we propose a set of proof rules for approximating
the runtime of (recursive) procedures avoiding the use of any fixed points.
Loosely speaking, the proof rules say that in order to prove that a procedure call satisfies a

given runtime specification, it suffices to show that the procedure’s body satisfies the specification,
assuming that the recursive calls in the body do so too. To formally state the rules, we require the
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notion of constructive derivability. Given logical formulaeA and B, we writeA � B to denote that
B can be derived assuming A. In particular, we will consider claims of the form

ert[call P](t1) � д1 � ert[C](t2) � д2,

where � ∈ {�, �}; t1,д1 give the runtime specification of call P ; and t2,д2 give the runtime speci-
fication of C . Notice that in such a claim, we omit any procedure declaration D as the derivation
is independent of P’s body. That is, whenever we encounter a procedure call call P inC , we may
replace it by an upper or lower bound д1 (depending on �) without taking procedure declara-
tions into account. Formally, the statement ert[call P](t1) � д1 � ert[C](t2) � д2 can thus also
be understood as

∀η with η(t1) � д1 : ert[C]�η (t2) � д2,

where η(t1) plays the role of ert[call P](t1).

Theorem 7.3 (Runtime bounds for procedure calls). Let D be the declaration of procedure

P, u ∈ T, and let (ln )n∈N, (un )n∈N be two sequences of runtimes in T.

(1) If

ert[call P](t ) � 1+u � ert[D (P )](t ) � u,

then

ert[call P,D](t ) � 1+u .

(2) If limn→∞ un exists, u0 = 0, and for all n ≥ 0,

ert[call P](t ) � 1+un � ert[D (P )](t ) � un+1,

then

ert[call P,D](t ) � 1+ limn→∞ un .

(3) If limn→∞ ln exists, l0 = 0, and for all n ≥ 0,

1+ ln � ert[call P](t ) � ln+1 � ert[D (P )](t ),

then

1+ limn→∞ ln � ert[call P,D](t ).

These proof rules can be seen as a direct counterpart of the proof rules for reasoning about
the runtime of loops studied in Section 4: rule (1) is the counterpart of the rule based on loop
upper invariants (Theorem 4.2), while rules (2) and (3) are the counterpart of the rules based onω-
invariants (Theorem 4.6). The above proof rules are inspired by the traditional proof rule used for
reasoning about functional correctness of ordinary recursive programs; for the traditional weakest
precondition transformer wp, this rule says that if

wp[call P](Q )⇒R � wp[D (P )](Q )⇒R,

then

wp[call P, D](Q )⇒R,

R andQ being the pre- and postcondition of call P , respectively [19]. Compared to our proof rule
(1) in Theorem 7.3, the partial order “�” over runtimes is replaced by the partial order “⇒” over
predicates, and the shifting of one unit of time occurs because the runtime of a procedure call is
one plus the runtime of its body, whereas the semantics of a procedure call fully agrees with the
semantics of its body. A detailed soundness proof for our rules is provided in Appendix B.9.
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Example 7.4 (Proving exact expected runtimes). Consider the pRGCL procedure Pgeo that is given
by declaration D:

Pgeo � if (1/2 · 〈true〉 + 1/2 · 〈false〉) {call Pgeo} else {skip}.

We prove that the exact expected runtime of calling procedure Pgeo is five units of time, i.e.,
ert[call Pgeo,D](0) = 5, by using simultaneously rules (2) and (3) from Theorem 7.3. To this end,
we propose a sequence of runtimes tn as follows:

tn =

{
0, if n = 0
4 − 1

2n−2 , if n > 0.

Clearly, limn→∞ tn = 4. To apply Theorem 7.3, it thus suffices to discharge that we have

ert[call Pgeo](0) = 1+ tn � ert[D (Pgeo)](0) = tn+1

for all natural numbers n. This amounts to the following calculations:

ert[D (Pgeo)](0)

= 1 + 1/2 · ert[call Pgeo](0) + 1/2 · ert[skip](0)

= 1 + 1/2 · (1 + tn ) + 1/2 · ert[skip](0) (claim :ert[call Pgeo](0) = 1 + tn )

= 1 + 1/2 · (1 + tn ) + 1/2 · (1 + 0) (Table 3)

= 2 + 1/2 · tn .

For n = 0, this means that

ert[D (Pgeo)](0) = 2 + 1/2 · t0 = 2 + 0 = 4 − 1

21−2
= t1.

Further, for n > 0, we obtain

ert[D (Pgeo)](0) = 2 + 1/2 · tn

= 2 + 1/2 ·
(
4 − 1

2n−2

)

= 4 − 1

2(n+1)−2

= tn+1.

Hence, Theorem 7.3 yields ert[call Pgeo,D](0) = 1 + limn→∞ tn = 5. 


7.4 Finite Approximations of Recursive Programs

Equation (1) characterizes the runtime of recursive procedures in terms of fixed points. We next
present an alternative characterization, where the runtime of procedures is given as the limit or
asymptotic runtime of their finite approximations. The result will be essential in a subsequent
section for extending Theorem 5.5 to recursive programs.
The notion of “finite approximation” to a procedure is materialized by its finite inlinings. For-

mally, the n-th inlining callDn P of a procedure P with respect to declaration D is defined induc-
tively, by clauses

callD0 P � halt

callDn+1 P � skip;D (P )[call P/callDn P].
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Here, D (P )[call P/callDn P] denotes the syntactic replacement of every occurrence of call P in

D (P ) with callDn P and the initial skip statement is used to simulate the runtime of the proce-
dure call itself (as both consume one unit of time).5 As so defined, the family of (call-free) programs
callDn P define a sequence of approximations to call P , where callD0 P is the “poorest” approx-
imation, while the larger the n, the more precise the approximation becomes. Observe that, in
general, callDn+1 P mimics the exact behavior—and runtime—of call P for all executions that fin-
ish after at most n recursive calls. The runtime of call P can then be obtained as the limit of the
runtimes of callDn P .

Theorem 7.5 (Recursive procedures as limit of finite approximations). For any runtime

t ∈ T,

ert[call P,D](t ) = supn ert[callDn P](t ).6

Proof. Recall that ert[call P,D] = lfpη• F (η), where F (η) = 1 ⊕ ert[D (P )]�η . Since F is con-
tinuous (see Appendix B.6), we can apply Kleene’s Fixed Point Theorem to express lfpη• F (η) as
supn Fn (⊥RtEnv),where Fn denotes the composition of F with itself n times and⊥RtEnv = λt • 0. The
theorem then follows from

∀n• Fn (⊥RtEnv) = ert[callDn P],

which is proven by induction on n. The base case is immediate. For the inductive case we rely on

a result that follows from the definition of transformer ert[C]�η :

ert[C]�
ert[C ′]

= ert[C
[
call P/C ′

]
] ∀C ∈ pRGCL,C ′ ∈ pGCL.

Using this result, we reason as follows:

Fn+1 (⊥RtEnv) = 1 ⊕ ert[D (P )]�
F n (⊥RtEnv )

(definition Fn+1)

= 1 ⊕ ert[D (P )]�
ert[callDn P]

(I.H.)

= 1 ⊕ ert[D (P )
[
call P/callDn P

]
] (auxiliary result)

= ert[skip; D (P )
[
call P/callDn P

]
] (Table 1)

= ert[callDn+1 P] (definition callDn+1 P ). �

7.5 Mutual Recursion

For the sake of simplicity, we have so far assumed the presence of a single procedure. Notwith-
standing, our ert-calculus can be readily extended to handle multiple procedures. Say we want to
handlem (possiblymutually recursive) procedures P1, . . . , Pm with declarationD : {P1, . . . , Pm } →
pRGCL. A runtime environment is now a tuple η = (η1, . . . ,ηm ), where ηi is meant to provide the

behavior of procedure Pi in ert[·]�η , i.e., ert[call Pi ]
�
η = ηi . The action of ert on procedure calls is

defined simultaneously as(
ert[call P1,D], . . . , ert[call Pm ,D]

)
� lfpη•

(
1 ⊕ ert[D (P1)]�η , . . . , 1 ⊕ ert[D (Pm )]�η

)
.

For determining the least fixed point above, environments are compared componentwise, i.e.,
(η1, . . . ,ηm ) � (ν1, . . . ,νm ) if and only if ηi � νi for all i = 1 . . .m, where “�” is the partial or-
der over RtEnv defined in Appendix B.6. Technically, this corresponds to taking as underlying

5The formal definition of the syntactic replacement proceeds by a routine induction on the structure of D (P ).
6Strictly speaking, callDn P is a pGCL-program. We therefore prefer to write ert[callDn P](t ) rather than

ert[callDn P, D](t ).
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ω-cpo in the fixed point above the product ω-cpo

(RtEnv,�) × m times· · · × (RtEnv,�).

The proof rules from Theorem 7.3 are also easily adapted to reason about multiple procedures.
For instance, rule (1) now says that if for all i = 1 . . .m:

ert[call P1](t1) � 1+u1, . . . , ert[call Pm](tm ) � 1+um � ert[D (Pi )](ti ) � ui ,

then also for all i = 1 . . .m,

ert[call Pi ,D](ti ) � 1+ui .

The rule reasons about all the procedures simultaneously. Roughly speaking, the rule premise
requires deriving the runtime specification for the body of each procedure Pi , assuming the cor-
responding specification for all procedure calls in it. The rule conclusion establishes the runtime
specification of the set of procedures altogether. The other two rules from Theorem 7.3 admit a
similar adaptation.
Theorem 7.5 characterizing (the expected runtime of) recursive procedures as the limit of their

nth inlinings naturally extends to multiple procedures. We only need to adapt the definition of the
n-inlining callDn Pi of procedure Pi so as to inline the calls of all procedures:

callDn+1 Pi � skip; D (Pi )[call P1/call
D
n P1, . . . , call Pm/call

D
n Pm].

7.6 Operational Model

To incorporate recursion into our operational (Markov chain) model of programs, we need to keep
track of the procedures that have been invoked during the current program execution but have
not yet terminated. This knowledge is necessary upon the termination of a procedure to determine
whether this termination represents the “entire” program termination or the execution is to be
continued with the remainder statements of the caller.
This kind of book-keeping of procedure calls is done by extending MCs to pushdown Markov

chains (PMC) [24] whose verification has been studied by Brázdil, Esparza, and Kucera [6, 7, 33].
Formally, a PMC is a tuple P = (S, Γ,γ0,P, sinit , rew), where S is a countable, nonempty set of
control states, Γ is a finite stack alphabet, γ0 ∈ Γ is a special bottom-of-stack symbol,

P : S × Γ × S → [0, 1] × (Γ \ {γ0})∗

is a pushdown transition probability function, sinit ∈ S is the initial control state, and rew : S → R≥0
is a reward function. We assume that the topmost symbol of a stack α = γ · α ′ ∈ Γ · Γ� corresponds
to the leftmost symbol γ in α .
In contrast to standard Markov chains, each transition of a PMC additionally depends on the

topmost stack symbol, which is popped from the stack upon each transition. Moreover, a PMC
may push zero or more stack symbols—with the exception of bottom-of-stack symbol γ0—onto the
stack. For convenience, we restrict ourselves to PMCs pushing at most one new symbol onto the
stack at once. Thus, we write

• s
p,push(γ )
−−−−−−−→ s ′ instead of P(s,α , s ′) = (p,γ · α ),

• s
p,pop(γ )
−−−−−−−→ s ′ instead of P(s,γ , s ′) = (p, ε ),

• s
p
−→ s ′ instead of P(s,γ , s ′) = (p,γ ), and

• s
p,empty
−−−−−−→ s ′ instead of P(s,γ0, s

′) = (p,γ0)
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Fig. 4. Illustration of PMC from Example 7.6.

to denote that PMC P moves with probability p from state s to s ′ and pushes γ ∈ Γ on the stack,
pops γ from the stack, ignores the stack, and has an empty stack, respectively. Again, transition
probabilities p = 1 are usually omitted from figures.
A state-stack pair (s,α ) ∈ S × Γ� is called a configuration. Then, all notions defined over states

of MCs introduced in Section 5, such as paths, cumulative reward, and expected reward, can be
lifted to corresponding notions defined over configurations of PMCs. In particular, a path in a PMC
is a finite sequence π = (s1,α1) . . . (sn ,αn ) such that for each 1 ≤ i < n with αi = γ · α ′, we have
P(si ,γ , si+1) = (p, β ) withp > 0 andαi+1 = β · α ′. The set of all paths in a PMCP starting in config-
uration (s,α ) (reaching a goal state in T ⊆ S) is given by Paths(P, s,α ) (Paths(P, s,α ,T )). Then
the expected reward of a PMC P eventually reaching a nonempty set T of target configurations
from its initial configuration is defined as

ExpRewP (T ) �
∑

π ∈Paths(M,sinit,γ0,T )

P(π ) · rew (π )

if T is reached almost surely from initial configuration (sinit,γ0). Otherwise, let ExpRewP (T ) �
∞.

Example 7.6. Consider the PMC (S, Γ,γ0,P, sinit, rew) with states S = {1, 2, 3, 4, 5,↓, sink }, stack
alphabet Γ = {γ0, 4, 5,↓}, and initial state sinit = 1. The pushdown transition probability function P

is depicted in Figure 4. Moreover, the reward rew is 1 for states 1,2,3,4,5 and 0 for states ↓ and sink ,
respectively.
Starting in configuration (1,γ0), this PMC first randomly chooses whether to move to state 2

(with probability 3/4) or state 3 (with 1/4). Say the left transition in Figure 4 is chosen; we move to
3. After that 4 is pushed on the stack and we move back to state 1. Thus, the current configuration
is (1, 4 · γ0). Now, assume the right transition is chosen; we move to 2 and subsequently to ↓. Since
the topmost stack symbol is 4, we move to state 4; the current configuration is (4,γ0). Then 5 is
pushed onto the stack and we are in state 1 again. If state ↓ is eventually reached with an empty
stack, we end up in the sink state sink . 


Coming back to probabilistic programs, we now show how the expected runtime of pRGCL pro-
grams is related to the expected reward of PMCs. As in Section 5, we assume a canonical labeling of
programs and employ auxiliary functions stmt, first, and second to denote the program statement,
the first successor, and the second successor of a label, respectively. If no such successor exists,
these functions yield ↓. Furthermore, in addition to the initial label of a pRGCL program, we need
the initial label of each procedure. To that end, let

init : pRGCL ∪ {P1, . . . , Pm } → Lab∗,

where P1, . . . , Pm are the available procedures and Lab∗ denotes the set of labels used in a program.
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Example 7.7. Consider the pRGCL program 〈C,D〉, whereD (P ) = C andC is the labeled recur-
sive probabilistic program

C : if
(
[3/4 · 〈true〉 + 1/4 · 〈false〉]1

) {
[skip]2

}
else

{
[call P]3 ; [call P]4 ; [call P]5

}
.

Moreover, the auxiliary functions from above are given by

init(C ) = init(P ) = 1, first(1) = 2, second(1) = 3, first(3) = 4, first(4) = 5.

In every other case, first and second are mapped to ↓. 


Using these notions, the Markov chain interpretation of pGCL programs in Section 5 natu-
rally extends to a pushdown Markov chain interpretation of pRGCL programs. Intuitively, each
program label may be pushed onto the stack. Whenever a procedure terminates, such a label is
popped from the stack and the execution is continued at the popped label. Thus, apart from a new
rule for procedure calls, the rules determining the transition probability function are exactly the
same is in Figure 1, where the stack is ignored entirely. The only exception is the termination rule
[terminated]: Our PMC first tries to pop a label—the return address—from the stack and contin-
ues execution at the popped label. If no such label is on the stack, the program has successfully
terminated. Consequently, we obtain the following two new rules:

stmt(�) = ↓

〈�,σ 〉
pop(�′)
−−−−−→ 〈�′,σ 〉

[return]
stmt(�) = ↓

〈�,σ 〉
empty
−−−−→ 〈 sink 〉

[terminated].

In addition to that, a new rule for procedure calls is needed. This rule first pushes the return address
of the current procedure, i.e., a procedure’s direct successor, onto the stack and then executes the
first statement of the called procedure:

stmt(�) = call Pi first(�) = �′

〈�,σ 〉
push(�′)
−−−−−−→ 〈init(Pi ),σ 〉

[call].

Since we assume procedure calls to consume one unit of time, the reward of states containing a
program label corresponding to a procedure call is set to 1. The rewards of other states are the
same as for nonrecursive programs. Formally:

Definition 7.8 (PMC of recursive programs). Given a pRGCL program 〈C,D〉, an initial state σ0 ∈
Σ, and a continuation t ∈ T, the PMC of C is given by Pt

σ �C,D� = (S, Γ,γ0,P, sinit, rew), where

• S = {〈�,σ 〉 | � ∈ Lab∗, σ ∈ Σ} ∪ {〈 sink 〉};
• the transition probability function P is given by the rules in Figure 1 (without [terminated])
and the three aforementioned rules [return], [terminated], and [call];

• sinit = 〈init(C ),σ0〉; and
• the reward function rew : S → R≥0 is defined according to Table 4. 


Example 7.9. The PMC P considered in Example 7.6 and depicted in Figure 4 is the operational
PMC of the pRGCL program 〈C,D〉, where D is given by P �C and

C : if
(
[3/4 · 〈true〉 + 1/4 · 〈false〉]1

) {
[skip]2

}
else

{
[call P]3 ; [call P]4 ; [call P]5

}
. 


As for pGCL programs and operational Markov chains (cf. Theorem 5.5), we obtain a correspon-
dence between pRGCL programs and operational pushdown Markov chains.

Theorem 7.10 (Correspondence theorem). Let 〈C,D〉 be a pRGCL program and t ∈ T. Then

for each σ ∈ Σ, we have

ExpRewPt
σ �C,D� (〈 sink 〉) = ert[C,D](t ) (σ ).
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Table 4. Definition of the Reward Function rew : S → R≥0 of Operational

PMCs for Recursive pRGCL Programs

s stmt(�) rew(s )

〈�,σ 〉 ↓ t (σ )

〈�,σ 〉 skip, x :≈ μ, if (ξ ) {C1} else {C2}, 1

while (ξ ) {C}, or call P

〈�,σ 〉 empty, halt 0

〈 sink 〉 0

Proof. By induction on the structure of pRGCL programs. See Appendix B.10. �

Example 7.11. We exploit the correspondence between pRGCL programs and operational PMCs
to analyze the expected runtime of the PMC from Example 7.9. More precisely, we show that C
terminates, on average, after at most 10 units of time. This follows, in turn, from showing that

ert[call P,D](0) � 11

as our runtime model assumes that the runtime of a procedure call (P in this case) is one unit of
time more than the runtime of its body (C in this case). To prove the above runtime specification,
we apply the first proof rule from Theorem 7.3, taking u = 10. We have to derive ert[C](0) � 10

assuming for the recursive calls that ert[call P](0) � 11.

ert[C](0) = 1 + 3
4 · 1 +

1
4 · ert[call P ; call P ; call P](0)

= 1 + 3
4 · 1 +

1
4 · ert[call P](ert[call P](ert[call P](0)))

� 1 + 3
4 · 1 +

1
4 · ert[call P](ert[call P](11)) (assumption)

= 1 + 3
4 · 1 +

1
4 · (11 + ert[call P ; call P](0)) (Thm. 7.2, const. prop.)

� 1 + 3
4 · 1 +

1
4 · (11 + 11 + 11) (repeat previous two steps twice)

= 10. (algebra)

By Theorem 7.10, we can then conclude that the expected runtime of C , or equivalently, the ex-
pected reward of the PMC in Figure 4 of reaching 〈 sink 〉, is bounded by 10. 


In the previous example, we exploited the correspondence between ert and operational PMCs
to manually compute an upper bound on the expected reward of a PMC. For PMCs with finitely
many control states, however, the converse direction is usually more desirable. Expected rewards
of finite-state PMCs can be computed by solving linear recurrences [6]. The following result is a
direct consequence of their approach.

Corollary 7.12. Let 〈C,D〉 be a pRGCL program whose PMC has finitely many control states.

Then the expected runtime ert[C,D](0) is computable in polynomial space.

8 RELATION TO EXPECTATION TRANSFORMERS

Expectation transformers are the probabilistic counterpart of Dijkstra’s predicate transformers
approach to program semantics. We now establish a connection between expectation transformers
and our runtime transformers and exploit this connection to derive further algebraic properties of
our runtime transformer.
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8.1 Expectation Transformers Semantics of Programs

In his seminal work, Dijkstra [12] introduced the predicate transformer wp (standing for weakest
precondition) to reason about the semantics of a simple imperative language. Intuitively, for a
program C and predicate—or postcondition—Q ,

wp[C](Q )

gives the weakest predicate—or precondition—that must hold in the initial state of C so that the
execution of C terminates in a final state satisfying Q . Kozen [32] extended the transformer to
probabilistic computations in terms of a PPDL, and later on McIver and Morgan [36] showed how
to handle programs that combine both probabilistic and nondeterministic behavior.
Thewp-semantics over probabilistic programs generalizes Dijkstra’s originalwp-semantics over

ordinary programs twofold: First, instead of being predicates over program states, pre- and post-
conditions are now (nonnegative) real-valued functions over program states. Second, instead of
merely evaluating a (Boolean-valued) postcondition in the final state(s) of a program, we now
measure the expected value of a (real-valued) postcondition with respect to the distribution of
final states.7 Formally, for a probabilistic program C and postcondition f : Σ → R≥0, we let

wp[C]( f ) � λσ • E�C�(σ ) ( f ),

where �C�(σ ) denotes the distribution of final states from executing C in initial state σ and
E�C�(σ ) ( f ) denotes the expected value of f with respect to the distribution of final states �C�(σ ).
Consider, for instance, the program from Example 3.3 that simulates a truncated geometric
distribution:

Ctrunc : if
(
1/2 ·〈true〉 + 1/2 ·〈false〉

)
{succ := true} else {

if
(
1/2 ·〈true〉 + 1/2 ·〈false〉

)
{succ := true}

else {succ := false}
}.

For this program we have

wp[Ctrunc]( f ) = λσ · 3
4 · f (σ [succ/true]) + 1

4 · f (σ [succ/false]).

Observe that, in particular, if [A] denotes the indicator function of a predicate A over program
states, wp[C]([A]) (σ ) gives the probability of (terminating and) establishing A after executing C
from state σ . For instance, we can determine the probability that, from an initial state σ , Ctrunc

terminates in a final state where succ=true by

wp[Ctrunc]([succ=true]) (σ ) = 3
4 · 1 +

1
4 · 0 =

3
4 .

Formally, the transformer wp operates on unbounded, so-called expectations [36] in

E �
{
f ��� f : Σ → R∞≥0

}
,

and thus has type

wp[ · ] : pGCL → (E→ E).

We include infinity in the range of expectations because even if f (σ ) < ∞ for all σ ∈ Σ, the ex-
pected value wp[C]( f ) (σ ) can be infinite for some initial state σ , and we need a homogeneous
treatment of the domain (i.e., postexpectations) and range (i.e., preexpectations) of wp. Observe,

7Strictly speaking, we consider subdistributions of final states, where the missing mass captures the probability of

nontermination.
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Table 5. Rules for Defining the Weakest Pre-Expectation Transformer wp

C wp[C]( f )

empty f

skip f

halt 0

x :≈ μ λσ • E�μ�(σ ) (λv• f [x/v](σ ))

C1;C2 wp[C1](wp[C2]( f ))

if (ξ ) {C1} else {C2} �ξ : true� · wp[C1]( f ) + �ξ : false� · wp[C2]( f )

while (ξ ) {C ′} lfpX • �ξ : false� · f + �ξ : true� · wp[C ′](X )

Eη (h) � ∑
v Prη (v ) · h (v ) represents the expected value of (random variable) h with respect to dis-

tribution η; f [x/v] � λσ • f (σ [x/v]), where σ [x/v] is the state obtained by updating in σ the value

of x to v ; finally, lfp X • F (X ) represents the least fixed point of transformer F : E→ E with respect
to the pointwise ordering on E.

moreover, that the set of expectations E coincides with the set of runtimes T, but we prefer to
distinguish the two sets because they are to represent different objects.
In a similar vein to the (runtime) transformer ert[C], (expectation) transformer wp[C] can be

defined by induction on the structure of C , following the rules in Table 5. Most of the rules are
self-explanatory and akin to those in Table 1 for the ert[C] transformer.

8.2 Relation between Expectation and Runtime Transformers

We will now establish the relation between expectation and runtime transformers.
To gain some intuition about this relationship, recall the inductive definitions of wp (cf. Table 5)

and ert (cf. Table 1). For every atomic program statementC , we observe that ert[C](t ), where t ∈ T
is some postruntime, can be decomposed into the time consumed by executing C , i.e., ert[C](0),
and the expected value of the postruntime t , i.e., wp[C](t ). Thus, the expected runtime of program
C itself is independent of postruntime t , but t might depend on the expected values of program
variables manipulated by C . For example, for a probabilistic assignment, we have

ert[x :≈ μ](t ) = 1︸︷︷︸
=ert[x :≈ μ](0)

+ λσ • E�μ�(σ ) (λv• t[x/v](σ ))︸����������������������������︷︷����������������������������︸
=wp[x :≈ μ](t )

.

This decomposition property for expectation and runtime transformers also holds for composed
programs including loops. The precise relationship between expectation and runtime transformers
is given by the following theorem.

Theorem 8.1 (Connection between ert and wp). For every pGCL program C and runtime

t ∈ T,

ert[C](t ) = ert[C](0) + wp[C](t ).

More generally, for every two runtimes t , t ′ ∈ T,
ert[C](t + t ′) = ert[C](t ) + wp[C](t ′).

Proof. By induction on the program structure. See Appendix B.11 for details. �

Combining Theorem 8.1 with the linearity of transformer wp (see, e.g., [36]), we can easily
establish the subadditivity and subscaling of ert briefly mentioned in Section 3.
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Corollary 8.2. For all pGCL program C , runtimes t , t ′ ∈ T, and constant r ∈ R≥0,

Subadditivity: ert[C](t + t ′) � ert[C](t ) + ert[C](t ′);

Subscaling: ert[C](r · t ) � min{1, r } · ert[C](t );

ert[C](r · t ) � max{1, r } · ert[C](t ).

Proof. As for the subadditivity, we have

ert[C](t + t ′) = ert[C](t ) + wp[C](t ′) (Theorem 8.1)

= ert[C](t ) + ert[C](t ′) − ert[C](0) (Theorem 8.1)

� ert[C](t ) + ert[C](t ′) (ert[C](0) � 0).

The subscaling follows from the reasoning below (we establish only one inequality; the proof
argument for the other one is analogous):

ert[C](r · t ) = 1 · ert[C](0) + wp[C](r · t ) (Theorem 8.1)

= 1︸︷︷︸
� min{1, r }

· ert[C](0) + r︸︷︷︸
� min{1, r }

·wp[C](t ) (wp[C] linear)

� min{1, r } · (ert[C](0) + wp[C](t )) (algebra)

= min{1, r } · ert[C](t ) (Theorem 8.1) �

For the sake of clarity, we have presented the results considering only pGCL programs and left
out recursion. All the results are extensible to recursive programs in pRGCL as shown in [44] and
its full version [43].

9 CASE STUDIES

In this section, we use the ert-calculus to analyze the runtime of three well-known randomized
algorithms: we use global and incremental invariants for nonrecursive probabilistic programs to
analyze the coupon collector’s problem and a fair one-dimensional (symmetric) random walk, re-
spectively. Furthermore, our proof rules for reasoning about recursive probabilistic programs are
employed to reason about a randomized binary search algorithm.

9.1 The Coupon Collector’s Problem

To illustrate the use of our proof rule for loops based on global invariants, we apply the ert-calculus
to the coupon collector’s problem. This problem arises from the following scenario:8 suppose each
box of cereal contains one of N different types of coupons, and once a consumer has collected a
coupon of each type, he or she can trade them for a prize. The problem is to determine the average
number of cereal boxes a coupon collector has to buy in order to collect at least one coupon of each
type. It is assumed that each coupon type occurs with the same probability in the cereal boxes.
We can model the coupon collector’s problem by a probabilistic program Ccp as follows:

Ccp : cp := [0, . . . , 0]; i := 1; x := N;

Cout : while (x > 0) {

8The problem formulation presented here is taken from [37].
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Cin : while (cp[i] � 0) {
i :≈ Unif[1 . . .N ]

};
cp[i] := 1; x := x − 1

}.

Here, we use an array cp as a shortcut for N distinct program variables. The array cp (of size N ) is
initialized with 0s, and whenever we obtain the first coupon of type i , we set cp[i] to 1. The outer
loop Cout is iterated N times, and in each iteration of the outer loop we collect a new—unseen—
coupon type. The collection of the new coupon type is performed by the inner loop Cin.
In order to analyze the runtime of programCcp, we need to find a suitable invariant for the outer

loop Cout . To this end, we propose the following global upper invariant I :

I � 1 +

∞∑
�=0

[x > �] · �
	4 + 2 ·

∞∑
k=0

(
#col + �

N

)k 

�

− 2 · [cp[i] = 0] · [x > 0] ·
∞∑

k=0

(
#col

N

)k

,

where #col � ∑N
i=1[cp[i] � 0] denotes the number of coupons that have already been collected.

This invariant was essentially obtained by performing a few fixed-point iterations to approximate
the least fixed point that determines ert[Cout] (0) and then generalizing the result.

What Is the Intuition Underlying This Invariant? At least one time unit is consumed by the outer
loop, because the loop guard is evaluated at least once. Variable � represents the number of it-
erations of the outer loop. Since x is decremented in every iteration, Cout performs x iterations;
all summands in I are thus zero if x ≤ �. How long, then, is the expected runtime of every loop
iteration? At least four units of time are required to evaluate the guard of the outer loop and the
guard of the inner loop for the first time, and to perform the two assignments at the end of the
loop body of Cout , respectively. Every iteration of the inner loop requires two additional units of
time to evaluate the loop guard and perform an assignment. The expected number of iterations
performed by the inner loop is expressed by the second sum, where k intuitively represents the
number of times we inter the body of the inner loop. However, in the very first iteration of the
outer loop, we have [cp[i] = 0]. In other words, no iteration of the inner loop is performed; i.e., the
inner sum represents runtime that is never actually consumed by the program. We thus subtract
this illegally added runtime. Furthermore, notice that the probability of performing the k-t itera-
tion of the inner loop depends on the number of already collected coupons, i.e., the number #col

of initially collected coupons plus �, due to the fact that one coupon is collected in every iteration
of the outer loop.
A detailed verification that I is indeed an upper global invariant is found in Appendix C.2 (this

invariant verification further requires exhibiting a suitable invariant for the inner loop Cin).

The Expected Runtime ofCcp. We are now in a position to compute an upper bound for ert[Ccp](0)
using the previously proposed invariant I :

ert[Ccp](0) = ert[cp := [0, . . . , 0]; i := 1; x := N ;Cout](0)

= 3 + (ert[Cout](0)) [x/N , i/1, cp[1]/0, . . . , cp[N ]/0]

� 3 + I [x/N , i/1, cp[1]/0, . . . , cp[N ]/0]. (ert[Cout](0) � I )
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Inserting our invariant I in the computation of ert[Ccp](0) then yields

ert[Ccp](0) � 4 + [N > 0] · ��
	4N + 2

N−1∑
�=1

∞∑
k=0

(
�

N

)k 


�

((∑∞
�=0

[x > �]
)
[x/N ] =

∑N−1
�=0

1
)

= 4 + [N > 0] · ��
	4N + 2

N−1∑
�=1

N

�



�

(
geom. series and

sum reordering

)

= 4 + [N > 0] · 2N · (2 +HN−1),

where HN−1 � 0 + 1/1 + 1/2 + 1/3 + · · · + 1/N−1 denotes the (N−1)-th harmonic number. Since the
harmonic numbers approach asymptotically to the natural logarithm, we conclude that the coupon
collector algorithm Ccp runs in expected time O (N · log(N )).

9.2 One-Dimensional Random Walk

The probabilistic program

Crw : x := 10;

while (x > 0) {
C : x :≈ 1/2 · 〈x−1〉 + 1/2 · 〈x+1〉

}
models a one-dimensional walk of a particle that starts at position x = 10 and moves with equal
probability to the left or to the right in each turn. The random walk terminates when the particle
reaches position x = 0. It can be shown that the program terminates with probability one [25] but
requires, on average, an infinite amount of time to do so. We apply the ert-calculus to formally
derive this.
It is easy to see that ert[Crw](0) � ∞, so we concentrate on proving that ∞ is a lower bound

on the expected runtime of Crw . To that end, we derive a lower ω-invariant In of loop while (x >
0) {C} with respect to continuation 0.

Invariant Synthesis. To obtain a suitable invariant In , we first propose the following template:

In = 1 +

n∑
k=0

[x > k] · an,k .

We always need one unit of time, because the loop guard is evaluated at least once. Furthermore,
parametern corresponds to the number of loop iterations of loop while (x > 0) {C}. Intuitively, we
then consider (a lower bound of) the expected time an,k such that, after n loop iterations entering
the loop body, the position of the particle is k . Since the random walk does not terminate within
n loop iterations, we know that it suffices to consider these runtimes for 0 ≤ k ≤ n.
As a next step, we show that for all nonnegative constants an,k , In is a lower ω-invariant of the

loop with respect to continuation 0 whenever these an,k satisfy the recurrence relation

a0,0 = 1,

an+1,0 = 2 + 1
2 · (an,0 + an,1),

an+1,k =
1
2 · (an,k−1 + an,k+1) for all 1 ≤ k ≤ n + 1,

an,k = 0 for all k > n,

forn ≥ 0. Intuitively, if the target positionk after 0 further loop iterations is zero, then the expected
runtime after one iteration is one due to the guard evaluation that terminates the loop. Similarly, if
k = 0 but we have to perform n + 1 loop iterations, we require at least two units of time to evaluate
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the guard and execute the probabilistic assignment in the loop body. The remaining expected
runtime is then the weighted sum of an,k−1 (i.e., the position is increased in the last step and it
suffices to reach position k − 1) and an,k+1 (i.e., the position is decreased in the last iteration and it
suffices to reach position k + 1). For the case 1 ≤ k < n, we analogously express the expected time
to reach position k in terms of the expected time to reach distance k − 1 and k + 1, respectively.
Since we are only interested in a lower bound, it suffices to omit the two additional units of time.
Furthermore, if k > n, then we abort, because the random walk cannot terminate within n loop
iterations.
Now, one suitable solution for an,k is

an,k =
1

2n

⎡⎢⎢⎢⎢⎣−
(

n

�n−k
2 �

)
+ 2

n−k∑
i=0

2i

(
n − i

�n−i−k
2 �

)⎤⎥⎥⎥⎥⎦ .
This solution was obtained with the help of Mathematica. A formal proof showing that In (with
the above coefficients an,k ) is indeed a lower ω-invarant with respect to continuation 0 is found
in Appendix C.1.

The Expected Runtime of Crw . Now Theorem 4.6 and the fact that limn→∞ an,0 = ∞ yield

ert[while (x > 0) {C}](0) � lim
n→∞

In � lim
n→∞

1 + [x > 0] · an,0 = 1 + [x > 0] · ∞.

The calculations for the aforementioned steps can be found in Appendix C.1. Altogether we have

ert[Crw](0) = ert[x := 10](ert[while (x > 0) {C}](0))

� ert[x := 10](1 + [x > 0] · ∞)

= 1 + (1 + [x > 0] · ∞)[x/10]

= 1 + (1 + 1 · ∞) = ∞.
Thus, ert[Crw](0) � ∞. As the reverse inequality trivially holds, the expected runtime of the one-
dimensional random walk is infinite, i.e., ert[Crw](0) = ∞.

9.3 Randomized Binary Search

As our third case study, we show the applicability of our approach to randomized algorithms by
analyzing a probabilistic, so-called Sherwood [35], variant of the classical recursive binary search
algorithm. The main difference with the classical version is that in each recursive call the pivot
element is picked uniformly at random from the remaining array, aligning, this way, the worst,
best, and average case of the algorithm’s runtime.
The Sherwood binary search algorithm searches for the value val in array a[left.. right]. It is

encoded by procedure B with declarationD presented in Figure 5. We use the random assignment
mid :≈ Unif(left . . . right) to model the random selection of the pivot element. For simplicity, we
assume that the random assignment is performed in constant time 1 if left ≤ right and that it
diverges (thus has runtime∞) if left > right.
As the runtime heavily depends on the input data, we restrict our input and perform a runtime

analysis for those inputs where val does not occur in the array, which constitutes the worst case
for the classical binary search algorithm. Under this assumption, we can distinguish two cases: val

is either smaller than every element in the array or larger than all of them.
For the first case, the expected runtime is bounded from above by 1+u, where

u = [left > right] · ∞ + 3 + [left < right] ·
(
5 · Hright−left+1 − 1/5

)
,

and Hk is the kth harmonic number. Ignoring the actual values of the constants, the intuition for
the above expression is this: If left > right, the uniform sampling is assumed to diverge and thus we
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Fig. 5. Declaration (boldface black) of the randomized binary search procedure B together with the runtime

analysis (lightface gray) for the case that every value occurring in a[left.. right] is smaller than val. We write

j C h for ert[C,D](h) � j. Hk stands for the kth harmonic number.

get infinite runtime. If left = right, O (1) steps are performed, but the procedure is not recursively
called. Finally, if left < right, the test for a[mid] < val will by assumption (val is smaller than every
value in the arraya) fail and the testa[mid] > val will succeed. The binary search procedure is then
called recursively on the randomly selected new interval and this takes on average O (Hright−left+1)
units of time.
For formally showing

ert[callB,D](0) � 1 + u

by application of Theorem 7.3 (1), we have to establish

ert[callB,D](0) � 1 + u � ert[D (B),D](0) � u .

The details of this derivation are provided in Figure 5. In the annotations of Line 9, we use the as-
sumption ert[callB,D](0) � 1+u. All other annotations are straightforward applications of the
rules in Table 1 while keeping in mind that val is smaller than every element in the array. The top-
most annotation containing the sum is equal tou by algebraic reasoning. All in all, we have proven
ert[D (B),D](0) � u assuming ert[callB,D](0) � 1+u. By Theorem 7.3 (1), we now know that

Journal of the ACM, Vol. 65, No. 5, Article 30. Publication date: August 2018.



30:38 B. L. Kaminski et al.

ert[callB,D](0) � 1+u for all initial states in which val is smaller than every element in the
array.
Similarly, we can show that when val is greater than every element in the array, the expected

runtime is upper bounded by 1 + u, with

u = [left > right] · ∞ + 3 + [left < right] ·
(
6 · Hright−left+1 − 3

)
.

The verification for this case is analogous and therefore omitted here.
Combining the two cases, we conclude that when the sought-after value does not occur in the

array, the algorithm terminates in expected time in O (logn), where n = right − left + 1 is the size
of the array, since Hk ∈ Θ(logk ).

10 RELATED WORK

Resource Analysis of Deterministic Programs. Several works apply wp-style or Floyd-Hoare-style
reasoning to study quantitative aspects of classical algorithms. Nielson [41, 42] provides a Hoare
logic for determining upper bounds on the runtime of deterministic programs. Our approach ap-
plied to such programs yields the tightest upper bound on the runtime that can be derived using
Nielson’s approach. Arthan et al. [1] provide a general framework for sound and complete Hoare-
style logics and show that an instance of their theory can be used to obtain upper bounds on
the runtime of while-programs. Hickey and Cohen [20] automate the average-case analysis of
deterministic programs by generating a system of recurrence equations derived from a program
whose efficiency is to be analyzed. They build on Kozen’s seminal work [31] on the semantics of
probabilistic programs. Berghammer and Müller-Olm [5] show how Hoare-style reasoning can be
extended to obtain bounds on the closeness of results obtained using approximate algorithms to
the optimal solution. Deriving space and time consumption of deterministic programs has also
been considered by Hehner [17]. Alternative approaches for analyzing resource consumption in
deterministic programs include, among others, type-checking [22], abstract interpretation [47],
and worst-case execution time analysis [49].

Runtime Analysis of Probabilistic Programs. Classical techniques to analyze the runtime of ran-
domized algorithms include probabilistic recurrence relations [29] and martingale theory. Formal
reasoning about probabilistic programs goes back to Kozen [31] and has been developed further
by Hehner [18] and McIver and Morgan [36]. A general abstract interpretation framework for the
analysis of probabilistic programs has been given by Cousot and Monerau [11]. They capture our
approach as an abstraction of a low-level trace semantics, but their work does not provide any
proof rules. The work by Celiku and McIver [8] is perhaps the closest to our article. They provide
a wp-calculus for obtaining performance properties of probabilistic programs, including upper
bounds on expected runtimes. Their focus is on refinement. They neither provide a soundness re-
sult of their approach nor consider lower bounds. We believe that our transformer is simpler to
work with in practice too. Monniaux [38] exploits abstract interpretation to automatically prove
the probabilistic termination of programs using exponential bounds on the tail of the distribution.
His analysis can be used to prove the soundness of experimental statistical methods to determine
the average runtime of probabilistic programs. Brázdil et al. [7] study the runtime of probabilistic
programs with unbounded recursion by considering probabilistic pushdown automata (pPDAs).
They show (using Martingale theory) that for every pPDA, the probability of performing a long
run decreases exponentially (polynomially) in the length of the run, if and only if the pPDA has
a finite (infinite) expected runtime. As opposed to our program verification technique, [7] consid-
ers reasoning at the operational level. Fioriti and Hermanns [14] proposed a typing scheme for
deciding almost-sure termination. They showed, among others, that if a program is well typed,
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then it almost surely terminates. This result does not cover positive almost-sure termination; that
is, their approach cannot be used to obtain that the runtime is infinite.

Automated Expected Runtime Analysis. Chatterjee et al. [10] recently presented a linear-time
algorithm to derive (logarithmic, linear, or almost-linear) bounds on expected runtimes of ran-
domized algorithms whose runtime is described by a set of recurrence relations. The key idea is to
overapproximate terms in a recurrence relation through integral and Taylor expansion enabling
one to obtain bounds by comparing the leading terms of pseudo-polynomials. This technique de-
rives bounds for randomized univariate and separable bivariate recurrence relations and is appli-
cable to classical algorithms such as quick-select, Sherwood randomized search, and the coupon
collector.
The ert-calculus developed in this article provides a solid basis for the automated analysis of

expected runtimes. This is witnessed by some recent follow-up works. Ngo et al. [40] combined
the principles of the ert-calculus with existing automated amortized resource analysis techniques.
This results in an automated approach to derive upper bounds (as symbolic polynomials) on the
expected runtime of probabilistic programs. The correctness is shown by proving that the tech-
nique provides upper bounds on the expected runtime of a program as defined by our ert-calculus.
In essence, their technique assumes potential functions to be a linear combination of base func-
tions and derives using inference rules akin to those in this article of a system of in-equations that
is solved by an LP solver. Experimental results show that this works for an interesting class of
sample programs.
Batz et al. [4] showed how the ert-calculus can be used to obtain exact expected sampling times

of Bayesian networks in a fully automated fashion. The key idea here is that loops in the probabilis-
tic programs describing such networks are statistically independent, enabling obtaining closed-
form symbolic expressions for their expected runtime. An experimental evaluation on Bayesian
network benchmarks demonstrates that ill-conditioned networks—resulting in very large simula-
tion times—can be automatically inferred within less than a second.

11 CONCLUSION

We have presented a wp-style calculus for reasoning about the expected runtime and positive
almost-sure termination of randomized algorithms. Our main contribution consists of several
sound and complete proof rules for obtaining upper as well as lower bounds on the expected
runtime of loops. We applied these rules to analyze the expected runtime of a variety of exam-
ple algorithms including the well-known coupon collector problem. While finding invariants is,
in general, a challenging task, we were able to find correct invariants by considering a few loop
unrollings most of the time. Hence, we believe that our proof rules are natural and widely appli-
cable, and provide a viable alternative to existing techniques to determine the expected runtime.
The approach is a conservative extension of Nielson’s approach for reasoning about the runtime
of deterministic programs and our calculus is sound with respect to a simple operational model
defined in terms of (push-down) Markov chains. Toward automation of our approach, an impor-
tant step is to develop techniques for automated loop-invariant synthesis; initial approaches for
probabilistic programs can be found in, e.g., [3, 13, 30].

APPENDIXES

A RECAP OF AUXILIARY RESULTS

For the sake of self-containment, we recall here somewell-known theorems that we use to establish
our main results.
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Theorem A.1 (Lebesgue’s Monotone Convergence Theorem). Let ( fn )n∈N be a sequence of

functions of type A→ R∞≥0 such that fn (a) ≤ fn+1 (a) for all a ∈ A. Then, for every probability distri-

bution ν over A, we have

Eν
(
supn fn

)
= supn Eν ( fn ),

where Eν ( f ) denotes the expected value of f with respect to ν and supn fn is taken pointwise.

Proof. See, e.g., [46, Ch. 21]. �

Theorem A.2 (Monotone Seqence Theorem). If (an )n∈N is a monotonically increasing se-

quence in R∞≥0, then

supn an = lim
n→∞

an .

Proof. See, e.g., [45, Ch. 2]. �

Theorem A.3 (Kleene’s Fixed-Point Theorem). Let (A, �) be an ω-cpo with bottom element ⊥
and let F : A→ A be continuous.9 Then F admits a least fixed-point lfp (F ), which can moreover be

obtained as

lfp (F ) = supn Fn (⊥).

Here, Fn denotes the composition of F with itself n times, i.e., F 0 = id and Fn+1 = F ◦ Fn .

Proof. See, e.g., [48, Ch. 1]. �

Theorem A.4 (Park’s Theorem). Let (A, �) be an ω-cpo with bottom element and let F : A→ A
be continuous. Then, for every a ∈ A,

F (a) � a ⇒ lfp (F ) � a.

Proof. See [48, Ch. 1]. �

Lemma A.5 (Diagonalization of Doubly Indexed Chains). Let an,m be elements of an ω-cpo

(A, �) such that an,m � an′,m′ whenever n ≤ n′ and m ≤ m′. Then,

supn (supm an,m ) = supm (supn an,m ) = supi ai,i .

Proof. See [50, Ch. 8]. �

Lemma A.6 (Relational Fixed-Point Fusion). Let (D1, �1), (D2, �2) and (D, �) be ω-cpos

with bottom elements ⊥1, ⊥2, and ⊥, respectively. Moreover, let

F1 : D1 → D1 F2 : D2 → D2 f1 : D1 → D f2 : D2 → D

be continuous and h1,h2 : D → D. If

(1) ∀d1• f1 (F1 (d1)) � h1 ( f1 (d1)) and ∀d2• f2 (F2 (d2)) � h2 ( f2 (d2)),
(2) f1 (⊥1) � f2 (lfp F2) and f2 (⊥2) � f1 (lfp F1), and

(3) h1 ( f2 (lfp F2)) � f2 (lfp F2) and h2 ( f1 (lfp F1)) � f1 (lfp F1),

then

f1 (lfp F1) = f2 (lfp F2).

Proof. See [43, App. A.6]. �

9A function F : A → A is said to be continuous if and only if it preserves suprema of ω-chains; i.e., for every ω-chain

a0 � a1 � · · · in A we have supn F (an ) = F (supn an ).
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B OMITTED PROOFS

B.1 Proof of Lemma 3.2 (Continuity of ert)

We prove that for every program C , the transformer ert[C] is continuous; i.e., for every ω-chain
of runtimes t0 � t1 � · · · ,

ert[C]
(
supn tn

)
= supn ert[C](tn ),

by induction on the structure ofC . We consider only the cases of assignments, conditional choices,
and while-loops as the proof argument for the remaining language constructs is straightforward.

Assignment. The proof relies on Lebesgue’s Monotone Convergence Theorem (LMCT) recalled
in Theorem A.1. We have:

ert[x :≈ μ]
(
supn tn

)
= 1 + λσ • E�μ�(σ )

(
λv• (supn tn )[x/v](σ )

)
(Table 1)

= 1 + λσ • E�μ�(σ )
(
supn λv• tn[x/v](σ )

)
= 1 + λσ • supn E�μ�(σ ) (λv• tn[x/v](σ )) (LMCT)

= supn 1 + λσ • E�μ�(σ ) (λv• tn[x/v](σ )) (1 is constant)

= supn ert[x :≈ μ](tn ). (Table 1)

Conditional Choice. The proof relies on a Monotone Sequence Theorem (MST) recalled in The-
orem A.2. We have:

ert[if (ξ ) {C1} else {C2}]
(
supn tn

)
= 1 + �ξ : true� · ert[C1]

(
supn tn

)
+ �ξ : false� · ert[C2]

(
supn tn

)
(Table 1)

= 1 + �ξ : true� · supn ert[C1](tn ) + �ξ : false� · supn ert[C2](tn ) (I.H. onC1, C2)

= 1 + �ξ : true� · lim
n→∞

ert[C1](tn ) + �ξ : false� · lim
n→∞

ert[C2](tn ) (MST)

= lim
n→∞

1 + �ξ : true� · ert[C1](tn ) + �ξ : false� · ert[C2](tn )

= supn 1 + �ξ : true� · ert[C1](tn ) + �ξ : false� · ert[C2](tn ) (MST)

= supn ert[if (ξ ) {C1} else {C2}](tn ). (Table 1)

While-Loop. Let Ft (X ) = 1 + �ξ : false� · t + �ξ : true� · ert[C ′](X ) be the characteristic func-
tional of loop while (ξ ) {C ′}. The proof relies on three facts about Ft and the lfp operator:

(1) Fsupn tn
= supn Ftn

, which follows from a straightforward reasoning.
(2) supn Ftn

is continuous (in T→ T), which follows from the fact that 〈Ftn
〉 forms anω-chain

of continuous transformers (since by I.H. ert[C ′] is continuous) and continuous functions
are closed under supremums.

(3) lfp : [T→ T]→ T is itself continuous when restricted to the set of continuous transform-
ers in T→ T, denoted [T→ T] [48, Proposition 12].

We then have

ert[while (ξ ) {C ′}](supn tn ) = lfp (Fsupn tn
) (Table 1)

= lfp
(
supn Ftn

)
(Fact(1))

= supn lfp
(
Ftn

)
(Facts(2)and(3))

= supn ert[while (ξ ) {C ′}](tn ). (Table 1) �
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B.2 Proof of Theorem 3.4 (Constant Propagation)

For any halt–free program C ∈ pGCL, any constant k ∈ R≥0, and any runtime t ∈ T, we prove

ert[C](k + t ) = k + ert[C](t )

by induction on the structure of C . We consider only the cases of assignments and while-loops as
the proof argument for the remaining language constructs is straightforward.

Assignment. For x :≈ μ, the proof relies on the linearity of the expected value operator; i.e.,
Eν (k + t ) = k + Eν (t ) provided distribution ν has total mass 1. We have

ert[x :≈ μ](k + t ) = 1 + λσ • E�μ�(σ ) (λv• (k + t )[x/v](σ )) (Table 1)

= 1 + λσ • E�μ�(σ ) (λv•k + t[x/v](σ )) (k[x/v](σ ) = k )

= 1 + k + λσ • E�μ�(σ ) (λv• t[x/v](σ )) (linearity of E)

=k + ert[x :≈ μ](t ). (Table 1)

While-Loop. Let Ft (X ) = 1 + �ξ : false� · t + �ξ : true� · ert[C ′](X ) be the characteristic func-
tional of loop while (ξ ) {C ′}. We have to show

lfp Fk+t = k + lfp Ft ,

which is equivalent to the pair of inequalities

lfp Fk+t � k + lfp Ft and lfp Ft � lfp Fk+t − k.

These inequalities follow, in turn, from equalities

Fk+t (k + lfp Ft ) = k + lfp Ft and Ft (lfp Fk+t − k) = lfp Fk+t − k.

(This is because lfp gives the least fixed point of a transformer and then F (x ) =x implies lfp F ≤ x .)
Let us now discharge each of the above equalities:

Fk+t (k + lfp Ft ) = 1 + �ξ : false� · (k + t ) + �ξ : true� · ert
[
C ′

]
(k + lfp Ft ) (def . Fk+t )

= 1 + �ξ : false� · (k + t ) + �ξ : true� · (k + ert
[
C ′

]
(lfp Ft )) (I.H. on C ′)

= 1 + k + �ξ : false� · t + �ξ : true� · ert
[
C ′

]
(lfp Ft )

= k + Ft (lfp Ft ) (def . Ft )

= k + lfp Ft . (def . lfp )

Ft (lfp Fk+t − k) = 1 + �ξ : false� · t + �ξ : true� · ert
[
C ′

]
(lfp Fk+t − k) (def . Ft )

= 1 + �ξ : false� · t + �ξ : true� · (ert
[
C ′

]
(lfp Fk+t − k) + 2k − 2k)

= 1 + �ξ : false� · t + �ξ : true� ·
(
ert

[
C ′

]
(lfp Fk+t − k + 2k) − 2k

)
(I.H. on C ′)

= 1 + �ξ : false� · t + �ξ : true� ·
(
ert

[
C ′

]
(lfp Fk+t + k) − 2k

)
= 1 + �ξ : false� · t + �ξ : true� ·

(
ert

[
C ′

]
(lfp Fk+t ) + k − 2k

)
(I.H. on C ′)

= 1 + �ξ : false� · t + �ξ : true� ·
(
ert

[
C ′

]
(lfp Fk+t ) − k

)
= 1 + �ξ : false� · (k + t ) + �ξ : true� · ert

[
C ′

]
(lfp Fk+t ) − k

= Fk+t (lfp Fk+t ) − k (def . Fk+t )

= lfp Fk+t − k. (def . lfp ) �
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B.3 Proof of Theorem 5.5 (Soundness of the ert–Transformer)

Before we prove the soundness of ert with respect to the simple operational model of our proba-
bilistic programming language introduced in Section 5, some preparation is needed to deal with
sequential composition and while-loops. In particular, we use the following decomposition lemma.

Lemma B.1. Let C1,C2 ∈ pGCL, t ∈ T, and σ ∈ Σ. Then

ExpRewMt
σ �C1;C2� (〈 sink 〉) = ExpRewMu

σ �C1� (〈 sink 〉) ,

where u � ExpRewλρ• Mt
ρ �C2� (〈 sink 〉).

Proof. The MCMt
σ �C1;C2� is of the following form

Here, stmt(�1) = C1 and stmt(�2) = C2. Hence, every path starting in 〈�1,σ 〉 either eventually
reaches 〈�2,σ ′〉, for some σ ′ ∈ Σ, or diverges, i.e., never reaches 〈 sink 〉. Since 〈�2,σ ′〉 is the initial
state of the MC Mt

σ ′�C2�, we can transform Mt
σ �C1;C2� into an MC Mu

σ �C1� with the same
expected reward by setting

u � ExpRewλρ• Mt
ρ �C2� (〈 sink 〉). �

Furthermore, we have to consider bounded while-loops that are obtained by successively un-
rolling a while-loop up to a finite number of executions of the loop body.

Definition B.2 (Bounded while-loops). Let ξ ∈ DExp and C ∈ pGCL. Then the bounded while
loops of while are given by

while<0 (ξ ) {C} � halt, and

while<k+1 (ξ ) {C} � if (ξ ) {C; while<k (ξ ) {C}} else {empty}.

As for ordinary programs, the runtime of a while loop can be expressed in terms of the runtime
of bounded while loops.

Lemma B.3. Let ξ ∈ DExp, C ∈ pGCL, and t ∈ T. Then,

sup
k ∈N

ert[while<k (ξ ) {C}](t ) = ert[while (ξ ) {C}](t ).

Proof. Let Ft (X ) be the characteristic functional corresponding to while (ξ ) {C} as defined in
Definition 3.1. Assume, for the moment, that for each k ∈ N, we have ert[while<k (ξ ) {C}](t ) =
Fk

t (0). Then, using Kleene’s Fixed Point Theorem, we can establish that

sup
k ∈N

ert
[
while<k (ξ ) {C}

]
(t ) = sup

k ∈N
Fk

t (0) = lfpX .Ft (X ) = ert[while (ξ ) {C}](t ).

Hence, it suffices to show that ert[while<k (ξ ) {C}](t ) = Fk
t (0) for each k ∈ N. This can be es-

tablished by a straightforward induction on k . �
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Intuitively, this means that the expected runtime of a loop and the runtime of its finite approxi-
mations by bounded loops coincide in the limit. This also holds for the expected reward of the MC
of a loop and the expected reward of its finite approximations.

Lemma B.4. Let ξ ∈ DExp, C ∈ pGCL, t ∈ T, and σ ∈ Σ. Then

sup
k ∈N

ExpRewMt
σ �while

<k (ξ ) {C }� (〈 sink 〉) = ExpRewMt
σ �while (ξ ) {C }� (〈 sink 〉) .

Proof. First, observe that every path in the operational MCMt
σ �while

<k (ξ ) {C}� either ter-
minates or halts after k loop iterations. Since the operational MC Mt

σ �while (ξ ) {C}� does not
prematurely stop after k loop iterations, it includes the above paths. Thus, we obtain the inequality

sup
k ∈N

ExpRewMt
σ �while

<k (ξ ) {C }� (〈 sink 〉) ≤ ExpRewMt
σ �while (ξ ) {C }� (〈 sink 〉).

To prove the converse inequality, observe that every infinite path in the MCMt
σ �while (ξ ) {C}�

yields either reward 0 or reward∞. We distinguish two cases:

(1) All paths in the operationalMCMt
σ �while (ξ ) {C}� that collect positive reward are finite.

Then, for each of these paths, there exists some natural number k ≥ 0 such that the oper-

ational MCMt
σ �while

<k (ξ ) {C}� includes this path. By taking the supremum of these
numbers k , we include every path ofMt

σ �while (ξ ) {C}� with positive reward. Hence,

sup
k ∈N

ExpRewMt
σ �while

<k (ξ ) {C }� (〈 sink 〉) ≥ ExpRewMt
σ �while (ξ ) {C }� (〈 sink 〉).

(2) There exists an infinite path in the operational MCMt
σ �while (ξ ) {C}� that yields pos-

itive reward. By the above observation, this path yields reward ∞. Then, for all natural
numbers k , the operational MCMt

σ �while
<k (ξ ) {C}� contains a prefix of this path that

yields positive reward proportional to k . By taking the supremum of these numbers k , we
end up with an infinite reward. Hence,

sup
k ∈N

ExpRewMt
σ �while

<k (ξ ) {C }� (〈 sink 〉) = ∞ = ExpRewMt
σ �while (ξ ) {C }� (〈 sink 〉) . �

We are now in a position to show the soundness of ertwith respect to the operational semantics.

Theorem 5.5 (Soundness of the ert Transformer). Let C ∈ pGCL, and t ∈ T. Then, for each

σ ∈ Σ, we have

ExpRewMt
σ �C� (〈 sink 〉) = ert[C](t ) (σ ).

Proof. We prove the claim by induction on the structure of pGCL programs C ∈ pGCL. The
base cases C = empty, C = skip, and C = halt are straightforward.

The Probabilistic AssignmentC = x := μ. For somen ∈ N, theMCMt
σ �x := μ� is of the following

form—where stmt(�) = x := μ:
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Hence, all of its prefix-free paths reaching 〈 sink 〉 are of the form

πi = 〈�,σ 〉〈↓,σ [x/vi ]〉〈 sink 〉 . . . ,

with Pr{πi } = pi for each vi ∈ Val with �μ�(σ ) (vi ) = pi > 0 and

n∑
k=1

pk = 1.

Moreover, rew (πi ) = 1 + t (σ [x/vi ]). Thus, we have

ExpRewMt
σ �x :=μ� (〈 sink 〉)

=
∑

1≤i≤n

Pr{πi } · rew (πi )

=
∑

1≤i≤n

Pr{πi } · (1 + t (σ [x/vi ]))

= 1 +
∑

1≤i≤n

Pr{πi } · t (σ [x/vi ])

= 1 +
∑

1≤i≤n

�μ�(σ ) (vi ) · t (σ [x/vi ])

= 1 + E�μ�(σ ) (λvi • t (σ [x/vi ]))

= ert[x := μ](t ) (σ ).

Induction Hypothesis. For all (substatements) C ′ ∈ pGCL of C , t ∈ T and σ ∈ Σ,

ExpRewMt
σ �C

′� (〈 sink 〉) = ert
[
C ′

]
(t ) (σ ).

For the induction step, we consider sequential composition and while-loops. The case of con-
ditional statements is straightforward.

Sequential Composition. C = C1;C2.

ExpRewMt
σ �C1;C2� (〈 sink 〉)

= ExpRewMExpRew
λρ ·Mt

ρ �C2� (〈 sink 〉)
σ �C1� (〈 sink 〉) (LemmaB.1)

= ExpRewMλρ• ert[C2](t ) (ρ )
σ �C1�〈 sink 〉 (〈 sink 〉) (I.H. on C2)

= ert[C1](ert[C2](t )) (σ ) (I.H. on C1)

= ert[C1;C2](t ) (σ ).

While-Loop. Let C = while. For any natural number k ≥ 1 and σ ∈ Σ, we have

ert[while<k (ξ ) {C ′}](t ) (σ )

= ert[if (ξ ) {C ′; while<k−1 (ξ ) {C ′}} else {empty}](t ) (σ )

= 1 + �ξ : true�(σ ) · ert[C ′; while<k−1 (ξ ) {C ′}](t ) (σ )

+ �ξ : false�(σ ) · ert[empty](t ) (σ )

= 1 + �ξ : true�(σ ) · ExpRewMt
σ �C

′; while<k−1 (ξ ) {C ′ }� (〈 sink 〉) (I.H.)

+ �ξ : false�(σ ) · ExpRewMt
σ �empty� (〈 sink 〉)

= ExpRewMt
σ �while

<k (ξ ) {C ′ }� (〈 sink 〉).
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Moreover, for k = 0, we have

ert[while<0 (ξ ) {C ′}](t ) (σ )

= ert[halt](t ) (σ ) Definition B.2

= ExpRewMt
σ �halt� (〈 sink 〉) (already shown in base case)

= ExpRewMt
σ �while

<0 (ξ ) {C ′ }� (〈 sink 〉). (Definition B.2)

Putting both cases together, we can establish that

ert[while (ξ ) {C ′}](t ) (σ )

= sup
k ∈N

ert[while<k (ξ ) {C ′}](t ) (σ ) (LemmaB.3)

= sup
k ∈N

ExpRewMt
σ �while

<k (ξ ) {C ′ }� (〈 sink 〉)

= ExpRewMt
σ �while (ξ ) {C ′ }� (〈 sink 〉). (LemmaB.4) �

B.4 Proof of Theorem 6.1 (Soundness of ert w.r.t. Nielson’s Proof System)

The proof relies on three auxiliary results that are presented first. The first lemma shows a standard
relationship between while–loops and their unrollings.

Lemma B.5. For all pGCL programs C , t ∈ T and deterministic guards B, we have

ert[while (B) {C}](t ) = ert[if (B) {C; while (B) {C}} else {empty}](t ).

Proof. Let Ft (X ) be the characteristic functional corresponding to while (B) {C} as introduced
in Definition 3.1. Then,

ert[while (B) {C}](t )
= lfp Ft

= Ft (lfp Ft ) (Def . lfp )

= 1 + �B : true� · ert[C](lfp Ft ) + �B : false� · t (Definition 3.1)

= 1 + �B : true� · ert[C](ert[while (B) {C}](t )) + �B : false� · t
= 1 + �B : true� · ert[C](ert[while (B) {C}](t )) + �B : false� · ert[empty](t )

= 1 + �B : true� · ert[C; while (B) {C}](t ) + �B : false� · ert[empty](t )

= ert[if (B) {C; while (B) {C}} else {empty}](t ). �

Moreover, we observe that the runtime of two sequentially composed terminating deterministic
programs C1, C2 can be decomposed into the sum of the individual runtimes of C1 and C2. To
that end, we need the following. The MC M0

σ �C� of a deterministic program C and a program
state σ ∈ Σ (cf. Definition 5.3) reduces to a labeled transition system. In particular, if a state 〈↓,σ 〉
indicating successful termination is reachable from the initial state ofM0

σ �C�, it is unique. Hence,
we capture the effect of a deterministic program by a partial function C� · �( · ) : GCL × Σ⇀ Σ
mapping each deterministic program C ∈ GCL and each program state σ ∈ Σ to a program state
σ ′ ∈ Σ if and only if there exists a state 〈↓,σ ′〉 that is reachable in the MCM0

σ �C� from its initial
state 〈init(C ),σ 〉. Otherwise, C�C�(σ ) is undefined.

Lemma B.6. Let C1 ∈ GCL terminate on program state σ ∈ Σ and C2 ∈ GCL terminate on

C�C1�(σ ). Then,

ert[C1;C2](0) (σ ) = ert[C1](0) (σ ) + ert[C2](0) (C�C1�(σ )).
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Proof. Immediate by inspection of the MCM0
σ �C1;C2� and Theorem 5.5. �

Our third lemma extends the previous decomposition result to while-loops.

Lemma B.7. Let B be a deterministic guard and C ∈ GCL. For all program states σ ∈ Σ with

�B�(σ ) = true such that while (B) {C} terminates on σ , we have

ert[while (B) {C}](0) (σ ) = 1 + ert[C](0) (σ ) + ert[while (B) {C}](0) (C�C�(σ )).

Proof.

ert[while (B) {C}](0) (σ )

= ert[if (B) {C; while (B) {C}} else {empty}](0) (σ ) (LemmaB.5)

= 1 + �B�(σ ) · ert[C; while (B) {C}](0) (σ ) + �¬B�(σ ) · 0
= 1 + ert[C; while (B) {C}](0) (σ ) (�B�(σ ) = true)

= 1 + ert[C](0) (σ ) + ert[while](0) (C�C�(σ ). (LemmaB.6) �

We are now in a position to prove the soundness of ert with respect to Nielson’s proof system.

Theorem 6.1 (Soundness of ert for deterministic programs). For all deterministic programs

C ∈ GCL and assertions P ,Q , we have

� { P }C { ⇓ Q } implies �E { P } C { ert[C](0) ⇓ Q }.

Proof. By induction on the structure ofGCL-programC . The base casesC = skip andC = x :=
E are immediate, because

ert[skip](0) = ert[x := E](0) = 1

and { P } skip { 1 ⇓ P } as well as { P } x := E { 1 ⇓ P } are axioms.
Induction Hypothesis. Assume that for each substatement C ′ of C and each pair of assertions

P ,Q , we have

� { P }C ′ { ⇓ Q } implies �E { P } C ′ { ert
[
C ′

]
(0) ⇓ Q }.

For the induction step, we have to consider sequential composition, conditionals, and loops.

Sequential Composition C ′ = C1;C2. Assume that

� { P }C1;C2 { ⇓ Q }.

Then, there exists an assertion R such that

� { P }C1 { ⇓ R } and � { R }C2 { ⇓ Q }.

By induction hypothesis, we know that

�E { P } C1 { ert[C1](0) ⇓ R } and �E { R } C2 { ert[C2](0) ⇓ Q }.

Now, let

E ′2 � ert[C1;C2](0) − ert[C1](0)

and consider the triple

{ P ∧ E ′2 = u } C1 { ert[C1](0) ⇓ R ∧ ert[C2](0) ≤ u },
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where u is a fresh logical variable. Since u does not occur in P , each state σ ∈ Σ satisfying P also
satisfies P ∧ E ′2 = u; the latter is denoted by σ |= P ∧ E ′2 = u. Then,

σ |= P ∧ E ′2 = u andC�C1�(σ ) |= R and ert[C2](0) (C�C1�(σ )) ≤ u

⇔σ |= P ∧ E ′2 = u andC�C1�(σ ) |= R and

ert[C2](0) (C�C1�(σ )) ≤ ert[C1;C2](0) (σ ) − ert[C1](0) (σ ) (Definition of E ′2)

⇔σ |= P ∧ E ′2 = u andC�C1�(σ ) |= R and

ert[C1](0) (σ ) + ert[C2](0) (C�C1�(σ )) ≤ ert[C1;C2](0) (σ ) (LemmaB.6)

⇒ |=E { P ∧ E ′2 = u } C1 { ert[C1](0) ⇓ R ∧ ert[C2](0) ≤ u }.
Since both

{ P ∧ E ′2 = u } C1 { ert[C1](0) ⇓ R ∧ ert[C2](0) ≤ u }
and

{ R } C2 { ert[C2](0) ⇓ Q }
are valid triples, we may apply the rule of sequential composition to conclude

�E { P } C1;C2 { ert[C1](0) + E ′2 ⇓ Q }
⇔ �E { P } C1;C2 { ert[C1;C2](0) ⇓ Q }. (Definition of E ′2)

Conditionals. C ′ = if (B) {C1} else {C2}. Assume that
� { P } if (B) {C1} else {C2} { ⇓ Q }

is a provable triple in Hoare logic. Then, also,

� { P ∧ B }C1 { ⇓ Q } and � { P ∧ ¬B }C2 { ⇓ Q }.
By induction hypothesis, it follows that

�E { P ∧ B } C1 { ert[C1](0) ⇓ Q } and �E { P ∧ ¬B } C2 { ert[C2](0) ⇓ Q }
are provable triples in Nielson’s logic. Now, let

E � ert[if (B) {C1} else {C2}](0)

= 1 + �B� · ert[C1](0) + �¬B� · ert[C2](0).

Then E ≥ ert[C1](0) and E ≥ ert[C2](0) hold for all states satisfying the precondition P . Hence,
we can apply the rule of consequence to conclude

�E { P ∧ B } C1 { E ⇓ Q } and �E { P ∧ ¬B } C2 { E ⇓ Q }.
Now, applying the rule for conditionals yields

�E { P } if (B) {C1} else {C2} { E ⇓ Q }.
Loops. C ′ = while (B) {C1}. Assume that

� { P } while (B) {C1} { ⇓ Q }
is a provable triple. Then, there exists an assertion R (z) such that P ⇒ ∃z•R (z), R (0) ⇒ Q and

� { ∃z•R (z) } while (B) {C1} { ⇓ R (0) }.
By the while-rule of Hoare logic for total correctness, we have

� { R (z+1) }C1 { ⇓ R (z) }. (∗)
The induction hypothesis yields

�E { R (z+1) } C1 { E1 ⇓ R (z) },
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where E1 = ert[C1](0). Now, let

E ′ � ert[while (B) {C1}](0) − ert[C1](0)

and

E � ert[while (B) {C1}](0).

Our goal is to apply the while-rule in order to show

�E { ∃z•R (z) } while (B) {C1} { E ⇓ R (0) }.
We first check the side conditions of this rule for our choice of E ′; i.e., we show R (0) ⇒ ¬B ∧ E ≥ 1
as well as R (z+1) ⇒ B ∧ E ≥ E1 + E

′.
If R (0) is valid, then ¬B is valid due to (∗) and

�E�(σ ) = ert[while (B) {C1}](0) (σ ) = 1 ≥ 1.

Furthermore, if R (z+1) is valid for some z ∈ N, then B is valid by (∗) and for each program state
σ ∈ Σ, we have

�E�(σ ) = ert[while (B) {C1}](0) (σ )

= ert[while (B) {C1}](0) (σ ) − ert[C1](0) (σ ) + ert[C1](0) (σ )

= �E ′�(σ ) + �E1�(σ ).

Hence, the side conditions of the while-rule hold. In order to apply the rule, we also have to
show validity of the triple

{ R (z+1) + E ′ = u } C1 { ert[C1](0) ⇓ R (z) ∧ E ≤ u },
where u is a fresh logical variable. Since u does not occur in P , we know that for each state σ ∈ Σ
with σ |= P , we also have σ |= R (z+1) ∧ E ′ = u. Then

σ |= R (z+1) ∧ E ′ = u and C�C1�(σ ) |= R (z) and E (C�C1�(σ )) ≤ u

⇔σ |= R (z+1) ∧ E ′ = u and C�C1�(σ ) |= R (z) and E (C�C1�(σ )) ≤ E ′(σ ) (Def . of u)

⇔σ |= R (z+1) ∧ E ′ = u andC�C1�(σ ) |= R (z) and

E (C�C1�(σ )) ≤ ert[while (B) {C1}](0) (σ ) − ert[C1](0) (σ ) (Definition of E ′)

⇔σ |= R (z+1) ∧ E ′ = u andC�C1�(σ ) |= R (z) and

E (C�C1�(σ )) + ert[C1](0) (σ ) ≤ ert[while (B) {C1}](0) (σ )

⇒ |=E { R (z+1) ∧ E ′ = u } C1 { ert[C1](0) ⇓ R (z) ∧ E ≤ u }. (LemmaB.7)

Thus, we may apply the while-rule to conclude

�E { ∃z•R (z) } while (B) {C1} { ert[while (B) {C1}](0) ⇓ R (0) }.
By assumption, the implications P ⇒ ∃z•R (z) as well as R (0) ⇒ Q are valid, i.e.,

�E { P } while (B) {C1} { ert[while (B) {C1}](0) ⇓ Q }. �

B.5 Proof of Theorem 6.2 (Completeness of ert w.r.t. Nielson’s Proof System)

We show the following claim by induction on the structure of program statements: For all asser-
tions P ,Q , deterministic program C ∈ GCL, and arithmetic expressions E,

�E { P } C { E ⇓ Q }
implies that there exists a natural number k ∈ N such that for all program states σ ∈ Σ, we have

ert[C](0) (σ ) ≤ k · �E�(σ ).
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The Effectless Program C = skip. Assume

�E { P } skip { E ⇓ Q }.

Then there exists an assertion R such that

�E { R } skip { 1 ⇓ R }

and P ⇒ R ∧ 1 ≤ k · E and R ⇒ Q are valid for some k ∈ N. Hence, there exists a k ∈ N such that
ert[skip](0) (σ ) = 1 ≤ k · �E�(σ ) for each σ ∈ Σ.

The Assignment C = x := E. Analogous to skip.

The Sequential Composition C = C1;C2. Assume

�E { P } C1;C2 { E ⇓ Q }.

Then there exists an assertion R and arithmetic expressions E1,E2,E
′
2 such that

�E { P ∧ E ′2 = u } C1 { E1 ⇓ R ∧ E2 ≤ u } and �E { R } C2 { E2 ⇓ Q }

for some fresh logical variable u. By the induction hypothesis, there exist natural numbers k1,k2 ∈
N such that for all program states σ ∈ Σ, we have

ert[C1](0) (σ ) ≤ k1 · �E1�(σ ) and ert[C2](0) (σ ) ≤ k2 · �E2�(σ ).

By setting k = max{k1,k2}, we obtain

ert[C1](0) (σ ) ≤ k · �E1�(σ ) and ert[C2](0) (σ ) ≤ k · �E2�(σ ). (∗)

In particular, this means that

ert[C2](0) (C�C1�(σ )) ≤ k · �E2�(C�C1�(σ )) ≤ k · �E ′2�(σ ). (†)

Hence,

ert[C1;C2](0) (σ )

= ert[C1](0) (σ ) + ert[C2](0) (C�C1�(σ )) (LemmaB.6)

≤ k · �E1�(σ ) + ert[C2](0) (C�C1�(σ )) (by ∗)

≤ k · �E1�(σ ) + k · �E ′2�(σ ) (by †)

= k · (�E1�(σ ) + �E ′2�(σ )).

Conditionals C ′ = if (B) {C1} else {C2}. Assume

�E { P } if (B) {C1} else {C2} { E ⇓ Q }.

Then

�E { P ∧ B } C1 { E ⇓ Q } and �E { P ∧ ¬B } C2 { E ⇓ Q }.

By induction hypothesis, there exist natural numbers k1,k2 ∈ N such that for each σ ∈ Σ and i ∈
{1, 2},

ert[Ci ](0) (σ ) ≤ ki · �E�(σ ).

By setting k = max{k1,k2}, we obtain

ert[Ci ](0) (σ ) ≤ k · �E�(σ ). (∗∗)

Journal of the ACM, Vol. 65, No. 5, Article 30. Publication date: August 2018.



Expected Runtime of Randomized Algorithms 30:51

Thus,

ert[if (B) {C1} else {C2}](0) (σ )

= 1 + �B�(σ ) · ert[C1](0) (σ ) + �¬B�(σ ) · ert[C2](0) (σ ) (Table 1)

≤ k + �B�(σ ) · k · �E�(σ ) + �¬B�(σ ) · k · �E�(σ ) (by ∗ ∗)

≤ (3 · k ) · �E�(σ ).

Loops. C ′ = while (B) {C1}. Assume

�E { P } while (B) {C1} { E ⇓ Q }.

Then there exists an assertion R (z) such that P ⇒ ∃z•R (z) and R (0) ⇒ Q are valid. Furthermore,
there exists z ∈ N such that

�E { R (z+1) ∧ E ′ = u } C1 { E1 ⇓ R (z) ∧ E ≤ u } (‡)

for some fresh logical variable u. Additionally, for each z ∈ N, the side conditions

R (z+1) ⇒ B ∧ E ≥ E1 + E
′ as well asR (0) ⇒ ¬B ∧ E ≥ 1 (††)

are valid. Our proof obligation is to show for some k ∈ N and all program states σ ∈ Σ satisfying
P that

ert[while (B) {C1}](0) (σ ) ≤ k · �E�(σ ). (♠)

By induction hypothesis, there exists a k ′ ∈ N such that for each σ ∈ Σ, we have

1 ≤ ert[C1](0) (σ ) ≤ k ′ · �E1�(σ ). (♣)

We show by complete induction over z ∈ N that for all σ ∈ Σ with σ |= R(z) and

�E { R (z) } while (B) {C1} { E ⇓ R (0) },

we have ert[while (B) {C1}](0) (σ ) ≤ (k ′+1) · �E�(σ ).
For the base case z = 0, the side condition R (0) ⇒ ¬B ∧ E ≥ 1 yields

(k ′+1) · �E�(σ )

≥ 1 (by ††)

= 1 + �B�(σ ) · ert[C1](0) (σ ) + �¬B�(σ ) · 0
= ert[while (B) {C1}](0) (σ ). (Table 1)

Now, for the induction step, assume σ |= R (z+1). Then the side condition R (z+1) ⇒ B ∧ E ≥
E1 + E

′ yields

(k ′+1) · �E�(σ )

≥ (k ′+1) · (�E1�(σ ) + �E ′�(σ )) (by ††)

≥ (k ′+1) · �E1�(σ ) + (k ′+1) · �E�(C�C1�(σ )) (Postcondition of ‡)

≥ (k ′+1) · �E1�(σ ) + ert[while (B) {C1}](0) (C�C1�(σ )) (I.H.,C�C1�(σ ) |= R (z))

≥ �E1�(σ ) + ert[C1](0) (σ ) + ert[while (B) {C1}](0) (C�C1�(σ )) (by♣)

≥ 1 + ert[C1](0) (σ ) + ert[while (B) {C1}](0) (C�C1�(σ ))

= ert[while (B) {C1}](0) (σ ), (LemmaB.7)

which completes the inner induction. Moreover, (♠) follows immediately by setting k = k ′+1. �
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B.6 Well–Definedness of ert on Procedure Calls

We prove that the least fixed point

lfpη• 1 ⊕ ert[D (P )]�η (2)

defining ert[call P,D] is well defined. To this end we take the following four steps:

(1) We endow the set RtEnv of runtime environments with the structure of anω–cpo (Propo-
sition B.8).

(2) We show that transformer ert[C]�η (t ) is continuous with respect to t for everyC ∈ pRGCL

(Lemma B.9).

(3) We show that the transformer ert[C]�η (t ) is also continuouswith respect toη (LemmaB.10).

(4) We conclude that λη• 1 ⊕ ert[C]�η is continuous and by the Kleene Fixed-Point Theorem
(Theorem A.3) the least fixed point in Equation (2) is well defined.

Let “�” denote the pointwise order between runtime environments; i.e., for η1,η2 ∈ RtEnv, η1 �
η2 if and only if η1 (t ) � η2 (t ) for every t ∈ T.
Proposition B.8. The pair (RtEnv,�) is an ω-cpo with bottom element ⊥RtEnv � λt : T• 0, where

the supremum of an ω-chain η0 � η1 � · · · is given pointwise, i.e., (supn ηn ) (t ) � supn ηn (t ).

Lemma B.9 (Continuity of ert[C]�η (t ) w.r.t. t ). Let t0 � t1 � · · · be an ω-chain in T. Then for

every C ∈ pRGCL and η ∈ RtEnv,

ert[C]�η (supn tn ) = supn ert[C]�η (tn ).

Proof. By induction on the structure of C . Except for procedure calls, all program constructs
use the same proof argument as for the continuity of plain transformer ert[ · ] (see the proof of
Lemma 3.2). For procedure calls, the statement follows immediately from the continuity of η since

ert[call P]
�
η (supn tn ) = η(supn tn ) = supn η(tn ) = supn ert[call P]

�
η (tn ). �

Lemma B.10 (Continuity of ert[C]�η (t ) w.r.t. η). Let η0 � η1 � · · · be an ω-chain in RtEnv.

Then, for every C ∈ pRGCL,

ert[C]�supn ηn
= supn ert[C]�ηn

.

Proof. By induction on the structure of C . For the four basic instructions empty, skip, halt,
and x :≈ μ the proof is straightforward since the action of the transformer is independent of the
runtime environment (i.e., constant functions are always continuous). We omit the case of while-
loops since they can be readily simulated by recursive procedures. For the remaining program
constructs we reason as follows:

Sequential Composition. We use the fact that ert[C1]
�
supm ηm

( f ) is continuous in f (by Lemma B.9)
and Lemma A.5 to “merge” a pair of nested supremums into a single supremum:

ert[C1;C2]
�
supn ηn

(t ) = ert[C1]
�
supm ηm

(
ert[C2]

�
supn ηn

(t )
)

(Table 3)

= ert[C1]
�
supm ηm

(
supn ert[C2]

�
ηn

(t )
)

(I.H. onC2)

= supn ert[C1]
�
supm ηm

(
ert[C2]

�
ηn

(t )
)

(LemmaB.9)

= supn supm ert[C1]
�
ηm

(
ert[C2]

�
ηn

(t )
)

(I.H. onC1)

= supi ert[C1]
�
ηi

(
ert[C2]

�
ηi

(t )
)

(LemmaA.5)

= supi ert[C1;C2]
�
ηi

(t ). (Table 3)
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Conditional Choice. The idea here is to substitute supn ert[C1]
�
ηn
with limn→∞ ert[C1]

�
ηn
using the

Monotone Sequence Theorem. This is possible because by I.H., ert[C1]
�
ηn

is (continuous and thus)

monotonic in ηn and η0 � η1 � · · · ; therefore, (ert[C1]
�
ηn

(t ))n∈N defines a monotonic sequence:

ert[if (ξ ) {C1} else {C2}]�supn ηn
(t )

= �ξ : true� · ert[C1]
�
supn ηn

(t ) + �ξ : false� · ert[C2]
�
supn ηn

(t ) (Table 3)

= �ξ : true� · supn ert[C1]
�
ηn

(t ) + �ξ : false� · supn ert[C2]
�
ηn

(t ) (I.H. on C1, C2)

= �ξ : true� · lim
n→∞

ert[C1]
�
ηn

(t ) + �ξ : false� · lim
n→∞

ert[C2]
�
ηn

(t ) (TheoremA.2)

= lim
n→∞

(
�ξ : true� · ert[C1]

�
ηn

(t ) + �ξ : false� · ert[C2]
�
ηn

(t )
)

(algebra of limits)

= supn

(
�ξ : true� · ert[C1]

�
ηn

(t ) + �ξ : false� · ert[C2]
�
ηn

(t )
)

(TheoremA.2)

= supn ert[if (ξ ) {C1} else {C2}]�ηn
. (Table 3)

Procedure Call. The reasoning here is straightforward:

ert[call P]
�
supn ηn

(t ) = (supn ηn ) (t ) (Table 3)

= supn ηn (t ) (def . supn ηn )

= supn ert[call P]
�
ηn

(t ). (Table 3)

�

B.7 Proof of Theorem 7.2 (Continuity of ert for Recursive Programs)

We prove that for pRGCL program 〈C,D〉 and ω-chain of runtimes t0 � t1 � · · · ,

supn ert[C,D]( fn ) = ert[C,D](supn fn ).

The proof proceeds by induction on the structure of C . We consider only the case of procedure
calls since all other language constructs follow the same reasoning as in the proof of Lemma 3.2
(see Appendix B.1), the only difference being that the transformer now propagates declarations.

For ert[call P,D], let F (η) = 1 ⊕ ert[D (P )]�η . Since F is continuous (see Appendix B.6), we can
apply the Kleene Fixed-Point Theorem to characterize lfpη• F (η) as supm Fm (⊥RtEnv), and we have

ert[call P,D](supn tn ) =
(
lfpη• F (η)

)
(supn tn ) (Equation (1))

= supm Fm (⊥RtEnv) (supn tn ) (TheoremA.3)

= supm supn Fm (⊥RtEnv) (tn ) (Fm (⊥RtEnv) continuous)

= supn supm Fm (⊥RtEnv) (tn ) (TheoremA.5)

= supn (lfpη · F (η)) (tn ) (TheoremA.3)

= supn ert[call P,D](tn ). (Equation (1))

We are only left to prove that Fm (⊥RtEnv) is continuous for allm ∈ N. We prove this by induction on
m. The base case is immediate since F 0 (⊥RtEnv) = ⊥RtEnv and⊥RtEnv is continuous. For the inductive
case we have Fm+1 (⊥RtEnv) = F (Fm (⊥RtEnv)). The continuity of Fm+1 (⊥RtEnv) follows from the I.H.
and the fact that F preserves continuity; i.e., η continuous implies F (η) continuous. �
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B.8 Proof of Theorem 7.2 (Constant Propagation of ert for Recursive Programs)

We prove that for halt-free pRGCL program 〈C,D〉 and constant runtime k with k ∈ R≥0,

ert[C,D](k+ t ) = k + ert[C,D](t ). (3)

The proof relies on two subsidiary results that we present below.

Lemma B.11. For halt-free pRGCL program 〈C,D〉 and constant runtime k with k ∈ R≥0,

ert [C,D] (k) � k.

Proof. By induction on the structure ofC . Except for the case of procedure calls, all other pro-
gram constructs pose no difficulty. For a procedure call, we must do a case distinction on whether
the procedure terminates almost surely or not. This requires extending the weakest precondition
transformer wp to probabilistic recursive programs. A detailed proof containing this case analysis
is provided in [43, App. 6]. �

For stating the second auxiliary result, we require the notion of “constant separable” runtime
environment. We say that η ∈ RtEnv is constant separable into υ ∈ RtEnv if and only if for all k ∈
R≥0 and t ∈ T, η(k + t ) = k + υ (t ).

Lemma B.12. Let η be a runtime environment constant separable10 into υ. Then, for all halt-free

C ∈ pRGCL and constant runtime k with k ∈ R≥0,

ert[C]�η (k+ t ) = k + ert[C]�υ (t ).

Proof. By a routine induction on the structure of C . �

Now we have all prerequisites to establish Equation (3). By letting F (η) = 1 ⊕ ert[D (P )]�η , we
can recast the equation as (lfp F ) (k+ t ) = k + (lfp F ) (t ), or equivalently,(

λη�• λt�•η�(k + t�)
)
(lfp F ) =

(
λη�• λt�• k + η�(t�)

)
(lfp F ).

To prove this equation, we apply the Lemma A.6 with instantiations

F1 = F2 = F

f1 = λη�• λt�•η�(k + t�)

f2 = λη�• λt�• k + η�(t�)

h1 = λη�• λt�• 1 + ert[D (P )]�
λt ′ ·η� (t ′−k)

(k + t�)

h2 = λη�• λt�• k + 1 + ert[D (P )]�
λt ′ ·η� (t ′)−k

(t�)

and underlying ω-cpos (D1, ≤1) = (D2, ≤2) = (D, ≤) = (RtEnv,�) and bottom elements ⊥1 =

⊥2 = ⊥ = ⊥RtEnv. The application of Lemma A.6 requires the continuity of F , which follows from
Lemma B.10; the continuity of f1 and f 2, which holds because runtime environments are continu-
ous by definition; and finally the monotonicity of h1 and h2. This latter fact, together with the fact
that h1 and h2 are effectively well defined (i.e., have type RtEnv → RtEnv), can be proved with an
inductive argument (on the structure of D (P )).
We are left to discharge hypotheses 1 through 3 of Lemma A.6. A simple unfolding of the in-

volved functions yields f1 (F (η)) � h1 ( f1 (η)) and f2 (F (η)) � h2 ( f2 (η)) for all η ∈ RtEnv; this estab-
lishes hypothesis 1. As for hypothesis 2, f1 (⊥RtEnv) � f2 (lfp F ) holds because f1 (⊥RtEnv) = ⊥RtEnv

10For the definition of constant separable runtime environment, see the paragraph above Lemma B.12.
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and f2 (⊥RtEnv) � f1 (lfp F ) reduces to k � ert[call P,D](k+ t ), which holds in view of the mono-
tonicity of ert and the auxiliary Lemma B.11. Finally, to discharge hypothesis 3, we let η(t ′) =
k + ert[call P,D](t ′−k) and reason as follows:

h1 ( f2 (lfp F )) (t ) � f2 (lfp F ) (t )

⇐⇒ 1 + ert[D (P )]�η (k + t ) � k + ert[call P,D](t ) (definition h1, f2, F )

⇐⇒ 1 + k + ert[D (P )]�
ert[call P,D]

(t ) (η constant separable into)

� k + ert[call P,D](t ) (ert[call P,D]; LemmaB.12)

⇐⇒ k + F (ert[call P,D]) (t ) � k + ert[call P,D](t ) (definition F)

⇐⇒ k + F (lfp F ) (t ) � k + (lfp F ) (t ) (Equation (1))

⇐⇒ k + (lfp F ) (t ) � k + (lfp F ) (t ) (definition lfp)

⇐= true (“ � ” is a partial order )

To prove the other part of hypothesis 3, i.e., h2 ( f1 (lfp F )) (t ) � f1 (lfp F ) (t ), we follow a similar
reasoning. �

B.9 Proof of Theorem 7.3 (Proof Rules for Expected Runtimes of Recursive Programs)

We show that proof rules (1) and (2) from Theorem 7.3 reproduced below are sound with respect
to the ert-calculus in pRGCL. Proof rule (3) follows the same argument as (2):

ert[call P](t ) � 1+u � ert[D (P )](t ) � u

ert[call P,D](t ) � 1+u
(1)

u0 = 0
ert[call P](t ) � 1+ ert[D (P )](t ) � un+1

ert[call P,D](t ) � 1+ limn→∞ un
. (2)

To prove the rules sound, we make use of the following result:

Proposition B.13. The derivability assertion

ert[call P](t1) � u1 � ert[C](t2) � u2

implies that for every runtime environment η,

η(t1) � u1 ⇒ ert[C]�η (t2) � u2.

Soundness of Rule (1). Let runtime environment η� map t to u and all other runtimes to (the
constant runtime)∞. Then,

ert[call P,D](t ) � 1+u

⇐⇒
(
lfpη• 1 ⊕ ert[D (P )]�η

)
(t ) � 1+u (Equation (1))

⇐⇒ lfpη · 1 ⊕ ert[D (P )]�η � 1 ⊕ η� (definition η�, �)

⇐= 1 ⊕ ert[D (P )]�
1⊕η� � 1 ⊕ η� (TheoremA.4,B.10)

⇐⇒ 1 + ert[D (P )]�
1⊕η� (t ) � 1 + u (definition η�, �)

⇐⇒ ert[D (P )]�
1⊕η� (t ) � u (algebra)

⇐= (1 ⊕ η�) (t ) � 1+u (Proposition B.13, rule premise)

⇐⇒ true. (definition η�)
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Soundness of Rule (2). Let F (η) = 1 ⊕ ert[D (P )]�η . Since F is continuous (see Appendix B.6),
we can apply the Kleene Fixed-Point Theorem (Theorem A.3) to characterize lfpη• F (η) as
supn Fn (⊥RtEnv). This yields

ert[call P,D](t ) = lfpη• F (η) = supn Fn (⊥RtEnv) (t ).

Moreover, the sequence (Fn (⊥RtEnv) (t ))n∈N is monotonic. Then by the Monotone Sequence Theo-
rem (Theorem A.2),

supn Fn (⊥RtEnv) (t ) = limn→∞ Fn (⊥RtEnv) (t ).

Combining the above two equations, we obtain

ert[call P,D](t ) � 1+ limn→∞ un

⇐⇒ limn→∞ Fn (⊥RtEnv) (t ) � 1+ limn→∞ un

⇐= ∀n · Fn (⊥RtEnv) (t ) � 1+un .

We prove the last statement by induction on n. The base case F 0 (⊥RtEnv) (t ) � 1 + u0 is immediate
since F 0 (⊥RtEnv) (t ) = ⊥RtEnv (t ) = 0. For the inductive case we have

Fn+1 (⊥RtEnv) (t ) � 1 + un+1

⇐⇒ 1 + ert[D (P )]�
F n (⊥RtEnv )

(t ) � 1 + un+1 (definition Fn+1 (⊥RtEnv) )

⇐⇒ ert[D (P )]�
F n (⊥RtEnv )

(t ) � un+1 (algebra)

⇐= Fn (⊥RtEnv) (t ) � 1 + un (Proposition B.13, rule premise)

⇐⇒ true. (I.H.) �

B.10 Proof of Theorem 7.10 (Soundness of ert w.r.t. Pushdown Markov Chains)

Let us fix procedures P1, . . . , Pk and a declaration D. As in the proof of Theorem 5.5, we prove
the soundness of ert with respect to operational PMCs by induction on the structure of pRGCL-
programs. Similar to bounded while-loops (cf. Definition B.2), this proof relies on expressing the
runtime of procedure calls in terms of inlined call-free programs. Thus, recall from Section 7.4 the
definition of bounded procedure calls callDn P (for multiple procedures):

Definition B.14 (Bounded procedure calls). The bounded procedure calls of call Pi , 1 ≤ i ≤ k , are
given by

callD0 Pi � halt

callDn+1 Pi � skip;D (Pi )
[
call P1/call

D
n P1, . . . , call Pk/call

D
n Pk

]
.

The main motivation to consider bounded procedure calls is to use them as runtime environ-
ments. This usage is formally expressed by the following auxiliary result.

Lemma B.15. For each C ∈ pRGCL, 1 ≤ i ≤ k , and t ∈ T, we have

ert[C,D](t ) = sup
n∈N

ert [C,D]
�

(ert[callDn P1], ...,ert[callDn Pk ])
(t ).

Proof. By induction on the structure of pRGCL programs. In all cases except for procedure

calls, the claims follows immediately from the definition of ert[.](.) and ert[.]
�
η (.) and the induction
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hypothesis for compound statements. For a procedure call call Pi , we have

ert[call Pi ,D](t )

= sup
n∈N

ert
[
callDn Pi

]
(t ) (Theorem 7.5)

= sup
n∈N

ert [call Pi ,D]
�

(ert[callDn P1], ...,ert[callDn Pk ])
(t ) (ert[C]

�
ert[C′]

= ert[C
[
call P/C′

]
]).

�

Now, consider a PMC n〈Pf
σ �C,D�〉 that behaves exactly the same as the operational PMC

Pf
σ �C,D� but counts the number of symbols currently on the stack. Moreover, if this number is

exactly n and Pf
σ �C,D� would perform another push onto the stack, n〈Pf

σ �C,D�〉 immediately
moves to 〈 sink 〉—without entering a state of the form 〈↓,σ ′〉 indicating successful termination
first and without collecting reward for the procedure call. Intuitively, this means that the modified
PMC halts its execution after encountering n + 1 procedure calls without returns. It is evident that:

Lemma B.16. ExpRewPf
σ �C,D� (〈 sink 〉) = supn∈N ExpRew

n 〈Pf
σ �C,D�〉 (〈 sink 〉) .

Proof sketch. n〈Pf
σ �C,D�〉 exhibits a partial behavior of P

f
σ �C,D� in the sense that every

path of n〈Pf
σ �C,D�〉 eventually reaching 〈 sink 〉 is—up to renaming—also a path of Pf

σ �C,D�.
Hence,

ExpRewPf
σ �C,D� (〈 sink 〉) ≤ sup

n∈N
ExpRew

n 〈Pf
σ �C,D�〉 (〈 sink 〉).

Conversely, every finite path π of Pf
σ �C,D� eventually reaching 〈 sink 〉 can be implemented with

finite stack size. Therefore, there exists an n0 ∈ N such that for all n ≥ n0 the path π of Pf
σ �C,D�

is also a path of n〈Pf
σ �C,D�〉. Thus,

ExpRewPf
σ �C,D� (〈 sink 〉) ≥ sup

n∈N
ExpRew

n 〈Pf
σ �C,D�〉 (〈 sink 〉). �

Assume for the moment the following result:

Lemma B.17. For all n ∈ N it holds that

λσ • ExpRew
n 〈Pt

σ �C,D�〉 (〈 sink 〉) = ert [C,D]
�

(ert[callDn P1], ...,ert[callDn Pk ])
(t ).

With these auxiliary results readily available, we are in a position to show the transformer ert

for pRGCL-programs to be sound with respect to operational PMCs.

Theorem 7.10 (Correspondence Theorem). Let 〈C,D〉 be a pRGCL program, t ∈ T. Then for

each σ ∈ Σ, we have

ExpRewPt
σ �C,D� (〈 sink 〉) = ert[C,D](t ) (σ ).

Proof.

ExpRewPt
σ �C,D� (〈 sink 〉)

= sup
n∈N

ExpRew
n 〈Pt

σ �C,D�〉 (〈 sink 〉) (LemmaB.16)

= sup
n∈N

ert [C,D]
�

(ert[callDn P1], ...,ert[callDn Pk ])
(t ) (LemmaB.17)

= ert[C,D](t ). (LemmaB.15.) �

It remains to prove Lemma B.17.
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Proof of Lemma B.17. By induction on n.

The Base Case n = 0. By Definition B.14, we have callD0 Pi = halt for each procedure Pi . We
proceed by induction on the structure of pRGCL programs to show that

λσ • ExpRew
0〈Pt

σ �C,D�〉 (〈 sink 〉) = ert [C,D]
�
(halt, ...,halt)

(t ).

We first consider the base case of procedure calls C = call Pi . Since n = 0, no single push onto
the stack may be performed without the PMC n〈Pt

σ �C,D�〉 immediately moving to 〈 sink 〉. Thus,
every path of the operational PMC n〈Pt

σ �call Pi ,D�〉 is of the form

(〈init(call Pi ),σ 〉,γ0)
1−→ (〈 sink 〉,γ0)

1−→ . . .
1−→ (〈 sink 〉,γ0),

collecting zero reward. Then

ExpRew
0〈Pt

σ �call Pi ,D�〉 (〈 sink 〉)
= 0

= ert [halt,D]
�
(halt, ...,halt)

(t ) (σ )

= ert
[
callD0 Pi ,D

] �
(halt, ...,halt)

(t ) (σ ).

All other base cases are analogous to the soundness proof for pGCL-programs presented in

the proof of Theorem 5.5, because ert [C,D]
�
(halt, ...,halt)

(t ) = ert[C](t ) holds for each call-free

program C . The same holds for the compound statements—sequential composition, conditionals,
and loops—by using the inductive hypothesis on C .

Inductive Hypothesis on n. For an arbitrary but fixed n ∈ N we assume that for all pRGCL–
programs C , we have

λσ • ExpRew
n 〈Pt

σ �C,D�〉 (〈 sink 〉) = ert [C,D]
�

(callDn P1, ...,call
D
n Pk )

(t ).

Inductive Step n �→ n+1. As in the base case n = 0, the proof proceeds by structural induction
on C , where each case except for procedure calls is analogous to the soundness proof for pGCL-
programs (cf. Theorem 5.5). We thus concentrate on the treatment of procedure calls, a base case
of our structural induction. By definition of the transition relation Δ of n〈Pt

σ �C,D�〉, we observe
that

ExpRew
n+1〈Pt

σ �call Pi ,D�〉 (〈 sink 〉) = 1 + ExpRew
n 〈Pt

σ �D (Pi ),D�〉 (〈 sink 〉).
In other words, the expected reward of a procedure call equals the reward of the call itself plus the
reward of executing the procedure’s body. We then obtain the desired result as follows:

λσ • ExpRew
n+1〈Pt

σ �call Pi ,D�〉 (〈 sink 〉)

= λσ • 1 + ExpRew
n 〈Pt

σ �D (Pi ),D�〉 (〈 sink 〉) (previous observation)

= 1 + λσ • ExpRew
n 〈Pt

σ �D (Pi ),D�〉 (〈 sink 〉)

= 1 + ert [D (Pi ),D]
�

(callDn P1, ...,call
D
n Pk )

(t ) (I.H. on n)

= ert [skip;D (Pi ),D]
�

(callDn P1, ...,call
D
n Pk )

(t )

= ert [call Pi ,D]
�

(callDn+1 P1, ...,call
D
n+1 Pk )

(t ).

This completes the proof of Lemma B.17 as well as Theorem 7.10. �
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B.11 Proof of Theorem 8.1 (Connection between ert and wp)

We prove that for every program C ∈ pGCL,

ert[C](t + t ′) = ert[C](t ) + wp[C](t ′)

by induction on the structure of C . We consider only the cases of compound statements and as-
signments as the proof argument for the remaining basic instructions is straightforward.

Assignment.

ert[x :≈ μ](t + t ′)

= 1 + λσ • E�μ�(σ ) (λv• (t + t ′)[x/v](σ )) (Table 1)

= 1 + λσ • E�μ�(σ ) (λv• t[x/v](σ )) + λσ • E�μ�(σ ) (λv• t ′[x/v](σ )) (Eη (·)linear)
= ert[x :≈ μ](t ) + wp[x :≈ μ](t ′) (Tables 1, 5)

Conditionals.

ert[if (ξ ) {C1} else {C2}](t + t ′)
= 1 + �ξ : true� · ert[C1](t + t

′) + �ξ : false� · ert[C2](t + t
′) (Table 1)

= 1 + �ξ : true� ·
(
ert[C1](t ) + wp[C1](t

′)
)

+ �ξ : false� ·
(
ert[C2](t ) + wp[C2](t

′)
)

(I.H. on C1, C2)

= 1 + �ξ : true� · ert[C1](t ) + �ξ : false� · ert[C2](t )

+ �ξ : true� · wp[C1](t
′) + �ξ : false� · wp[C2](t

′)

= ert[if (ξ ) {C1} else {C2}](t ) + wp[if (ξ ) {C1} else {C2}](t ′) (Tables 1, 5)

Sequential Composition.

ert[C1;C2](t + t
′)

= ert[C1](ert[C2](t + t
′)) (Table 1)

= ert[C1](ert[C2](t ) + wp[C2](t
′)) (I.H. on C2)

= ert[C1](ert[C2](t )) + wp[C1](wp[C2](t
′)) (I.H. on C1)

= ert[C1;C2](t ) + wp[C1;C2](t
′) (Tables 1, 5)

Loops. Let Ft (X ) � 1 + �ξ : false� · t + �ξ : true� · ert[C ′](X ) andGt (X ) � �ξ : false� · t + �ξ :
true� · wp[C ′](X ). We have to show that

lfpX • Ft+t ′ (X ) = lfpX • Ft (X ) + lfpX •Gt ′ (X ),

which, following the same argument for the soundness of the second rule in Theorem 7.3 (see
Appendix B.9), becomes

lim
n→∞

Fn
t+t ′ (0) = lim

n→∞
Fn

t (0) + Gn
t ′ (0),

where Fn
t+t ′ denotes the composition of Ft+t ′ with itself n times (and likewise forG

n
t ′). To conclude,

we prove by induction on n that

∀n• Fn
t+t ′ (0) = Fn

t (0) + Gn
t ′ (0).
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The base case is immediate since it reduces to 0 = 0 + 0. For the inductive case, we derive

Fn+1
t+t ′ (0) = 1 + �ξ : false� · (t + t ′) + �ξ : true� · ert

[
C ′

] (
Fn

t+t ′ (0)
)

(def . Fn+1
t+t ′ )

= 1 + �ξ : false� · (t + t ′) + �ξ : true� · ert
[
C ′

] (
Fn

t (0) +Gn
t ′ (0)

)
(I.H. on n)

= 1 + �ξ : false� · (t + t ′)

+ �ξ : true� ·
(
ert

[
C ′

] (
Fn

t (0)
)
+ wp

[
C ′

] (
Gn

t ′ (0
))

(I.H. on C ′)

= 1 + �ξ : false� · t + �ξ : true� · ert
[
C ′

] (
Fn

t (0)
)

+ �ξ : false� · t ′ + �ξ : true� · wp
[
C ′

] (
Gn

t ′ (0)
)

= Fn+1
t (0) + Gn+1

t ′ (0). (def . Fn+1
t ,Gn+1

t ′ ) �

C OMITTED CALCULATIONS

C.1 Invariant Verification for the Random Walk

First, we verify that

In = 1 +

n∑
k=0

�x > k� · an,k

is a lower ω-invariant of the loop with respect to 0 if for all n ≥ 0,

a0,0 = 1 (4)

an+1,0 = 2 + 1
2 · (an,0 + an,1) (5)

an+1,k =
1
2 · (an,k−1 + an,k+1), for all 1 ≤ k ≤ n+1 (6)

an,k = 0, for all k > n. (7)

Let F be the characteristic functional of the loop with respect to 0. Then, for the first condition
F (0) � I0, we have

F (0) = 1 + �x ≤ 0� · 0 + �x > 0� · ert[C](0)

= 1 + �x > 0� ·
(
1 + 1

2 · 0[x/x − 1] + 1
2 · 0[x/x + 1]

)
= 1 + �x > 0� · 1
= 1 + �x > 0� · a0,0 = I0. (Equation (4))

For the second condition F (In ) � In+1, consider

F (In ) = 1 + �x ≤ 0� · 0 + �x > 0� · ert[C](In )

= 1 + �x > 0� ·
(
1 + 1

2 · In[x/x − 1] + 1
2 · In[x/x + 1]

)

= 1 + �x > 0� · �
	2 + 1

2 ·
n∑

k=0

�x−1> k� · an,k +
1
2 ·

n∑
k=0

�x+1> k� · an,k


�

= 1 + �x > 0� · �
	2 + 1

2 ·
n+1∑
k=1

�x > k� · an,k−1 +
1
2 ·

n−1∑
k=−1
�x > k� · an,k+1



�
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= 1 + �x > 0� ·
(
2 + 1

2 · �x >−1� · an,0 +
1
2 · �x > 0� · an,1

+ 1
2 ·

n−1∑
k=1

�x > k� · (an,k−1 + an,k+1)

+ 1
2 · �x >n� · an,n−1 +

1
2 · �x >n + 1� · an,n

)

We distribute �x > 0� and use the fact that �x > 0� · �x > a� = �x > max{0,a}� to obtain

= 1 + �x > 0� ·
(
2 + 1

2 · (an,0 +an,1)
)
+ 1

2 ·
n−1∑
k=1

�x > k� · (an,k−1 +an,k+1)

+ 1
2 · �x >n� · an,n−1 +

1
2 · �x >n + 1� · an,n

= 1 + �x > 0� ·an+1,0 +
1
2 ·

n−1∑
k=1

�x > k� · (an,k−1 +an,k+1) (Equation (5))

+ 1
2 · �x >n� · an,n−1 +

1
2 · �x >n + 1� · an,n

= 1 + �x > 0� ·an+1,0 +
1
2 ·

n−1∑
k=1

�x > k� · (an,k−1 +an,k+1) (Equation (7))

+ 1
2 · �x >n� · (an,n−1 + an,n+1) + 1

2 · �x >n + 1� · (an,n + an,n+2)

= 1 + �x > 0� ·an+1,0 +
1
2 ·

n+1∑
k=1

�x > k� · (an,k−1 +an,k+1)

= 1 + �x > 0� ·an+1,0 +

n+1∑
k=1

�x > k� · an+1,k (Equation (6))

= 1 +

n+1∑
k=0

�x > k� · an+1,k = In+1.

Now we show that

an,k =
1

2n

⎡⎢⎢⎢⎢⎣−
(

n

�n−k
2 �

)
+ 2

n−k∑
i=0

2i

(
n − i

�n−i−k
2 �

)⎤⎥⎥⎥⎥⎦
satisfies the recursion in Equations (4) to (7). Here, we assume that

(
n
m

)
is 0 whenever m < 0.

Equations (4) and (7) are immediate. For Equation (5), i.e., an+1,0 = 2 + 1/2 · (an,0 + an,1), we make
use of the identity (

k

� k+1
2 �

)
=

(
k

� k
2 �

)
, (�)

which is shown by a simple case analysis on k being even or odd. Then

an+1,0 =
1

2n+1

⎡⎢⎢⎢⎢⎣−
(
n + 1

� n+1
2 �

)
+ 2

n+1∑
i=0

2i

(
n + 1 − i

� n+1−i
2 �

)⎤⎥⎥⎥⎥⎦ (Def . an+1,0)

=
1

2n+1

⎡⎢⎢⎢⎢⎣ −
(

n

� n+1
2 �

)
−

(
n

� n+1
2 � − 1

) (((
k+1
�+1

))
=

(
k
�

)
+

(
k

�+1

))
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+ 2

n+1∑
i=0

2i

((
n − i

� n+1−i
2 �

)
+

(
n − i

� n+1−i
2 � − 1

)) ⎤⎥⎥⎥⎥⎦
=

1

2n+1

⎡⎢⎢⎢⎢⎣ −
(

n

� n+1
2 �

)
−

(
n

� n+1
2 � − 1

)

+ 2n+2 + 2

n∑
i=0

2i

((
n − i

� n+1−i
2 �

)
+

(
n − i

� n+1−i
2 � − 1

)) ⎤⎥⎥⎥⎥⎦
= 2 +

1

2
· �

	
1

2n

⎡⎢⎢⎢⎢⎣−
(

n

� n−1
2 �

)
+ 2

n−1∑
i=0

2i

(
n − i

� n−i−1
2 �

)⎤⎥⎥⎥⎥⎦
+

1

2n

⎡⎢⎢⎢⎢⎣−
(

n

� n+1
2 �

)
+ 2

n∑
i=0

2i

(
n − i

� n+1−i
2 �

)⎤⎥⎥⎥⎥⎦


�

(
by

(
0
−1

)
= 0 and

⌊
n+1
2

⌋
− 1 =

⌊
n−1
2

⌋ )

= 2 +
1

2
�
	an,1 +

1

2n

⎡⎢⎢⎢⎢⎣−
(

n

� n+1
2 �

)
+ 2

n∑
i=0

2i

(
n − i

� n+1−i
2 �

)⎤⎥⎥⎥⎥⎦


� (Def . an,1)

= 2 +
1

2
�
	an,1 +

1

2n

⎡⎢⎢⎢⎢⎣−
(

n

� n
2 �

)
+ 2

n∑
i=0

2i

(
n − i

� n−i
2 �

)⎤⎥⎥⎥⎥⎦


� (using �)

= 2 +
1

2

(
an,1 + an,0

)
. (Def . an,0)

It remains to show Equation (6), i.e., an+1,k =
1
2 · (an,k−1 + an,k+1), for all 1 ≤ k ≤ n + 1:

an+1,k =
1

2n+1

⎡⎢⎢⎢⎢⎣−
(

n + 1

� n+1−k
2 �

)
+ 2

n+1−k∑
i=0

2i

(
n + 1 − i

� n+1−i−k
2 �

)⎤⎥⎥⎥⎥⎦ (Def . an+1,k )

=
1

2n+1

⎡⎢⎢⎢⎢⎣−
(

n + 1

� n+1−k
2 �

)
+ 2n+2−k + 2

n−k∑
i=0

2i

(
n + 1 − i

� n+1−i−k
2 �

)⎤⎥⎥⎥⎥⎦
((

m
0

)
= 1

)

=
1

2n+1

⎡⎢⎢⎢⎢⎣ −
(

n

� n−(k−1)
2 �

)
−

(
n

� n−(k+1)
2 �

)
+ 2n+2−k

((
k+1
�+1

)
=

(
k
�

)
+

(
k

�+1

))

+ 2

n−k∑
i=0

2i

(
n − i

� n−i−(k−1)
2 �

)
+ 2

n−k∑
i=0

2i

(
n − i

� n−i−(k+1)
2 �

) ⎤⎥⎥⎥⎥⎦
=

1

2n+1

⎡⎢⎢⎢⎢⎣ −
(

n

� n−(k−1)
2 �

)
−

(
n

� n−(k+1)
2 �

)
+ 2n+2−k

((
m
−1

)
= 0

)

+ 2

n−k∑
i=0

2i

(
n − i

� n−i−(k−1)
2 �

)
+ 2

n−(k+1)∑
i=0

2i

(
n − i

� n−i−(k+1)
2 �

) ⎤⎥⎥⎥⎥⎦
=
1

2
��
	an,k+1 +

1

2n

⎡⎢⎢⎢⎢⎢⎣
−

(
n

� n−(k−1)
2 �

)
+ 2

n−(k−1)∑
i=0

2i

(
n − i

� n−i−(k−1)
2 �

)⎤⎥⎥⎥⎥⎥⎦



� (Def . an,k+1)

=
1

2

(
an,k+1 + an,k−1

)
. (Def . an,k−1)

Finally, we prove that limn→∞ an,0 = ∞. The crux of the proof is showing that for all n ≥ 2,
an,0 ≥ 1 +H�n/2� , whereHm denotes themth Harmonic number, i.e.,
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Hm =

m∑
k=1

1
k
.

The result then follows since limm→∞Hm = ∞. Calculations go as follows:

an,0 =
1

2n

⎡⎢⎢⎢⎢⎣−
(
n

�n2�

)
+ 2

n∑
i=0

2i

(
n − i

�n−i
2 �

)⎤⎥⎥⎥⎥⎦
=

1

2n

⎡⎢⎢⎢⎢⎣−
(
n

�n2�

)
+ 2

n∑
k=0

2n−k

(
k

�k2�

)⎤⎥⎥⎥⎥⎦ (Takek = n − i )

≥ 1

2n

⎡⎢⎢⎢⎢⎣−2
n + 2

n∑
k=0

2n−k

(
k

�k2�

)⎤⎥⎥⎥⎥⎦
((

n
�n/2�

)
≤ 2n

)

= −1 + 2
n∑

k=0

2−k

(
k

�k2�

)

≥ −1 + 2
�n/2�∑
j=0

2−2j

(
2j

j

)
(Keep only even k ′s )

≥ 1 + 2

�n/2�∑
j=1

2−2j

(
2j

j

)
(Extract j = 0 out of the sum)

≥ 1 + 2

�n/2�∑
j=1

2−2j 2
2j−1
√
j

(
Stirling approximation :

(
2j
j

)
≥ 22j−1

√
j

)

= 1 +

�n/2�∑
j=1

1
√
j

≥ 1 +

�n/2�∑
j=1

1

j
= 1 +H�n/2� . (

√
j ≤ j )

C.2 Invariant Verification for the Coupon Collector Algorithm

Recall our proposed invariant

I � 1 +

∞∑
�=0

[x > �] · �
	4 + 2 ·

∞∑
k=0

(
#col + �

N

)k 

�

− 2 · [cp[i] = 0] · [x > 0] ·
∞∑

k=0

(
#col

N

)k

.

To prove this invariant correct, we have to show that F (I ) ≤ I , where F (X ) denotes the charac-
teristic functional of the coupon collector’s outer loop with respect to runtime 0. As such, F (X ) is
given by

F (X ) = 1 + [x ≤ 0] · 0 + [x > 0] · ert[Cin; cp[i] := 1; x := x − 1](X )

= 1 + [x > 0] · (2 + ert[Cin](X [x/x − 1, cp[i]/1])),

whereCin corresponds to the inner loop of the coupon collector algorithm. Thus, in order to verify
that F (I ) ≤ I , we need an upper invariant for the inner loop first. Note that this invariant cannot
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be chosen with respect to continuation 0, but with respect to the invariant I . We will, however,
derive an invariant of the inner loop with respect to an arbitrary continuation.

Invariant for the Inner Loop. Given an arbitrary runtime f ∈ T, we propose that

Jf � 1 + [cp[i] = 0] · f + [cp[i] � 0] ·
∞∑
�=0

(
#col

N

)�
· ��

	2 +
1

N
·

N∑
j=1

[cp[j] = 0] · f [i/j]

�︸�������������������������������������︷︷�������������������������������������︸
=Gf

= 1 + [cp[i] = 0] · f + [cp[i] � 0] ·
∞∑
�=0

(
#col

N

)�
· Gf

is an invariant of the inner loopCin with respect to f . Toward a correctness proof of our proposed
invariant, we have to verify that Hf (Jf ) ≤ Jf , where Hf (Y ) is the characteristic functional of the
inner loop with respect to runtime f . Thus,

Hf (Jf )

= 1 + [cp[i] = 0] · f + [cp[i] � 0] · ert[i :≈ Unif[1 . . .N ]]
(
Jf

)

= 1 + [cp[i] = 0] · f + [cp[i] � 0] · �
	1 +

1

N
·

N∑
k=1

Jf [i/k]
�
= 1 + [cp[i] = 0] · f + [cp[i] � 0] (Definition Jf )

· �
	1 +

1

N
·

N∑
k=1

�
	1 + [cp[k] = 0] · f [i/k] + [cp[k] � 0] ·

∞∑
�=0

(
#col

N

)�
· Gf



�



�

= 1 + [cp[i] = 0] · f + 2 · [cp[i] � 0]

+
[cp[i] � 0]

N
·

N∑
k=1

[cp[k] = 0] · f [i/k] + [cp[i] � 0]
N

·
N∑

k=1

[cp[k] � 0] ·
∞∑
�=0

(
#col

N

)�
·Gf

= 1 + [cp[i] = 0] · f + 2 · [cp[i] � 0] (Definition of #col)

+
[cp[i] � 0]

N
·

N∑
k=1

[cp[k] = 0] · f [i/k] + [cp[i] � 0]
N

· #col ·
∞∑
�=0

(
#col

N

)�
·Gf

= 1 + [cp[i] = 0] · f + [cp[i] � 0] ·Gf +
[cp[i] � 0]

N
· #col ·

∞∑
�=0

(
#col

N

)�
·Gf

= 1 + [cp[i] = 0] · f + [cp[i] � 0] ·Gf + [cp[i] � 0] ·
∞∑
�=1

(
#col

N

)�
·Gf

= 1 + [cp[i] = 0] · f + [cp[i] � 0] ·
∞∑
�=0

(
#col

N

)�
·Gf = Jf .

Hence, Jf is an upper global invariant of the inner loopCin. We are now in a position to verify that
F (I ) ≤ I ; i.e., I is an upper global invariant of the outer loop Cout .

Invariant Verification for the Outer Loop. In order to keep calculations readable, let

K j
i �

∞∑
�=i

[x > � + j] · �
	4 + 2 ·

∞∑
k=0

(
#col + j + �

N

)k 

� .
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Then our proposed invariant I can be rewritten as

I = 1 + K0
0 − 2 · [cp[i] = 0] · [x > 0] ·

∞∑
k=0

(
#col

N

)k

.

The proof F (I ) ≤ I relies on two properties:

Lemma C.1.

N − #col =

N∑
i=1

(1 − [cp[i] � 0]) =
N∑

i=1

[cp[i] = 0].

Proof. Immediate by definition of #col. �

Lemma C.2.
[cp[i] = 0] · I [x/x − 1, cp[i]/1] = [cp[i] = 0] · (1 + K1

0 ).

Proof. Immediate by observing that

In = 1 + K
0
0 − 2 · [cp[i] = 0] · [x > 0] ·

∑
k=0

(
#col

N

)k

and applying the respective substitutions. �

We are now in a position to verify that F (I ) ≤ I ; i.e., our proposed invariant I is indeed an upper
global invariant of the outer loop.

F (I )

= 1 + [x > 0] · (2 + ert[Cin](I [x/x − 1, cp[i]/1])) (Definition of F )

≤ 1 + [x > 0] ·
(
2 + JI [x/x−1,cp[i]/1]

)
(ert[Cin] ( f ) ≤ Jf )

= 1 + [x > 0] ·
(
3 + [cp[i] = 0] · I [x/x − 1, cp[i]/1] (Definition of Jf )

+ [cp[i] � 0] ·
∞∑
�=0

(
#col

N

)�
·GI [x/x−1,cp[i]/1]

)

= 1 + [x > 0] · �
	3 + [cp[i] = 0] · I [x/x − 1, cp[i]/1] (Definition of Gf )

+ [cp[i] � 0] ·
∞∑
�=0

(
#col

N

)�
· �

	2 +

N∑
j=1

[cp[j] = 0]

N
· I [x/x − 1, cp[i]/1, i/j]
�



�

= 1 + [x > 0] ·
(
3 + [cp[i] = 0] · (1 + K1

0 ) (LemmaC.2)

+ [cp[i] � 0] ·
∞∑
�=0

(
#col

N

)�
· �

	2 +

N∑
j=1

[cp[j] = 0]

N
· (1 + K1

0 )

�

= 1 + [x > 0] ·
(
3 + [cp[i] = 0] · (1 + K0

1 ) (K1
0 = K0

1 )

+ [cp[i] � 0] ·
∞∑
�=0

(
#col

N

)�
· �

	2 +

N∑
j=1

[cp[j] = 0]

N
· (1 + K0

1 )

�

= 1 + [x > 0] ·
(
3 + [cp[i] = 0] · (1 + K0

1 ) (LemmaC.1)

+ [cp[i] � 0] ·
∞∑
�=0

(
#col

N

)�
· �

	2 + �
	1 −

#col

N


� · (1 + K0

1 )

�
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= 1 + [x > 0] ·
(
3 + [cp[i] = 0] · (1 + K0

1 )

+ [cp[i] � 0] ·
∞∑
�=0

(
#col

N

)�
·
(
3 + K0

1 −
#col

N
· (1 + K0

1

)

= 1 + [x > 0] ·
(
4 + K0

1

+ [cp[i] � 0] ·
∞∑
�=1

(
#col

N

)�
· �

	3 + K0
1 −

#col

N
· (1 + K0

1


�

+ [cp[i] � 0] · �
	2 − #col

N
(1 + K0

1 )

�

= 1 + [x > 0] ·
(
4 + K0

1

+ [cp[i] � 0] ·
∞∑
�=1

(
#col

N

)�
· �

	
�
	1 −

#col

N


� · (1 + K0

1

)

+ [cp[i] � 0] · �
	2 − #col

N
(1 + K0

1 )

� + 2 · [cp[i] � 0] ·

∞∑
�=1

(
#col

N

)�

= 1 + [x > 0] ·
(
4 + K0

1 + [cp[i] � 0] ·
(
1 + K0

1

)
· #col

N

+ [cp[i] � 0] · �
	2 − #col

N
(1 + K0

1 )

� + 2 · [cp[i] � 0] ·

∞∑
�=1

(
#col

N

)�

= 1 + [x > 0] · �
	4 + K0

1 + 2 · [cp[i] � 0] + 2 · [cp[i] � 0] ·
∞∑
�=1

(
#col

N

)� 

�

= 1 + [x > 0] · �
	4 + K0

1 + 2 · [cp[i] � 0] ·
∞∑
�=0

(
#col

N

)� 

�

= 1 + K0
1 + [x > 0] · �

	4 + 2 · [cp[i] � 0] ·
∞∑
�=0

(
#col

N

)� 

�

= 1 + K0
1 + [x > 0] · �

	4 + 2 ·
∞∑
�=0

(
#col

N

)� 

�

− 2 · [x > 0] · [cp[i] = 0] ·
∞∑
�=0

(
#col

N

)�

= 1 + K0
0 − 2 · [x > 0] · [cp[i] = 0] ·

∞∑
�=0

(
#col

N

)�
(Definition of K0

0 )

= I . (Definition of I )

Hence, by Theorem 4.2, we know that ert[Cout](0) ≤ I .
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