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ABSTRACT

In this article we are interested in interior regularity results for the solution

uε ∈ C(Ω̄) of the Dirichlet problem⎧⎨
⎩
−Iε(u) = fε in Ω,

u = 0 in Ωc,

where Ω is a bounded, open set and fε ∈ C(Ω̄) for all ε ∈ (0, 1). For some

σ ∈ (0, 2) fixed, the operator Iε is explicitly given by

Iε(u, x) =
∫
RN

[u(x+ z)− u(x)]dz

εN+σ + |z|N+σ
,

which is an approximation of the well-known fractional Laplacian of order

σ, as ε tends to zero. The purpose of this article is to understand how

the interior regularity of uε evolves as ε approaches zero. We establish

that uε has a modulus of continuity which depends on the modulus of

fε, which becomes the expected Hölder profile for fractional problems, as

ε → 0. This analysis includes the case when fε deteriorates its modulus

of continuity as ε → 0.

1. Introduction

Let Ω ⊂ R
N be a bounded open domain and ε ∈ (0, 1). In this paper we are

interested in understanding interior regularity of solutions uε to the Dirichlet

problem

(1)

⎧⎨
⎩−Iε(u) = fε in Ω,

u = 0 in Ωc,

where Iε is the non-local operator

(2) Iε(u, x) =
∫
RN

[u(x+ z)− u(x)]Kε(z)dz,

with kernel Kε : R
N → R explicitly given by

(3) Kε(z) =
1

εN+σ + |z|N+σ
,

for some σ ∈ (0, 2) fixed. Here we also assume fε ∈ C(Ω̄) for each ε ∈ (0, 1) and

the family {fε} is uniformly bounded, that is, there exists Λ > 0 such that

(4) ||fε||L∞(Ω̄) ≤ Λ, for all ε ∈ (0, 1).
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The characteristic feature of the non-local operators like Iε is the integrability

of the kernel Kε defining it. In the literature, this fact leads to say that Iε is a
zeroth order non-local operator.

On the other hand, of main importance in this paper is the role of the frac-

tional Laplacian of order σ, defined as

(−Δ)σ/2u(x) = −CN,σ P.V.

∫
RN

[u(x+ z)− u(x)]|z|−(N+σ)dz,

where P.V. is the Cauchy Principal Value and CN,σ > 0 is a normalizing con-

stant, see [10]. Notice that in this case, up to the normalizing constant CN,σ,

the kernel defining (−Δ)σ/2 can be formally identified with the limit case of

Kε, when ε = 0 in (3), that is K0(z) = |z|−(N+σ) for z �= 0, which is a non-

integrable around the origin. This non-integrability of the kernel determines a

deep qualitative contrast between zeroth order problems like (1) and fractional

non-local problems with Iε replaced by the fractional Laplacian in (1).

The purpose of this paper is to contribute to the analysis of regularity of

the solution uε of (1) in the passage to the limit as ε → 0. As Iε is a zeroth

order operator, it does not have a regularizing effect, and thus uε is merely

continuous when fε is continuous. However, when ε = 0 the solution u0 is

Hölder continuous, even of class C1,α when σ > 1. The question is: How does

the regularity of uε improve as ε approaches zero?

Concerning the zeroth order Dirichlet problem (1), the integrability of the

kernel defining Iε allows the application of the Fixed Point Theorem on C(Ω̄)

to obtain the existence and uniqueness of a solution uε ∈ C(Ω̄) of (1), see

[8, 2, 12]. The integrability of the kernel of the operator has two remarkable

effects on uε. First, in general uε does not attain the boundary value on ∂Ω,

that is, uε �= 0 for some points on ∂Ω; and second, uε has no more regularity

than the one exhibited by fε, showing a lack of the regularizing effect of classical

elliptic equations.

In [12] and [11], two of the authors addressed the question of how the modulus

of continuity of the solution of (1), inherited from the modulus of continuity of

fε, evolves as ε → 0. A systematical use of the comparison principle satisfied

by Iε in the full range of ε ∈ (0, 1) provides a control of the jump discontinuity

of uε on ∂Ω, which in turn allows to construct suitable barriers for the modulus

of continuity of uε on Ω̄, only depending on the modulus of continuity of {fε}.
This result can be expressed as the existence of a constant C > 0 depending
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on Λ in (4) but not depending on ε such that

(5) |uε(x)− uε(y)| ≤ C|fε(x) − fε(y)|, for all x, y ∈ Ω̄.

In particular, if the family {fε} is equicontinuous in Ω̄, so is {uε} and this

provides robust stability properties as ε→ 0 on the closed set Ω̄.

However, the above result does not seem to be optimal in view of the available

regularity results for fractional problems. For instance, given f0 ∈ L∞(Ω̄), any

bounded viscosity solution to problem

(6)

⎧⎨
⎩(−Δ)σ/2u = f0 in Ω

u = 0 in Ωc,

enjoys interior Cα estimates for some α ∈ (0, 1). Moreover, in the case σ > 1,

interior C1,α estimates for solutions of this problems hold, see [5, 6, 16]. In

this direction, we also remark the recent regularity results up to the boundary

for (6) provided by Ros-Oton and Serra in [15]. These Hölder regularity results

for problem (6) are a consequence of the elliptic regularity effect of the fractional

Laplacian, closely related to classical elliptic regularity results for second-order

problems.

In view of the discussion above, it is natural to ask if the modulus of continuity

of the solution to (1) actually improves as ε→ 0, at least locally in Ω, reaching

the known Hölder regularity results for fractional problems described above.

Furthermore, of particular interest is the case in which the family {fε} is not

equicontinuous in Ω̄ and therefore its modulus of continuity may worsen in the

passage to the limit. To this end, a different argument than the one based on

comparison principles presented in [12] must be applied in order to capture the

gain of ellipticity of the operator Iε, when ε approaches zero.
Our first result on regularity of uε is the following:

Theorem 1.1: Let Ω ⊂ R
N be a bounded domain and σ ∈ (0, 2). For C0 > 0

and ε ∈ (0, 1) let uε be continuous in Ω̄, satisfying the inequalities

(7) ||uε||L∞(RN ) ≤ C0, for all ε ∈ (0, 1)

and

(8) −C0 ≤ Iε(uε) ≤ C0 in Ω.
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Then for all Ω′ ⊂⊂ Ω there exist ε0, α ∈ (0, 1) and L, l > 0, independent of ε,

such that for each ε ∈ (0, ε0)

|uε(x) − uε(y)| ≤ L(|x− y|α1Bc
lε
(x− y) +mε(|x− y|)1Blε

(x− y)),

for all x, y ∈ Ω′. Here mε denotes a modulus of continuity for uε in B1 and the

constants ε0, α, L and l depend on N, σ,C0 and dist(Ω′,Ωc).

The proof of this theorem is obtained by controlling the oscillation of the so-

lutions to (8), following the ideas of the classical approach for Hölder regularity

by De Giorgi for local equations in divergence form and by Krylov and Safonov

for local equations in non-divergence form. Actually, we adapt the approach by

Silvestre in [16] in the non-local framework. Despite the lack of homogeneity

of our non-local operator Iε, we are still able to scale it, see Lemma 2.3, and

then to diminish the oscillation of the solution uε through an inductive proce-

dure, but to a limited number of steps depending on ε. Basically, we obtain the

Hölder profile of the solution corrected by the modulus of continuity of uε in a

small ball, as shown in the theorem.

Our second result provides a different expression for the modulus continuity

of the solution uε:

Theorem 1.2: Let σ ∈ (0, 2), ε ∈ (0, 1) and let uε ∈ C(Ω̄) satisfying (7)

and (8). Then, for each Ω′ ⊂⊂ Ω, α∈(0,min{1, σ}), γ∈(0, 1) and β∈(0, 1− γ),

there exist ε0 ∈ (0, 1) and a constant C > 0 such that for all ε ∈ (0, ε0) we have

|uε(x) − uε(y)| ≤ C|x− y|α +mε(ε
β |x− y|γ), for all x, y ∈ Ω′,

where mε is a modulus of continuity of uε on Ω̄ and the constants C, ε0 depend

on N, σ,C0 and dist(Ω′,Ωc).

This result is obtained through a non-local version of the Ishii–Lions method

given by Barles, Chasseigne and Imbert in [3], see also [1, 13]. The method is

based on the adequate use of the expected modulus of continuity as test function

for the solution uε, and uses in a significant way the accumulation of mass of

Kε around zero in order to extract valuable information on the concavity of

this test function. This is possible in a crucial way by the consideration of the

mε-term and the radiality of Kε.

Before continuing, we would like to discuss how Theorems 1.1 and 1.2 apply

to our model problem (1.1). Assuming (4) and that the boundary ∂Ω is of

class C1 and satisfies the uniform exterior ball condition in case σ > 1, then (5)
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and (7) hold, see [12]. Thus we can apply both theorems to obtain the regularity

results for uε given above.

It is interesting to observe that when fε ∈ L∞(Ω̄) has a deteriorating modulus

of continuity such that, for example,

mε(s) = m(ε−β′
s), ∀s > 0,

with β′ ∈ (0, 1) and m is a fixed modulus of continuity, then still the correction

term approaches zero as ε→ 0 in both cases. This shows the interplay between

the worsening of the continuity of fε and the improvement of the ellipticity of

the operator Iε.
Finally, we obtain a higher interior regularity result for the solution to (1)

when σ ∈ (1, 2).

Theorem 1.3: Let σ ∈ (1, 2), ε ∈ (0, 1) and let uε ∈ C(Ω̄) satisfying (7), (8)

and having a uniform modulus of continuity m. Then, for each Ω′ ⊂⊂ Ω, there

exist α ∈ (0, σ − 1), ε0 ∈ (0, 1), c > 0 and C > 0, independent of ε, such

that for each ε ∈ (0, ε0) there exist linear functions lε(x) = aε + bε · x with

aε → a0, bε → b0 as ε→ 0, such that

|uε(x)− uε(y)− lε(x− y)| ≤ C|x− y|1+α1Bcε(y)
(x) +m(|x − y|)1Bcε(y)

(x)

for all x, y ∈ Ω′, where cε = cm(ε)1/σ and the constants ε0, α, c and C depend

on N, σ,C0 and dist(Ω′,Ωc).

The proof of this theorem follows the ideas of Theorem 5.2 by Caffarelli and

Silvestre in [6], where an inductive construction of the approximating linear

functions is presented for the case of non-local operators, extending previous

fundamental work by Caffarelli for second-order problems in [7]. As in the

proof of Theorem 1.1, the idea is to exploit the gain of homogeneity of the

non-local operator through scaling and a limited inductive process as ε → 0.

This allows an approximation procedure to a tangent equation that has a priori

C1,α regularity bounds. In doing this, a modified version of Theorem 1.1 for

unbounded functions must be applied in order to control the tails of the inte-

gral in the evaluation of unbounded functions in the non-local operator Iε, see
Corollary 2.4.

We finish this introduction making some remarks about the concept of mod-

ulus (see [14, 9]): we say that a function m : [0,+∞) → R is a modulus (or

modulus of continuity) if it is continuous, non-decreasing, and satisfiesm(0) = 0
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and m(r + s) ≤ m(r) +m(s) for r, s ≥ 0. The last condition implies that m is

a concave function, from which we can assume without loss of generality that

m ∈ C2(0,+∞) and it satisfies

(9) t ≤ m(t), for all t > 0.

2. Proof of Theorem 1.1

We prove a slightly simpler version of the interior regularity that allows us to

get Theorem 1.1 as a consequence.

Theorem 2.1: There exists α, θ0 ∈ (0, 1) such that, for all ε ∈ (0, 1/2) and

uε : R
N → R continuous in B1 (with modulus of continuity mε) such that

‖uε‖L∞(RN ) ≤ 1/2 and satisfying

(10) −θ0 ≤ Iε(uε) ≤ θ0 in B1,

then we have that

|uε(x)− uε(0)| ≤ 2α|x|α1Bc
ε
(x) +mε(|x|)1Bε(x),

for all x ∈ B1/2. The constants α, θ0 depend only on N and σ.

The way to obtain Theorem 1.1 is rather standard and we leave the details

until the end of this section. Hence, in what follows we concentrate on the proof

of Theorem 2.1.

We start with the following technical lemma which is going to play a key role.

We would like to mention that this result is a consequence of the zeroth order

nature of the operator more than its proximity to the fractional order, in the

sense that we just require positive mass around the origin in Kε.

Lemma 2.2: Let ε ∈ (0, 1). For all δ > 0, there exist cδ > 0 (just depending

on N, σ and δ) such that, for all θ, η, γ ∈ (0, cδ) and each bounded, upper

semicontinuous continuous function u : RN → R satisfying

(1) −Iε(u) ≤ θ in B1,

(2) u(x) ≤ 1 in B1,

(3) u(x) ≤ 2|2x|η − 1 in Bc
1, and

(4) δ ≤ |A0|, where A0 := {x ∈ B1 : u(x) ≤ 0},
then we have u ≤ 1− γ in B1/2.
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Proof. Denote β(x) = (1 − x2)2 and consider the function

b(x) =

⎧⎨
⎩β(|x|) if x ∈ B1,

0 if x ∈ R
N \B1.

For k > 0 to be fixed small enough, denote

γ = k
(
β
(1
2

)
− β

(3
4

))
.

Assume there exists x0 ∈ B1/2 such that u(x0) > 1 − γ. Then, it is clear that

u(x0) + kb(x0) > 1, and using the radial monotony of b together with (2) we

can write

u(x0) + kb(x0) > u(y) + kb(y), for all y ∈ B1 \B3/4.

Thus there exists x1 ∈ B3/4 such that

(11) u(x1) + kb(x1) = max
B1

(u(x) + kb(x)) > 1.

Now we write

−Iε(u + kb, x1) = I1 + I2,

where after a change of variables we have denoted

I1 =

∫
Bc

1

[(u+ kb)(x1)− (u + kb)(z)]Kε(z − x1)dz, and

I2 =

∫
B1

[(u+ kb)(x1)− (u+ kb)(z)]Kε(z − x1)dz.

To continue we estimate I1, I2 from below. For I1, we use that b = 0 in

Bc
1, (11) and (3) to get the inequality

I1 ≥
∫
Bc

1

(2− 2|2z|η)Kε(z − x1)dz,

and since x1 ∈ B3/4 we arrive at

I1 ≥ 2

∫
Bc

1

1− |2z|η
|z|σ − (3/4)σ

dz.

Then, by the Dominated Convergence Theorem we can find η > 0 small enough

in terms of N, σ and θ to conclude that

I1 ≥ −θ.
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For I2, we notice that by (11) the integrand is non-negative. Then we write

I2 ≥
∫
A0

[(u+ kb)(x1)− (u+ kb)(z)]Kε(z − x1)dz,

and using again (11) together with (4) and taking k ≤ 1/2 we arrive at

I2 ≥ 1

2

∫
A0

Kε(z − x1)dz ≥ 1

2

1

2N+σ + εN+σ
δ.

Since ε ∈ (0, 1), we conclude the existence of a universal constant c > 0 not

depending on ε or δ such that

I2 ≥ cδ.

Putting together the above estimates, using the linearity of Iε and (1) we get

−θ + cδ ≤ −Iε(u, x1)− Iε(kb, x1) ≤ θ0 − Iε(kb, x1) ≤ θ − kIε(kb, x1),
leading us to

cδ ≤ 2θ − kIε(b, x1),
but since b is bounded in R

N and smooth (with C2 estimates which depend only

on N), there exists a constant C1 > 0 just depending on N and σ for which the

following inequality holds:

cδ ≤ 2θ + C1k.

Then there exists c̄ > 0, just depending on N and σ, such that if θ, k ≤ c̄δ,

the last inequality is not possible, concluding the result.

Remark 2.1: Replacing u by −u in the last lemma we can get analogous lower

bounds in B1 for functions whose evaluation in Iε is not too negative, satisfying

lower bounds in B1 and at infinity, and whose positive set in B1 is non-trivial.

As we mentioned in the introduction, the lack of homogeneity of the operator

Iε creates difficulties in the application of De Giorgi–Krylov–Safonov iterative

techniques. To deal with them, we start with a simple scaling property of Iε
which is going to be useful in the arguments to come.

Lemma 2.3: Let ε, λ, θ > 0 and u : RN → R satisfying the pointwise set of

inequalities

−θ ≤ Iε(u) ≤ θ in Bλ.

Then uλ(x) := u(λx) satisfies

−λσθ ≤ I ε
λ
(uλ) ≤ λσθ in B1.
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Proof. Let x ∈ B1. From the very definition of the non-local operator and uλ

we see that

I ε
λ
(uλ, x) =

∫
RN

[u(λx+ λz)− u(λx)]

( ε
λ)

N+σ + |z|N+σ
dz

=λN+σ

∫
RN

[u(λx+ λz)− u(λx)]

εN+σ + |λz|N+σ
dz.

Then performing the change of variables y = λz in the last integral we obtain

that

I ε
λ
(uλ, x) = λσIε(u, λx),

from which the result follows from the inequality satisfied by u.

Now we are in position to provide the proof of Theorem 2.1. The argument

follows the ideas presented in [16], using scaling arguments, but with the main

difference that the corresponding inductive procedure stops after a finite number

of steps depending on ε. This gives rise to the correction term mε1Bε in the

statement of the theorem.

Proof of Theorem 2.1. We start proving a discrete version of the theorem. Let

uε satisfy (10) with ‖uε‖L∞(RN ) ≤ 1/2, then define q = qε ∈ N such that

(12) 2−(q+1) ≤ ε < 2−q;

then for all k ≤ qε we have

(13) |uε(x) − uε(0)| ≤ 2−kα for all x ∈ B2−k .

From here we get Theorem 2.1 from (13) by noticing that for each x∈B1/2\Bε

we can consider k ≤ q with q as in (12) such that

2−(k+1) ≤ |x| ≤ 2−k,

and if (13) holds we see that

|uε(x) − uε(0)| ≤ 2−kα = 2α2−(k+1)α ≤ 2α|x|α.
Now, since by the definition of mε we have that |uε(x)−uε(0)| ≤ mε(|x|) for all
x ∈ B1 we arrive at the inequality stated in Theorem 2.1.

Hence we concentrate on proving that (13) holds. Let δ = |B1|/2 and from

now on we consider cδ as in Lemma 2.2 (which depends only on N, σ by the

choice of δ), and we consider θ, η, γ ∈ (0, cδ). We start asking θ0 < θ/2, α ≤ η.
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The proof of (13) consists in exhibiting sequences (ak), (bk), non-increasing

and non-decreasing respectively, such that

(14)

⎧⎨
⎩bk ≤ uε ≤ ak in B2−k

ak − bk = 2−αk
for all 0 ≤ k ≤ qε.

We construct such a sequence recursively. For k = 0, we define b0 = −1/2

and a0 = 1/2. Since |uε| ≤ 1/2 in B1 we have the above requirements for the

case k = 0. Next, we consider k < qε and assume that there exist ai and bi

satisfying the desired properties for all i ≤ k.

Defining m = mk = (ak + bk)/2, by the monotony of the sequences (ak), (bk)

we see that −1/2 ≤ m ≤ 1/2 and by the inductive hypothesis (14) we see that

(15) |uε −m| ≤ 2−kα−1 in B2−k .

Now consider the function

ūε(x) = 2kα+1(uε(2
−kx) −m),

and we next prove that ūε satisfies the assumptions to apply Lemma 2.2. With-

out loss of generality we can assume assumption (4) in that lemma holds, that

is

|{x ∈ B1 : ūε ≤ 0}| ≥ |B1|/2 = δ,

since the case in which the set {x ∈ B1 : ūε ≥ 0} covers more than half of

the ball follows similar arguments as those presented below taking into account

Remark 2.1.

In view of (15) and the definition of ūε we see that |ūε| ≤ 1 in B1. By

the choice of θ0 and using that uε satisfies (10), applying Lemma 2.3 one can

directly verify that

−Iε/2−k(ūε, x) ≤ 2k(α−σ)+1θ0 ≤ θ in B1,

and by the definition of qε in (12) we see that ε/2−k < 1. Thus conditions (1)

and (2) in Lemma 2.2 hold.

Now consider x ∈ Bc
1 and the corresponding j = j(x) ≥ 0 such that

2j ≤ |x| < 2j+1. If j ≥ k, using that the sequence (bk) is non-decreasing

we see that

ūε(x) ≤ 2kα+1(1/2− bk + bk −m) ≤ 2kα+1(1 + (bk − ak)/2),
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from which we get that

ūε(x) ≤ 2kα+1(1− 2−kα−1) ≤ 2jα+1 − 1 ≤ 2|x|α − 1,

by (14) and the definition of j. If j < k we see that 2−kx ∈ B2j+1−k , and by

the definition of ūε and m, the induction hypothesis (14) and the monotony of

(bk) we can write

ūε(x) ≤ 2kα+1
(
2−α(k−j−1) + bk−j−1 − ak + bk

2

)
≤ 2(j+1)α+1 + 2kα+1 bk − ak

2
≤ 2|2x|α − 1.

Hence we get that ūε(x) ≤ 2|2x|α − 1 for x ∈ Bc
1, and therefore we have

verified condition (4) in Lemma 2.2. Thus there exists γ > 0 just depending on

N and σ such that

ūε(x) ≤ 1− γ in B1/2,

and coming back to uε we conclude that

uε ≤ 2−kα−1(1− γ) +m in B2−(k+1) .

We notice that by the definition of m, from the above inequality we can get

uε ≤ bk + 2−kα−1(2− γ) in B2−(k+1) ,

from which, taking α > 0 small enough to have 2−γ ≤ 21−α, we define bk+1 = bk

and ak+1 = bk + 2−(k+1)α to conclude the result.

Proof of Theorem 1.1. Let Ω′ ⊂⊂ Ω and denote ρ = dist(Ω′,Ωc)/2, and with-

out loss of generality we may assume that ρ ≤ 1. Then define

(16) c̄ =
min{1, θ0}

max{1, C0, 2||uε||L∞(RN )}
,

where θ0 is given by Theorem 2.1. Then for y ∈ Ω′ we consider the function

vε(z) := c̄uε(y + ρz), z ∈ R
N .

It is straightforward to see that ||vε||L∞(RN ) ≤ 1/2, and using the linearity and

translation invariance of the non-local operator together with Lemma 2.3 we

get that

−θ0 ≤ Iε/ρ(vε) ≤ θ0 in B1.
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Hence considering ε ∈ (0, ρ/2) we are in position to use Theorem 2.1 to conclude

that

|vε(z)− vε(0)| ≤ 2α|z|α1Bε(z) +mε(|z|)1Bc
ε
(z) for all z ∈ B1/2.

Using the sub-linearity of mε and the definition of vε, the above inequality can

be translated in terms of uε as

|uε(y + x)− uε(y)| ≤ C̄(|x|α1Bρε(x) +mε(|x|)1Bc
ρε
(x)), for all x ∈ Bρ/2,

for some constant C̄ depending on c̄ and ρ. Since the argument is independent

of y ∈ Ω′, the proof follows.

We continue with a corollary of Theorem 1.1 related to unbounded solutions

which is going to be important in the proof of Theorem 1.3.

Corollary 2.4: Assume the hypotheses of Theorem 1.1 hold, but with a func-

tion uε : RN → R such that there exists C̃ > 0 and 0 < σ′ < σ satisfying

|uε(x)| ≤ C̃(1 + |x|)σ′
for all x ∈ R

N . Then there exists α > 0 such that, for

each Ω′ ⊂⊂ Ω, there exist L, l, ε0 > 0 such that for each ε ∈ (0, ε0) we have

|uε(x) − uε(y)| ≤ L(|x− y|α1Bc
lε
(x− y) +mε(|x− y|)1Blε

(x− y)),

for all x, y ∈ Ω′. Moreover, there exists C > 0 not depending on ε or R such

that L ≤ Cdiam(Ω)σ
′
.

Proof. Consider a function η ∈ C2(RN ) with ||η||C2 < +∞ and such that η = 1

in B1, η = 0 in Bc
2. Thus for each R > 1 and x ∈ R

N we denote ηR(x) = η(x/R)

and if we assume the existence of C̃ such that |uε(x)| ≤ C̃|x|σ′
for |x| > 1 with

0 < σ′ < σ, then we replace uε by

ũε(x) = ηR(x)uε(x), x ∈ R
N ,

for some R > 0 such that Ω ⊂ BR/2. This function is bounded (in terms of

C̃, R and σ′), continuous in Ω̄, and if uε satisfies (8) then we see that for each

x ∈ Ω we have

Iε(ũε, x) =Iε(uε, x) +
∫
RN

(uε(x+ z)(ηR(x+ z)− 1))Kε(z)dz

≤C0 + C̃

∫
Bc

R/2

(R + |x|)σ′ |z|−(N+σ)dz,

from which we conclude that

Iε(ũε) ≤ C0 + CRσ′−σ,
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where C0 is the constant in (8) and C > 0 does not depend onR, for all ε ∈ (0, 1).

An analogous lower bound can be established and applying Theorem 1.1 we

conclude the result. The upper bound for the constant L can be obtained by

the growth assumption over uε and the scaling given in (16).

Remark 2.2: In Theorem 1.1 and Corollary 2.4, assume Ω = BR for some R > 2.

Then it is possible to take ρ = 1 in the proof above to conclude regularity

estimates in BR/2 with constants l, ε0 > 0 independent of R.

3. Proof of Theorem 1.2

As in the previous section, we first prove a simpler theorem and then we get

Theorem 1.2 as a consequence. We state it now.

Theorem 3.1: Let σ ∈ (0, 2), ε ∈ (0, 1) and uε : RN → R bounded, with

|uε| ≤ 1 in B̄1, uε ∈ C(B̄1) and satisfying (10) for some θ0 > 0.

Then for all α ∈ (0,min{1, σ}), γ ∈ (0, 1) and β ∈ [0, 1 − γ), there exists

L > 0 not depending on ε such that

|uε(x) − uε(0)| ≤ L|x|α +mε(ε
β|x|γ) for all x ∈ B1/2,

where mε is a modulus of continuity for uε in B̄1.

We start by introducing some notation. For x̄ ∈ R
N \{0}, ρ > 0 and η ∈ (0, 1)

we consider the set

(17) C = Cρ,η(x) := {z ∈ Bρ : (1− η)|z||x| ≤ |〈x, z〉|}.
Notice that C = −C and that there exists a universal constant c1 > 0 such that

(18) |C1,η| ≥ c1(1 − η).

Given D ⊂ R
N we denote

I[D](ψ, x) =

∫
D

[ψ(x+ z)− ψ(x)]Kε(z)dz

for ψ for which the integral makes sense.

The following lemma is the key technical estimate to get Theorem 1.2. Its

proof follows closely the lines of [3, 1] but we provide here a proof for the sake

of completeness.



Vol. 228, 2018 ZEROTH ORDER OPERATORS 849

Lemma 3.2: Let m ∈ C2(0, 1) ∩ C[0, 1] be a function such that m′ ≥ 0 and

m′′ ≤ 0 in (0, 1). For γ ∈ (0, 1) consider the function ψ(x) = m(|x|γ) defined

for x ∈ B1. Then, there exist ρ0, η ∈ (0, 1/2) such that, for all β ∈ (0, 1) there

exists c > 0 small satisfying

I[Cx](ψ, x) ≤ −c m′((1 + ρ0)|x|)|x|γ−σ for all εβ < |x| < 1/2,

where Cx := Cρ0|x|,η is defined as in (17). The constant c does not depend on ε

or x.

Proof. We fix x such that εβ < |x| < 1/2 and from now on write C = Cx. By

the symmetry of C and Kε we can write

(19) I[C](ψ, x) = 1

2

∫
C
[ψ(x + z) + ψ(x− z)− 2ψ(x)]Kε(z)dz.

Notice that since x ∈ B1/2 and ρ0 < 1/2 we have that x+z, x−z ∈ B1 for all

z ∈ C. Since x �= 0 we can perform a Taylor expansion with integral reminder

to get

(20) I[C](ψ, x) = 1

2

∫ 1

0

(1− s)

∫
C
〈D2ψ(x+ sz)z, z〉Kε(z)dz ds.

In what follows, our interest is to provide an upper bound for the term

〈D2ψ(x+ sz)z, z〉. A direct computation leads us to

D2ψ(x) = γ2m′′(|x|γ)|x|2γ−2x̂⊗ x̂+ γm′(|x|γ)|x|γ−2((γ − 2)x̂⊗ x̂+ IN ),

and just by applying that m′′ ≤ 0 we arrive at

D2ψ(x) ≤ γm′(|x|γ)|x|γ−2((γ − 2)x̂⊗ x̂+ IN ).

By the definition of C = Cx we see that for each z ∈ C and s ∈ (0, 1) we have

(21)
(1 − ρ0)|x| ≤ |x+ sz| ≤ (1 + ρ0)|x|, and

|〈x+ sz, z〉| ≥ (1 − η − ρ0)|x||z|.
Using the above inequalities and that m′ ≥ 0 we can write

〈D2ψ(x+ sz)z, z〉
≤γm′(|x+ sz|)|x+ sz|γ−2((γ − 2)(1− η − ρ0)

2/(1 + ρ0)
2 + 1)|z|2.

Now, since γ < 1 we have the existence of ρ0, η small (in terms of 1− γ) for

which

(γ − 2)(1− η − ρ0)|2/(1 + ρ0)
2 + 1 ≤ (γ − 1)/2,
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from which we arrive at

〈D2ψ(x+ sz)z, z〉 ≤ γ(γ − 1)m′(|x+ sz|)|x+ sz|γ−2|z|2/2,
and noticing that m′′ ≤ 0 implies m′ is non-increasing, we conclude that

〈D2ψ(x + sz)z, z〉 ≤ −cm′((1 + ρ0)|x|)|x|γ−2|z|2,
where c = γ(1 − γ)(1 + ρ0)

γ−2/2 > 0. Then we replace this expression on (20)

to conclude that

(22) I[C](ψ, x) ≤ −cm′((1 + ρ0)|x|)|x|γ−2

∫
C
|z|2Kε(z)dz.

From now on our interest is to provide a lower bound for the integral term

in (22). Using polar coordinates and since the N − 1 dimensional measure of

the angle coordinates of C are comparable to |∂B1| (see (18)), there exists a

constant c > 0 small (depending on γ, ρ0, η and N) such that∫
C
|z|2Kε(z)dz ≥ c

∫ ρ

0

rN+1(εN+σ + rN+σ)−1dr,

and performing the change of variables s = r/ε in the last integral we get∫
C
|z|2Kε(z)dz ≥ ε2−σ

∫ ρ0|x|/ε

0

sN+1

1 + sN+σ
ds.

Using that |x| > εβ with β ∈ (0, 1) we see that ρ0|x|/ε → ∞ as ε → 0. Thus

there exists a constant c > 0 not depending on x such that, for all ε small (just

depending on N, σ, ρ0 and β), we have∫
C
|z|2Kε(z)dz ≥ cε2−σ(ρ0|x|/ε)2−σ = cρ2−σ

0 |x|2−σ.

Substituting this into (22) we arrive at

I[C](ψ, x) ≤ −cm′((1 + ρ0)|x|)|x|γ−σ ,

for some c > 0 depending on the data, γ, θ, η and ρ0 but not on ε. This concludes

the proof.

Now we are in position to provide the

Proof of Theorem 3.1. We start considering a bounded, non-negative, smooth

function φ : RN → R, with uniformly bounded first and second derivatives in

R
N and such that φ(0) = 0, φ(x) > 0 for each x �= 0 and such that φ > 3

in Bc
1/2.
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We also define the function ωε as

(23) ωε(t) = mε(ε
β tγ), t ≥ 0,

and for L > 0 consider the function Φ : B̄1 × B̄1 → R defined as follows:

Φ(x, y) = uε(x)− uε(y)− L|x− y|α − ωε(|x− y|)− φ(x).

We prove that for L fixed large in terms of the data, Φ ≤ 0 in B̄2
1 . We initially

ask that (2/L)1/α < 1/4.

For a contradiction we assume the contrary, which can be translated as the

existence of a point (x̄, ȳ) ∈ B̄2
1 such that

(24) Φ(x̄, ȳ) = max
B̄2

1

{Φ} > 0.

This inequality implies that

φ(x̄) ≤ 2||uε||∞,
and since ||uε||∞ ≤ 1, the definition of φ leads to x̄ ∈ B1/2. By a similar

argument, using inequality (24), the boundedness of uε, the definition of Φ and

the non-negativity of φ we can also write

(25) |x̄− ȳ| ≤ (2/L)α,

and by the initial choice of L we conclude that ȳ ∈ B3/4. Moreover, inequal-

ity (24) also implies that

ωε(|x̄ − ȳ|) ≤ uε(x̄)− uε(ȳ),

and recalling the definition of ωε in (23) and the fact that mε is a modulus of

continuity for uε we get that

(26) εβ/(1−γ) ≤ |x̄− ȳ|,
for each ε ∈ (0, 1). Notice that β/(1− γ) < 1.

For convenience we next define

φε(x, y) = L|x− y|α + ωε(|x− y|) + φ(x)

and we see that, since (x̄, ȳ) is a maximum point of Φ, for all z ∈ R
N we have

the following inequalities:

(27)

uε(x̄+ z)− uε(x̄) ≤uε(ȳ + z)− uε(ȳ) + φ(x̄ + z)− φ(x̄),

uε(ȳ + z)− uε(ȳ) ≥− φε(x̄, ȳ + z) + φε(x̄, ȳ),

uε(x̄+ z)− uε(x̄) ≤φε(x̄+ z, ȳ)− φε(x̄, ȳ).



852 P. FELMER, D. DOS PRAZERES AND E. TOPP Isr. J. Math.

Using the equation for uε at x̄ and ȳ and substracting them, we get

(28) −Iε(uε, x̄) + Iε(uε, ȳ) ≤ 2θ0.

From now on we denote ā = x̄− ȳ and denote C = Cρ0|ā|,η defined as in (17)

for some ρ0, η to be fixed later.

Inserting the set of inequalities (27) into (28) we arrive at

−Iε[C](φε(·, ȳ), x̄)− Iε[C](φε(x̄, ·), ȳ)− I[Cc](φ, x̄) ≤ 2θ0,

and using the definition of φε and the symmetry of C and Kε we obtain

(29) −Iε(φ, x̄) ≤ 2I1 + 2I2 + 2θ0,

where

I1 = LIε[C](| · −ȳ|α, x̄) and I2 = Iε[C](ωε(| · −ȳ|), x̄).
In what follows, we estimate each term arising in (29). Using the symmetry

of Kε and the domain of integration we can express the integrand in Iε(φ, x̄) as
a finite second-order difference (see (19)) to conclude that

(30) Iε(φ, x̄) ≤ C,

where C > 0 depends only on N and σ.

Now we deal with I1 and I2 in (29). For I1 we use Lemma 3.2 with x = ā,

m(t) = t, γ = α and θ = β/(1− γ) (see (26)) to write

I1 ≤ −cL|ā|α−σ,

while for I2 we use Lemma 3.2 with the above choices of parameters up to the

choice m(t) = mε(εt) to simply write

I2 ≤ 0.

Thus inserting (30) and the above estimates for I1 and I2 into (29) we arrive at

cL|ā|α−σ ≤ 2θ0 + C.

In view of (25) we arrive at a contradiction by taking L large enough in terms

of the data. This concludes the proof.



Vol. 228, 2018 ZEROTH ORDER OPERATORS 853

4. Proof of Theorem 1.3

Following the presentation of the previous sections, we write a simpler version

of Theorem 1.3. The most general statement is carried out in the same way as

in the proof of Theorem 1.1 as a consequence of Theorem 2.1.

Theorem 4.1: Let m be a modulus of continuity. There exists α, ε0, C > 0

such that, for all ε ∈ (0, ε0) and for each uε : RN → R with ||uε||L∞(RN ) ≤ 1,

satisfying (10) and

|uε(x)− uε(y)| ≤ m(|x− y|) for all x, y ∈ B1,

there exist linear functions

lε(x) = aε + bε · x
with aε → a, bε → b as ε→ 0, and cε > 0 with cε → 0 as ε→ 0 such that

|uε(x) − uε(0)− 1Bc
cε
(x)lε(x)| ≤ C|x|1+α1Bc

cε
(x) +m(|x|)1Bcε

(x),

for all x ∈ B1/2.

Next we present the basic approximation result which plays the role of Lemma

2.2 in the proof of Theorem 2.1. To state it precisely, we consider the notion of

a local modulus of continuity given by a function

m : [0,+∞)× [0,+∞) → [0,+∞)

such that for each R > 0, the function m(·, R) is a modulus of continuity. We

also consider the notation a ∨ b = max{a, b} for a, b ∈ R.

Lemma 4.2: Given constants ρ,M, γ > 0 with γ < σ, and a local modulus of

continuity m, there exists ε0 > 0 such that for all ε ∈ (0, ε0), w : RN → R

satisfying

(1) −ε0 ≤ Iε(w, x) ≤ ε0 in B1,

(2) |w(x) − w(y)| ≤ m(|x− y|, |x| ∨ |y|) for all x, y ∈ R
N ,

(3) |w(x)| ≤M(1 + |x|)γ ,
and v : RN → R satisfying

−ε0 ≤ −I0(v) ≤ ε0 in B1; v = w in Bc
1,

then

sup
x∈B1

|w(x) − v(x)| ≤ ρ.
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Proof. For a contradiction, assume the existence of M,ρ > 0, γ ∈ (0, σ), a

local modulus of continuity m, and sequences 0 < ε′k < εk → 0, wk : RN → R

satisfying (2), (3) (with w replaced by wk) with

|Iε′
k
(wk)| ≤ εk in B1

for all k large enough, and such that

(31) ||wk − vk||L∞(B1) > ρ,

where vk : RN → R solves

−ε′k ≤ I0(vk) ≤ ε′k in B1; vk = wk in Bc
1.

Notice that (2), (3) imply that wk converges (up to a subsequence) locally

uniform in R
N to some function w̄ ∈ C(RN ) satisfying (3). From now on we

argue over the convergent subsequence of wk which we denote as wk as well.

Notice that (3) implies that the family {vk} is uniformly bounded in L∞
loc(R

N )

by the comparison result in [3], and locally equicontinuous in Ω by the interior

elliptic estimates of [5]. Hence {uk}, {vk} converge locally uniform in Ω, and

by the application of standard stability results in viscosity theory (see [4]) we

see that both sequences converge locally uniform in R
N to the unique viscosity

solution to the problem

−I0(u) = 0 in B1, u = w̄ in Bc
1,

providing a contradiction with (31).

The core of the proof of Theorem 4.1 is contained in the following

Proposition 4.3: Let σ ∈ (1, 2) and m be a modulus of continuity. There

exist α ∈ (0, σ − 1), ε′0, λ ∈ (0, 1) small and C,R > 1 large enough such that

for all ε ∈ (0, ε′0) and each uε : R
N → R such that ||uε||L∞(RN ) ≤ 1 and further

satisfying

(32) −ε′0 ≤ Iε(uε) ≤ ε′0 in B4R

and

(33) |uε(x) − uε(y)| ≤ m(|x− y|) for all x, y ∈ BR,

then, for each k ≤ qε, with qε ∈ N defined as

(34) qε = sup{k ∈ N : m(ε) ≤ λσk},
there exist linear functions �k(x) = ak + bk · x satisfying

(35)

|ak+1 − ak| ≤ Cλ(1+α)k, |bk+1 − bk| ≤ Cλαk, and

sup
B

λk

|uε − �k| ≤ Cλ(1+α)k.
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Proof. We fix 0 < ᾱ < σ − 1 such that interior C1,ᾱ regularity estimates for

fractional harmonic functions hold (see [5, 6]), that is, there exist universal

constants Ā, ᾱ > 0 such that, for each function h : RN → R satisfying

I0(h) = 0 in B1, with |h(x)| ≤ (2 + |x|)1+ᾱ, x ∈ Bc
1,

we have

(36)
|h| ≤ Ā in B1; |Dh(0)| ≤ Ā, and

|h(x)− h(0)−Dh(0)x| ≤ Ā|x|1+ᾱ for x ∈ B1/2.

By reasons that will be clear later, we fix the parameter λ as

(37) λ = min{1/2, (12(Ā+ 1))1/(ᾱ−α)}.
We construct the sequence (�k) recursively. For k = 0 we define �0 = 0 and

then we define wk, vk : RN → R as

(38) wk(x) =
(uε − �k)(λ

kx)

λk(1+α)
; and

⎧⎨
⎩I0(vk) = 0 in B1,

vk = wk in R
N \B1.

Then we can consider āk = vk(0), b̄k = Dvk(0) and from this we denote

�̄k(x) = āk + b̄kx. Finally, we define

(39) �k+1(x) = �k(x) + λk(1+α) �̄k

( x

λk

)
,

that is, ak+1 = ak + λk(1+α)āk, bk+1 = bk + λkα b̄k. The choice of λ above and

ε′0 small enough makes it possible to prove inductively that the following two

inequalities hold for each k ≤ qε:

|āk|, |b̄k| ≤Ā,(40)

|wk| ≤(1 + |x|)1+ᾱ in R
N .(41)

To conclude the proof of this proposition, we assume these two inequalities

hold. We notice that (41) implies |wk| ≤ 21+ᾱ in B1, from which the third

inequality in (35) holds in view of the definition of wk. On the other hand,

since ak+1 − ak = λk(1+α)āk and bk+1 − bk = λkαb̄k, if (40) holds then the first

two inequalities in (35) hold.

We devote the rest of the section to a proof of (40) and (41), which is carried

out through an inductive procedure developed in various lemmas.

We start with a compactness result for the family {wk} under the assumption

of (40) and (41).
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Lemma 4.4: Assume uε bounded satisfies (32) for some ε′0 > 0 and R > 1, and

such that (33) holds for some modulus of continuity m.

For some λ ∈ (0, 1/2), let wk, �k be defined as in (38) and (39), respectively,

and further assume that (40), (41) hold. Then there exists CR > 0 and a

modulus of continuity m̄ independent of R, such that for all ε′0 small and all

ε ∈ (0, ε′0) we have

|wk(x)− wk(y)| ≤ CR m̄(|x− y|) for x, y ∈ B2R,

for all k ≤ qε.

Proof. Since σ > 1, then linear functions can be classicaly evaluated on Iε for

all ε ≥ 0 and this evaluation is null. Then, by definition of wk, the problem

solved by uε and Lemma 2.3 we see that

−λk(σ−1−α)ε′0 ≤ Iλ−kε(wk, x) ≤ λk(σ−1−α)ε′0 in Bλ−k4R.

Noticing that by the choice of λ in (37) we have λ ≤ 1/2, and using that

σ − 1− α > 0 and k ≥ 1 we conclude that

(42) −ε′0 ≤ Iλ−kε(wk) ≤ ε′0 in Bλ−k4R.

Let β ∈ (0, 1) such that βσ − 1 ≥ 0. Using that m is a modulus that can be

assumed to satisfy (9), for all k ≤ qε we can write

λ−kε ≤ λ−km(ε)βε1−β ≤ λk(−1+βσ)kε1−β ≤ ε1−β ,

from which, taking ε′0 small with respect to ε0 in Corollary 2.4 (which does not

depend on R, see Remark 2.2), we conclude that

(43) |wk(x)−wk(y)| ≤ CR{|x−y|α1Bc

λ−kε
(x−y)+mwk

(|x−y|)1B
λ−kε

(x−y)}
for all x, y ∈ B2R, where mwk

is the modulus of continuity of wk, and CR

depends on R and ᾱ but not on λ, ε or k. In what follows we show that the term

in brackets in the last inequality represents a modulus of continuity independent

of k, ε or R. For this, we start by noticing that since λ ≤ 1/2 it is easy to see

from the definition of ak, bk in terms of āk, b̄k and the assumption (40) that

(44) |ak| ≤ Ā, |bk| ≤ Ā/(2α − 1)

for all k ≤ qε. Using the latter, for t ≤ λ−kε and by the definition of wk in (38)

we can write

mwk
(t) ≤ m(λkt)

λ(1+α)k
+

|bk|t
λαk

,
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where m is given by (33). Then, by the definition of qε, (9) and observing that

λkt ≤ t, for all β ∈ (0, 1) we see that

mwk
(t) ≤λ−(1+α)kmβ(ε)m1−β(t) + Āλ−kαtβt1−β/(2α − 1)

≤(λ−(1+α)k/βm(ε))βm1−β(t) + C(λ−kα/βt)βt1−β

≤(λ−(1+α)k/βm(ε))βm1−β(t) + C(λ−k(α+β)/βm(ε))βt1−β ,

where C > 0 depends only on Ā and α. At this point, since α < σ we can fix β

close to 1 in order to have (1 + α)/β < σ, and since k ≤ qε we arrive at

mwk
(|x − y|) ≤ m1−β(|x− y|) + C|x− y|1−β

for all x, y ∈ B2R with |x− y| ≤ λ−kε, and where C, β do not depend on k, ε or

R. Inserting this into (43) we get the result with

m̄(t) = m1−β(t) + Ct1−β + tα, t > 0,

where C > 0 does not depend on ε, k or R.

This result allows us to get the following

Lemma 4.5: Let λ ∈ (0, 1/2). There exists ε′0 > 0 small and R > 2 large

enough such that if the bounded function uε satisfies (32) and (33), and wk, vk

defined as in (38) satisfy (40), (41), then we have

(45) sup
B1

|wk − vk| ≤ λ1+α,

for all k ≤ qε.

Proof. The main idea is to apply Lemma 4.2 to wk and vk. In fact, we argue

over the function

w̃k = ηRwk,

where ηR is a suitable cut-off function as defined in Corollary 2.4. In view of

the assumed property (41) we see that

|w̃k(x)| ≤ (1 + |x|)ᾱ for all x ∈ R
N .

Now, Lemma 4.4 together with the upper bound for the constant L asserted in

Corollary 2.4 tells us that by taking ε′0 small enough we have

|w̃k(x) − w̃k(y)| ≤ C̄Rᾱ m̄(|x− y|) for all x, y ∈ B2R
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for some C̄ > 0 not depending on R, ε or k. In view of the definition of w̃k, we

can re-state the last inequality as

(46) |w̃k(x) − w̃k(y)| ≤ C̄(|x| ∨ |y|)ᾱm̄(|x− y|) for all x, y ∈ R
N .

The above expression represents a local modulus of continuity for the family

{w̃k} which is independent of k, ε or R.

Using (42) and assumption (41) together with the arguments in Corollary 2.4

we can see that

−ε′0 − CRᾱ−σ ≤ Iλ−kε(w̃k) ≤ ε′0 + CRᾱ−σ in B1

for some universal constant C > 0.

Finally, using a similar argument as in the previous discussion together with

the definition of vk in (38), we see that the function ṽk defined as

ṽk = ηRvk

satisfies ṽk = w̃k in Bc
1 and

−CRᾱ−σ ≤ (−Δ)σ/2ṽ ≤ CRᾱ−σ in B1.

Hence we consider ρ = λ1+α, M = 1, γ = ᾱ and m the local modulus of

continuity given in (46) in Lemma 4.2 and the corresponding ε0 given in that

lemma associated to this data, and fix ε′0 ≤ ε0/2 and R large enough to have

CRᾱ−σ ≤ ε0/2 and conclude that

sup
B1

|w̃k − ṽk| ≤ λ1+α,

which leads to (45) by definition of w̃k, ṽk.

Finally, we are in position to provide the

Proof of (40) & (41). We prove (40), (41) inductively. Notice that the basic

case k = 0 is satisfied because w0 = uε with ||uε||∞ ≤ 1, and �0 = 0. Suppose

now that the induction hypothesis is true for all j ∈ N with j ≤ k < qε, and let

us prove it is true for k + 1. Without loss of generality we assume k ≥ 1. We

see that (40) for k + 1 is a consequence of (41) for k + 1 since āk+1 = vk+1(0),

b̄k+1 = Dvk+1(0) with vk+1 the fractional harmonic function in B1 equal to

wk+1 in Bc
1. Thus (40) for k + 1 follows from the combination of the previous

discussion and (36).
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Now, for (41) we observe that by the definition of wk and �̄k we can write

equivalently

wk+1(x) =
(wk − �̄k)(λx)

λ1+α
, x ∈ R

N .

We split the analysis depending on the size of x relative to λ. If λ|x| ≥ 1,

using (41) and (44) we see that

|wk+1(x)| ≤λ−(1+α)((1 + |λx|)1+ᾱ + Ā+ Āλ|x|)
≤21+ᾱλ−(1+α)(λ1+ᾱ|x|1+ᾱ + Āλ|x|)
≤21+ᾱλᾱ−α(1 + Ā)|x|1+ᾱ,

from which, in view of the choice of λ in (37), we get (41) for k+1 in this case.

If 1/2 ≤ λ|x| < 1, we use the uniform bound for vk in B1 given by the first

inequality in (36) together with (45) to write

|wk+1(x)| ≤λ−(1+α)(λ1+α + |vk(λx)| + |�̄k(λx)|)
≤λ−(1+α)(λ1+α + 3Ā)

≤1 + 3Āλ−(1+α)21+ᾱ(λ|x|)1+ᾱ,

and since ᾱ < 1, by the choice of λ in (37) we get (41) for k + 1 in this case.

Finally, if λ|x| < 1/2 we use (45) and the C1,ᾱ estimates given by the last

inequality in (36) to write

|wk+1(x)| ≤λ−(1+α)(λ1+α + |vk(λx) − �̄k(λx)|)
≤1 + Āλᾱ−α|x|1+ᾱ

and, as before, by the choice of λ, we conclude (41) for this case, completing (41)

for k + 1. This finishes the proof.

Now we can prove our simplified version of Theorem 1.3.

Proof of Theorem 4.1. Recalling that m is a modulus of continuity for uε in B1,

we consider R > 2 given in Proposition 4.3 and the function

ũε(x) = uε

( x

4R

)
, x ∈ R

N .

By monotony of the modulus, notice that ũε has the same modulus of continuity

m in B4R since

|ũε(x) − ũε(y)| ≤ m(|y − y|/(4R)) ≤ m(|x− y|),
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and using Lemma 2.3 we see that

−R−σθ0 ≤ IRε(ũε) ≤ Rσθ0 in B4R.

Then, by taking θ0 and ε0 small enough in order to apply Proposition 4.3

over ũε, we consider the linear functions asserted in that proposition, which we

still denote by �k for all k ≤ qε defined in (34). From this point, we omit the

superscript “∼” and argue directly over uε.

We recall that qε defined in (34) depends only on λ,m, ε and σ and is such

that qε → +∞ as ε→ 0. With this in mind, we define

aε = uε(0) + aqε , bε = bqε , and cε = λqε ,

from which lε(x) = aε + bεx. By Proposition 4.3 and the equicontinuity of uε

we see that aε → a, bε → b as ε→ 0 for some a ∈ R, b ∈ R
N . Let x ∈ B1/2 and

let k = k(x) ∈ N such that λk+1 ≤ |x| ≤ λk+1. If x ∈ Bcε then we write

|uε(x) − uε(0)| ≤ m(|x|),

and this is the statement for which the theorem reduces by the asserted equicon-

tinuity assumption over uε.

If x ∈ Bc
cε we write

|uε(x)− uε(0)− lε(x)| ≤ |uε(x)− lk(x)|+
qε−1∑
j=k

|lj+1(x) − lj(x)|,

and since necessarily k ≤ qε in this case, by Proposition 4.3 we can write

|uε(x)− uε(0)− lε(x)| ≤C|x|(1+α)k + C

+∞∑
j=k

λ(1+α)j + λαj |x|

≤C(|x|(1+α)k + λ(1+α)k + λαk|x|).

This leads to the result because λk+1 ≤ |x|.
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