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Abstract
In this work, we numerically solve the Brinkman–Darcy equation coupled to the granular kinematic model using the finite 
elements method in 2D, to describe the entry of water into draw points in Block Caving mining. We perform a total of 990 
numerical simulations incorporating the relative change of local rock density ( Δ�∕�p ), particle size ( Dp ), extraction area ( S ) 
and the separation between draw points ( L ). We propose two mathematical models using scale arguments for estimating the 
velocity of the water in the draw point as a function of two and three dimensionless numbers (for isolated and simultane-
ous extractions, respectively). The relative error in the estimation of the results using the mathematical model for the set of 
numerical experiments ranges from 0.83 to 6.09%, where the greatest deviations correspond to Dp = 6 mm. The proposed 
models allow estimating the water velocity at the draw point, which in turn helps to predict the time and place where there 
is a greater probability of a mud rush occurrence. The results can be applied in the design and optimisation of extraction 
sequences when the water present in the subsoil of a mine is a relevant factor to consider.
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Abbreviations
u⃗	� Velocity field of the fluid (m/s)
K	� Hydraulic conductivity, (m2)
∇	� Gradient of the hydraulic head (m−1)
�	� Porosity of the medium
�	� Fluid density (kg/m3)
k	� Intrinsic permeability of the medium, (m/s)
�	� Dynamic fluid viscosity (Pa s)
g	� Gravitational constant (m/s2)
Dp	� Size grain (m)
Re	� Reynolds number
�	� Kinematic viscosity (m2/s)
�	� Stress tensor (MPa)
∇P	� Gradient of the fluid pressure (MPa/m)

uxp	� Horizontal velocity of particles (m/s)
uyp	� Vertical velocity of particles (m/s)
C	� Constant along streamlines
�	� Pi number
e	� Euler’s number
�p	� Density of the medium (particles) inside the IMZ 

(kg/m3)
Δ�	� Local density change introduced by the rock 

motion (kg/m3)
�0	� Initial density or outside of the IMZ (kg/m3)
Q	� Extraction rate (e.g. in 2D m2/day or in 3D m3/day)
HIEZ	� Height of the isolated extraction zone (m)
WIEZ	� Width of the isolated extraction zone (m)
���⃗vF 	� Velocity of the dilation front (m/s)
��⃗vp	� Particles velocity (m/s)
dyf 	� Displacement of the dilation front velocity (m)
HIMZ	� Height isolated movement zone (m)
WIMZ	� Width isolated movement zone (m)
�	� Convective velocity vector (m/s)
D	� Diffusion coefficient (m2/s)
F	� Arbitrary source term
cart	� Artificial diffusion coefficient
�id	� Tuning parameter of the artificial diffusion
h	� Mesh element size (m)
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1  Introduction

The depletion of high-grade ore bodies near surface is a 
crucial issue for mining companies in times of increasing 
demand for metal. The alternative considered for many 
surface mining operations is the transition to underground 
where Block, Panel, and Sublevel Caving are the main 
large-scale mining methods utilised for deep and low-
grades massive deposits. The latter methods increase the 
number of operational risks, such as rock explosions, air 
blasts and mud rush. A mud rush is the sudden and vio-
lent entry of a wet muck flow (mixture of water and fine-
grained material) into underground mining operations 
(Butcher et al. 2000). Caving operations are inherently 
susceptible to mud rush, because of their potential to accu-
mulate surface and underground water, generation of fine-
grained material (by a secondary comminution process), 
and the overall productive activities that provide pertur-
bation and a download point (Jakubec et al. 2012). These 
events are uncommon but involve a significant adverse 
economic impact and loss of human lives, e.g. in Eng-
land, Scotland, and the United States until 1995 on aver-
age 31 deceased persons were reported, and until 1975 a 
maximum of 375 fatalities in the Chasnala coal mine in 
Jharia, India (Vutukuri and Singh 1995). In the specific 
case of Diablo Regimiento and Reserva Norte divisions of 
Codelco (Chilean Copper Company), a total loss of about 
48.95 Mt was reported until November 2013 (Navia 2014; 
Lara 2014).

Currently, one of the proposed control measures to 
prevent mud rush is the criticality matrix, which is used 
to decrease the extracted volume in the different zones 
affected by mud. Accordingly, the safety factor to extract 
mineralised material is calculated from results of the 
slump test using the Abraham cone (Vallejos et al. 2017). 
On the other hand, Garcés et al. (2016) proposed a proba-
bilistic approach to deal with this problem, in which a 
logistic binary regression uses historical reports of mud 
rush to establish a multivariate predictive model consider-
ing two entry mechanisms: vertical and lateral. Unfortu-
nately, this method can only be applied in mining opera-
tions where mud rush has already occurred, while in other 
areas with potential risk the magnitude or timing of such 
events cannot be determined.

In the last two decades, research regarding water-mud 
flow problems has focused on establishing the fundamen-
tals of mud rush, failure mechanisms and mitigation opera-
tional practices (Call and Nicholas 1998; Butcher et al. 
2000, 2005; Samosir et al. 2008; Wicaksono et al. 2012; 
Widijanto et al. 2012; Holder et al. 2013; Jakubec et al. 
2012; Lara 2014; Navia 2014; Valencia et al. 2014; Hek-
mat et al. 2016; Castro et al. 2017; Vallejos et al. 2017). 

Despite this constraint, questions about the dynamic 
behaviour of groundwater flow in these events, how the 
triggering mechanism act (dynamic or static), and the 
predictability of occurrence of mud rush events remains 
unresolved.

The water is the mud transport mechanism (Butcher et al. 
2005), but one can hardly obtain a measurement of velocity, 
viscosity and pore pressure of the groundwater flow both in 
cave mining operations or in physical models, and also the 
nonlinearities of the governing equations (Nguyen 1995) lead 
to an unpredictable behaviour of mud rush events. Another 
complexity concerns the differential porosity developed by 
the gravity-driven granular flow (Castro et al. 2007; Hancock 
et al. 2012) in response to decompaction and dilatation effects 
during the extraction of the granular material in underground 
Block, Panel, and Sublevel Caving exploitation methods.

In this paper, we present a deterministic approach in which 
we model the behaviour of underground water coupled to the 
evolution of the caving, integrating equations of groundwater 
flow (Brinkman equation) and granular medium (modified-
kinematic model), to simulate the movement of water through 
the muckpile or column of broken material inside the caved 
zone, and to estimate the inflow velocity at the draw point. For 
the discretisation of the equations that control the transport of 
water in a porous medium, the Finite Element Method (FEM) 
is adopted in this study because it has a mathematical formula-
tion especially for non-linear partial differential equations and 
it is more accurate than Finite Volume Methods (FVM) and 
Finite Difference Methods (FDM). The model presented here 
represents a simplification of the physics of the problem since 
we do not consider the anisotropy of the medium, fractures 
network, and the dynamic of aquifers. However, we attempt 
to obtain a mathematical model to help us to address two main 
questions:

1.	 Which factors control the water flow and what are their 
relative influences?

2.	 What is the predicted flow velocity of water at the draw 
point (extraction point built below the ore for recovering 
it after it is caved)?

In the following sections, we first describe the equations, 
which control the phenomenon and then the numerical meth-
odology. Finally, we present the results of the numerical 
experiments and the mathematical model obtained.

2 � Governing Equations

2.1 � Fluid Dynamics

A porous medium consists of a solid matrix with intercon-
nected voids (pores), which allows the flow of one or more 
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fluids through the material. The movement of water through 
a porous medium can be modelled in the fundamental micro-
scale by Stokes’ equation, and in a macroscopic level by 
Darcy’s law (Durlofsky and Brady 1987). Since a macro-
scopic approach is the most feasible way to model trans-
port, in 1856, Darcy experimentally measured the resistance 
to the flow caused by the porous zone. That is, u⃗ = −K∇h 
where the velocity field of the fluid is u⃗ , ∇h corresponds 
to the gradient of the hydraulic head and K to the hydrau-
lic conductivity, a property of the geological setting. For a 
laminar flow in porous medium, Darcy’s law yields a good 
approximation for the momentum equation (Bear 1988; Ghi-
daoui and Kolyshkin 1999).

The continuity equation for an incompressible fluid writ-
ten in vector notation is described as

The hydraulic conductivity, defined as the measure of the 
ease of a porous medium to transmit water, is a function 
of the lithology, texture and granulometry of the medium 
(Tuller and Or 2002; Fitts 2012). The hydraulic conductivity 
has a strong dependence on the degree of water saturation, 
and according to Kasenow (2002), is expressed mathemati-
cally as follows: K = k�∕�g , where � is the dynamic fluid 
viscosity (Pa s), � is the fluid density and g corresponds 
to the gravitational constant. The specific permeability or 
intrinsic permeability of the medium ( k ) represents the abil-
ity of a fragmented material to allow a fluid to pass through 
it (Dullien 1992), and depends on the physical properties of 
the porous medium, as well as on the geometry. It is inde-
pendent of the nature of the fluid (Nield and Bejan 2006) and 
can be expressed as, k = ��D2

p
 , where � is a dimensionless 

constant related to the configuration of the medium, � the 
porosity of the medium and Dp the size grain (Vuković and 
Soro 1992).

According to experimental results, Darcy’s law is valid 
when the Reynolds number (Re) ranges between 1 and 10 
(Todd 1980; Bear and Bachmat 1990; Arora 2009; Bear and 
Cheng 2010; Alabi 2011), which for a porous medium is 
defined as (Van Golf-Racht 1982),

where � is the kinematic viscosity. When the hydraulic 
conductivity K is low, the stress that undergoes the fluid 
is transmitted from one pore to other mainly by pressure 
because the solid matrix prevents direct viscous interaction 
of the fluid in separated pores (Faghri and Zhang 2006). 
The porous media is characterized by the so-called effec-
tive properties, such as the porosity, which was assumed 
according to data reported by Hancock et al. (2012). The 

(1)
𝜕(𝜙𝜌)

𝜕t
+ ∇ ⋅

(
𝜌u⃗

)
= 0.

(2)Re =
5 × 10−3

�5.5

u
√
K

v
,

growth of the caving generates the increase in the poros-
ity, which requires accounting for the viscous transport in 
the momentum balance and introducing the velocity in the 
spatial directions as a dependent variable, so the Brinkman 
equation is used (Shamey and Zhao 2014). Brinkman’s equa-
tion corresponds to an extension of Darcy’s law, where the 
viscous term ( � ) is added (Nield and Bejan 2006; Shi and 
Wang 2007). Brinkman’s equation takes the following form:

where P is the fluid pressure, as it is expressed in Durlofsky 
and Brady (1987).

The hydraulic conductivity is the parameter of greater 
significance in Eq. (3), since it controls the velocity of trans-
port of fluids in a porous medium (Tuller and Or 2002). 
Brinkman’s equation is a simplification of the Navier–Stokes 
equation, which can be applied only to a laminar flow in a 
porous medium (Dullien 1992) and for high porosity val-
ues (i.e. � = 0.8) (Durlofsky and Brady 1987; Faghri and 
Zhang 2006). The movement of material through the draw 
point generates a change of porosities that clearly splits of 
lower (final) and higher (initial) porosity zones separated by 
a stress arch (Castro et al. 2007). This is confirmed by the 
results of Hancock et al. (2012) where there are two main 
regions, one with relatively higher porosities in the shear 
band area of flow around the edges of the movement zone 
and another with lower porosities in the plug zone region. 
In the plug zone region, the porosity is low and Brinkman’s 
equation reduces to Darcy’s law (Durlofsky and Brady 1987; 
Shamey and Zhao 2014). Therefore, Brinkman’s equation 
has the advantage of considering both viscous drag along the 
macroporous in a movement zone and Darcy effects within 
the porous medium itself (in situ rock). In this sense, Brink-
man’s equation is more applicable than Darcy’s law (Shamey 
and Zhao 2014) and simpler compared to the Navier–Stokes 
equation (Shi and Wang 2007).

2.2 � Granular Materials

In the block caving method, the extraction of minerals is 
based on the flow of rocks induced by gravity. In the mining 
context, the kinematics model has been used to calculate 
the shape of the isolated extracted zone (IEZ) and has been 
modified to introduce both a non-constant diffusion coef-
ficient (Chen 1997) and a heuristic rule for dilation (Melo 
et al. 2009). The kinematic model describes the movement 
of the granular material, considering that a particle leaving 
the system creates a space, which is occupied by a particle 
from the top layer. Thus, a new space is generated, which is 
occupied by the top layer particle and so on (Mullins 1972). 
For the latter to occurs, it is assumed that the weight of the 

(3)
𝜌

𝜙

(
𝜕u⃗

𝜕t
+
(
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) u⃗
𝜙

)
= −∇P + 𝜇∇2u⃗ −

( 𝜇

K

)
u⃗ + 𝜌��⃗g ,
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particle is sufficient to cause displacement, since this does 
not consider stress in the system and depends exclusively on 
the movement and compaction of the granulated material 
(Nedderman and Tüzün 1979; Melo et al. 2007; Vivanco 
and Melo 2013). The kinematics model for predicting the 
velocity distribution formulated by Nedderman and Tüzün 
(1979), considering three particles as shown in Fig. 1, sug-
gests that if the downward velocity of particle 1 is greater 
than that of particle 2, then there will be a tendency for parti-
cle 3 to move to the right, i.e. there is a relationship between 
the horizontal velocity uxp and the gradient of the vertical 
velocity uyp . The simplest possible relationship is given by 
(Nedderman and Tüzün 1979):

with a diffusion coefficient proportional to the grain size 
Dp , and assuming a constant density throughout the system. 
Replacing the following equation into the stationary mass 
conservation equation, it can be expressed as:

For the vertical velocity, a diffusion-like equation is given 
as follows:

Two elliptic-shape zones: the isolated extraction zone 
(IEZ) and the isolated movement zone (IMZ), are gener-
ated by extracting at a single draw point and considering 
the dilatation front effect (Kvapil 1965; Janelid and Kvapil 
1966; Melo et al. 2009). The IEZ corresponds to the limit-
ing surface from where all particles are extracted, while the 

(4)uxp = − Dp

�uyp

�x
,

(5)
�uxp

�x
+

�uyp

�y
= 0.

(6)
�uyp

�y
= Dp

�2uyp

�x2
.

latter refers to the surface that limits the zone where parti-
cles remain static (Fig. 2) (Kvapil 1965; Bergmark 1975; 
Rustan 2000; Kuchta 2002; Castro et al. 2007). To deter-
mine the exact shape of the IEZ, it is necessary to start with 
the kinematic model for the simplest configuration. In two 
dimensions, considering an infinitely narrow opening where 
a particle located in ( x, y ) moves towards the point of extrac-
tion, the solution of the diffusion-type equation is:

where Q is the section of extracted granular material per unit 
of time. In two dimensions, S corresponds to the flow rate 
or extraction area ( S ) per unit of time. The detailed solution 
of this differential equation can be reviewed in Nedderman 
(2005). Thus, Eqs. (7) and (8) allow us to follow all particle 
trajectories as a function of the position.

(7)uxp =
dx

dt
=

− Q
√
4�Dpy

exp

�
−

x2

4Dpy

�
x

2y
,

(8)uyp =
dy

dt
=

− Q
√
4�Dpy

exp

�
−

x2

4Dpy

�
,

Fig. 1   The kinematics model of Nedderman and Tüzün (modified 
from Nedderman 2005)

Fig. 2   Schematic model of the IEZ showing the dilatation front mov-
ing upward and the movement of particles downward once they have 
been reached by the IEZ [modified from Vivanco et  al. (2011)]. vp 
velocity of particles, vF velocity of the dilatation front, �p density 
inside of the IMZ, �0 density outside of the IMZ, and Δ� local density 
change introduced by the rock motion
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The equation for streamlines for the rock flow is given 
by dx∕dy = x ∕2y , and its solution is y = cx2 , where c is a 
constant along a given streamline. Integrating one of the 
above Eqs. (7) or (8) in time and using the above streamline 
solution, it is possible to calculate the IEZ for a given time 
t, at the extraction area S . According to Melo et al. (2007, 
2009), the maximum height and the maximum width of the 
IEZ are given by:

where e is the Euler’s number.
This kinematics model to predict the width and height 

of the IEZ is in accordance with the experimental observa-
tions, but when these models are applied to the description 
of the IMZ, they give poor results (Melo et al. 2008, 2009), 
because the dilation strongly influences the size of the IMZ. 
This is due to the fact that granular material is in a loose 
packing state and when the particles start to flow as it is 
extracted from the opening generates local volume changes, 
which are not included in the original formulation of the 
kinematics model (Vivanco and Melo 2013). However, the 
IMZ is very sensitive to local packing changes because this 
zone defines the limit where the rocks remain static. This 
change depends on the sliding capacity of the rocks, which 
is strongly dependent on the available empty space (Melo 
et al. 2009). In the previous case, it is found that the origi-
nal formulation of the kinematic model is not appropriate 
in describing the velocity distribution of particles so that a 
dilation front propagating upwards from the draw point was 
introduced. This finding has been confirmed by experimental 
results (Caram and Hong 1991; Samadani et al. 1999) show-
ing that streamlines are correctly predicted by the kinematics 
model in a loose packing regime.

In a convergent hopper where the flow is radial, the veloc-
ity profile is described by the plasticity model (Nedderman 
2005). The plasticity model can be applied to the descrip-
tion of the IMZ when the dilatancy effects are included and 
the velocity distribution is determined by the initially static 
stress distribution (Melo et al. 2009). The geometry of both 
IEZ and IMZ, in the case of radial flow described by the 
plasticity model, is independent of the granulate size. For 
greater heights, the flow cannot be considered as radial, 
explaining the deviation observed in the experimental curves 
obtained by Castro et al. (2007). This feature can be taken 
into account by introducing an upward propagating dilation 
front (Melo et al. 2008, 2009; Vivanco et al. 2011; Vivanco 

(9)HIEZ =

�
3S

4
√
�Dp

�2∕3

,

(10)WIEZ = 2

�
6Dp

e

��
3S

4
√
�Dp

�1∕3

,

and Melo 2013). This dilation front is referred to a moving 
surface that propagates the increase in local volume caused 
by the packing decrease or loosening (Vivanco and Melo 
2013). It is identified with the boundary of the IMZ (Cas-
tro et al. 2007; Trueman et al. 2008). Assuming a steady 
state flow, the mass balance of the coordinates element (x, y) 
located on the dilatation front at time t, can be written as

in which J = �pvp (x, y) is the granular flow, �p is the density 
in the grains at the steady state, vp is the particle velocity, 
Δ� = �0 − �p corresponds to the local density change rela-
tive to the initial density, �0 is the density outside the IMZ 
and dyF is the displacement of the dilation front during the 
lapse time dt , which is parallel to the rock fragment velocity 
(Vivanco and Melo 2013). Assuming that the initial and final 
densities remain constant, the expression for the velocity of 
the dilation front can be written as

According to Eq. (12), the dilation front moves upward 
faster than the rock fragments move downward. This expres-
sion represents the velocity of the dilation front in terms 
of the particle velocity without reference to any particular 
model and can be used to find the corrected form of the IEZ 
(Chen 1997). Replacing Eq. (6) of the vertical velocity into 
Eq. (12), one obtains

Then, replacing the streamline equation y = c
(
x − x0

)2 , 
calculated from dy∕dx = y∕x − x0 , and integrating, one has 
that the equation to determine the maximum height and 
maximum width of the IMZ of the modified-kinematic 
model is given by

Considering the local density changes through a dilation 
front and adding a scale factor correcting the IMZ, such 
that its height is reduced to a finite size, the perturbations 
generated by the draw process have a finite extent, improving 
the predictions of both the kinematics and plasticity models 
(Melo et al. 2008, 2009). On the other hand, the ratio of 
IMZ to IEZ height is dependent only on the local density 

(11)−Jdt = Δ�dyF,

(12)
dyF

dt
= vF = −

�p

Δ�
vp.

(13)vF =

�
�p

Δ�

��
Q

√
4�Dpy
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�
−

x2

4Dpy
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(15)WIMZ = 2
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variation (Kvapil 1965; Melo et al. 2009) and the IEZ width 
is dependent on the granulate size due to its the linear rela-
tionship with the coefficient of diffusion, i.e. it influences the 
lateral diffusion of the flow (Power 2004; Melo et al. 2009).

According to Melo et al. (2008), granular materials have 
no intrinsic viscosity and for the mean speed of granular 
flow, Bagnold’s law is independent of the grain size. Addi-
tionally, Bagnold’s law applies to an inertial regime with 
a high rate of deformation (large Bagnold numbers), con-
trary to what happens in a block Caving process where the 
gravitational flow is quasi-static. Therefore, changes in the 
dynamic properties of water such as viscosity or Bagnold 
effect were not considered in this work.

In summary, Eqs.  (1) and (3) are what describe the 
groundwater flow and Eqs. (14) and (15) of the modified-
kinematic model are the equations that define the geometry 
of the IMZ. These are the equations utilised in the develop-
ment of the numerical modelling, as indicated below.

3 � Numerical Methodology

To investigate how significant are the changes of the water 
flow as the Caving develops, we conducted a series of two-
dimensional numerical simulations under different physi-
cal conditions, including changes in the porosity of the 
material, initial water velocity, particle diameter, distance 
between draw points, extraction area and considering dif-
ferences between the density in situ (outside IMZ) and the 
fragmented material (between IEZ and IMZ), that allowed 
us to define the fluid velocity at the draw point. The numeri-
cal model used corresponds to a set of partial differential 
equations (see Sect. 2), which represent a continuum in both 
space and time.

Equations (1), and (3) were integrated into the computa-
tional fluid dynamics and optimisation package of Comsol 
Multiphysics®, where they were subsequently discretised 
by Galerkin’s finite element method (Tabatabaian 2014). In 
Table 1, the parameters of the numerical simulations are 
indicated. Figure 3 shows a simplified 2D model of an iso-
lated draw point and a simultaneous extraction modelled in 
Comsol Multiphysics®, where the water source is located 
at the surface and enters into the system with an initial 
water velocity ( v1 ) to reach a final velocity ( v2 ) at the draw 
point. This is directly related to the opposition of the porous 
medium to the flow of water.

We assume the Caving development generates a varia-
tion in permeability (Table 2) due to an increased void ratio 
by the dilatation of material according to the extracted area 
(S), which is supported by numerical models of Hancock 
et al. (2012). We considered no-slip and no penetration in all 
domain borders as boundary conditions, so that u = 0 at the 
walls of the model. To select an appropriate mesh sizes for 

the calculations, we conducted a set of simulations for sev-
eral mesh sizes under the following physical and numerical 
conditions: S = 300 mm2, Dp = 4 mm and ��∕�p = 3% . As 
shown Fig. 4, the fluid velocity for an isolated case is a func-
tion of the number of mesh elements. The same procedure 
was performed to analyse the convergence of the solutions 
for the simultaneous case, obtaining similar results. Along 
this line, for the discretisation of the differential equations, 
we chose a trade-off between the convergence and compu-
tational times with 39.938 and 68.857 free triangular ele-
ments corresponding to the isolated and simultaneous case, 
respectively.

The equation system was integrated from 0 to 100 
s, with a time step of 0.1 s, since the transitory effect is 
very fast. Because Eq. (3) is a nonlinear convection–diffu-
sion, a small amount of artificial diffusion is added (stabi-
lisation) to obtain a more robust and faster computational 
performance. Comsol Multiphysics® uses three types of 
methods for numerical stabilisation of the general convec-
tion–diffusion transport equation for an unknown solution 
u, �u

dt
+ � ⋅ ∇u = ∇ ⋅ (D∇u) + F , (1) isotropic diffusion, 

(2) diffusion of streamlines and (3) crosswind diffusion. 
In the latter expression, the parameters � and D refer to 
the convective velocity term and the diffusion coefficient, 
respectively, while F represents an arbitrary source term 
(Tabatabaian 2014). It has been mathematically proven 
that numerical instabilities occur when the Peclet num-
ber exceeds 1. The simplest approach is to define an arti-
ficial diffusion coefficient, cart = �idh|�| , where h is the 
mesh element size, which plays an important role. Here, 
�id is a tuning parameter by which the amount of artificial 
diffusion can be adjusted. Thus, the equation is solved as 
�u

dt
+ � ⋅ ∇u = ∇ ⋅

((
D + cart

)
∇u

)
+ F.

Table 1   Set of parameters of numerical simulations

Value

Physical parameters
 Fluid viscosity, µ (Pa s) 0.001
 Fluid density, ρ (kg/m3) 1000
 Particle diameter, Dp (mm) [2, 4, 6]
 Initial fluid velocity, v1 (mm/s) [20, 40, 60]
 Relative local density change, Δ�

/
�p (%) [1, 3, 5]

 Extraction area, S (mm2) [4, 37, 70, 103, 136, 
168, 201, 234, 267, 
300]

Numerical parameters
 Separation distance between drawpoints, L 

mm
[140, 100, 60, 20]

 Time step, Δt (s) 0.1
 Simulation time, T (s) 100
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In some simulations, it was necessary to use a value of 
�id = 0.10 for the convergence of all calculations. As solver 
convergence does not ensure that the model is numerically 
stable and appropriate, we verified that a closed water bal-
ance (i.e. that is not creating or destroying water numeri-
cally) is obtained from a set of numerical experiments. These 
numerical experiments considered the following physical 
and numerical conditions: Dp = 2 and 6 mm, v1 = 20 and 
60 mm/s, S = 4, 103, 201 and 300 mm2, L = 140, 100, 60 
and 20 mm and ��∕�p = 1% . The results are indicated in 
Fig. 5, where mass storage or balance is 0 (kg/s) over the 
entire simulations, for all cases analysed, suggesting that 
no water is created or destroyed and the model is appropri-
ate and numerically stable. To capture the full interaction 
mechanisms between the water flow and Caving operation, 
sampling points were placed at the draw point, along the 
width and height of the IMZ and interaction zone of the 

ellipses, obtaining valuable information on the behaviour 
for different initial conditions. A physical validation of the 
result is given in the next section.

4 � Results and Discussion

From the combination of each of the parameters listed 
in Table  1, the maximum number of simulations was 
obtained for the case of isolated and simultaneous extrac-
tions, with 270 and 720 possible numerical experiments, 
respectively. Our results suggest that the dynamic behav-
iour of the velocity of the water flow is intrinsically influ-
enced by the development of Caving and the geometry 
of the IMZ, which control the magnitude of the veloc-
ity at the draw point, which in turn is directly influenced 
for the material removed. These findings were validated 

Fig. 3   Schematic conceptual model. a Isolated extraction. b Simul-
taneous extraction. c Detail of the IMZ used in the numerical simu-
lations. The porosity of the concentric ellipses in the IMZ is repre-

sented by �j with j ∈ {1,… , 10} . v1 initial water velocity, v2 final 
velocity, L separation distance between draw points

Table 2   Set of porosities of the 
ellipses

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10

� 0.20 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50
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by dimensionless analysis, as the following sections will 
show in further detail.

4.1 � Effects of the Propagation of Caving

In the case of isolated extraction with a local change in the 
relative density ( Δ�∕�p ) of 1%, a granule size ( Dp ) of 2 

mm and an initial water velocity ( v1 ) of 20 mm/s at a time 
t  = 100 s (see Figs. 6, 9a), where t  is the final time of the 
water flow until reaching the draw point (which must be 
short for an effective observation). In Fig. 9a, we observe 
that the decrease in the velocity field is abrupt during the 
transition of the first extraction period (4 mm2) to the sec-
ond (36 mm2), decreasing at least a 55% and then a gradu-
ally decreasing (about 15% on average) in the following 
periods of extraction before the velocity becomes constant 
closer to the fourth period (103 mm2). This is regardless 
of an increase in the extraction area ( S ) (see Figs. 6, 9a). 
The above velocity values were measured along the smaller 
diameter of the ellipse, considering that mass conservation 
exists.

Therefore, the results suggest that the final velocity of the 
water flow at the draw point ( v2 ) is inversely proportional 
to the extraction area (S), only if S is less than about half 
of its maximum value (300 mm2) (Fig. 9a). In this way, the 
dynamic behaviour of the fluid is controlled by the surface 
removed in the Caving operation and the diffusion of voids, 
thus causing less resistance to the flow of water through-
out the granular medium. The latter confirms the empirical 
assertion that continuous extraction drains the column of 
broken material at the draw point (Call and Nicholas 1998; 
Butcher et al. 2000; Navia 2014).

4.2 � Influence of the IMZ Geometry

The geometry of the IMZ is controlled by local changes 
in density and the granulometry, in the case of a granular 
flow described by the kinematic model (Melo et al. 2009). 
In this way, we ran the numerical simulations considering 
��∕�p = 1% and Dp ranging from 2 mm to 6 mm, but with 
S = 300 mm2 and v1 = 20 mm/s as a constant for assess-
ing the influence of the granulometry on the velocity of the 
water flow (see Fig. 7). In addition, we ran the numerical 
simulations considering ��∕�p to range from 1 to 5% and 
Dp = 6 mm, but with S = 300 mm2 and v1 = 20 mm/s as 
a constant, for the assessment of the influence of density 
changes on the velocity of the water flow (see Fig. 8).

In the first case, it is observed that increasing the size of 
the particle proportionally increases the width of the IMZ 
(see Fig. 7), and causes a reduction in water velocity at the 
minor axis of the IMZ. In the opposite case, a fine granulom-
etry allows a greater transfer of the fluid because there is less 
resistance to the flow, and causes an increase in the expected 
water velocity at the draw point ( v2 ) by 23.31% (Fig. 9a–c). 
The proportionality found between the size of the particles 
and the width of the IMZ confirms the experimental results 
of Peters (1984) and Power (2004) and the conclusion of 
Melo et al. (2009) that the size of the material controls the 
lateral diffusion of gravitational flow.
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Fig. 4   Convergence of free triangular mesh. v2 as a function of the 
number of mesh elements. The numerical conditions are S = 300 
mm2, Dp = 4 mm, v1 = 20 mm/s and Δ�∕�p = 3% . The solid line rep-
resents the trend points for physical conditions
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Fig. 5   Mass balance. Mass flow rate (kg/s) as a function of the simu-
lation time. The numerical conditions are S = 300 mm2, Dp = 6 mm, 
v1  =  60 mm/s and Δ�∕�p = 1% . The solid line represents the mass 
flow rate storage of the model. (Colour figure online)
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Comparing the velocity at the draw point for different Dp 
and v1 values (Fig. 9a–c), we observe that when there are 
larger particles, an increase of v1 causes constant fluctua-
tions as the extraction periods proceed and an accurate esti-
mate of the water flow at the draw point is difficult to obtain 

given the erratic behaviour of the results. The fluctuations 
of the water flow when Dp are larger and the initial velocity 
( v1 ) increases can be explained by the fact that flows tend 
to be turbulent following streamlines with abrupt changes 

Fig. 6   Magnitude of the veloc-
ity field of an isolated draw 
point and evolution of the Cav-
ing for t = 100 s. a Extraction 
area 4 mm2. b Extraction area 
103 mm2. c Extraction area 201 
mm2. d Extraction area 300 
mm2. The numerical conditions 
are Dp = 2 mm, v1 = 20 mm/s, 
Δ�∕�p = 1% and t is the final 
time of the fluid transport pro-
cess. The colour bar represents 
the velocity of the particles. 
(Colour figure online)
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Fig. 7   Magnitude of the velocity field of an isolated draw point 
according to granule size for t = 100 s. a Particle size 2 mm. b Par-
ticle size 4 mm. c Particle size 6 mm. The numerical conditions are 
S = 300 mm2, V1 = 20 mm/s, ��∕�p = 1% and t is the final time of the 
fluid transport process. The colour bar represents the velocity of the 
particles. (Colour figure online)
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Fig. 8   Magnitude of the velocity field of an isolated draw point 
according to relative change of local density for, t = 100 s. a Relative 
change of local density 1%. b Relative change of local density 3%. 
c Relative change of local density 5%. The numerical conditions are 
S = 300 mm2, v1 = 20 mm/s, Dp = 6 mm and t is the final time of the 
fluid transport process. The colour bar represents the velocity of the 
particles. (Colour figure online)
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of direction. The analysis also shows that for a constant S , 
when v1 is low (20 mm/s), the influence of the granulometric 
changes on the final velocity v2 is inhibited, such velocity 
being independent of the material size (see Fig. 9a). In con-
trast, when v1 is high (60 mm/s) the final velocity v2 shows 
well-differentiated values depending on the granulometry 
(See Fig. 9c).

In the second case, we observe that an increase in the 
relative change of the local density has a great impact on the 
height of the IMZ (see Fig. 8), diffusion of voids and also on 
the water flow at the draw point. The IMZ is smaller with an 
increasing difference between the density of the in situ and 
the fragmented material, which allows water to be transmit-
ted easily through the latter, with little transfer to neighbour-
ing areas due to its low permeability, increasing the fluid 
velocity at the minor axis IMZ up to 10.58% on average. 
The latter can be explained by the increasing porosity of the 
granular material in the IMZ that under changes of densities 
reduces its dimensions but also leads to increasing of the 
water velocity at the draw point (Castro et al. 2007).

Finally, from Fig. 9 we can observe that for Δ�∕�p = 3% 
and Δ�∕� = 5% , with similar S values and particularly when 
v1 = 20 mm/s, the differences in the final velocity ( v2 ) are 
negligible. Therefore, to evaluate simultaneous extractions 
only the relative change of local density ( Δ�∕�p ) between 1 
and 3% is considered.

4.3 � Influence of the Separation Distance Between 
Draw Points

Considering the numerical conditions v1  =  20 mm/s, 
��∕�p = 1%, Dp = 4 mm, and S = 300 mm2 (as shown in 
Fig. 10), we can deduce that the interaction between neigh-
bouring draw points depends on the extraction area ( S ) and 
the relative density change, but mainly on the separation 
distance between draw points ( L ). The water flow rate at 
the draw point increases due to the interaction between the 
neighbouring draw points. That is, if the draw points are 
located far enough apart to avoid overlapping of the IMZ’s, 
the fluid velocity at the draw point ( v2 ) is close to half v1 , 
because they behave as two isolated draw points. If, on the 
other hand, they are close enough to overlap, it produces a 
preferential flow of water towards one of the draw points. 
This is because the fragmented zone favours the migration 
of water to the intermediate zones where there is less resist-
ance to the flow. Subsequently, the water acquires greater 
velocity when approaching the draw point, where the area of 
influence is substantially reduced. When L decreases, we can 
observe a gradual decrease of the fluid velocity at the draw 
point with regard to the velocity at the centre of the model by 
171.45% for L = 140 mm, 123.50% for L = 100 mm, 75.86% 
for L = 60 mm and 29.71% for L = 20 mm.
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Fig. 9   Maximum magnitude of the velocity of the draw point for 
��∕�p = 1% , ��∕�p = 3% and ��∕�p = 5% , for Dp  =  2 mm, Dp  =  4 
mm and Dp  =  6 mm for t = 100 s as a function of extraction area, where 
t is the final time of the fluid transport process. The initial condition is a 
v1 = 20 mm/s, b v1 = 40 mm/s and c v1 = 60 mm/s. The solid lines represent 
the numerical simulations. (Colour figure online)
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4.4 � Dimensional Analysis

Dimensional analysis is a method to reduce the number and 
complexity of variables that describe a physical phenomenon 
by compacting techniques, thereby making it simpler to model 
them (Barenblatt 1996). The application of dimensional analy-
sis is conditional in that the physical process must satisfy the 
principle of dimensional homogeneity (PDH), i.e. a dimen-
sionally correct relationship between the variables, so that the 
variables are independent of the system of units used (Baren-
blatt 1996; Szirtes 2007). Dimensional analysis is essentially 
a mean of utilising partial knowledge of a problem when the 
details are too complex and unclear to permit an exact analysis 
(Islam and Lye 2009). This technique has several advantages 
that help in the planning of experiments, provides scaling 

laws and savings in time and money, which can convert data 
from a small model to design information for a large prototype 
(Gibbings 2011). The method was established by Bucking-
ham (1914), and is now called the � Theorem for describing 
dimensionless parameters. If a physical process depends upon 
n dimensional variables, dimensional analysis will reduce the 
problem to a set of j = n − k dimensionless parameters or �
-group, in which j scaling variables that do not form among 
themselves are selected, and where k is the number of physical 
dimensions involved. The �-group will be a power product of 
these j variables plus one additional variable, which is assigned 
any convenient nonzero exponent (Buckingham 1914). Each 
�-group thus found is independent.

4.4.1 � Isolated Extraction Case

Based on experience and on the results of the sensitivity analy-
sis, we assumed that the water inflow rate might be described 
as a function of the input parameters. Each variable has an 
associated dimension, which can be defined as shown in 
Table 3.

Therefore, the formula can be written as follows, 
v2 = f (v1, �p,Dp, S, �0) . Here, n = 6, k = 3. Therefore, 
j = n  −  k = 3. This means there are three dimensionless 
numbers.

Then, we have

However, if we multiply the previous dimensionless num-
bers, we can write another. The dimensional analysis allows 
us to combine dimensionless numbers. In this way, we can 
eliminate the previous numbers from the set of numbers and 
only keep the new one found.

(16)Π =
v2

v1
,

(17)Λ1 =
S

D2
p

,

(18)Λ2 =
�0 − �p

�p
=

Δ�

�p
.

(19)Π = f (Λ1,Λ2).
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Fig. 10   Magnitude of the velocity field of the simultaneous extraction 
for different separation distances between draw points for t = 100 s. 
a Separation distance between draw point 20 mm. b Separation dis-
tance between draw points 60 mm. c Separation distance between 
draw point 100 mm. d Separation distance between draw points 140 
mm. The numerical conditions are S  =  300 mm2, v1  =  20 mm/s, 
��∕�p = 1% , Dp = 4 mm and t is the final time of the fluid transport 
process. The colour bar represents the velocity of the particles. (Col-
our figure online)

Table 3   Dimensions of parameters of the numerical simulations

Variable Dimensions

Initial water velocity ( v1 ) (m/s) LT−1

Final velocity ( v2 ) (m/s) LT−1

Particle’s density ( �p ) (kg/m3) ML−3

Particle diameter (Dp) (m) L
Extraction area (S) (m2) L2

Distance between drawpoints (L) (m) L
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Finally, we get

4.4.2 � Simultaneous Extraction Case

This case is similar to the previous one; however, here we 
have the variable of separation between extraction points, 
v2 = g(v1, �p,Dp, S, �0, L) . Here, n = 7, k = 3. Therefore, 
j = n − k = 4. This means there are four dimensionless num-
bers. Here, we obtain the dimensionless numbers of the pre-
vious case, Eqs. (16), (17) and (18). On the other hand, the 
new dimensionless can be written as,

Then, we have

Using the result of the previous case, we can write 
Ψ1 = Λ1Λ2 and Ψ2 = Λ3 . Finally, we get

In both cases, functions f and g must be found. To evalu-
ate the nonlinear relationships among the variables and 
the groundwater flow at the draw point, we used a multi-
dimensional Levenberg–Marquard nonlinear regression 
algorithm (Bard 1974). For the isolated drawpoint, the best 
mathematical function f that fits all the data (considering all 
cases under study) is given by a potential function,

Here, �1 , �2 and �3 are the fitting parameters. The second 
case is a little more complicated since the function depends 
on two variables and not one. The best mathematical func-
tion that fits all the data (considering all cases under study) 
is given by a potential function, with weak dependence on 
the second variable. Here, �1 , �2, �3 and �4 the are fitting 
parameters.

From the data presented in Figs. 11 and 12 in the inset 
panel, we can infer that the dispersion of data is low and 
most of the data are close to the line representing the identity 
or perfect fit. The water velocity at the draw point that was 
predicted with the exponential fit, does not deviate much 
from the results obtained from numerical simulations, with 
an average relative error of 1.11% for the isolated case 
and 0.83% for the simultaneous case. The relative error in 

(20)Ψ =
Δ�

�p

S

D2
p

.

(21)Π = f (Ψ).

(22)Λ3 =
L

Dp

.

(23)Π = g(Λ1,Λ2,Λ3).

(24)Π = g(Ψ1,Ψ2).

(25)f = �1Ψ
�2 + �3.

(26)g = Ψ1
[�1+�2 ln(�3+�4Ψ2)].

the estimation of the velocity at the draw point is 56.68% 
for coarse-grained material (6 mm), similar to that of the 
isolated case (41.11%). Nevertheless, taking into account 
that this study represents the first numerical approximation 
dealing with the problem of water flow in Caving opera-
tions and considering the complexity of the hydrogeologi-
cal conditions, some limitations and assumptions had to be 
considered to obtain the mathematical model. Therefore, 

Fig. 11   Data fit for Π = v2∕v1 as a function of the dimension-
less parameter f = �1Ψ

�2 + �3 . Inset: data fit for v2∕v1 simulated 
as a function of the theoretical v2∕v1 proposed, Eq.  (25). The solid 
line indicates the identity. The fitted coefficients are �1  =  0.0281, 
�2 = − 0.2389 and �3 = 0.9227
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Fig. 12   Data fit for Π = v2∕v1 as a function of the dimension-
less group g = Ψ

[�1+�2 ln (�3+�4Ψ2)]
1

 . Inset: data fit for v2∕v1 simulated 
as a function of the theoretical v2∕v1 proposed, Eq.  (25). The solid 
line indicates the identity. The fitted coefficients are �1  =  0.2867, 
�2 = − 0.0034, �3 = − 0.0006 and �4 = 11.5003



145Numerical Modelling of Water Flow Through Granular Material for Isolated and Simultaneous…

1 3

the proposed mathematical model is valid under the sim-
plification that the medium is isotropic, homogeneous and 
continuous, that there is mass conservation, and laminar flow 
regime, which were considered to simplify the physics of 
the phenomenon and calculates the water flow velocity in 
the draw point.

5 � Summary and Conclusions

The effect of ore extraction by Block, Panel and Sublevel 
Cave mining on groundwater flow has been evaluated 
through the application of Brinkman–Darcy’s equation 
and the modified 2D kinematic model, including a front of 
dilatation.

From 990 numerical simulations, we determined the vari-
ables with the greatest influence on the water flow behaviour, 
which were dimensionally analysed by Buckingham’s theo-
rem to obtain a mathematical model that predicts ground-
water flow velocity at the draw point. The proposed math-
ematical model presents a good fit with an average error of 
estimation of 0.83% and 1.11% for isolated and simultaneous 
extractions, respectively. The largest error in the estimation 
is 6.09% and corresponds to the simulations where the parti-
cle diameter is 6 mm and the relative change of local density 
is 3%.

The configuration developed for the numerical simula-
tions is methodologically acceptable and the results are 
reliable and consistent, as they confirm the findings of Call 
and Nicholas (1998), Butcher et al. (2000) and Navia (2014) 
using constant extraction at draw points draining columns of 
fragmented material (muckpiles).

Our results allow us to conclude that the water flow veloc-
ity at the draw point depends on the initial water velocity, 
on the area of extraction ( S ), on the relative local density 
change ( Δ�∕�p ), on the material size ( Dp ) and the separation 
distance between drawpoints ( L).

An increase in S causes a sudden decrease in the final 
velocity of the flow (V2), until it reaches equilibrium and 
acquires a constant value, approaching an exponential 
behaviour.

A reduction in the material size (Dp) and in the relative 
local density change ( Δ�∕�p ) leads to an increase in the 
size of the IMZ. This in turn generates an increase in the 
expected water velocity at the draw point ( v2 ) due to the fact 
that the flow is dispersed more easily within the muckpile. 
In this regard, the existence of material of fine granulometry 
increases the probability of a mud rush event, since it is one 
of the main factors necessary for its occurrence.

The final velocity of the groundwater flow ( v2 ) is directly 
proportional to the separation distances between draw points 
( L ). A small value of L causes a greater overlap of the IMZ, 
which increases the circulation paths of the water flow and 

dissipates its velocity. At the draw point, the final velocity 
will thus be considerably lower, since it loses velocity before 
reaching this height.

It is known that a high velocity of water flow and the 
existence of fine-grained material trigger mud rush events. 
Although our mathematical model has limitations regarding 
the tensional state and lateral migration of the water flow and 
simplifies the approach to deal with the mud rush problem, it 
nevertheless represents the first numerical approximation to 
its solution and offers an advantage in terms of productivity 
and accident prevention, since it allows coupling the evolu-
tion of extraction in the Caving area with estimation of the 
water velocity at the draw point, without the dangerous and 
unfavourable requirement that a mud rush event must have 
occurred previously.
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