Tabla de contenido

1		Intr	oduc	cción	2
	1.1	1	Des	cripción del Problema	3
	1.2	2	Obj	etivo	4
		1.2.	1	Objetivos Específicos	4
	1.3	3	Alca	ances	4
2		Rev	isión	Bibliográfica	5
	2.1		Flot	ación	5
	2.2	2	Con	diciones de operación	5
	2.3	3	Etap	pas en un circuito de flotación	6
	2.4	4	Prue	ebas de flotación <i>batch</i> en laboratorio	8
		2.4.	1	Test de Ciclo	9
	2.	5	Bala	ance de masa ciclo a ciclo	11
	2.6	6	Rec	onciliación de datos experimentales	12
	2.7	7	Proy	yección metalúrgica – Métodos de cálculo	13
	2.7.		1	N-product	14
	2.7.		2	SME	14
		2.7.	3	Concentrate Production	14
	2.8	8	Esta	ado Estacionario: Estabilidad y Conservación de masa	14
	2.9	9	Spli	t Factors: Simulación de resultados de TCC	17
3	Antecedentes		entes	18	
	3.:	1	Cara	acterización de muestras	18
	3.2	2	Pro	cesamiento de resultados	18
	3.3	3	Crit	erios de validación	21
	3.3.		1	Error ley cabeza	21
		3.3.	2	Estado Estacionario: Estabilidad y conservación de masa	21
		3.3.3		Pérdida de masa	21
4		Me	todo	logía	22
	4.3	1	Bala	ance de masa	22
	4.2	2	Rec	onciliación de datos	22

	4.2.	1 Modelo de error	22
4	.3	Proyección metalúrgica	23
4	.4	Simulación de Test de Ciclo Cerrado	24
5	Resi	ultados y Análisis	25
5	.1	Balance de masa	25
5	.2	Reconciliación de datos experimentales	27
	5.2.	1 Impacto en las leyes	28
5	.3	Proyección metalúrgica de resultados	37
	5.3.	1 Conservación de masa	37
	5.3.2	2 Proyección metalúrgica	40
	5.3.3	3 Conservación de masa para resultados reconciliados	53
	5.3.4	4 Proyección metalúrgica de resultados reconciliados	58
5	.4	Predicción de resultados a partir de TCA	63
	5.4.3	1 Masa	63
	5.4.2	2 Leyes	63
	5.4.	3 Proyección metalúrgica	65
6	Con	clusiones y Recomendaciones	67
7	Bibl	liografía	70
8	Ane	exo	71

Índice de Tablas

Tabla 1. Estabilidad y Conservación de masa. Convergencia del Test de Ciclo Cerrado.
(Ounpuu, 2001-15)
Tabla 2. Técnicas de análisis utilizadas para medición de leyes. 18
Tabla 3. Cantidad de muestras por producto obtenidas en un Test de Ciclo Cerrado19
Tabla 4. Porcentaje de pruebas con valores negativos en el balance de masa por metal 25
Tabla 5. Error relativo promedio y RMSE promedio entre ley de cobre medida y reconciliada
para cada producto del proceso
Tabla 6. Error relativo promedio y RMSE promedio entre ley de hierro medida y reconciliada
para cada producto del proceso
Tabla 7. Error relativo promedio y RMSE promedio entre ley de molibdeno medida y
reconciliada para cada producto del proceso
Tabla 8. Conservación de masa. Promedio de últimos 3 ciclos en masa de mineral y por metal,
para cada prueba

Tabla 9. Conservación de masa y desviación estándar de recuperación de cada metal en
circuito cleaner para cada prueba
Tabla 10. Error relativo promedio y RMSE promedio entre masa medida en TCC
experimental y masa simulada, para cada producto en el test
Tabla 11. Error relativo promedio y RMSE promedio entre ley de cobre medida en TCC
experimental y ley simulada, para cada producto en el test
Tabla 12. Error relativo promedio y RMSE promedio entre ley de hierro medida en TCC
experimental y ley simulada, para cada producto en el test
Tabla 13. Error relativo promedio y RMSE promedio entre ley de molibdeno medida en TCC
experimental y ley simulada, para cada producto en el test
Tabla 14. Proyección metalúrgica de recuperación de cobre. TCC simulado y TCC
experimental
Tabla 15. Proyección metalúrgica de recuperación de hierro. TCC simulado y TCC
experimental
Tabla 16. Proyección metalúrgica de recuperación de molibdeno. TCC simulado y TCC
experimental

Índice de Figuras

Figura 1. Diagrama de flujos de circuito de flotación convencional7
Figura 2. Aproximación a la conservación de masa para resultados de Test de Ciclo Cerrado.
Adaptado de (Agar, 2000)
Figura 3. Corriente recirculada en test de ciclo cerrado que no alcanza el estado estacionario.
Adaptado de (Agar, 2000)
Figura 4. Diagrama del circuito de flotación utilizado en Test de Ciclo Cerrado19
Figura 5. Error relativo entre ley de cabeza de cobre medida y calculada en las 40 pruebas analizadas
Figura 6. Error relativo entre ley de cabeza de hierro medida y calculada en las 40 pruebas analizadas
Figura 7. Error relativo entre ley de cabeza de molibdeno medida y calculada en las 40 pruebas analizadas
Figura 8. Error relativo entre ley de cobre medida y reconciliada de relave rougher en función
del error relativo a la ley de cabeza en cada prueba
Figura 9. Error relativo entre ley de cobre medida y reconciliada de concentrado final en
función del error relativo a la ley de cabeza en cada prueba28
Figura 10. Error relativo entre ley de cobre medida y reconciliada de relave scavenger en función del error relativo a la ley de cabeza en cada prueba
Figura 11. Error relativo entre ley de cobre medida y reconciliada de concentrado scavenger
en función del error relativo a la ley de cabeza en cada prueba
Figura 12. Error relativo entre ley de cobre medida y reconciliada de relave cleaner en función
del error relativo a la ley de cabeza en cada prueba
Figura 13. Error relativo entre ley de hierro medida y reconciliada de relave rougher en
función del error relativo a la ley de cabeza en cada prueba31

Figura 14. Error relativo entre ley de hierro medida y reconciliada de concentrado final en Figura 15. Error relativo entre lev de hierro medida y reconciliada de relave scavenger en Figura 16. Error relativo entre ley de hierro medida y reconciliada de concentrado scavenger Figura 17. Error relativo entre ley de hierro medida y reconciliada de relave cleaner en Figura 18. Error relativo entre ley de molibdeno medida y reconciliada de relave rougher en Figura 19. Error relativo entre lev de molibdeno medida y reconciliada de concentrado final Figura 20. Error relativo entre ley de molibdeno medida y reconciliada de relave scavenger Figura 21. Error relativo entre ley de molibdeno medida y reconciliada de concentrado scavenger en función del error relativo a la ley de cabeza en cada prueba......35 Figura 22. Error relativo entre ley de molibdeno medida y reconciliada de relave cleaner en Figura 23. Histograma de conservación de masa de cobre promedio de los 3 últimos ciclos Figura 24. Histograma de conservación de masa de hierro promedio de los 3 últimos ciclos Figura 25. Histograma de conservación de masa de molibdeno promedio de los 3 últimos Figura 26. Recuperación de cobre proyectada de la etapa rougher en función de la Figura 27. Error absoluto entre metodologías de proyección para recuperación de cobre de la etapa rougher en función de la conservación de masa promedio de los últimos 3 ciclos de Figura 28. Recuperación de cobre proyectada del circuito cleaner en función de la Figura 29. Error absoluto entre metodologías de proyección para recuperación de cobre del circuito cleaner en función de la conservación de masa promedio de los últimos 3 ciclos de Figura 30. Recuperación de cobre proyectada del circuito global en función de la Figura 31. Error absoluto entre metodologías de proyección para recuperación de cobre del circuito global en función de la conservación de masa promedio de los últimos 3 ciclos de Figura 32. Recuperación de hierro proyectada de la etapa rougher en función de la

Figura 33. Error absoluto entre metodologías de proyección para recuperación de hierro de la etapa rougher en función de la conservación de masa promedio de los últimos 3 ciclos de Figura 34. Recuperación de hierro proyectada del circuito cleaner en función de la Figura 35. Error absoluto entre metodologías de proyección para recuperación de hierro del circuito cleaner en función de la conservación de masa promedio de los últimos 3 ciclos de Figura 36. Recuperación de hierro proyectada del circuito global en función de la estabilidad Figura 37. Error absoluto entre metodologías de proyección para recuperación de hierro del circuito global en función de la conservación de masa promedio de los últimos 3 ciclos de Figura 38. Recuperación de molibdeno proyectada de la etapa rougher en función de la Figura 39. Error absoluto entre metodologías de proyección para recuperación de molibdeno de la etapa rougher en función de la conservación de masa promedio de los últimos 3 ciclos Figura 40. Recuperación de molibdeno proyectada del circuito cleaner en función de la Figura 41. Error absoluto entre metodologías de proyección para recuperación de molibdeno del circuito cleaner en función de la conservación de masa promedio de los últimos 3 ciclos Figura 42. Recuperación de molibdeno provectada del circuito global en función de la Figura 43. Error absoluto entre metodologías de proyección para recuperación de molibdeno del circuito global en función de la conservación de masa promedio de los últimos 3 ciclos Figura 44. Conservación de masa promedio de los 3 últimos ciclos del test en función de la Figura 45. Conservación de masa promedio de los 3 últimos ciclos del test en función de la Figura 46. Conservación de masa promedio de los 3 últimos ciclos del test en función de la Figura 47. Promedio de conservación de masa de cobre de los últimos 3 ciclos de cada test Figura 48. Error absoluto en el promedio de conservación de masa en los últimos 3 ciclos del Figura 49. Error absoluto en conservación de masa de cobre promedio de los ciclos finales de cada test producto de la reconciliación de leyes en función del error relativo de ley de Figura 50. Promedio de conservación de masa de cobre de los últimos 3 ciclos de cada test

Figura 51. Error absoluto en el promedio de conservación de masa en los últimos 3 ciclos del
test, al reconciliar las leyes de hierro en cada test
Figura 52. Error absoluto en conservación de masa de hierro promedio de los ciclos finales
de cada test producto de la reconciliación de leyes en función del error relativo de ley de
cabeza
Figura 53. Promedio de conservación de masa de cobre de los últimos 3 ciclos de cada test
calculado a partir de leyes de molibdeno medidas y reconciliadas
Figura 54. Error absoluto en el promedio de conservación de masa en los últimos 3 ciclos del
test, al reconciliar las leyes de molibdeno en cada test
Figura 55. Error absoluto en conservación de masa de molibdeno promedio de los ciclos
finales de cada test producto de la reconciliación de leyes en función del error relativo de ley
de cabeza
Figura 56. Error absoluto en proyección de recuperación de cobre rougher para cada
metodología
Figura 57. Error absoluto en proyección de recuperación de cobre del circuito cleaner para
cada metodología
Figura 58. Error absoluto en proyección de recuperación de cobre global para cada
metodología
Figura 59. Error absoluto en proyección de recuperación de hierro rougher para cada
metodología60
Figura 60. Error absoluto en proyección de recuperación de hierro en circuito cleaner para
cada metodología
Figura 61. Error absoluto en proyección de recuperación de hierro global para cada
metodología
Figura 62. Error absoluto en proyección de recuperación de molibdeno rougher para cada
metodología
Figura 63. Error absoluto en provección de recuperación de molibdeno en circuito cleaner
para cada metodología
Figura 64. Error absoluto en proyección de recuperación de molibdeno global para cada
metodología
e

Anexo 1. Modelo de error para análisis de leyes de cobre menores a 5%	71
Anexo 2. Modelo de error para análisis de leyes de cobre entre 5% y 15%	71
Anexo 3. Modelo de error para análisis de leyes de cobre mayores a 15%	72
Anexo 4. Modelo de error para análisis de leyes de hierro.	72
Anexo 5. Modelo de error para análisis de leyes de molibdeno	73