Tabla de Contenido

1.	\mathbf{Intr}	oducción	
	1.1.	Catalizadores basados en cobre y ceria	
	1.2.	Catalizadores de ${\bf Cu}$ y ${\bf CuO-CeO_2}$ para la oxidación de ${\bf CO}$	
	1.3.	Catalizadores de ${\bf Cu}$ y ${\bf CuO-CeO_2}$ para la descomposición de ${\bf N_2O}$	
	1.4.	Catalizadores de ${\bf CuO-CeO_2}$ soportados	
	1.5.	Objetivos	1
		1.5.1. Objetivo principal	1
		1.5.2. Objetivos específicos	1
2.	Met	odología	1
	2.1.	Preparación de los Catalizadores	1
	2.2.	Área específica (BET)	1:
	2.3.	Difracción de rayos-x (XRD)	13
	2.4.	Reducción bajo temperatura programada (TPR)	13
	2.5.	Actividad de oxidación de CO	1
	2.6.	Actividad de descomposición $\mathbf{N_2O}$	1
3.	Resultados y discusiones 1		
	3.1.	Caracterización de los catalizadores	1.
		3.1.1. Áreas específicas	1
		3.1.2. TPR	10
		3.1.3. XRD	2^{4}
	3.2.	Actividad de los catalizadores para la oxidación de ${\bf CO}$	2
		3.2.1. Efecto de la concentración de cobre en el catalizador	2^{\prime}
		3.2.2. Efecto de la temperatura de calcinación	3
	3.3.	Actividad de los catalizadores para la descomposición de $\mathbf{N_2O}$	3
		3.3.1. Efecto de la concentración de cobre en el catalizador	3.
		3.3.2. Efecto de la temperatura de calcinación	38
4.	Con	clusión	4
	Rib	iografía	4.