

EXTENSIÓN DE FILTRO DE KALMAN DE APROXIMACIÓN NO LINEAL PARA LA DETECCIÓN DE OBJETOS ASTRONÓMICOS

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERA CIVIL EN COMPUTACIÓN

PALOMA CECILIA PÉREZ GARCÍA

PROFESOR GUÍA: PABLO ESTÉVEZ VALENCIA

MIEMBROS DE LA COMISIÓN: BENJAMÍN BUSTOS CÁRDENAS AIDAN HOGAN

SANTIAGO DE CHILE 2019

RESUMEN

El presente trabajo describe el desarrollo de un software en Python destinado a la detección de fenómenos astronómicos transitorios como las supernovas que corresponden a eventos caracterizados por un incremento rápido en su luminosidad y un consecuente decremento lento. El programa se diseñó sobre la base de una rutina ya implementada la cual hace uso de estimaciones generadas por métodos del filtro de Kalman: en su versión clásica (o básica) o su versión de máxima correntropía. Debido a que esta rutina presenta complicaciones en la administración de archivos y manejo de parámetros (producido principalmente por hard-coding) se realizó un proceso de refactoring que implica además diseñar y generar una nueva familia de filtros de Kalman basados en el patrón de diseño Strategy.

Sobre este código refactorizado se efectuaron pruebas de rendimiento obteniéndose así una mejora en términos de tiempo pero no en la memoria principal utilizada. Por otro lado se realizaron pruebas de detección usando el conjunto de 93 supernovas detectadas por el sondeo de HiTS del año 2015, hallándose mejoras notables en la disminución de falsos positivos así como también un leve aumento en el número de verdaderos positivos al emplear las versiones clásica y de máxima correntropía de los filtros refactorizados. Sin embargo no ocurrió lo mismo con el nuevo filtro unscented, que permite emplear funciones no lineales al momento de estimar. Para este filtro se usaron una función cuadrática y otra de exponente 1,5; evaluadas sobre el paso del tiempo desde el inicio de las observaciones (o épocas).

Se recomienda continuar estudiando el nuevo filtro de Kalman de aproximación no lineal debido al acotado conjunto de parámetros y funciones utilizado durante la realización de este trabajo.

En memoria de mi padre

Agradecimientos

Para empezar, quiero agradecer a todos quienes participaron en el desarrollo de este trabajo; en particular agradezco enormemente el apoyo y la guía del profesor Pablo Estévez, con quién pude aprender aplicaciones desde su disciplina, y del profesor Benjamín Bustos por el tiempo y paciencia brindados durante el desarrollo de este trabajo de título. También agradezco a Francisco Förster por su orientación y tiempo entregados en los momentos de consulta. De igual modo, le doy las gracias al Laboratorio Nacional de Computación de Alto Rendimiento por las herramientas facilitadas, sin las cuales este proyecto no hubiese podido llevarse a cabo.

Quiero agradecer a toda la gente que he conocido en la U, tanto en mi licenciatura de astronomía como en la carrera de ingeniera del DCC, ya que siento que he aprendido de todos un poco, tanto de profesores como de compañeros y funcionarios.

Agradezco por contar con mi familia y amigos. A mi madre y mi hermana en especial, por acompañarme siempre en todo momento, aunque sea a la distancia.

Paloma Cecilia Pérez García

Tabla de Contenido

1.	Intr	oducción	13		
	1.1.	Motivación	13		
	1.2.	Objetivos	14		
		1.2.1. Objetivo general	14		
		1.2.2. Objetivos específicos	14		
	1.3.	Organización de la tesis	15		
2.	Ant	ecedentes	16		
	2.1.	Supernova tipo II	16		
	2.2.	High Cadence Transient Survey: HiTS	17		
		2.2.1. Datos obtenidos durante el año 2015	19		
	2.3.	El filtro de Kalman	20		
		2.3.1. Filtro de Kalman Básico	23		
		2.3.2. Filtro de Kalman de Máxima Correntropía	27		
		2.3.3. Filtro de Kalman Unscented (UKF)	31		
	2.4.	Laboratorio Nacional de Computación de Alto Desempeño (NLHPC)	35		
3.	Evaluación del programa original				
	3.1.	El programa	36		
	3.2.	Estructura de datos	38		
	3.3.	Pruebas	38		
		3.3.1. Tiempo de ejecución	40		
		3.3.2. Uso de memoria	42		
		3.3.3. Detección	44		
		3.3.4. Observaciones	45		
4.	Ref	actoring	48		
	4 1	Manejo de la rutina: ROUTINEHANDLER	48		

	4.2.	Manejo de datos de entrada	49
	4.3.	Determinación de flujos	50
	4.4.	Filtros originales	50
		4.4.1. Predicción	51
		4.4.2. Corrección	51
		4.4.3. Filtros refactorizados	52
	4.5.	Detección de candidatos	52
	4.6.	Visualización de resultados	53
5.	Filt	ro de aproximación no lineal: unscented Kalman	60
	5.1.	DISEÑO	60
		5.1.1. Predicción	61
		5.1.2. Corrección	62
6.	Res	ultados	64
	6.1.	Desempeño	66
		6.1.1. Tiempo de ejecución	66
		6.1.2. Uso de memoria	68
	6.2.	Detección	70
		6.2.1. Filtros básico y de máxima correntropía	70
		6.2.2. Filtro unscented	72
	6.3.	Observaciones	72
7.	Con	nclusión	7 6
	7.1.	Trabajo futuro	77
\mathbf{G}	losari	io	7 9
Bi	bliog	grafía	81
	pénd:		83
2 . . j			83
			84
	Б.		85
	\mathbf{C}		86
	Ο.		87
	D .		
	E .		89

F .	Métodos de la clase DataPicker	90
G .	Métodos de la clase SourceFinder	92
Н.	Métodos en utils	94
Ι.	Métodos en unscented_utils	95
J .	Detección usando pipeline original	96
Κ.	Detección usando pipeline refactorizada	97
L .	Detección usando filtro unscented	98
Μ.	Diagrama de clases de programa original	99
Ν.	Diagrama de clases del programa refactorizado	100