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Resumen

Los refinamientos actuales del andlisis del peor caso sobre instancias con tamano de entrada
fijo consideran el orden de la entrada (por ejemplo, las subsecuencias ordenadas en una se-
cuencia de nimeros y las cadenas poligonales simples en las que puede dividirse una secuencia
de puntos) o la estructura de la entrada (por ejemplo, la multiplicidad de los elementos en un
multiconjunto y las posiciones relativas entre un conjunto de puntos en el plano), pero nunca,
hasta donde sabemos, ambos al mismo tiempo. En esta tesis se proponen nuevas técnicas
que combinan soluciones que se aprovechan del orden y la estructura de la entrada en una
sola solucién sinérgica para ordenar multiconjuntos, y para calcular la eficiencia de Pareto
y la envoltura convexa de un conjunto de puntos en el plano. Estas soluciones sinérgicas
se aprovechan del orden y la estructura de la entrada de tal forma que asintéticamente su-
peran cualquier solucion comparable que se aproveche solo de una de estas caracteristicas.
Como resultados intermedios, se describen y analizan varios algoritmos de mezcla: un algo-
ritmo para mezclar secuencias ordenadas que es éptimo para cada instancia del problema; el
primer algoritmo adaptativo para mezclar eficiencias de Pareto; y un algoritmo adaptativo
para mezclar envolturas convexas en el plano. Estos tres algoritmos se basan en un paradigma
donde las estructuras se dividen antes de ser mezcladas. Este paradigma es conveniente para
extenderlo al contexto donde se responden consultas.

Karp et al. (1998) describieron estructuras de datos diferidas como estructuras “pere-
zosas” que procesan la entrada gradualmente a medida que responden consultas sobre los
datos, trabajando la menor cantidad posible en el peor caso sobre instancias de tamano n
fijo y nimero de consultas ¢ fijas. En esta tesis se desarrollan nuevas técnicas para refinar
ain maéas estos resultados y aprovechar al mismo tiempo el orden y la estructura de la en-
trada y el orden y la estructura de la secuencia de consultas en tres problemas distintos:
calcular el rango y la posicién de un elemento en un multiconjunto, determinar si un punto
estd dominado por la eficiencia de Pareto de un conjunto de puntos en el plano y determinar
si un punto pertenece a la envoltura convexa de un conjunto de puntos en el plano. Las
estructuras de datos diferidas que se obtienen superan todas las soluciones previas que solo
se aprovechan de un subconjunto de estas caracteristicas.

Como una extension natural a los resultados sinérgicos obtenidos en este trabajo para or-
denar un multiconjunto, se describen estructuras de datos comprimidas que se aprovechan del
orden y la estructura de la entrada para representar un multiconjunto, mientras se responden
consultas del rango y la posicién de elementos en el multiconjunto.



Abstract

Refinements of the worst case complexity over instances of fixed input size consider the
input order (e.g., the runs in an array of numbers, the simple polygonal chains into which
a sequence of points can be partitioned) or the input structure (e.g., the multiplicities of
the elements in a multiset, the relative positions between a set of planar points), but rarely
(never until now, as far as we know) both at the same time. We propose new techniques
that combine solutions taking advantage both of the input order and the input structure into
a single synergistic solution for sorting multisets, and for computing the maxima set and
the convex hull in the plane. Such synergistic solutions take advantage both of the input
order and the input structure, so as to asymptotically outperform any comparable solution
which takes advantage only of one of those features. As intermediate results, we describe and
analyze an instance optimal algorithm for merging sorted sets, the first adaptive algorithm
for merging maxima sets, and an adaptive algorithm for merging convex hulls in the plane.
Those three new merging solutions are based on a splitting paradigm, which is suitable to
extend to supporting online queries.

Karp et al. (1988) described deferred data structures as “lazy” data structures which
gradually preprocess the input to support online queries, with the minimum amount of work
in the worst case over instances of fixed size n and fixed number of queries ¢ (i.e., the query
size). We develop new techniques in order to further refine this approach and take advantage
all at once of the input order and the input structure, and of the order and structure in the
sequence of queries for answering rank and select queries on a multiset, domination queries
on a set of planar points, and point membership queries on the convex hull of a set of planar
points. The resulting deferred data structures outperform all previous solutions that take
advantage of only a subset of those features in the decision tree model and the algebraic
decision tree model.

As a natural extension of the synergistic sorting results, we describe compressed data
structures to represent a multiset taking advantage both of the input order and the input
structure, while supporting the operators rank and select on the multiset.

i



Contents

1 Introduction

3

1.1
1.2
1.3

1
Input Order . . . . . . . . . 1
Input Structure . . . . . . . .. 2
Synergistic Solutions . . . . . ... L oL 4

4

1.4 Thesis Structure and Contributions . . . . . . . . . . . . .. ... ... ...
Background 10
2.1 Models of Computation . . . . . . . . ... ... 10
2.1.1 Decision Tree Model . . . . . . . . . .. .o 11
2.1.2  Algebraic Decision Tree Model . . . . . . . ... ... ... ... ... 11
2.2 Searching . . . . . . . . 11
2.3 Sorting . . . ... 12
2.3.1 Input Structure . . . . . . ... L 12
2.3.2 Input Order . . . . . . . .. . 13
2.3.3 Comparison Between Sorting Algorithms . . . . . . . .. .. .. ... 13
2.4 Computation of Maxima Sets and Convex Hulls . . . . . ... .. ... ... 14
2.4.1 Input Structure . . . . . . . . ... 15
242 Input Order . . . . . . . . . .. 17
2.4.3 Comparison Between Convex Hull Algorithms . . . . . . .. .. ... 18
2.5 Algorithms and Data Structures Supporting Queries . . . . . . . . . .. . .. 19
2.5.1 Offline Rank and Select Operations . . . . . . ... ... ... .... 19
2.5.2  Deferred Data Structures . . . . . . .. . ... ... ... ... ... 21
2.5.3 Compressed Data Structures . . . . . . . .. .. ... L. 23
Adaptive Merging 24
3.1 Merging Sorted Sets . . . . . . . ... 24
3.1.1  Algorithm Sorted Set Union . . . . . . . .. ... ... ... ..... 25
3.1.2  Algorithm Quick Set Union . . . . . . ... ... ... ... ..... 26
3.2 Merging Maxima Sets . . . . . . . . .. .. 29
3.2.1 Description of Algorithm Quick Maxima Union . . . ... ... ... 30
3.2.2  Complexity Analysis of Algorithm Quick Maxima Union . . . . . .. 32
3.3 Merging Convex Hulls . . . . . . . .. . ... ... ... ... .. ...... 36
3.3.1 Description of Algorithm Quick Hull Union . . . . . . . .. ... ... 37
3.3.2 Complexity Analysis of Algorithm Quick Hull Union . . .. ... .. 40
3.4 Discussion . . . . . ... e 44

il



4 Synergistic Computation Analysis
4.1 Sorting Multisets . . . . . . . ..

4.1.1 A Measure of Global Input Order

4.1.2 Synergistic Sorting

4.2 Maxima Sets . . . . .

4.2.1 Input Order Adaptivity

4.2.2  Synergistic Computation of Maxima Sets . . . . . . . . ... ... ..
4.3 Convex Hulls . . . . . . .. .

4.3.1 Input Order Adaptivity

4.3.2  Synergistic Computation of Convex Hulls . . . . . . .. ... ... ..
4.4 DISCussion . . . . . ..o

5 Synergistic Data Structures

5.1 Supporting Rank and Select Queries on a Multiset . . . . . . . .. ... ...
5.1.1 Offline Setting . . . . . . . . . ...
5.1.2 Online Setting . . . . . . . . .. . .

5.1.3 Compressed Data Structures

5.2 Supporting Domination Queries on a Set of Planar Points. . . . . . . . . ..
5.2.1 Offline Setting . . . . . . . . ..
5.2.2 Online Setting . . . . . . . . . .

5.3 Supporting Point Membership Queries on the Convex Hull of a Set of Planar

Points . . . . . . .
5.3.1 Offline Setting . . . . . . . . .. .
5.3.2 Online Setting . . . . . . . . ..
5.4 DISCuSSION . . . . . ... e e e e

6 Discussion

6.1 Comparison with Previous Work

6.2 Other Queries in Computational Geometry . . . . . . . . .. ... ... ...
6.3 Compressed Data Structures in Computational Geometry . . . . . . . . . ..

6.4 Range Queries on Multisets

6.5 A General Paradigm for Synergistic Techniques . . . . . . . ... ... ...
6.6 Importance of the Parameterization of Structure and Order . . . . . . . . ..

Bibliography

v

45
46
46
47
49
49
50
52
52
o4
96

57
o8
o8
61
66
68
69
73

74
74
77
78

79
79
80
81
81
82
83

84



List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

3.4

A set P of planar points. a) The maxima set of P marked by open disks, and
b) the convex hull of P marked by open disks. . . . . . ... ... ... ...
a) A polygonal chain P specified by a sequence of 9 points. b) The decompo-
sition of P into two simple polygonal chains. . . . . . . . . . ... ... ...
An instance of the problem of supporting point membership queries on the
convex hull of a set of data points. The black solid disks mark the data points,
and the red open disks mark the query points. The convex hull of the data
points is marked. . . . . .. ...

An instance I of the merging sorted sets problem computing the union of p = 3
sorted sets, and a partition certificate 7w of I. In each sorted set A, the entry
Ali] is represented by a point of x-coordinate A[i]. The sizes of the blocks that
form the sets are noted. The sizes g4, g5 and gg are equal to 1 because they
correspond to elements of equal value, and they induce the 4-th member of 7

with value my4 equal to 3. The vertical bars separate the interval members of 7.

The tree that represents the doubling searches in a sorted set A formed by
four blocks of respective sizes 2,4, 2,8. The sizes of the subsets are noted in
each node. Each internal node has two children, which correspond to the two
subsets into which the recursive steps partition A: those blocks to the left of
the median p and those blocks to the right of the median p. . . . . . . . ..
An instance I of the merging of sorted sets problem formed by p sorted sets.
For each sorted set A the entry A[i] is represented by a point of z-coordinate
Ali]. In I, there is an element of value v with multiplicity m, which is present
in the last m sorted set, and the rest of the sorted sets are formed by only one
block each. . . . . . . . .
An instance of the merging maxima sets problem formed by three maxima
sets. The three open disks represent the points at the middle positions in the
maxima sets. a) The vertical bar represents the line ¢ of equation z = u, where
(4 is the median of the x-coordinates of the points at the middle positions in the
maxima sets. The point p is the point of maximum y-coordinate to the right
of £. b) The region dominated by p is indicated by solid vertical and horizontal
straight semi-line through p. Among the points that are not dominated by p
and that do not belong to the maxima set /N that contains p, let [ be the point
of maximum z-coordinate to the left of p, and let r be the point of maximum
y-coordinate to the right of p. B is the block of consecutive points in N that
are in the region determined by the vertical line of equation x = [, and the
horizontal line of equation y =r,. . . . . ... ... ...

14

17

21

25

28

28



3.5

3.6

3.7

3.8

3.9

5.1

5.2

2.3

5.4

An instance of the merging upper hulls problem. The edges at the middle
positions of the upper hulls are marked by thick dashed segments, and the one
whose slope is the median g has been extended into a line. The straight line

¢ is the supporting line of slope p. Line ¢ passes through the “pivot” vertex p.

An instance of the merging upper hulls problem. The tangents of the upper
hulls through p are marked by dashed lines. The open disks mark the points
that are discarded because they are below the line segments defined by the
points of tangency. . . . . ...
The state of algorithm Quick Hull Union during an execution of the step
that computes the block B that forms part of the merged upper hull U. The
upper hull W contains the point p. A marks the tangent of maximum slope
between p and the upper hulls to the right of p. 7 marks the common tangent
between the portion of W above A and one of the upper hulls below A passing
through the point nearest to p in W. The points ¢ and r liein 7. . . . . ..
Example of arguments: a) an eliminator argument formed of 3 blocks and b) a
convex argument formed of 4 blocks. In both arguments, note that the blocks
of V end or start in V[a|, because the algorithm only needs to specify the
position a inside V. . . . . ...
A hull partition certificate of size 7 of an instance of the merging upper hulls
problem. The thick black lines mark the division between the 7 regions. . . .

An instance of the multiselection problem where the multiset M is formed
by p = 5 runs. In each run, the entry M]i] is represented by a point of
x-coordinate M[i]. The dash lines represent the answers of the two select
queries. The solid vertical lines represent the positions p; and p, of the first
two pivots computed by the algorithm Synergy MultiSelection. The pivot
blocks corresponding to the pivots p; and ps are marked by contiguous open
disks. The algorithm divides the runs into selection blocks. s = 7 is the size
of the second selection block, from left to right, into which the third run is
divided by the algorithm. m = 2 is the number of pivot blocks of size 1, each
corresponding to the pivot po. . . . . . ..o
The state of the Full Synergy deferred data structure on an instance where
the multiset M is formed by p = 5 runs. In each run, the entry MJi] is
represented by a point of xz-coordinate M[i]. The dash lines represent the
positions ¢; and g of the first two queries. The solid vertical lines represent the
positions py, p2 and ps of the first three pivots computed by the Full Synergy
deferred data structure. The pivot blocks corresponding to the pivots p1, ps
and ps are marked by contiguous open disks. d = 4 is the distance (i.e., the
number of identified blocks) between the queries ¢; and ¢o. If ¢; is a rank
query, then g = 4 is the size of the identified block that contains the answer
tothe query qi. . . . . . .
An instance of the problem of supporting domination queries. The black solid
disks mark the data points, and the red open disks mark the query points.
The staircase that represents the maxima set of the data points is marked.

An instance of the problem of supporting domination queries. The black solid
disks mark the data points. The red open disks mark the query points. The
blue solid squares mark the dominance points. . . . . . . . . . .. ... ...

vi

38

38

39

40

41

99

65

68



5.5 An instance of the problem of supporting point membership queries on the
convex hull of a set of data points. The black solid disks mark the data points.
The red open disks mark the query points. The state of the algorithm Synergy
Membership after the computation of the block A of the upper hull of the data
points and the block B of the lower hull of the data points. The vertical lines
through the leftmost and rightmost points of the blocks A and B are marked
with dashed lines. . . . . . . . . . . . .

vil



Chapter 1

Introduction

The computational complexity of most problems is often studied in the worst case over in-
stances of fixed size n, for n asymptotically tending to infinity. This approach has been
refined in many ways, but most notably for NP-hard problems under the term “Parame-
terized Complexity” [33], for polynomial problems under the term “Adaptive (Analysis of)
Algorithms” [28, 54], and more simply for data encodings under the term “Data Compres-
sion” [7], for a wide range of problems and data types. Such a variety of results has motivated
various classifications: in the context of NP-hard problems with a theory of Fixed Parameter
Tractability [33], and in the context of sorting in the decision tree model with a theory of
reduction between measures of disorder in permutations and multisets [59].

In the context of the adaptive (analysis of) algorithms, we introduce an additional per-
spective from which to classify algorithms and data structures: those taking advantage of
some measures of the input order (e.g., disorder measures for sorting permutations [54, 28],
decomposition into simple polygonal chains for the computation of the convex hull [50])
(Section 1.1), those taking advantage of the input structure (e.g., the multiplicities of the
elements for sorting multisets [56], output sensitive algorithms [48] and input-order oblivious
instance optimality [1], both for the computation of the maxima set and the convex hull)
(Section 1.2), and those taking advantage both of some measures of the input order and the
input structure in a synergistic way (Section 1.3), a class which to our knowledge was not
considered before. For each class, we exemplify some algorithms in it.

In the context of the competitive analysis of data structures for supporting online queries,
we introduce an additional perspective related to the queries, from which to classify data
structures: those taking advantage of some measures of the query order (e.g., measures
that capture how close the positions of two consecutive queries are [16, 37]), those taking
advantage of the query structure (e.g., differences between the ranks of consecutive select
queries in sorted order on a multiset [27, 44, 6]), and those taking advantage both of some
measures of the query order and the query structure in a synergistic way (Chapter 5).

1.1 Input Order

The input of every algorithm can be represented as a sequence of elements (e.g., streaming
algorithms [4]). By input order, we mean to consider features of the input that depend on the
order of the sequence that represents the input. Concerning the sorting of multisets, we review
algorithms taking advantage of the order in the sequence of numbers that represents the



multiset. Concerning the computation of the convex hull in the plane, we review algorithms
that take advantage of the order into which the points are listed in a polygonal chain. As
far as we know, the notion of input order has never been considered for the computation of
the maxima set of planar points until now. In Section 4.2.1, we describe an algorithm that
computes the maxima set of planar points taking advantage of some measure of the input
order.

Any array A representing a multiset lists its elements in some order, denoted by a tuple
(eg., A=1(2,3,1,3,7,8,9,4,5,6)). Maximal sorted subblocks in A are called runs [49] (e.g.,
{(2,3), (1,3,7,8,9), (4,5,6)} in A). As early as 1973, Knuth [49] described a variant of
the algorithm MergeSort [49, Section 5.2.4] using a preprocessing step taking linear time to
detect runs in the array A, which he named Natural MergeSort. Mannila [52] refined the
analysis of the Natural MergeSort algorithm to yield a time complexity for sorting an array
A of size n in time within O(n(1 + log p)) € O(nlogn), where p is the number of runs in
A. Takaoka [63] described a new sorting algorithm that takes advantage of the distribution
of the sizes of the runs in A'. Takaoka measured the difficulty of the instance in terms
of the distribution of the sizes of the runs in A by the entropy function H(ry,...,r,) =

- “log rﬂi, where p is the number of runs in A and r4,...,r, are the sizes of the p runs
(such that Y7, r; = n), respectively. The time complexity of this algorithm is within
O(n(l + H(r,...,7r,))) € O(n(l+logp)) € O(nlogn). Takaoka proved that this time
complexity is worst-case optimal over instances of size n formed by p runs of sizes r1,...,7,,
respectively, in the decision tree model. All these algorithms take advantage of the order of
the elements in the tuple A that represents the multiset (i.e., the input order).

One of the ways to take advantage of the input order of a set of points in the plane is
captured by the concept of polygonal chain. A polygonal chain is specified by a sequence of
planar points, and consists of the line segments connecting the pairs of consecutive points.
Any set of points in the plane can be represented by a polygonal chain, which is determined
by the order into which the points are listed. A polygonal chain is simple if it does not have
a self-intersection. In 2002, Levcopoulos et al. [50] described an algorithm that computes the
convex hull of planar points by decomposing the set of points into simple polygonal chains.
They proved that the time complexity of this algorithm is within O(n(1+log)) € O(nlogn),
where £ is the minimum number of simple polygonal chains into which the set of n points can
be partitioned. They showed that this time complexity is worst-case optimal over instances
of n points that can be partitioned into x simple polygonal chains, in the algebraic decision
tree model. Note that x depends only on the order of the points: by reordering them, one
can always reduce s to one, or increase it to within O(n).

Similarly, in 2011, Ahn and Okamoto [2] described various algorithms reordering the
points in a certificate of the convex hull, which can be checked in linear time, thus extending
to the computation of the convex hull various measures of disorder studied in the context of
sorting permutations [54].

1.2 Input Structure

By input structure, we mean to consider features of the input that depend on the structure
of the instance and that are independent from the order of the input. Concerning the sorting

'Barbay and Navarro [7] rediscovered this principle later and extended it to compressed data structures
for permutations.



of multisets, we review an algorithm taking advantage of the multiplicities of the elements
in the multiset. Concerning the computation of the maxima set and the convex hull in the
plane, we review algorithms taking advantage of the relative positions of the points.

Consider a multiset M of size n (e.g., M = {4,4,3,3,4,5,6,7,1,2} of size n = 10). The
multiplicity of an element x of M is the number m, of occurrences of x in M (e.g., m3 = 2).
The distribution of the multiplicities of the elements in M is the set of pairs (x,m,) (e.g.,
{(1,1), (2,1), (3,2), (4,3), (5,1), (6,1), (7,1)} in M). As early as 1976, Munro and Spira [56]
described a variant of the algorithm MergeSort [49, Section 5.2.4] using counters, which takes
advantage of the distribution of the multiplicities of the elements in M when sorting it. The
time complexity of the algorithm is within O(n(1 + H(my,...,m,))) € O(n(1+logo)) C
O(nlogn), where o is the number of distinct elements in M and my, ..., m, are the multi-
plicities of the o distinct elements (such that ) 7, m; = n), respectively. They proved that
this time complexity is worst-case optimal over instances of size n with o distinct elements
of multiplicities myq, ..., m,, respectively, in the decision tree model. The distribution of the
multiplicities of the elements in M (i.e., the input structure) is independent of the order into
which the elements are listed.

Similar results exist in two dimensions: in 1985, Kirkpatrick and Seidel [47] described an
algorithm that computes the maxima set of a set P of planar points?. They showed that
the time complexity of this algorithm is within O(n(1 +logh)) C O(nlogn), where h is the
number of points in the maxima set (i.e., the output size), and n is the number of points of
P (i.e., the input size). They showed that this time complexity is worst-case optimal over
instances of input size n and output size h, in the decision tree model. This algorithm is
output sensitive, in the sense that the time complexity depends on the size of the output,
and can be classified as adaptive to the input structure, as the positions of the points clearly
determine the output (and its size).

Considering the problem of computing the convex hull of planar points, in 1970, Chand
and Kapur [18] proposed the Gift Wrapping algorithm (rediscovered by Jarvis [42] in 1973
under the name of Jarvis’s walk). It was presented as running in time within O(n?), where
n is the number of points (i.e., the input size), but is adaptive to the number h of vertices
of the convex hull (i.e., the output size), with a running time within O(nh) C O(n?). In
1986, Kirkpatrick and Seidel [48], generalizing their previous results on the output sensitive
computation of maxima sets [47] (described above), described an algorithm that computes the
convex hull in time within O(nlogh) C O(nlogn). They proved that this time complexity is
worst-case optimal over instances of input size n and output size at most h, in the algebraic
decision tree model. The algorithm relies on a variation of the divide-and-conquer paradigm,
which they call the “marriage-before-conquest” principle.

Both results described by Kirkpatrick and Seidel [47, 48] for computing the maxima
set and the convex hull of planar points, respectively, were further improved when Afshani
et al. [1] observed that minor variants of such algorithms take optimal advantage of the
positions of the points. Afshani et al. [1] proved that such variants are instance optimal®
among algorithms ignoring the order of the input in the decision tree model and the algebraic
decision tree model where the tests involve only multilinear functions with a constant number
of arguments, respectively. These results take advantage of the relative positions of the points

2They described algorithms for computing the maxima set of points in any dimension. We describe only
the version in the plane.

3For any instance I and a class A of algorithms, instance optimal algorithms performs within a constant
factor of the performance of any algorithm A € A on I [29].



(i.e., the input structure), which are independent of the order into which the points are listed.

In the following section, we consider the design of algorithms taking advantage both of
some measures of the input order and the input structure, which is the main contribution of
this work.

1.3 Synergistic Solutions

In the context of sorting multisets and computing the convex hull of planar points, any
dovetailing combination? of the algorithms described by Munro and Spira [56] and Takaoka
[63], and of the algorithms described by Kirkpatrick and Seidel [48] and Levcopoulos et
al. [50], respectively, takes advantage both of some measures of the input order and the
input structure. But such solutions are inefficient: many operations are repeated, and some
opportunities to quickly solve the instance are lost due to the lack of communication between
the two parallel branches of the dovetailing combination of the algorithms.

HyproTHESIS: It is possible to improve upon both categories of techniques with a single
algorithm which optimally takes advantage both of the input order and the input
structure, in a synergistic way.

We confirm the hypothesis by describing synergistic algorithms for sorting multisets, and
for computing the maxima set and the convex hull, the two latter in the plane. These
synergistic algorithms take advantage both of some measures of the input order and the
input structure, synergistically, in the sense that they never perform asymptotically worse
than previous algorithms [47, 48, 50, 56, 63, 7|. Moreover, on some large classes of instances,
where they can take advantage both of some measures of the input order and the input
structure, they asymptotically outperform previous solutions by more than a constant factor
(see Chapter 4). As far as we know, every known approach described so far takes advantage
of either the input order or the input structure, but not of both.

In the context of supporting offline and online queries, we obtain algorithms and data
structures for answering rank and select queries on a multiset, domination queries on a set
of planar points, and point membership queries on the convex hull of planar points. These
algorithms and data structures take advantage of some measures of the input order and the
input structure as well as notions of difficulty in the queries, such as the query structure and
some measures of the query order, in a synergistic way (see Chapter 5). In the following
section, we outline the integrality of our results.

1.4 Thesis Structure and Contributions

After revisiting previous concepts and results on sorting multiset, computing maxima sets
and convex hulls in the plane, and on related problems, we present new synergistic solutions
for sorting multisets, for computing maxima sets and convex hulls in the plane. Our approach
to present synergistic algorithms for those three different problems follows the same pattern:

4A dovetailing combination of k algorithms executes the k algorithms in parallel and stops as soon as one
of the algorithms finishes.



1. Define techniques that take advantage of some measures of the input order by par-
titioning the input sequence of elements (i.e., numbers for sorting multisets, points
for computing maxima sets and convex hulls) into “easy” subsequences, such that in
each “easy” subsequence, the computation can be done in time linear in the number of
elements in the subsequence (Chapter 4).

2. Merge the resulting structures (i.e., sorted sets for sorting multisets, maxima sets for
the computation of the maxima set, and convex hulls for the computation of the convex
hull) by taking advantage of the input structure (Chapter 3).

We present first the merging algorithms in Chapter 3, which are interesting on their own
right [24, 5], and are the most technical part of our synergistic approach. We consider the
extension of the synergistic solutions to supporting queries, and the extension of some of them
to compressed data structures in Chapter 5. In the following, we give a detailed description
of the content of each chapter.

Chapter 2: Background, we review previous concepts and results on sorting multisets, and
on computing the maxima set and the convex hull of planar points, taking advantage of either
the input structure or some measures of the input order, and on related problems: searching,
multiselection, deferred data structures, and compressed data structures. We give a brief
description of the models of computation used in the lower bounds reviewed and obtained in
this thesis.

Chapter 3: Adaptive Merging, we describe adaptive (analysis of) algorithms for merging
sorted sets, merging maxima sets, and merging convex hulls, all which solve the second point
of our approach.

We slightly correct the analysis of the algorithm Sorted Set Union for merging sorted
sets described by Demaine et al. [24] (Section 3.1.1). We also describe a new instance op-
timal algorithm, which we name Quick Set Union, for merging sorted sets (Section 3.1.2),
using a distinct paradigm to the one used by the algorithm Sorted Set Union (splitting vs
merging), more suitable to extend to solutions for the multiselection problem and deferred
data structures (described in Chapter 5).

We generalize the Quick Set Union algorithm and the corresponding analysis from the
merging of sorted sets to the merging of maxima sets (Section 3.2) and of convex hulls
(Section 3.3). As far as we know, this is the first adaptive algorithms for merging maxima
sets (Section 3.2.1). In particular, we analyze the algorithm for merging maxima sets and
prove its optimality in the worst case over instances of measure ¢ fixed, where § depends not
only on the number of maxima sets and its sizes, but also on the relative positions between the
maxima sets. We extend the difficulty measure in the analysis of the algorithm for merging
maxima sets to the analysis of the algorithm for merging convex hulls (Section 3.3.2). Even
though we cannot prove that the algorithm for merging convex hulls is optimal in terms
of this refined measure, our analysis suffices to prove that the synergistic algorithm based
on it never performs asymptotically worse than the algorithms described by Kirkpatrick and
Seidel [48] and Levcopoulos et al. [50], and, on some large classes of instances, asymptotically
outperforms both by more than a constant factor.

We summarize the main results described in this chapter in the following table:



Problems Previous work This thesis

Sorted Sets | © (Zle logg; + > %, log (J;)) ([24]) ( i loggi + 3% log (f )) (Thm. 1)
Maxima Sets - ( =1 logs; + Zz log (¢ )) (Thm. 2)
@)

n;

(k0log 2 + 63" | log %) (Thm. 4)

Convex Hulls -

Table 1.1: Results for merging sorted sets, merging maxima sets, and merging convex
hulls.

Chapter 4: Synergistic Computation Analysis, we develop new techniques to take advan-
tage of some measures of the input order when sorting multisets (Section 4.1.1), and when
computing the maxima set (Section 4.2.1) and the convex hull (Section 4.3.1) of planar points.
Such techniques, in combination with the merging algorithms described in Chapter 3 yield
synergistic algorithms for those three problems.

Concerning the sorting of multisets, we define a simple yet new® notion of “global” input
order, formed by the number of pre-existing pivot positions in the input (i.e., positions p
such that all the elements to the left of p are smaller than or equal to all the elements to
the right of p, for example, (3,2,1,6,5,4) has one pre-existing pivot position in the middle)
(Section 4.1.1). We describe examples of the difficulty of combining both measures of the
input order and the input structure into a single synergistic algorithmic technique for sorting
multisets (Section 4.1.2). We describe how to measure the interaction of some measures of the
input order (i.e., runs and pivot positions) with the input structure (i.e., the distribution of
the multiplicities of the distinct elements), and two new synergistic sorting algorithms based
on distinct paradigms (merging vs splitting), which take advantage both of some measures
of the input order and the input structure to sort the multiset in less time than traditional
solutions based on one of those, at most [56, 63, 7| (Section 4.1.2).

Concerning the computation of the maxima set of planar points, we define a new algorithm
that takes advantage of some measure of the input order (Section 4.2.1). Such an algorithm
partitions the input polygonal chain, determined by the order in which the points are listed,
into smooth subsequences (see Definition 14 page 50), such that each of the maxima sets of
the smooth subsequences can be computed in time linear in the size of the subsequence. As
far as we know, this is the first algorithm that computes the maxima set of planar points
taking advantage of some measure of the input order.

Concerning the computation of the convex hull of a set of planar points, we improve
previous techniques to analyze the time complexity of algorithms computing the convex
hull in function of some measure of the input order (i.e., considering not only the minimal
number of simple chains into which the input sequence of points can be partitioned, but also
the distribution of their sizes). We present an algorithm that partitions a sequence S of n
points into simple polygonal chains, which is faster than the one described by Levcopoulos et
al. [50] (Section 4.3.1). The new partitioning algorithm runs in time within O(n), while the
partitioning algorithm described by Levcopoulos et al. [50] runs in time within O(n(1+log k)),
where  is the minimum number of simple polygonal chains into which S can be partitioned.
We refine Levcopoulos et al.’s measure of difficulty and analysis of the computation of the
convex hull of such chains (Section 4.3.1).

The combination of the algorithms for merging maxima sets and merging convex hulls
(described in Chapter 3) with the input order results yields synergistic algorithms that com-

®The notion of “global” input order was not mentioned in previous surveys [28, 54] nor extensions [7].



pute the maxima set (Section 4.2.2) and the convex hull (Section 4.3.2), both in the plane.
We prove that on large classes of instances, such synergistic algorithms asymptotically out-
perform the best previous solutions: both those that take optimal advantage of the positions
of the points [47, 48, 1] (i.e., the input structure), and those that take advantage of the simple
polygonal chains into which the sequence of points can be partitioned [50] (i.e., some form
of input order).

We summarize the main results described in this chapter in the following table:

Problems Previous work This thesis

Sorting | O(n(1 +H(mu,...,ms)) (56]) | n+0 (Z;Ll loggi + 3, log (Wﬂ“)) (Thm. 5)
O(n(1+H(r,...,7,))) ([63]
Maxima Set | O(n(l+ H(ni,...,n4))) ([1]
Convex Hull | O(n(1+H(ny,...,na))) ([1]

]
)
) 2n + O (Zle log s; + Zle log (Tfh)) (Thm. 6)
)

1
6 é K
1 0 (n + > =1 wilogs; + 5, log (m)> (Thm. 8)

1

Table 1.2: Results for sorting, and computing maxima sets and convex hulls.

Chapter 5: Synergistic Data Structures, we consider the extension of the synergistic algo-
rithms to support offline and online queries. We obtain algorithms and data structures for
supporting offline and online queries, which take advantage not only of some measures of
the input order and the input structure, but also of notions of difficulty in the queries, such
as the query structure (introduced by Dobkin and Munro [27]%) and some measures of the
query order. We describe two compressed data structures to represent a multiset taking ad-
vantage both of some measures of the input order and the input structure, while supporting
the operators rank and select on it.

We extend our synergistic results about sorting multisets to supporting rank and select
queries on multisets, offline and online, according to the potential “difficulty” in both the
order and the values in the queries themselves, in addition to the potential difficulty in the
data being queried in order and structure (Section 5.1). In the offline setting, this improves
upon the algorithms described by Dobkin and Munro [27] and Kaligosi et al. [44]. In the
online setting, this improves upon the results described by Barbay et al. [6] by adding three
new measures of difficulty (i.e., measuring some form of input order, the input structure, and
some form of query order) to the single one previously considered (i.e., measuring the query
structure).

Related to computing the maxima set of planar points, we define the problem of sup-
porting domination queries on a set of planar points, i.e., given a set of data points and a
set of query points, determine which of the query points are below the staircase represented
by the maxima set of the data points. In the offline setting, we describe an algorithm that
answers several domination queries, taking advantage of a decomposition of the data points
into smooth sequences (i.e., a form of input order), of the relative positions of the data points
(i.e., the input structure), and of the relative positions between the query points and the data
points (i.e., the query structure) (Section 5.2.1). We extend such result to the online setting
by describing a deferred data structure that answers domination queries taking advantage of
the order in which the queries are given (i.e., the query order) in addition to the other three
measures considered (Section 5.2.2).

We study the support of point membership queries on the convex hull of a set of planar

6Barbay et al. [6] were the first to name this measure query structure.



points as defined by Karp et al. [45], i.e. given a set of data points and a set of query
points, determine which of the query points are included in the convex hull of the data
points. Similarly to the support of domination queries, in the offline setting, we describe an
algorithm that answers several point membership queries taking advantage of a decomposition
of the data points into simple polygonal chains (i.e., a form of input order), of the relative
positions of the data points (i.e., the input structure), and of the relative positions between
the query points and the data points (i.e., the query structure) (Section 5.3.1). We extend
such a result to the online setting by describing a deferred data structure that answers point
membership queries taking advantage of some measure of the query order in addition to
the other three measures considered (Section 5.3.2). This improves upon the deferred data
structure described by Karp et al. [45], which takes advantage only of the number of data
points and the number of query points.
We summarize the main results described in this chapter in the following tables:

Problems Previous work This thesis
Rank and Select O(B(My)) ([27]) n+ O(Zle log s; + [ log p—
Zf‘zl m; logm; — Zf:o pilog p;) (Thm. 9)

B(Mqy) + o(B(M,)) + O(n) ([44])
Domination - O (n+ BHp(I) +q'/*log B) (Thm. 14)
Point Membership N 0 (n(’HB(L) +Hp(U)) + qlog g) (Thm. 16)

Table 1.3: Results for supporting offline rank and select queries on a multiset,
supporting offline domination queries on a set of planar points, and supporting
offline point membership queries on the convex hull of a set of planar points.

Problems Previous work This thesis
Rank and Select | B(M,) + o(B(M,)) + O(n) ([6]) n+ O(Zle log s; + Slog p — Z;\ZI m; logm;—
oo pilog pi + Z?;ll logd; + ;" logg;) (Thm. 11)
Domination - O(n+ BHp(I) + Y0 logd; + Y°!_, logg; (Thm. 15)
Point Membership | O((n + ¢) log(min{n, q}) ([45]) O(n(Hp(U) +Hp(L)) + "=, (log d; + log e;)+
?_(log f; +log g;)) (Thm. 17)

Table 1.4: Results for supporting online rank and select queries on a multiset,
supporting online domination queries on a set of planar points, and supporting
online point membership queries on the convex hull of a set of planar points.

Chapter 6: Discussion, we conclude with a discussion of our results and with a partial list
of potential issues left open for improvement.

Our results about merging sorted sets (described in Section 3.1), synergistic sorting mul-
tisets (described in Section 4.1.2), and algorithms and deferred data structures supporting
rank and select queries on multisets (described in Section 5.1.1 and 5.1.2) were developed in
collaboration with Jérémy Barbay and Srinivasa Rao Satti, and presented at the 28th An-
nual Symposium on Combinatorial Pattern Matching (CPM 2017), July 4-6, 2017, Warsaw,
Poland, under the title “Synergistic Solutions on MultiSets” [10].

Our results about merging convex hulls (described in Section 3.3), and synergistic com-
putation of the convex hull of planar points (described in Section 4.3) were developed in
collaboration with Jérémy Barbay, and presented at the 24th International Computing and



Combinatorics Conference (COCOON’18), July 2-4, 2018, Qingdao, China, under the title
“Synergistic Solutions for Merging and Computing Planar Convex Hulls” [§].

The rest of the results described in this thesis have not yet been submitted for peer
review consideration: our results about merging of maxima sets (described in Section 3.2),
our results about synergistic computation of maxima sets (described in Section 4.2), our
results about compressed data structures supporting rank and select queries on multisets
(described in Section 5.1.3), our results about supporting domination queries on a set of
planar points (described in Section 5.2), and our results about supporting point membership
queries on a set of planar points (described in Section 5.3).



Chapter 2

Background

In this thesis, we are mostly concerned with how to design synergistic algorithms that take
advantage of “orthogonal” measures of difficulty: some of the measures depending on the
input order, and others depending on the input structure. We study the effectiveness of the
synergistic techniques in three fundamental problems in Computer Science: sorting multisets,
computing maxima sets, and computing convex hulls, the two latter in the plane. We consider
the extension of these techniques to supporting (offline and online) related queries.

To start this chapter, we offer a few notes on the model of computations used in the lower
bound reviewed and obtained in this thesis: the decision tree model [3] and the algebraic
decision tree model [62] (Section 2.1).

We review a classic algorithm that searches for the insertion rank r of an element e
in a sorted unbounded array A, whose running time is within O(logr) (Section 2.2). The
computational complexity analysis of the merging algorithms (described in Chapter 3), and
in consequence the synergistic results (described in Chapter 4) rely on such an algorithm and
its analysis. We review some classic results concerning adaptive (analysis of) algorithms for
sorting multisets (Section 2.3), and computing maxima sets and convex hulls (Section 2.4),
taking advantage of either some measures of the input order or the input structure. In the
context of supporting queries in the offline setting, we review algorithms that answer rank
and select queries on a multiset (Section 2.5.1). In the online setting, we review deferred data
structures supporting membership queries on a multiset, rank and select queries on a multiset,
and point membership queries on the convex hull of a set of planar points (Section 2.5.2). In a
similar context, where the focus is to efficiently answer queries using small space, we review
compressed data structures for encoding permutations while supporting direct access and
inverse access operations (Section 2.5.3). Those results will serve as a base for comparison in
Chapter 3 and 4, where we describe synergistic algorithms and data structures that, in large
classes of instances, outperform all the solutions we review in this chapter.

2.1 Models of Computation

We briefly describe the models of computation used in the lower bounds reviewed and ob-
tained in this thesis.
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2.1.1 Decision Tree Model

In the decision tree model [3], every decision is based on the comparison of two elements. The
usual representation of an algorithm that obtains information only through comparisons of
values in the input is a decision tree. A decision tree is a rooted tree. In such a representation,
each interior node represents a decision and has two outgoing edges. The leaves represent
all possible outputs of the algorithm. Given an instance I, the execution of the algorithm
starts at the root and follows the edge that represents the outcome of the decision, and
continues recursively. Therefore, the execution of the algorithm on I yields a path from the
root to some leaf. Given two distinct inputs, the execution of the algorithm on those distinct
instances will reach distinct leaves. The number of comparisons performed by the algorithm
on [ is the length of such a path. Given a decision tree that represents an algorithm, the
height of the tree is a lower bound on the number of comparisons performed by the algorithm
in the worst case.

The lower bounds that we review for sorting multisets (Section 2.3), and computing the
maxima set of planar points (Section 2.4.1), and the one that we obtain for merging maxima
sets (Section 3.2), assume the decision tree model of computation.

In the lower bounds for sorting multisets (Section 2.3), the elements to compare are the
elements of the multisets. In the lower bounds for computing the maxima set of planar points
(Section 2.4.1) and for merging maxima sets (Section 3.2), the elements to compare are the
coordinates of the points in the input (i.e., coordinate comparisons).

2.1.2 Algebraic Decision Tree Model

The algebraic decision tree model is a generalization of the decision tree model [62]. Similar
to the decision tree model, the algorithm is represented by a rooted tree. The difference
is that a polynomial P on the input [ is associated with each internal node, in contrast to
a decision tree where a comparison is associated with each internal node. In an algebraic
decision tree, each internal node has three outgoing edges, and every decision is based on
the sign of evaluating such polynomial (i.e., P(/) <0, P(I) =0, and P(I) > 0). The leaves
represent all possible output of the algorithm. Differently to a decision tree, in an algebraic
decision tree several inputs could reach the same leaf (i.e., those inputs that satisfy a set of
polynomial equations). Therefore, the evaluation of the complexity is more difficult, and is
based on the topology of the input space [62].

The lower bounds that we review for the computation of the convex hull of a set of planar
points (Section 2.4.1 and 2.4.2) assume the algebraic decision tree model of computation.

2.2 Searching

An important building block towards the merging algorithms (described in Chapter 3), and
as consequence towards the synergistic algorithms (described in Chapter 4), is a solution to
the unbounded search problem [13]:

UNBOUNDED SEARCH: given a function F': Nt — {X Y} such that
N )X i<k
FG) = { Y ifj>k
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where k is an integer that uniquely defines F', determine k.

In 1976, Bentley and Yao [13] described an infinite family of unbounded search algorithms.
Those algorithms are used in searching a large sorted array A, paying a search cost that
depends on the insertion rank r of the searched element e (i.e., the number of elements in
A that are less than e). We describe only the doubling search algorithm. We extensively
use doubling search to yield synergistic algorithms for sorting multisets, and for computing
maxima sets and convex hulls of planar points. The doubling search algorithm first determines
m = [logy k] + 1 by successively evaluating F'(2° — 1) for i = 1,2,3,... until F(2"—1) =Y,
which yields a range [2™~!,2™ — 1] for k. Then a binary search on those 2™~! elements yields
the exact value of k.

Given a sorted array A, and an element e of A, the time complexity of finding e using
doubling search is at most 2log, r, where r is the insertion rank of e in A. Note that, the
time complexity for finding e in A using binary search is at most log, n, where n is the size
of A. For r € o(n'/?), doubling search outperforms binary search, and doubling search never
performs asymptotically worse by more than a constant factor than binary search.

2.3 Sorting

We describe here some relevant results for sorting multisets along two axis: one taking
advantage of the distribution of the multiplicities of the distinct elements in the multiset
(i.e., the input structure) (Section 2.3.1), and others taking advantage of the distribution
of the sizes of the runs in the multiset (i.e., one form of input order) (Section 2.3.2). For
completeness, we review the algorithmic techniques behind these results and show that the
worst-case performances of such algorithms are incomparable, in the sense that neither one
is asymptotically better than the other in the worst case over instances formed by n elements
(Section 2.3.3).

2.3.1 Input Structure

In 1976, Munro and Spira [56] described the algorithm MergeSort with Counters that sorts
a multiset M of size n taking advantage of the input structure. The algorithm MergeSort
with Counters is an adaptation of the traditional sorting algorithm MergeSort [49]: it
divides M into two parts whose sizes differ at most by one, sorts both parts recursively, and
then merges the two sorted parts. The algorithm MergeSort with Counters differs from
the classical version in that in the merging step, when two elements of the same value v are
found, one is discarded and a counter holding the number of occurrences of v is updated.
Munro and Spira measured the “difficulty” of the instance in terms of the distribution of
the multiplicities of the o distinct elements in the multiset (i.e., the input structure) by the
entropy function H(my,...,mg) = 3.7 | " log -, where my, ..., m, are the multiplicities
of the ¢ distinct elements in M (such that Y ;_, m; = n), respectively. The time complexity
of the algorithm is within O(n(1 + H(my,...,m,))) € O(n(1+logo)) € O(nlogn). They
proved that this time complexity is worst-case optimal over instances of size n with o distinct
elements of multiplicities mq, ..., m,, respectively, in the decision tree model.
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2.3.2 Input Order

As early as 1973, Knuth [49] described a variant of the algorithm MergeSort [49, Section
5.2.4] that takes advantage of some measure of the input order, which he named Natural
MergeSort. The algorithm Natural MergeSort uses a preprocessing step taking linear time
to detect runs in the array A. Mannila [52] refined the analysis of the Natural MergeSort
algorithm to yield a time complexity for sorting an array A of size n in time within O(n(1+
log p)) € O(nlogn), where p is the number of runs in A.

Takaoka [63] described the Minimal MergeSort algorithm' that sorts the array A that
represents a multiset of size n. The main idea is to detect the runs first, and then merge them
pairwise prioritizing the shortest ones, thus taking advantage of the potential disequilibrium
in the distribution of the sizes of the runs. The runs are detected in linear time through a
scanning process identifying the positions ¢ € [1..n—1] in A such that A[i] > A[i+1]. Merging
the two shortest runs at each step makes the number of comparisons performed by the merging
process adaptive to the entropy of the sequence formed by the sizes of the runs. Indeed, the
time complexity of the Minimal MergeSort algorithm is within O(n(1 + H(rq,...,7,))) C
O(n(1+log p)) € O(nlogn), where p is the number of runs in A and rq,...,r, are the sizes
of the p runs in A (such that > 7 r; = n), respectively. Takaoka [63] proved that this time
complexity is worst-case optimal over instances of size n formed by p runs of sizes r1,...,7,,
respectively, in the decision tree model.

2.3.3 Comparison Between Sorting Algorithms

The worst-case performances of the algorithms MergeSort with Counters (described in
Section 2.3.1) and Minimal MergeSort (described in Section 2.3.2) are incomparable, in
the sense that neither one is asymptotically better than the other in the worst case over
instances formed by n numbers. We describe examples of families of instances where the
algorithm MergeSort with Counters sorts the instance asymptotically faster than the al-
gorithm Minimal MergeSort (Example 1), and some other examples of families of instances
where the algorithm Minimal MergeSort sorts the instance asymptotically faster than the
algorithm MergeSort with Counters (Example 2).

Example 1. Consider the family of instances (1,2,1,2,...,1,2)

Each instance of this family is formed by § sequences of (1,2). On each instance I of
this family, the algorithm Minimal MergeSort detects 7 runs and then merges them
two at a time. The time complexity of Minimal MergeSort on [ is within ©(nlogn).
On the other hand, the algorithm MergeSort with Counters takes advantage of the
large multiplicities of the elements with values 1 and 2. In every merging step, the
resulting set is always {1,2}. Therefore, the number of elements is reduced by half at
each step, which yields a time complexity linear in the size n of I.

Tt was rediscovered by Barbay and Navarro [7], who generalized it into a compressed data structure for
permutations.
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Example 2. Consider the family of instances (1,2,...,n)

Each instance of this family is formed by n distinct numbers in sorted order. On each
instance I of this family, the algorithm Minimal MergeSort detects in time linear in
the size n of I that the sequence is already sorted, and in turn it finishes. On the
other hand, the time complexity of the algorithm MergeSort with Counters on [ is
within ©(nlogn), because this algorithm would perform at least as many operations
as MergeSort, given that all the elements are distinct.

Furthermore in Section 4.1 (page 48), we show that simple modifications and combina-
tions of the algorithms MergeSort with Counters and Minimal MergeSort do not take full
advantage at the same time of the number and sizes of the runs (i.e., a form of input order),
and of the multiplicities of the distinct elements in the multiset (i.e., the input structure). To
address this problem, we describe two synergistic algorithms that sort a multiset taking ad-
vantage both of some measure of the input order and the input structure, such that on large
classes of instances, they outperform algorithms MergeSort with Counters and Minimal
MergeSort by more than a constant factor (Section 4.1). In the following sections, we review
similar results about the computation of the maxima set and the convex hull of planar points,
which can be seen as generalizations of the sorting of multisets to two dimensions.

2.4 Computation of Maxima Sets and Convex Hulls

The computation of the maxima set and the convex hull are fundamental problems in Com-
putational Geometry [60, 23]. The histories of those problems are strongly correlated: most
of the results on one also generalize to the other. We formally define the maxima set and the
convex hull of planar points.

Figure 2.1: A set P of planar points. a) The maxima set of P marked by open
disks, and b) the convex hull of P marked by open disks.

Definition 1. Let p, and p, denote the z- and y-coordinates of the point p € R?, respectively.
Given two points p and g, p dominates q if p, > ¢, and p, > q,. Given a set P of points in
the plane, a point p from P is called maximal if none of the other points of P dominates p.
The maxima set of such a set P is the uniquely defined set of all maximal points.

Definition 2. Given a set P of planar points, the convex hull of P is the (unique) minimal
conver set containing P.

The vertices of the convex hull of P are a subset of P. In two dimensions, the convex
hull is partitioned into two polygonal chains, the upper hull and the lower hull, stretching
between the leftmost and rightmost vertices of the convex hull.
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A graphical representation of those definitions is given in Figure 2.1. We describe some
relevant algorithms that compute the maxima set and the convex hull of planar points along
two axes: ones taking advantage of the relative positions of the points (i.e., the input struc-
ture) (Section 2.4.1), and others taking advantage of the simple polygonal chains into which
the input sequence of points can be partitioned (i.e., one form of input order) (Section 2.4.2).
Similarly to sorting multisets, the worst-case computational complexities of such “orthogo-
nal” algorithms are incomparable in the sense that neither one is asymptotically better than
the other in the worst case over instances formed by n planar points (Section 2.4.3).

2.4.1 Input Structure

In 1985, Kirkpatrick and Seidel [47] described an algorithm that takes advantage of the input
structure to compute the maxima set of a set P of planar points?. The algorithm partitions
the points of P into two sets P, and P, by the median p of the z-coordinates of the points
of P (such that all the points of P; are to the left of all the points of P,). The median p is
computed in time linear in the number of points of P using the algorithm described by Blum
et al. [15]. The algorithm then computes the maxima set M of P recursively, and computes
the set Q C P not dominated by the points of M. Finally, it computes the maxima set of @),
that in addition to M, form the maxima set of P. The time complexity of such an algorithm
is within O(n(1 +logh)) C O(nlogn), where h is the number of points in the maxima set
(i.e., the output size), and n is the number of points of P (i.e., the input size). They showed
that this time complexity is worst-case optimal over instances of input size n and output size
h, in the decision tree model.

In 1986, Kirkpatrick and Seidel [48], following a similar approach to the one they used
to compute the maxima set, described a slightly more complex algorithm that computes the
upper hull of a set P of points in the plane (the computation of the lower hull is symmetric,
and complete it into the computation of the convex hull). The algorithm relies on a vari-
ation of the divide-and-conquer paradigm, which they call the “marriage-before-conquest”
principle. So, we name it the Marriage-before-conquest Hull algorithm.

Before describing the Marriage-before-conquest Hull algorithm, we define the concept
of supporting line, which is key to the description of it:

Definition 3. A supporting line of a set P of planar points is a straight line that contains
a point p of P and that leaves all the points of P in the same half-plane (i.e., p is a vertex
of the convex hull of P).

The Marriage-before-conquest Hull algorithm partitions P into two sets P, and P,
whose sizes differ at most by one, using the vertical line ¢ of equation © = u, where u is
the median of the x-coordinates of the points of P. The algorithm finds the edge e of the
upper hull of P that intersects ¢: for that, it pairs the points of P, and computes the median
m of the slopes of the lines through the pairs. It computes then the point ¢ that lies in
the supporting line of P of slope m. If there is a pair of points of P to the left of the
vertical line of equation x = ¢, such that the line through the pair has slope less than m
(resp., greater than m), then the rightmost (resp., leftmost) point in the pair cannot be a
vertex of e. A symmetric situation arises if the pair of points is to the right of the vertical

2They described algorithms for computing the maxima set of points in any dimension. We describe only
the version in the plane.
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line of equation x = ¢, and the slope of the line through the pair is greater than (resp.,
less than) m: the leftmost (resp., rightmost) point in the pair cannot be a vertex of e. So,
the number of candidate points to vertices of e is reduced by half, yielding a linear time
procedure to compute e. The algorithm discards all the points below e, and recurses then
on the non-discarded points of P; and P,. The time complexity of this algorithm is within
O(nlogh) C O(nlogn), where h is the number of vertices in the convex hull of P (i.e., the
output size), and n is the number of points of P (i.e., the input size). They showed that this
time complexity is worst-case optimal over instances of input size n and output size h, in the
algebraic decision tree model [48].

Both results described above are output sensitive, in the sense that the time complexity
depends on the size of the output, and can be classified as adaptive to the input structure,
as the positions of the points clearly determine the output (and its size).

Sen and Gupta [61] refined the analyses of the algorithms described by Kirkpatrick and
Seidel that compute the maxima set [47] and the upper hull [48] of planar points. Their
analyses consider a partition of the points determined by the vertical lines through the points
in the maxima set and the upper hull of the points, respectively. Formally, they proved that,
given a set S of n planar points, such that the points in S are partitioned into h vertical
strips of sizes nq,...,ny, (such that Z?:l n; = n), respectively, determined by the vertical
lines through the A points in the maxima set (resp., the upper hull) of S, the time complexity
of the Kirkpatrick and Seidel’s algorithm that computes the maxima set (resp., the upper
hull) of S is within O(n(1 + H(n1,...,n4)) € O(n(1l 4+ logh)). These results subsume the
concept of output sensitive algorithms. They name it distribution sensitive algorithms, as
the time complexity depends on a distribution of the points determined by the points in the
output. Inspired by the results described by Sen and Gupta [61], in Section 5.3, we analyze
synergistic algorithms and data structures supporting point membership queries on a set of
planar points.

In the following, we define formally the concepts of instance optimal algorithms and
istance optimal algorithms in the order oblivious setting. Instance optimal algorithms in
the order oblivious setting simultaneously subsumes output sensitive algorithms, distribution
sensitive algorithms, and all algorithms that do not take advantage of the order in which the
points are given or that assume that the input is given in a random order.

The concept of instance optimal algorithms was introduced by Fagin et al. [29]:

Definition 4. Let A be a class of algorithms, and let T be a class of legal inputs to the
algorithms. An algorithm A € A is instance optimal over A and Z if for every B € A and
every I € T, the cost of A on I is at most a constant factor times the cost of B on I.

In Chapter 3, we describe instance optimal algorithms for merging sorted sets. Afshani et
al. [1] introduced the concept of instance optimal algorithms in the order oblivious setting:

Definition 5. Let A be an algorithm in a certain class A such that for every input sequence
P, and for every algorithm A" € A, the maximum cost of A on P is at most a constant factor
times the mazimum cost of A’ on P, where the mazximum is taken over all permutations of
P. They called algorithms satisfying this property instance optimal in the order oblivious
setting.

Afshani et al. [1] showed that minor variants of the algorithms described by Kirkpatrick
and Seidel for computing the maxima set [47] and the upper hull [48] of planar points are
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instance optimal in the order oblivious setting, in the decision tree model and the alge-
braic decision tree model where the tests involve only multilinear functions with a constant
number of arguments, respectively. They showed that the time complexity of the variant
that computes the maxima set (resp., the upper hull) is within O(n(1 4+ H(ny,...,ns))) C
O(n(1+4logh)) C O(nlogn), where ny, ..., ny, (such that S n; = n) are the sizes of a par-
tition of the input points by enclosing rectangles (resp., triangles), such that every rectangle
(resp., triangle) is completely below the maxima set (resp., the upper hull) of the points,
with the minimum possible value for H(ny,...,n,) = Zle “ log -

In the following section, we describe algorithms taking advantége of the order in which
the points are given, as opposed to the algorithms described above.

2.4.2 Input Order

For points in the plane, a natural way to consider the input order is through the sequence
specified by the order into which the points are listed. A polygonal chain is a curve specified
by a sequence of points. The curve itself consists of the line segments connecting the pairs of
consecutive points. A polygonal chain P is simple if any two edges of P that are not adjacent
are disjoint, or if the intersection point is a vertex of P; and any two adjacent edges share
only their common vertex. See Figure 2.2 for examples of these definitions. Melkman [53]
described an algorithm that computes the convex hull of a simple polygonal chain in time
linear in the number of points in the polygonal chain, and Chazelle [19] described an algo-
rithm that tests whether a polygonal chain is simple in time linear in number of points in
the polygonal chain.

D2 Po %) ps
P9 Do
3 3
b5 ps
P1 pr P8 pP1 pr P8
y2Z P4
) b)

a
Figure 2.2: a) A polygonal chain P specified by a sequence of 9 points. b) The
decomposition of P into two simple polygonal chains.

In 2002, inspired by previous results on sorting permutations [51], Levcopoulos et al. [50]
combined the algorithms described by Melkman [53] and Chazelle [19] into an algorithm that
computes the convex hull of a polygonal chain P taking advantage of some measure of the
input order. The algorithm tests if P is simple, using Chazelle’s algorithm [19]: if it is, the
algorithm computes the convex hull of P in linear time, using Melkman’s algorithm [53].
Otherwise, if P is not simple, it partitions P into two polygonal chains P’ and P”, whose
sizes differ at most by one; recurses on each of them; and merges the resulting convex hulls
using a linear time merging algorithm described by Preparata and Shamos [60]. Levcopoulos
et al. [50] measured the time complexity of their algorithm in terms of the minimum number
of simple polygonal chains x into which the polygonal chain P of n points can be partitioned.
Let t(n, k) be the worst-case time complexity taken by such algorithm on a polygonal chain
of n points that can be partitioned into x simple polygonal chains. They showed that t(n, )
satisfies the following recursion relation: t(n, k) € t([5], x1) + t([5], k2) + O(n), such that
K1 + k2 < Kk + 1. The solution to this recursion yields t(n, k) € O(n(1+logk)) C O(nlogn).
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They showed that this time complexity is worst-case optimal over instances of n points that
can be partitioned into x simple polygonal chains, in the algebraic decision tree model.

In 2011, Ahn and Okamoto [2] followed a distinct approach for computing the convex
hull, also based on some notions of input order. They considered a variant of the prob-
lem where the output is the same size of the input, but such that the convex hull can be
checked and extracted in linear time from this output. In this context, they described adap-
tive results that are directly inspired by disorder measures introduced through the study of
adaptive algorithms for sorting permutations, such as Runs and Inv [54, 28]. Inspired by
Ahn and Okamoto’s definition [2], we define some simple measure of the input order for the
computation of the maxima set in Section 4.2.1.

As far as we know, the notion of input order has never been considered for the computation
of the maxima set of planar points. The case is different when the computation of the convex
hull is considered, where several algorithms that take advantage of either some measures of
the input order or the input structure have been described. We compare such algorithms in
the following section.

2.4.3 Comparison Between Convex Hull Algorithms

Similarly to the situation of the sorting algorithms described in Section 2.3.3, the worst-case
performances of the algorithms described by Kirkpatrick and Seidel [48] (even when analyzed
by Afshani et al. [1] such as described in Section 2.4.1) and Levcopoulos et al. [50] (described
in Section 2.4.2) are incomparable, in the sense that neither one is asymptotically better than
the other in the worst case over instances formed by n points. We describe below examples of
families of instances where the algorithm described by Kirkpatrick and Seidel [48] computes
the convex hull asymptotically faster than the algorithm described by Levcopoulos et al. [50]
(Example 3), and some other examples of families of instances where the algorithm described
by Levcopoulos et al. [50] computes the convex hull asymptotically faster than the algorithm
described by Kirkpatrick and Seidel [48] (Example 4).

Example 3. Consider a family of instances such that each is formed by a sequence P
of n planar points enclosed by a triangle (noted in dashes in the illustration below) such
that every polygonal chain formed by six consecutive points of P has a self-intersection.

The convex hull of every instance of this family is formed by only three vertices (marked
by open disks in the illustration). Hence, the time complexity of the algorithm described
by Kirkpatrick and Seidel [48] to compute the convex hull of P is linear in the number
of points of P. On the other hand, the minimal number of simple polygonal chains into
which P can be partitioned is ©(n). Therefore, the time complexity of the algorithm
described by Levcopoulos et al. [50] to compute the convex hull of P is within ©(nlogn).
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Example 4. Consider a family of instances such that each is formed by a sequence P
of n planar points such that each point in P is a vertex of the convex hull of P, and
the polygonal chain specified by P is simple (see the illustration below).

All the points of P are vertices of the convex hull of P. Hence, the time complexity of
the algorithm described by Kirkpatrick and Seidel [48] that computes the convex hull
of P is within ©(nlogn). On the other hand, the algorithm described by Levcopoulos
et al. [50] identifies that the whole sequence is a simple polygonal chain, so it computes
the convex hull of P in time linear in the number of points of P.

In Chapter 4, we describe synergistic algorithms that compute the maxima set and the
convex hull of planar points taking advantage both of some measures of the input order
and the input structure, so that they never perform asymptotically worse than previous
algorithms [47, 48, 1, 50]. Moreover, on some large classes of instances, asymptotically
outperform those previous algorithms by more than a constant factor. In the following
section, we review some extensions of the results described in previous sections for supporting
offline and online queries.

2.5 Algorithms and Data Structures Supporting Queries

In the context of supporting rank and select queries on a multiset, we review some results
in the offline setting, where the queries arrive all at once (Section 2.5.1). In the online
setting, where the queries arrive one by one, we review the concept of deferred data structures
supporting membership queries on a multiset, rank and select queries on a multiset, and their
extension to geometric problems: supporting point membership queries on the convex hull
of a set of planar points and supporting dominance search queries on a set of planar points
(Section 2.5.2). Such deferred data structures partially reorder the data while answering
the queries. In a similar context, we review a data structure that encodes a permutation
using small space and efficiently supports direct access and inverse access operations on the
permutation (Section 2.5.3).

2.5.1 OffHine Rank and Select Operations

Given an element z of a multiset M and an integer j € [1..n] (e.g., M = {1,2,3,3,4,5,6,7,8},
x = 3, and j = 4), the rank rank(x) of z is the number of elements smaller than z in M
(e.g., rank(3) = 2), and selecting the j-th element in M corresponds to computing the value
select(j) of the j-th smallest element (counted with multiplicity) in M (e.g., select(4) = 3).
The support of rank and select queries on M is related to the sorting problem, as sorting
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the array A representing M makes it possible to support each select query in constant time
and each rank query in O(logn) comparisons. What makes sorting and supporting rank and
select queries distinct is that, when there are only a few queries (or when the multiset is
dynamically updated), sorting the whole multiset is “overkill”, for there are better solutions.

As early as 1961, Hoare [39] showed how to support rank and select queries in average
linear time, a result later improved to worst-case linear time by Blum et al. [15], based on a
linear time median finding algorithm.

In 1980, Frederickson and Johnson [34] described two algorithms that support rank and
select queries, respectively, in p sorted sets. The algorithms take advantage of the sizes of
the sorted sets. The key idea of the selection algorithm is to rule out a constant percentage
of the remaining elements on each iteration. The time complexities of both algorithms to
answer one query are within O(p + Y7, logn;), where ny, no,...,n, are the sizes of the p
sorted sets. They proved that those time complexities are worst-case optimal over instances
formed by p sorted sets of sizes ny,...,n,, respectively, and one query, in the decision tree
model. Note that this time complexity is sublinear when p € o(n).

Given a linearly ordered multiset M and a sequence of ranks rq,...,7,, a multiselection
algorithm must answer the queries select(r;), ..., select(r,) in M, hence partially sorting
M. In 1981, Dobkin and Munro [27] described a multiselection algorithm that supports ¢
select queries at once on a multiset M. The algorithm computes the median g of M, and
partitions M into those elements less than u, those equals to u, and those greater than u.
Depending on the sizes of these three sets, the algorithm partitions the select queries, and
recurses in each set using the corresponding queries. They showed that the time complexity of
the algorithm is within O(nlogn—>_7 , g;log g;), where n is the size of M, and the ¢ queries
hit positions in M separated by gaps (i.e., differences between the ranks of consecutive
select queries in sorted order) of sizes g, ..., g,° (i.e., the query structure). They proved
that this time complexity is worst-case optimal over all multisets of size n and all sets of ¢
queries hitting positions in the multisets separated by gaps of sizes gy, ..., g,. The quantity
B(M,) = nlogn — > 7, g;log g; is the information-theoretic lower bound on the number of
comparisons required to answer g selection queries on M, in the decision tree model [27].
Kaligosi et al. [44] later described a variant of this algorithm which performs a number of
comparisons within B(M,) + o(B(M,)) + O(n), which is within an asymptotically negligible
additional term of the optimal (as opposed to a constant factor of the optimal as in Dobkin
and Munro’s result [27]).

In Chapter 5, based on the ideas of Frederickson and Johnson [34], Dobkin and Munro [27],
and the synergistic algorithm for sorting multisets described in Section 4.1.2, we describe a
multiselection algorithm which takes advantage, at the same time, of the number and sizes of
the runs in the data (i.e., a form of input order), of the multiplicities of the elements in the
multiset (i.e., the input structure), and of the gaps between the positions hit by the queries
(i.e., the query structure).

All the results described in this section assume that the queries are given at the same
time (i.e., offline). In the following section, we review results supporting queries assuming
that the queries arrive one by one (i.e., online).

3 Assuming that there are two fictitious queries hitting positions 0 and n + 1, respectively.
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2.5.2 Deferred Data Structures

The usual approach to support queries consists of preprocessing the data, thus building up
a data structure that enables queries to be answered efficiently. But, the preprocessing time
can considerably exceed the time needed for answering a few queries without preprocessing.
Karp et al. [45] offered a new approach, in which the data structure is built up while the
queries are answered. They called their solution a deferred data structure and describe it as
“lazy”, as it partially reorders the data.

Karp et al. [45] studied the support of online membership queries on a totally ordered set
U, i.e. given a set S of elements drawn from U and a set of queries, where each query is an
element of U; for each query, determine whether it is present in .S. They described a deferred
data structure that given a set of n elements, answers a set of ¢ online membership queries
by performing a number of comparison within O((n + ¢)log(min{n, ¢}). They proved that
this number of comparison is worst-case optimal over instances of n elements and ¢ queries,
in the decision tree model.

Barbay et al. [6] extended the result described by Karp et al. [45] to supporting online rank
and select queries on a multiset, and refined it by taking advantage of the gaps between the
positions hit by the queries (i.e., the query structure). The deferred data structure described
by Barbay et al. [6] is 1-competitive with the offline algorithm described by Kaligosi et
al. [44] (introduced in the previous section) in the number of comparisons performed. Karp
et al.’s approach [45] is based on MergeSort [49] while Barbay et al.’s approach [6] is based
on QuickSort [38]. Nomne of those approaches take into consideration any pre-existing runs
in the input, and rather Barbay et al.’s approach [6] builds and maintains such runs as a
strategy to minimize the number of comparisons performed.

Karp et al. [45] were most ambitious, and defined the general paradigm for deferred data
structures. They described some features essential for a problem that supports queries to be
amenable to this approach: the deferred data structure can be adopted for a problem on a
set S of n data if: (i) it is possible to answer a query in O(n) time; and (ii) the set S can
be partitioned in O(n) time into two subsets S; and Sy, whose sizes differ at most by one,
such that the answer to the query in S is equal to the answer to the query on either S; or
Ss, and while the partitioning is computed it is possible to know if the answer is in S; or Sy
in constant time. They described deferred data structures for problems in Computational
Geometry: supporting point membership queries on the convex hull of a set of planar points,
supporting dominance search queries, half plane intersection queries, and fixed-constraint
multi-objective linear programming.

Figure 2.3: An instance of the problem of supporting point membership queries on
the convex hull of a set of data points. The black solid disks mark the data points,
and the red open disks mark the query points. The convex hull of the data points
is marked.
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Karp et al. [45] defined the problem of supporting point membership queries on the convex
hull of a set of data points as follows: given a set of data points and a set of query points in
the plane, determine which of the query points are included in the convex hull of the data
points (see Figure 2.3 for a graphical representation of this definition). They proved that
such a problem fits into their paradigm for deferred data structures. (i) A single query point
g can be solved in O(n) time by computing the polar angles from ¢ to all data points. If the
range of angles is greater than 180°, then ¢ is included in the convex hull of the data points.
Otherwise, it is not. (ii) Given a set S of planar points, the points of S can be partitioned
into two subsets S; and Sy by the vertical line ¢ of equation z = u, where p is the median
of the z-coordinates of the points in S, in O(n) time [48]. The edges e, and ¢; of the upper
and lower hulls of the points of S, respectively, that intersect ¢ can be computed in O(n)
time [48]. If the point ¢ is inside the quadrilateral determined by e, and ¢;, then ¢ is included
in the convex hull of the data points. Otherwise, it is possible to know whether the answer
to ¢ is in S7 or Sy in constant time by testing if ¢ is to the right or to the left of /. Such
deferred data structure progressively computes the convex hull of the set of data points while
answering the queries. Their approach is based on the Marriage-before-conquest Hull
algorithm (described in Section 2.4.1).

Karp et al. [45] also described a deferred data structure that supports dominance search
queries: given a set S of points in a k-dimensional space and a query point ¢, report the
number of points in S dominated by ¢. This problem does not fit directly into their paradigm
as they used a multidimensional divide-and-conquer strategy to solve it.

In Section 5.2, we defined the related problem of supporting domination queries on a set
of planar points: given a set of data points and a set of query points, determine which of
the query points are above the staircase defined by the maxima set of the data points (i.e.,
which of the query points are not dominated by any of the data points). This formulation is
closer to the one of supporting point membership queries than the formulation of supporting
dominance search queries.

In Chapter 5, we describe synergistic deferred data structures that support rank and select
queries on a multiset taking advantage of the potential easiness in the data (i.e., some mea-
sures of the input order and the input structure), as well as, potential easiness in the queries
(i.e., some measure of the query order and the query structure) (Section 5.1). We define the
query order by a measure that captures how close the positions of two consecutive queries are
in terms of the number of pivots computed by the deferred data structure (i.e., the number of
nodes in the path between the nodes that represent consecutive queries in the recursion tree
of the structure).* We also extend these results to problems in Computational Geometry by
describing algorithms and deferred data structures supporting domination queries on a set
of planar points and point membership queries on the convex hull of a set of planar points
(Section 5.2 and 5.3).

In the following section, we lay the foundations for two compressed data structures en-
coding a multiset M taking advantage both of some measure of the input order and the input
structure, while supporting rank and select queries on M (Section 5.3).

4See Section 5.1.2 for a more formal description.
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2.5.3 Compressed Data Structures

In 2013, Barbay and Navarro [7] described how sorting algorithms in the decision tree model,
taking advantage of specificities of the input, directly imply compressed encodings of per-
mutations. By using the similarity of the execution tree of the algorithm MergeSort with
the Wavelet Tree data structure [57], they described a compressed data structure for en-
coding permutations supporting direct access (i.e. m()) and inverse access (i.e. 77!()). They
showed that if the permutation 7 over [1..n] is formed by p runs of sizes r4,...,7,, then
the compressed data structure encodes 7 in n(1 + H(rq,...,r,)) < n(l + log, p) bits, and
supports 7() and 7 !() in worst-case time within O(1 + log p/loglogn), and average time
within O(1+#H(r4,...,7,)/loglogn), when the argument is uniformly distributed over [1..n].

The main idea behind the construction of the data structure is the same as the adap-
tive sorting algorithm they described (independently described by Takaoka [63] and that we
reviewed in Section 2.3.2), which takes advantage of the number of runs and its sizes in
the permutation. The algorithm detects runs first, and then merges them pairwise, using
a MergeSort-like step. The detection of ascending runs can be done in linear time by a
scanning process identifying the positions ¢ in 7 such that 7 (i) > 7(i 4+ 1). Merging the two
shortest runs at each step further reduces the number of comparisons, making the running
time of the merging process adaptive to the entropy of the sequence of the sizes of the runs
(i.e., a form of input order). The merging process is then represented by a tree with the
shape of a Huffman tree [40] for the distribution of the sizes of the runs. Recording in a
bit vector the results of each comparison performed by the algorithm in each node of the
Huffman-shaped tree is enough to encode the permutation, and to support 7() and 7=*() on
individual values of m without decompressing the whole encoding. We draw inspiration from
this result to design compressed data structures encoding a multiset that take advantage of
the input structure, in addition to the measure of input order considered by Barbay and
Navarro [7], while supporting rank and select on it (Section 5.1.3).

This concludes the description of the results relevant to this work. In the following
chapter, we describe the contributions of this work by designing algorithms for merging
sorted sets and merging maxima sets and convex hulls, the latter two in the plane.
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Chapter 3
Adaptive Merging

A cornerstone of our approach to present synergistic solutions for sorting multisets, computing
maxima sets, and computing convex hulls, is the design of merging algorithms for those
structures. We devote this chapter to the study of algorithms for merging sorted sets, maxima
sets, and convex hulls. Those merging problems are interesting in their own right, both for
their computational complexity and for their applications [24, 5].

Demaine et al. [24] described an instance optimal algorithm for merging sorted sets, based
on the sorting algorithm MergeSort [49, Section 5.2.4]. We correct their analysis in a minor
way (Section 3.1.1). We describe a new instance optimal algorithm Quick Set Union for
merging sorted sets (Section 3.1.2), which is more suitable to extend to supporting rank
and select queries on a multiset. As its name indicates, it is based on the sorting algorithm
QuickSort [38].

We generalize the algorithm Quick Set Union, and its corresponding analysis to merging
maxima sets in the plane by describing and analyzing the algorithm Quick Maxima Union
(Section 3.2). To the best of our knowledge, this is the first algorithm that merges maxima
sets.

We also generalize the algorithms Quick Set Union and Quick Maxima Union to merg-
ing convex hulls in the plane by describing and analyzing the algorithm Quick Hull Union
(Section 3.3), which requires more advanced techniques. Concerning the merging of convex
hulls in the plane, Barbay and Chen [5] described an algorithm for merging k& > 2 convex
hulls. Barbay and Chen’s algorithm is directly inspired by the algorithm described by De-
maine et al. [24] for merging sorted sets. Both algorithms compute the merged structure (a
sorted multiset in the algorithm described by Demaine et al. [24], and a convex hull in the
algorithm described by Barbay and Chen [5]) from left to right.

In Section 3.4, we discuss some issues related to the measures of difficulty we defined to
evaluate our algorithms.

3.1 Merging Sorted Sets

We formally define the merging sorted sets problem as follows:

MERGING SORTED SETS: Given p sorted sets A,..., A,, compute the sorted union S =
Ay U---UA, of the p sorted sets. We refer to the output S as the merged set.
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We review an instance optimal algorithm! described by Demaine et al. [24] for merging
sorted sets (Section 3.1.1), which we name Sorted Set Union?. We describe a new instance
optimal algorithm for merging sorted sets (Section 3.1.2), which prepares the ground for the
multiselection algorithm (Section 5.1.1) and the deferred data structures that answer rank
and select queries on a multiset (Section 5.1.2).

3.1.1 Algorithm Sorted Set Union

In 2000, Demaine et al. [24] described the algorithm Sorted Set Union, an instance opti-
mal algorithm for merging sorted sets. The algorithm scans the p sorted sets from left to
right identifying blocks of consecutive elements in the sorted sets that are also consecutive
in the merged set S (i.e., the output). See Figure 3.1 for a graphical representation of such
a decomposition, on a particular instance of the merging sorted sets problem. It inserts the
smallest element of each sorted set in a heap. At each step, it deletes from the heap all
the elements whose values are equal to the minimum value v of the heap. If more than one
element is deleted, it knows the multiplicity of v in the merged set S, and outputs v and its
multiplicity. The blocks corresponding to elements of value with multiplicity greater than
1 contain only this element. For each sorted set that contains v, the algorithm adds to the
heap the element immediately following v. On the other hand, if there is only one element
of minimum value v, the algorithm extracts from the heap an element whose value u is the
second minimum in the heap, and executes a doubling search?® for the value u in the sorted
set A that contains v. Once the algorithm finds the insertion rank r of w in A (i.e., the
number of elements whose values are less than u), it identifies a block in A of consecutive
positions where the multiplicities of all the elements in the block are 1 in the merged set S
(i.e, in A, all the elements whose positions are to the left of r form the block). This block is
output, and its elements are discarded from future iterations of the algorithm. The process
is repeated until all the elements are discarded. In a minor way, we correct the analysis of
the algorithm Sorted Set Union as follows:

g1 g3 g4 g8
g2 g5
p ol .

Figure 3.1: An instance I of the merging sorted sets problem computing the union
of p = 3 sorted sets, and a partition certificate m of I. In each sorted set A, the
entry Ali] is represented by a point of x-coordinate A[i]. The sizes of the blocks
that form the sets are noted. The sizes g4, g5 and gg are equal to 1 because they
correspond to elements of equal value, and they induce the 4-th member of © with
value my4 equal to 3. The vertical bars separate the interval members of 7.

'Demaine et al. [24] did not claim that this algorithm is instance optimal, though Afshani et al. [1] did.

2They originally named it “Adaptive” and later [25] introduced another one as “Small Adaptive”. We
opted for a more descriptive name.

3Doubling search is a technique for searching sorted unbounded arrays in which an element of rank r is
found by performing 2logr comparisons [13]. See Section 2.2 for details.

25



The Sorted Set Union algorithm partitions the sorted sets into blocks. Those blocks
induce a partition certificate m of the merged set S into intervals such that any singleton
corresponds to a value that has multiplicity greater than 1 in the sorted sets, and each
other interval corresponds to a block, contained in a single sorted set, whose elements have
values with multiplicities equal to 1 in the sorted sets. Each interval member i of 7 has
a value m; associated with it: if the member 7 of 7 is a block whose elements have values
with multiplicities equal to 1, then m; is 1, otherwise, if the member ¢ of 7 is a singleton
corresponding to a value of multiplicity ¢ > 1, then m; is ¢q. If the sorted sets are formed
by 0 blocks of sizes ¢, ..., gs such that these blocks induce a partition certificate 7 of size y
whose interval members have values my, ..., m,, then we express the number of comparisons
performed by algorithm Sorted Set Union as within

o (gloggi—l—i:bg <£)> .

=1

This number of comparisons is within a constant factor of the number of comparisons per-
formed by any other algorithm computing the merged set of those sorted sets (i.e., the
algorithm is instance optimal). Any algorithm for merging sorted sets must certify that the
elements of some blocks have multiplicities 1 in the merged set, and potentially that some
other elements have multiplicities greater than 1 in the merged set. Demaine et al. [24] de-
scribed the concept of proof that captures such certifications, and using theirs arguments,
one can prove that the length of the shortest binary encoding of such a proof for an instance
I is the quantity S0 logg; + 32X, log ( nf) (the quantity claimed in their work [24] is in-
correct, as they considered the second term as the sum over all the distinct values of the
output). Hence, given an instance I of such a problem, this quantity is a lower bound on
the number of comparisons performed by any correct algorithms on I, in the decision tree
model. In the following section, we describe a new instance optimal algorithm for merging
sorted sets, which is based on a distinct paradigm, more suitable for extending to supporting
queries.

3.1.2 Algorithm Quick Set Union

Given p sorted sets, the algorithm Quick Set Union computes the merged set S of the p
sorted sets. As its name indicates, the algorithm is directly inspired by the QuickSort [3§]
algorithm. It computes a pivot u, which is the median of the set formed by the elements at
the middle positions of the sorted sets. It partitions each sorted set into potentially three
sorted subsets: a subset formed by those elements less than pu, a singleton subset formed
by the element equal to u, and a subset formed by those elements greater than p. The
partition is done by performing doubling searches for the value p in all sorted sets, starting
at both ends of each sorted set in parallel. If the multiplicity of the value u is equal to
1 in the sorted sets, then in the sorted set A that contains u, the algorithm identifies the
block B (containing x) of consecutive positions such that the value of each element of B has
multiplicity 1 in S. The block B is identified using doubling searches in A for the element
[ ¢ A of maximum value to the left of u, and for the element r ¢ A of minimum value to
the right of p. Once the sorted sets have been partitioned by the value pu, the algorithm
computes the elements [ and r in time linear in the number of sorted sets. The algorithm
outputs B, and discards its elements from future iterations. The algorithm recurses on the
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sorted subsets whose elements are smaller than ! and on the sorted subsets whose elements
are greater than r. (See Algorithm 1 for a more formal description).

Definition 6. Given p sorted sets, the median of the middles is the median of the set M
formed by the elements at the middle positions of the sorted set. Fach element of M 1is the
median of the sorted set that contains it.

Algorithm 1 Quick Set Union

Input: p sorted sets A;,..., A,
Output: The merged set S=A;U---UA,
1: Compute the median pu of the mlddles note A; for j € [1..p] the sorted set containing /;
2: Partition the p — 1 sorted sets by the value p, skipping the sorted set A;;
3: Find the maximum / (minimum r) among the elements smaller (resp., greater) than p in
all sorted sets, except Aj;
4: Compute the insertion ranks of [ and r in A;, starting at the position of y;
5: Output the block in A; whose elements have values between [ and r;
6: Recurse on the elements smaller than or equal to [ and on the elements greater than or
equal to r.

The number of comparisons performed by algorithm Quick Set Union is asymptotically
the same as the number of comparisons performed by the algorithm Sorted Set Union
described in the previous section. We divide the proof into two lemmas. We first describe an
asymptotic upper bound on the overall number of comparisons performed by all the doubling
searches of algorithm Quick Set Union (i.e., Steps 2 and 4 of Algorithm 1).

Lemma 1. Let ¢1,...,gxr be the sizes of the k blocks into which the algorithm Quick Set
Union partitions the sorted set A. The overall number of comparisons performed by the
doubling searches of the algorithm Quick Set Union in A is within O(Zle log g;).

Proof. In A, every time the algorithm finds the insertion rank of one of the medians of the
middles, or, in case that A contains the median of the middles, the insertion rank of [ and r,
it partitions A by a position separating two blocks, or yields that all the elements of A are
less than p or greater than p. These doubling search steps can be represented as a tree (see
Figure 3.2 for a tree representation of a particular instance). Each node of the tree corre-
sponds to a step. Each internal node has two children, which correspond to the two subsets
into which the step partitions A. The cost of each step is less than four times the logarithm of
the size of the child subset with smaller size, because of the two doubling searches in parallel.
The leaves of the tree correspond to the blocks themselves.
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Figure 3.2: The tree that represents the doubling searches in a sorted set A formed
by four blocks of respective sizes 2, 4,2, 8. The sizes of the subsets are noted in each
node. Each internal node has two children, which correspond to the two subsets
into which the recursive steps partition A: those blocks to the left of the median u
and those blocks to the right of the median pu.

At each step, the total cost is bounded by eight times the sum of the logarithms of the
sizes of the leaf subsets: this is proven by induction over the number of steps. If the number
of steps is zero then there is no cost. For the inductive step, if the number of steps increases
by one, a new step is carried out and a leaf subset is partitioned into two new subsets. At this
step, a leaf of the tree is transformed into an internal node and two new leaves are created.
Let a and b such that a < b be the sizes of the new leaves created. The cost of this step is
less than 4loga. The cost of all the steps then increases by 4log a, and hence the sum of the
logarithms of the sizes of the leaves increases by 8(log a + logb) — 8log(a + b). But if a > 4,
then 2log(a + b) < loga + 2logb. The result follows. O

The step that computes the median p of the middles of the p sorted sets performs a
number of comparisons linear in p. The step that finds the maximum [ (resp., minimum r)
among the elements smaller (resp., greater) than p performs a number of comparisons linear
in p. As shown in the following lemma, the overall number of comparisons performed during
both steps (i.e., Steps 1 and 3 of Algorithm 1) is within O(>_F | log (75)), where my,...,m,
are the values of the interval members of the partition certificate 7 (see Section 3.1.1 for the
definition of ) and p is the number of sorted sets.

Consider the instance I depicted in Figure 3.3 for an example illustrating the origin of the
term log ( s ) In I, there is a value v that has multiplicity m > 1 and the rest of the values
have multiplicity 1. The elements with value v are present at the end of the last m sorted sets
and the rest of the sorted sets are formed by only one block each. In I, the elements of the
sorted set A; are greater than the elements of the sorted set A1, for i € [1..p —m]. During
the computation of the medians of the middles, the number of comparisons involving elements
of value v is within O(log (?)). The algorithm computes the median p of the middles and
partitions the sorted sets by the value p. In each recursive call that involves sorted sets that
contain elements of value v, the number of sorted sets is reduced by half. This is repeated
until one occurrence of 1 belongs to one of the last m sorted sets. The number of comparisons
involving elements of value v up to this step is within O(mlog £) = O(log (?)), where log £
corresponds to the number of steps where i does not belong to the last m sorted sets. The
next recursive call will necessarily choose one element of value v as the median of the middles.

Figure 3.3: An instance I of the merging of sorted sets problem formed by p sorted
sets. For each sorted set A the entry Ai] is represented by a point of z-coordinate
Ali]. In I, there is an element of value v with multiplicity m, which is present in
the last m sorted set, and the rest of the sorted sets are formed by only one block
each.
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Lemma 2. Given an instance I formed by p sorted sets, let mq, ..., m, be the values of the
members of the partition certificate m of size x of I. Consider the steps that compute the
medians of the middles and that find the elements | and r in the algorithm Quick Set Union.
The overall number of comparisons performed during those steps is within O(>_ % log (n’i,)>
Proof. We prove this lemma by induction over the size x of m and the number of sorted sets
p. The number of comparisons performed by one of these steps is linear in the number of
sorted sets in the subinstance (i.e., ignoring all the empty sorted sets of this subinstance). Let
T (m, p) be the overall number of comparisons performed during the Steps 1 and 3 of algorithm
Quick Set Union. We prove that T (7, p) < 3% m;log £ — p. Let p be the first median of
the middles computed by the algorithm. Let a and b be the number of sorted sets that are
completely to the left and to the right of u, respectively. Let ¢ be the number of sorted sets
that are partitioned by p. Let 7, and 7, be the partition certificates yielded to the left and to
the right of i, respectively. Then, T (m, p) = T (7., a+c)+T (m, b+ c) 4 p because of the two
recursive calls and the number of comparisons performed by one execution of those steps. By
induction, 7 (74, a +¢) < 371 mylog ©¢ —a — cand T(m,b+c) < 3730 mj;log bmijc —b—c.
Hence, we need to prove that a+b < >-X*, m;log (1 + a%c) +> 30, mylog (1+ ﬁ“c), but this
is a consequence of Y X, m; > a+ ¢, Z;(il m; > b+ c (the number of blocks is greater than
or equal to the number of sorted sets); a < b+ ¢,b < a + ¢ (at least £ sorted sets are left to
the left and to the right of p); and log (1 + %)z >y fory <. m

Similarly to what happens in the analysis of the number of comparisons performed by the
algorithm Sorted Set Union, the number and sizes of the blocks into which the algorithm
Quick Set Union partitions the sorted sets (and as a consequence, the partition certificate
7) are independent of the algorithm, and are uniquely determined by the relations between
the elements in the sorted sets. Combining Lemmas 1 and 2 yields an upper bound on the
number of comparisons performed by the algorithm Quick Set Union:

Theorem 1. Let Ay,..., A, be p sorted sets formed by 0 blocks of sizes g1, ..., g5 such that
those blocks induce a partition certificate m of size x of the merged set whose interval members
have values my,...,m,. The algorithm Quick Set Union computes the merged sorted set
S=AU---UA, performing a number of comparisons within

4 X
e <Z log g; + Zlog (72)> )
i=1 i=1 v

The number of comparisons performed by the algorithms Sorted Set Union and Quick
Set Union are asymptotically the same. So the algorithm Quick Set Union is instance
optimal as well. In the following sections, we generalize the algorithm Quick Set Union to
algorithms for merging maxima sets and for merging convex hulls.

3.2 Merging Maxima Sets

We formally define the merging maxima sets problem as follows:

MERGING MAXIMA SETS: Given an instance / of ¢ maxima sets M, ..., M, in the plane,
compute the maxima set M of their union M; U ---U M,. The points of each of the
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maxima sets are given in sorted order.* We refer to the output M as the merged mazxima
set.

In the following section, we describe the algorithm Quick Maxima Union for merging
maxima sets in the plane. Similarly to the algorithm Quick Set Union for merging sorted
sets (described in Section 3.1.2), the algorithm Quick Maxima Union identifies blocks of con-
secutive points in the maxima sets that form part of the merged maxima set (i.e., the output),
in time logarithmic in the number of points in the blocks. One important difference with
the algorithm Quick Set Union is that it also discards blocks of consecutive points in the
maxima sets that are dominated by the same point, in time logarithmic in the number of
points in the blocks. The algorithm Quick Maxima Union generalizes the algorithm Quick
Set Union, and is a building block towards the synergistic algorithm that computes the
maxima set of planar points, described in Section 4.2.2.
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Figure 3.4: An instance of the merging maxima sets problem formed by three
maxima sets. The three open disks represent the points at the middle positions in
the maxima sets. a) The vertical bar represents the line ¢ of equation x = u, where
i is the median of the z-coordinates of the points at the middle positions in the
maxima sets. The point p is the point of maximum y-coordinate to the right of £.
b) The region dominated by p is indicated by solid vertical and horizontal straight
semi-line through p. Among the points that are not dominated by p and that do
not belong to the maxima set N that contains p, let [ be the point of maximum
x-coordinate to the left of p, and let r be the point of maximum y-coordinate to the
right of p. B is the block of consecutive points in IV that are in the region determined
by the vertical line of equation x = [, and the horizontal line of equation y = r,,.

3.2.1 Description of Algorithm Quick Maxima Union

The central idea of algorithm Quick Maxima Union is to choose a point p that forms part of
the merged maxima set of the ( maxima sets, discards all the points dominated by p, and
partitions the ¢ maxima sets in a balanced way. Such a balance is achieved by choosing p
as the point of maximum y-coordinate to the right of the vertical line ¢ of equation = = p,
where 4 is the median of the z-coordinates of the points at the middle positions in the lists
of points that represent the maxima sets. See Figure 3.4 for a graphical representation of
some of the steps of the algorithm. The algorithm computes the median y in time linear in

4The points of each of the maxima sets are given in sorted order by their z-coordinates or y-coordinates,
which are equivalent in the context of maxima sets in the plane: if the points are sorted in ascending order
by their x-coordinates, then their y-coordinates are sorted in decreasing order.
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Algorithm 2 Quick Maxima Union

Input: A set of ( maxima sets
Output: The merged maxima set of the union of the ( maxima sets
1: Compute the median p of the x-coordinates of the points at the middle position in the
maxima sets;
2: Partition the maxima sets by the vertical line ¢ of equation x = u;
3: Find the point p of maximum y-coordinate to the right of ¢, note N the maxima set
containing p;
4: Discard all points dominated by p;
5: Find the point [ of maximum z-coordinate such that [, > p,, in all the maxima sets
except IV;
6: Find the point r of maximum y-coordinate such that r, > p,, in all the maxima sets
except IV;
7: Output the block B of consecutive points in N that are in the region determined by the
vertical line of equation = = [, and the horizontal line of equation y = ry;
8: Recurse separately on the non-discarded points to the left and to the right of p.

the number of maxima sets [15]. The point p is identified by performing ¢ doubling searches:
each searches for the value p in the list of z-coordinates of the points in each of the ( maxima
sets. Those doubling searches guarantee that the algorithm Quick Maxima Union identifies
blocks of consecutive points in the maxima sets that form part of the merged maxima set
(i.e., the output), in time logarithmic in the number of points in the blocks, and that it
discards blocks of consecutive points in the maxima sets that are dominated by the same
point, in time logarithmic in the number of points in the blocks. The point p is the one
of maximum y-coordinate over the points found by such doubling searches. The algorithm
takes advantage of the fact that the points in the maxima sets are given in sorted order.

In each maxima set V| the algorithm then discards all the points dominated by p, through
doubling searches for p, and p, in the z- and y-coordinates, respectively, of the points in V.
The points dominated by p do not belong to the maxima set that contains p. The choice of
p guarantees that at least half of the maxima sets have points dominated by p or to the left
of p, and at least half of the maxima sets have points dominated by p or to the right of p.°

Let N denote the maxima set that contains p. In N, the algorithm identifies a block B
of consecutive points that forms part of the merged maxima set M (p is contained in B),
and outputs all the points in B. For that, among the points that are not dominated by
p and that do not belong to N, the algorithm computes the points [ and r of maximum
x-coordinate to the left of p and of maximum y-coordinate to the right of p, respectively. In
each maxima set, the candidates for [ and r are the points immediately to the left of the
leftmost dominated point and immediately to the right of the rightmost dominated point,
respectively. The algorithm computes [ and r in time linear in the number of maxima sets,
once the points dominated by p are discarded.

Finally, the algorithm recurses separately on the non-discarded points to the left of p and
on the non-discarded points to the right of p. See Algorithm 2 for a more formal description.
Next, we analyze the time complexity of algorithm Quick Maxima Union.

5Those two sets are not necessarily disjoints.
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3.2.2 Complexity Analysis of Algorithm Quick Maxima Union

Each algorithm for merging maxima sets must certify that blocks of consecutive points in
the maxima sets are dominated, or are indeed in the merged maxima set (i.e., the output).
We formalize here the notion of a mazima partition certificate, that permits to check the
correctness of the output potentially in less time than that needed to recompute the output
itself. A maxima partition certificate of an instance is a partition of the points of the maxima
sets into regions so that, in each region, it is “easy” to certify whether the points form part
of the output or not. We define a “language” of basic “arguments” for such certificates:
domination (which justify the discarding of points from the input) and mazimality (which
justify the presence of points in the output) arguments, and their key positions in the instance.
A maxima partition certificate will be verified by checking each of its arguments.

Given a maxima set M, let M[a] denote the a-th point in M, and let M[b..c] denote the
block of consecutive ¢ — b+ 1 points corresponding to positions from b to ¢ in M.

Definition 7. Given mazima sets M, Ny,... Ny, (M[a] D Ni[by..c1], ..., Ni[bs..ci]) is a domi-
nation argument if the point M [a] dominates all the points in the blocks N1[b;..c1], ..., Ny[bs..ci].

Lemma 3. A domination argument (M[a] D Ny[by..c1], ..., N¢[bi..ci]) can be checked in O(t)
coordinate comparisons.

It is not enough to “eliminate” all the points that cannot be part of the output. Cer-
tifying that the remaining points cannot be “eliminated” still requires additional work: a
correct algorithm must justify the exactness of its output. To this end, we define maximality
arguments.

Definition 8. Given mazima sets M, Ny,..., Ny, (M[a..b] = Ni[cy..dq], ..., Ni[ep..dy]) is a

maximality argument if either the point M[b] dominates the points Ni[ci], ..., Ni[ci] and
the x-coordinates of the points Ni[c; — 1], ..., Ni[c; — 1] are less than the x-coordinate of the
point Mla] or the point M[a] dominates the points Ni[di],..., Ni[d;] and the y-coordinates
of the points Ny[dy + 1], ..., Ni[d; + 1] are less than the y-coordinate of the point M.

If (Mla..b] 4 Ni[ei..dy], ..., Nilci..dy]) is a maximality argument, then the points in the
block Ma..b] are maximal among the maxima sets M, Ny, ..., N;.
Lemma 4. A maximality argument (M[a..b] 4 Nilc1..dq], ..., Ni[es..di]) can be checked in

O(t) comparisons.

Those atomic arguments combine into a general definition of a maxima partition certificate
that any correct algorithm for merging maxima sets in the decision tree model can be modified
to output (without increasing the magnitude of its computational complexity):

Definition 9. Given an instance I of the merging maxima sets problem, a maxima partition
certificate C' of I is a partition of the points into regions, so that in each region, the points
of I that belong to the output can be decided using a constant number of domination and
mazimality arguments. The size of C' is the number of regions which compose it.

We divide the analysis of the complexity of algorithm Quick Maxima Union into two
lemmas. We first bound the cumulated number of coordinate comparisons of the doubling
searches for the medians of the xz-coordinates of the points at the middle positions of the
maxima sets (i.e., Step 2 of Algorithm 2) and the doubling searches that discard or output
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points (i.e., Steps 4 and 7 of Algorithm 2). The algorithm partitions the maxima sets into
blocks of consecutive points, where each block is either discarded because it is dominated,
or output because it forms part of the merged maxima set. Each block belongs to some
argument of the maxima partition certificate computed by the algorithm.

Lemma 5. Consider a mazima set N. Let sq,...,sp be the sizes of the 8 blocks into which
the algorithm Quick Maxzima Union divides N. The cumulated number of coordinate com-
parisons performed by the doubling searches of the algorithm Quick Maxzima Union in N is

within O(Z?Z1 log s;).

Proof. In the maxima set IV, every time the algorithm executes a doubling search for the
insertion rank of one of the medians p of the z-coordinates of the points at the middle
positions in the maxima sets, it finds a position d inside a block B whose points will be
discarded or output. The doubling searches for the insertion rank of p, and p, start from
position d, and partition N into positions separating the blocks to the left of B, the block B
itself, and the blocks to the right of B.

Similarly to the proof of Lemma 1 for Algorithm 1 on multisets, the steps that combine
those doubling searches can be represented as a tree. Each internal node has two children,
which correspond to the two subsets into which the recursive steps partition N: those blocks
to the left of B and those to the right of B. At each node, the number of coordinate
comparisons is bounded by O(log s + log s), where s is the minimum between the sum of
the sizes of the blocks to the left of B and the sum of the sizes of the blocks to the right of
B, and sp is the size of the block B. The size of each internal node is the size of the block
discarded or output in this step. The size of each leaf is the sum of the sizes of the blocks in
the child subset represented by this leaf.

At each step, the total number of coordinate comparisons is bounded by eight times the
sum of the logarithms of the sizes of the nodes in the tree. This is proved by induction over
the number of steps. If the number of steps is zero then there is no cost. For the inductive
step, if the number of steps increases by one, then a new step is done and a leaf subset
is partitioned into two new subsets. At this step, a leaf of the tree is transformed into an
internal node and two new leaves are created. Let w and z such that w < z be the sizes of the
new leaves created. Note that w and z are the sum of the sizes of the blocks to the left and
to the right, respectively, of the block B. The cost of this step is less than 4logw + 4 log spg.
The cost of all the steps then increases by 4 log w+4log sp, and hence eight times the sum of
the logarithms of the nodes in the tree increases by 8(log w+log z+log sp —log(w + z + sp)).
As w > 3 and w > sp the result follows. O]

We bound the number of coordinate comparisons of the steps that compute the median p
of the z-coordinates of the points at the middle positions in the maxima sets (i.e., Step 1 of
Algorithm 2) and the ones that find the points p, [ and r (i.e., Steps 3, 5, and 6 of Algorithm 2)
in the Quick Maxima Union algorithm. The number of coordinate comparisons performed
by one execution of those steps is bounded by the number of maxima sets in the subinstance.
The partition of the maxima sets by ¢ and the steps that discarded or output points decrease
the number of maxima sets in the subinstances. We state the following lemma in function of
the maxima partition certificate C' computed by the algorithm Quick Maxima Union.

Lemma 6. Given an instance formed by ( mazima sets, the cumulated number of coordinate
comparisons performed during the steps that compute the median p and that find the points p,
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[ and r of algorithm Quick Mazima Union is within O(Zle log (wi)), where § is the size of
the mazima partition certificate C' computed by the algorithm, and mq, ..., ms is a Sequence
where m; is the number of blocks that form the i-th argument of C.

Proof. We prove this lemma by induction over ¢ and (. Let T'(d, {) be the cumulated number
of coordinate comparisons performed during the execution of the steps that compute the
medians p of the z-coordinates of the middles points (i.e., Step 1) and during the steps that
find the points p, [ and r (i.e., Steps 3, 5 and 6) in the algorithm Quick Maxima Union. We
prove that T'(4,¢) < Zle m; log mi —(, where m; is the number of maxima sets whose blocks
form the ¢-th argument of C. Let l,u be the first median of the z-coordinates of the middles
points of the maxima sets computed by the algorithm. Let ¢ and d be the number of maxima
sets that have non-discarded points only above of p, and only to the right of p,, respectively.
Let b be the number of maxima sets that have non-discarded points above p, and to the right
of p;. Let 6. and 94 be the number of arguments computed by the algorithm above p, and to
the right of p,, respectively. Then, T'(9,() = T'(6.,c+b) +T(d4,d+b) 4 ¢ because of the two
recursive calls and one execution of the Steps 1, 3, 5 and 6. By the Induction Hypothesis,
T(6s,c+b) < 30 milog &t — ¢ — b and T(84,d + b) < Zjd m;log ¥ — d — b. We need

m; =1 "
to prove that ¢+ d < Zf;l m; log (1 + ﬁ) + Z?"’:l m; (1 + d%b), but tflis is a consequence
of Zf;l m; > ¢+ b, Zjdzl mj > d+ b (the number of blocks is greater than or equal to the
number of maxima sets); ¢ < d+b,d < ¢+ b (at least g maxima sets are left to the left and
to the right of p1); and log (1 + %)x >y for y < . O

Given an instance I of ( maxima sets, the size of the maxima partition certificate com-
puted by the algorithm Quick Maxima Union on [ is proportional to the minimum size among
all possible partition certificates for I. We formalize this result as follows:

We describe the algorithm Left-to-Right for merging maxima sets. Such an algorithm
is directly inspired by the algorithm Sorted Set Union for merging sorted sets [24] (de-
scribed in Section 3.1.1). Though the number of comparisons performed by the algorithm
Left-to-Right could be greater than the number of comparisons performed by the algo-
rithm Quick Maxima Union on an instance I, the size (i.e., the number of regions) of the
maxima partition certificate computed by the algorithm Left-to-Right is minimum among
valid maxima partition certificates for I.

The algorithm Left-to-Right chooses the first point from the left of each maxima set,
and computes the points u and v of maximum and second maximum y-coordinate among
those points, respectively. Let N be the maxima set that contains u. Let a be the position of
win N (i.e., u = Nla]). The algorithm searches for the insertion rank of v, in N. Let b be the
position of the rightmost point g in N such that g, > v,. The block Na..b] forms part of the
merged maxima set (i.e., the output). The algorithm outputs the block N|a..b] and discards
it for future iterations. If ¢ dominates v, the algorithm discards all points dominated by g.
The algorithm restarts the computation on the non-discarded points.

Lemma 7. Given an instance I formed by ( mazima sets, the algorithm Left-to-Right
computes a mazxima partition certificate of minimal size for I.

Proof. Let u and v be the points with maximum and second maximum y-coordinate among
the first points from left to right of the non-discarded points of the maxima sets. Let N be
the maxima set that contains u. Then, all points in N with y-coordinate greater than v, form
part of the merged maxima set, and v is the point that allows the algorithm to output the
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greatest number of consecutive points including v in N. Let g and h be consecutive points
in N such that g, > v, > h,. If g dominates v, then g is the rightmost point in N that
dominates v. Hence, g is the point in N that dominates the maximum number of consecutive
points including v in the maxima set that contains v. Those two arguments are enough to
prove that the algorithm computes a maxima partition certificate with the minimal number
of arguments. O

The maxima partition certificate computed by the algorithm Quick Maxima Union in any
instance I has size proportional to the size of the partition certificate of minimum size among
all valid maxima partition certificates for I:

Lemma 8. The algorithm Quick Mazima Union compules a maxima partition certificate
whose size is a constant factor of the size of the mazxima partition certificate of minimal size.

Proof. Consider an instance I. In I, suppose that there is a block B of consecutive points
in a maxima set N that the algorithm Left-to-Right outputs. Suppose that the algorithm
Quick Maxima Union running on I computes a point p that is contained in B, such that p
is the point of maximum y-coordinate among the points of z-coordinates greater than some
of the medians (i.e., p is the point computed in Step 3 of Algorithm 2). Let r be the point
of maximum y-coordinate such that » ¢ N and r, > p, (i.e., r is the point computed in Step
6 of Algorithm 2). Let h be the point used by the algorithm Left-to-Right to identify the
rightmost point in B. By definition, r, < h,. Let [ be the point of maximum z-coordinate
such that [ ¢ N and I, > p, (i.e., [ is the point computed in Step 5 of Algorithm 2). Let
u be the point used by the Left-to-Right algorithm to discard dominated points before
it identifies the points of B. By definition, [ is the same point as u. The algorithm Quick
Maxima Union therefore outputs (at least) the block B using a constant number of arguments.
The result follows. m

Combining Lemmas 5 and 6 yields an upper bound on the number of coordinate compar-
isons performed by the algorithm Quick Maxima Union in function of the size of the partition
certificate computed by it.

Theorem 2. Given ( mazima sets, the algorithm Quick Maxzima Union computes the merged
maxima set of the ¢ maxima sets performing a number of coordinate comparisons within

B 5 ¢
0] (Zlogsj + Zlog (m)) )
j=1 i=1 ¢

where 3 is the number of blocks of sizes s1,...,sg, respectively, in the maxima partition
certificate C' of minimum size d computed by the algorithm, and mq,...,mgs is a sequence
where m; is the number of blocks that form the i-th argument of C'. Such a number of
comparisons 1s worst-case optimal over instances formed by ¢ maxima sets that have mazxima
partition certificates C' of size § formed by 3 blocks of sizes sy, ..., sg such that my, ..., ms is
a sequence where m; is the number of blocks that form the i-th argument of C, in the decision
tree model.

Proof. We prove that the number of coordinate comparisons performed by the algorithm
Quick Maxima Union is asymptotically optimal in the worst case over instances formed by (
maxima sets that have maxima partition certificates C' of size § formed by [ blocks of sizes
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51,...,5g such that mq, ..., ms is a sequence where m; is the number of blocks that form the
i-th argument of C'.

The upper bound is a consequence of Lemma 5, 6, and 8. We describe the lower bound
below: it is a simple adversary argument, based on the definition of a family of “hard”
instances for each possible value taken by the parameters of the analysis, building over each
other.

First, we verify the lower bound for “easy” instances, of finite difficulty: general instances
of ( maxima sets of sizes r1, ..., 7. that admit a maxima partition certificate of constant size
(i.e., the merged maxima set M is formed by a constant number of blocks of consecutive
points in the maxima sets). Such instances require Q(Zle log ;) operations: no correct
algorithm can afford to ignore a single maxima set, which could contribute to the merged
maxima set M, and for each discarded maxima set it needs to certify that all points lie
underneath the staircase that represents M.

Such distributions of “elementary” instances can be duplicated to produce ¢ distributions
of elementary subinstances and concatenated to define a distribution of harder instances.
Suppose that such elementary subinstances are pairwise independent, in the sense that none of
the points in one subinstance dominate or are dominated by the points in another subinstance.
If the maxima sets of those elementary subinstances are combined to produce a total of (
maxima sets in the hard instance, then any algorithm that merges such ¢ maxima sets must
distinguish in each of the 0 elementary subinstances, which of the { maxima sets compose
such a subinstance. Hence, following similar arguments to the one described by Demaine et

al. [24], a lower bound of Q(Zle log (Wi)) is obtained.

Combining the lower bound for computing the maxima sets of the elementary instances
with the lower bound for distinguishing which of the ( maxima sets compose each elementary
subinstance, we obtain a lower bound of Q(Zle logs; + 520_, log (Wf)) O

The histories of the computation of the maxima set and of that of the convex hull are
strongly correlated: most of the results on one problem also generalize to the other one. Our
results on the merging of maxima sets similarly generalize to the merging of convex hulls,
yet they require more sophisticated techniques to identify dominant and eliminator blocks,

which we describe in the next section.

3.3 Merging Convex Hulls

We formally define the merging convex hulls problem as follows:

MERGING CONVEX HULLS: Given an instance of x convex hulls C,...,Cy in the plane,
compute the convex hull of their union C; U---UC}. The points of each of the convex
hulls are given in clockwise order.

The computation of the convex hull in the plane reduces to the computation of the upper
hull (the computation of the lower hull is symmetric, and completes it into the computation
of the convex hull) [48]. We focus here on the merging upper hulls problem:

MERGING UPPER HULLS: Given an instance of x upper hulls Uy, ..., U, in the plane, com-
pute the upper hull U of their union U; U --- U U,. The points of each of the upper
hulls are given in sorted order by their z-coordinates. We refer to the output U as the
merged upper hull.
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Algorithm 3 Quick Hull Union

Input: A set of x upper hulls
Output: The merged upper hull U

1: Compute the median p of the slopes of the edges at the middle positions of the x upper
hulls;

2: Identify the “pivot” point p that has a supporting line of slope u;

3: Partition the x upper hulls by the vertical line through p;

4: For each upper hull V| compute the (at most) two tangents of V' through p: the ones
to the left and right of p, and discard the blocks of consecutive points below the line
segments determined by the points of tangencys;

5: Output a block of points in the upper hull W containing p that forms part of the merged
upper hull, by computing common tangents between W and the other upper hulls;

6: Discard all points that lie below the line segments determined by the points in the
common tangents between W and the other upper hulls;

7: Recurse on the resulting upper hulls to the left and to the right of p.

We describe the algorithm Quick Hull Union for merging upper hulls and analyze its
time complexity. This algorithm is inspired by the algorithm Simplified Ultimate Planar
Convex Hull, described by Chan et al. [17], and by the algorithms Quick Set Union and
Quick Maxima Union described in previous sections. The Quick Hull Union algorithm is
an essential building block towards the synergistic algorithm for computing the convex hull
of planar points, described and analyzed in Section 4.3.2.

3.3.1 Description of Algorithm Quick Hull Union

In the context of merging upper hulls, in each of the upper hulls the points are given sorted by
their z-coordinates, and the slopes of the edges monotonically decrease from left to right. The
algorithm Quick Hull Union takes advantage of those facts: its pseudocode is described in
Algorithm 3. Similarly to the Quick Maxima Union, in each of the upper hulls, the algorithm
identifies blocks of consecutive points that form part of the merged upper hull U and blocks of
consecutive points that lie underneath U. The algorithm uses a divide-and-conquer approach
to take advantage of the positions of the points.

In each upper hull V', the edge at the middle position is the one whose slope is the median
among the slopes of the edges of V. Let p be the median of the slopes of the edges at the
middle positions of the upper hulls. Similarly to Kirkpatrick and Seidel’s algorithm [48]
(described and analyzed in Section 2.4.1), we show that the point p that has a supporting
line (see Definition 3 page 15) of slope u is a good candidate for discarding points that cannot
be part of U (i.e., the output). Note that the time complexity of computing x is linear in the
number x of upper hulls, but that the time complexity of pairing the points and computing
the median of the slopes of the lines through the pairs is linear in n, the number of points.

The algorithm Quick Hull Union identifies a “pivot” vertex p of the merged upper hull
U, and uses p to discard blocks of consecutive points that cannot be part of U. It computes
the median p of the slopes of the edges at the middle positions of the upper hulls, and
identifies p as the point that has a supporting line ¢ of slope u. Note that p is the extreme
point in the direction orthogonal to /. Taking advantage that in each upper hull V', the slopes
of the edges are sorted, the algorithm identifies the extreme point in the direction orthogonal
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to ¢ by performing a doubling search for the value p in the list of slopes of the edges of V.
(See Figure 3.5 for a graphical representation of these steps.)

To know which points are to the left and which ones are to the right of p, the algorithm
partitions the points in the upper hulls by the vertical line through p. Such partitioning
is carried out by performing a doubling search for the value p, in the x-coordinates of the
points in each upper hull.

2 / R \‘\
Figure 3.5: An instance of the merging upper hulls problem. The edges at the
middle positions of the upper hulls are marked by thick dashed segments, and the

one whose slope is the median i has been extended into a line. The straight line ¢
is the supporting line of slope p. Line ¢ passes through the “pivot” vertex p.

For each upper hull V| the algorithm then computes the (at most) two tangents of V/
through p: the one passing through a point to the left of p in V, and the one passing through
a point to the right of p in V. If all the points of V' are to the left or to the right of p, then the
algorithm only computes one tangent. In V| the algorithm discards the blocks of consecutive
points below the line segments determined by the points of tangency. It computes all the
tangents via doubling searches [5] (see Figure 3.6 for an example).

Figure 3.6: An instance of the merging upper hulls problem. The tangents of the
upper hulls through p are marked by dashed lines. The open disks mark the points
that are discarded because they are below the line segments defined by the points
of tangency.

Before the recursive step, in the upper hull W containing p, the algorithm identifies a
block B of consecutive points that forms part of the merged upper hull U (p is included
in B). The algorithm certifies that B forms part of U by computing common tangents
between a portion of W and the rest of the upper hulls. Computing a common tangent
between two upper hulls could be costly, but if there is a line separating them, then the
time complexity is logarithmic [58]. The algorithm takes advantage of this fact by using as
separating lines between such a portion of W and the rest of the upper hulls two tangents
through p computed in the previous step: the one of minimum slope to the left of p and the
one of maximum slope to the right of p (i.e., ignoring the portion of W in the same half plane
as the other upper hulls). Block B is determined by the common tangents passing through
the points nearest to p in W (one point to the left of p and the other one to the right).
To avoid the computation of all common tangents, the algorithm interweaves the different
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tangent computations (similarly to how Demaine et al.’s algorithm [24] interweaves doubling
searches to compute the intersection of sorted sets). We devote the rest of the section to
describe this step in more details.

We describe how to identify the part of B to the right of p (the left counterpart is sym-
metric). Let A be the tangent of maximum slope between p and the upper hulls to the right
of p (i.e., the tangent of maximum slope among those computed in the previous step of the
algorithm). Let W’ be the portion of the upper hull W containing p above A. The tangent
A separates W’ from the rest of the upper hulls. Among the common tangents between W’
and the upper hulls below A, let 7 be the one passing through the nearest point to p in W”.
Let ¢ and r be the points that lie in 7, such that ¢ belongs to W’ and r belongs to one of the
upper hulls below A. The point ¢ determines the end of the right portion of B (see Figure 3.7
for a graphical representation of those definitions).

B
— <~
Ny
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AN \3\ :\ T
AN ~
%% N \ ‘\\z\

Figure 3.7: The state of algorithm Quick Hull Union during an execution of the
step that computes the block B that forms part of the merged upper hull U. The
upper hull W contains the point p. A marks the tangent of maximum slope between
p and the upper hulls to the right of p. 7 marks the common tangent between the
portion of W above A and one of the upper hulls below \ passing through the point
nearest to p in W. The points ¢ and r lie in 7.

Given two upper hulls X and Y separated by a vertical line, Barbay and Chen [5] described
an algorithm that computes the common tangent 7 between them, in time within O(loga +
logb), where a and b are the positions of the points that lie in 7 in the sequences of points
representing X and Y, respectively. At each step this algorithm considers two points: one
from X and the other from Y, and in at least one upper hull, it can certify, in constant time,
if the point that lies in 7 is to the right or to the left of the point considered. A minor variant
manages the case where the separating line is not vertical: as the first step, in each upper
hull, the algorithm computes the supporting line of slope equal to the slope of the separating
line, by performing doubling searches.

To compute the point ¢ that determines the right portion of B, the algorithm Quick
Hull Union executes several instances of the algorithm described by Barbay and Chen [5] to
compute the common tangents between W' and the upper hulls below A, always considering
the same point u in W’ (\ is a separating line). Once all decisions about the point u in W’
are reached, the upper hulls below A can be divided into two sets: (i) those whose common
tangents pass through a point to the left of u in W and (ii) those whose common tangents
pass through a point to the right of w in W”’. If the set (i) is not empty, then the algorithm
stops the computation in the set (ii). For each upper hull V' in the set (ii), the algorithm
discards the block of points to the left of the penultimate point considered in V' (i.e., the
algorithm can certify that this block lies underneath the common tangent between W’ and
V). This step continues until there is just one instance running, and computes the tangent
7 in this instance. The algorithm discards all points to the left of r (i.e., all points that lie
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below the arc of the output that leaves W clockwise and follows 7).

After identifying the block B of the output, the algorithm recurses on the resulting upper
hulls to the left and right of p. In the following section, we analyze the time complexity of
algorithm Quick Hull Union.

3.3.2 Complexity Analysis of Algorithm Quick Hull Union

Similarly to the situation described in the analysis of the merging of maxima sets described
in Section 3.2.2, each algorithm that solves the merging upper hulls problem must certify
that some blocks of points in the upper hulls cannot participate in the merged upper hull
U, and that some other blocks are indeed in U. We formalize the notion of a hull partition
certificate, which can be used to check the correctness of the output in potentially less time
than what would be required to recompute the output itself. A hull partition certificate of
an instance of k upper hulls is a partition of the points of the upper hulls into regions so that
in each region, it is “easy” to certify whether the points form part of the output or not. This
notion of hull partition certificate yields a measure of the difficulty of an instance (“short”
partition certificates characterize “easy” instances, while “long” partition certificates suggest
“difficult” instances). We define a language of basic arguments for such hull partition cer-
tificates: eliminator arguments justify the discarding of points from the input and convex
arguments justify the presence of points in the output. A hull partition certificate is formed
by eliminator and convex arguments and will be verified by checking each of its arguments.
(See the two examples of arguments on a simple instance depicted in Figure 3.8.)

Via ) W[b]/ Va] l
/&d]\ Wil 2 LIRNA
X [C] X [e] ﬁ\\
a) b)

Figure 3.8: Example of arguments: a) an eliminator argument formed of 3 blocks
and b) a convex argument formed of 4 blocks. In both arguments, note that the
blocks of V' end or start in V[a], because the algorithm only needs to specify the
position a inside V.

Given an upper hull V', let V'[a] denote the a-th point in V', and let V' [b..c] denote the block
of ¢ — b+ 1 consecutive points corresponding to the positions from b to ¢ in V', respectively.

Definition 10. Consider the upper hulls V., W, and X . Let € be the straight line through the
points V]a] and Wb]. (V[a], W[b] D X|c..d..€]) is an eliminator argument if the points of the
block X|c..e] are between the vertical lines through V[a] and Wb], the slope of £ is between
the slopes of the two edges in X that precede and follow the point X|[d], and the point X|[d]
lies below (.

If (V]a], W[b] D X[c..d..e]) is an eliminator argument, then the points of the block X|c..e]
cannot contribute to the merged upper hull.

Several blocks that are “eliminated” by the same pair of points can be combined into
a single argument. Those eliminator arguments are the ones used in the Steps 4 and 6 of
Algorithm 3 to discard points that cannot be part of the merged upper hull.

40



It is not enough to discard some points that do not contribute to the output. Certify-
ing that the remaining points cannot be discarded still requires additional work: a correct
algorithm must justify the exactness of its output. To this end we define convex arguments.

Definition 11. Consider the upper hulls V,\Wy, ..., Wi, (V]a] 4 Wilbi],..., Wi[bs]) is a
convex argument if there is a straight line ¢ through V]a] such that the slope of € is between

the slopes of the edges that precede and follow the points Wib],. .., Wi[bs], respectively, and
the points Wi[by], ..., Wb lie below £.

If (Via] 4 Wilby],..., Wy[by]) is a convex argument, then the point Vla] is a vertex of
the merged upper hull of V, W7, ... W;. Blocks of consecutive points can also be “easily”
certified as part of the output using similar arguments: when the first and last points p and ¢,
respectively, in such blocks are vertices of the merged upper hull U, and all the other points
lie below the line through p and ¢. Those convex arguments are the ones used in Step 5 of
Algorithm 3 to certify that blocks of consecutive points in the upper hulls form part of U.

Those arguments are a two-dimensional generalization of the arguments described by De-
maine et al. [24] for merging sorted sets, and are inspired by the ones introduced by Barbay
and Chen [5] for the binary merging upper hulls. Those arguments combine into a general
definition of hull partition certificate that any correct algorithm for merging upper hulls in
the algebraic decision tree model can be modified to output without increasing the magni-
tude of its computational complexity. In particular, the algorithms described by Kirkpatrick
and Seidel [48] and Levcopoulos et al. [50] implicitly compute such partition certificates. See
Figure 3.9 for an example of such a partition certificate.

Figure 3.9: A hull partition certificate of size 7 of an instance of the merging upper
hulls problem. The thick black lines mark the division between the 7 regions.

Definition 12. Given an instance I of the merging upper hulls problem, a hull partition
certificate of I is a partition of the points into regions, so that in each region, the points of
I that belong to the output can be decided using a constant number of eliminator and convex
arguments. The size of I is the number of regions which compose it.

The algorithm Quick Hull Union partitions the upper hulls into blocks of consecutive
points, where each block is either discarded or output. A block is discarded if it is underneath
the merged upper hull U, or is output if it forms part of U. Each of such blocks forms part
of an argument of the hull partition certificate computed by the algorithm. Similarly to the
algorithm Quick Maxima Union, we separate the analysis into three lemmas. In Lemma 9,
we analyze the steps that identify the “pivot” point p, that partition the upper hull by
the vertical line through p, and that discard blocks of points (i.e., Steps 2, 3, 4, and 6 of
Algorithm 3). In Lemma 10, we analyze the step that outputs blocks of points (i.e., Step 5
of Algorithm 3). In Lemma 11, we analyze the step that computes the medians of the slopes
of the edges at the middle positions (i.e., Step 1 of Algorithm 3).
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Lemma 9. Given an upper hull V', the cumulated time complexity of the steps identify
the “pivot” points p, that partition the upper hull by the vertical line through p, and that
discard blocks of points of algorithm Quick Hull Union considering only points of V' is
within O(Z?Zl log sj), where s1,..., sz are the sizes of the B blocks into which the algorithm
partitions V.

Proof. The analysis is as in the proof of Lemma 5. O

The blocks that are discarded in each execution of the Steps 4 and 6 of Algorithm 3 are
certified using a single eliminator argument. In the same way, the block that is output in
Step 5 of Algorithm 3 is certified using a single convex argument. We state the following
lemmas in function of the hull partition certificate computed by the algorithm.

Lemma 10. Given a block B that forms part of the merged upper hull U, the time complexity
of the step that outputs B of algorithm Quick Hull Union is within O(wlog sg), where sp is
the size of B and w is the number of arguments in the convexr argument used by the algorithm
to certify that B forms part of U.

This analysis is a consequence of the w searches for the common tangent in Step 5 of
Algorithm 3. The amount of arguments in the hull partition certificate and the number
of blocks in each of the arguments both are related to the time complexity of Step 1 of
Algorithm 3.

Lemma 11. Given k upper hulls, the cumulated time complezity of the steps that compute the
medians of the slopes of the edges at the middle positions of the upper hulls of algorithm Quick
Hull Union is within O(Zle log (n’;)), where ¢ is the size of the hull partition certificate C
computed by the algorithm, and mq, ..., mg is a sequence where m; is the number of blocks
in the i-th argument of C'.

Proof. We prove this lemma by induction over ¢ and x. The time complexity of each of these
steps is linear in the number of upper hulls in the subinstance (i.e., ignoring all the empty
upper hulls of this submstance) Let T (6, k) be the cumulated time complexity of these steps.
We prove that 7 (d, k) < Z , m;log -~ — K, where m; is the number of blocks that form the
i-th argument of C'. Let p be the ﬁrst “plvot” point computed by the algorithm. Once the
tangents between p and the upper hulls have been computed, let ¢ and d be the number of
upper hulls that have non-discarded point only to the left of p and only to the right of p,
respectively. Let b be the number of upper hulls that have non-discarded points to the left and
to the right of p. Let d. and 4 be the number of arguments computed by the algorithm to the
left and to the right of p, respectively. Then, T (5, x) = T (d., c+b) + T (04, d +b) + k because
of the two recursive calls and one execution of the Step 1 of Algorithm 3. By Induction
Hypothesis, T (d.,c+b) < Z < milog < —c—band T(64,d+b) < Z?L m; log dmi;’ —d—0b.
We need to prove that ¢ + d < ZZ 1mZ log (1 + m) + ZJ ,m;jlog (1 + d%rb), but this is
a consequence of Z \mi > c+b, S0 iLimj > d+b (the number of blocks is greater than
or equal to the number of upper hulls) in the worst case, ¢ < d+b,d < c+ b (at least §

sequences are left to the left and to the right of p); and log (1 + %)w >y fory <. m

Combining Lemmas 9, 10, and 11 yields the following theorem:
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Theorem 3. Given an instance I formed by k upper hulls, the algorithm Quick Hull Union
computes the merged upper hull U of I in time within

B 5 )
K
O (Zlogsj + Zwk logny + Zlog (m)) ;
j=1 k=1 i=1 v

where 3 is the number of blocks in the hull partition certificate C computed by the algorithm;
S1,...,5p are the sizes of such blocks; § is the size of C'; and mq, ..., ms is a sequence where
m; 1s the number of blocks that form the i-th argument of C; wy, is the number of arguments
in the k-th convex argument; and ny is the size of the k-th block of U.

In the context of computing the convex hull, we prove in Section 4.3.2 that a synergistic
algorithm based on that result asymptotically outperforms both the algorithm originally
proposed by Kirkpatrick and Seidel [48] (even when taking into account the refined analysis
described by Afshani et al. [1]), and the algorithm proposed by Levcopoulos et al. [50]. We
depict a family of instances where the synergistic algorithm is faster than those previous
algorithms by a factor logarithmic in the size of the input (Ex. 8 page 55). We describe
an analysis of algorithm Quick Hull Union in function of the smallest possible size ¢ of a
partition certificate for a particular instance.

Theorem 4. Given an instance I formed by k upper hulls of sizes r1,...,r. such that the
merged upper hull U admits a hull partition certificate of size 9, the algorithm Quick Hull
Union computes U in time within

O (/ﬁdlog% +5Zlog%) ,
i=1

where h is the number of points in U.

Proof. The size of the hull partition certificate C' computed by the algorithm Quick Hull
Union in the instance I is a constant factor of the size § of a hull partition certificate P
of minimal size for I, such that in each region there is just one block that forms part of
the output, and such a block can be certified using a single convex argument. Indeed, if
a region R of P contains a block B that forms part of the merged upper hull U, then the
algorithm Quick Hull Union can certify that B forms part of U using a constant number
of arguments. This is a consequence of the step that computes the blocks that form part of
the output (i.e., Step 5) of algorithm Quick Hull Union. This step computes the block of
maximum size (p included) that can be certified that forms part of the output using a single
convex argument. In addition, the algorithm partitions each upper hull in at most a constant

factor of 9 blocks. Combining the results from Lemmas 9, 10, and 11 with the concavity of

5
the logarithm function (i.e., Zle log s; < Blog %), we obtain that the time complexity

of the algorithm is within O(}_}, Zj:]_ Sij + 22:1 wilogng) € O(6 7 log + kélog %),
where s;; is the size of the j-th block of the i-th upper hull, wy, is the number of arguments
in the k-th convex argument, and n; is the size of the k-th block of U. m

We conclude this chapter by discussing potential improvement to our results.
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3.4 Discussion

We described two instance optimal algorithms for merging sorted sets: Sorted Set Union
(based on MergeSort) and Quick Set Union (based on QuickSort). The computational cost
of instance optimal algorithms is within a constant factor of the optimal in every instance,
as opposed to just the worst case.

Concerning the merging of maxima sets, we described and analyzed the algorithm Quick
Maxima Union. We proved an upper bound for the number of coordinate comparisons per-
formed by the algorithm Quick Maxima Union in terms of a minimal size decomposition of
the maxima sets into blocks of consecutive points, which is determined by a maxima partition
certificate of the instance. Such decomposition provides a measure of difficulty to evaluate
the efficiency of any algorithm. We proved that the algorithm Quick Maxima Union is op-
timal in the worst case over instances with the same value for this particular measure of
difficulty, in the decision tree model (Theorem 2). A way to improve on this is to design an
instance optimal algorithm for merging maxima sets or to prove that such instance optimal
algorithms do not exist for this problem. The main issue is to find, for each instance, the
best of such decompositions (i.e, the one that can be encoded in the minimum size) in time
proportional to the shortest binary encoding of it.

Following similar ideas to the ones stated for the merging of maxima sets, it is possible to
prove an almost identical lower bound for the time complexity of any algorithm that merges
convex hulls in the algebraic decision tree model. But our analyses of the time complexity
of algorithm Quick Hull Union do not match such a lower bound (Theorems 3 and 4). The
difference between the upper and lower bounds is related to the analysis of the step that
finds the blocks of the convex hulls that form part of the output (Lemmas 9 and 10). We
conjecture that there is no way to improve the computation of such blocks, which suggests
that a better lower bound is needed.

This concludes our results about adaptive merging. In the following section, we combine
those merging algorithms with algorithms that partition the input sequence into “easy”
instances, to obtain synergistic algorithms for sorting multisets, and for computing maxima
sets and convex hulls of planar points.
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Chapter 4

Synergistic Computation Analysis

The final piece of the puzzle in our approach to obtain synergistic algorithms for sorting
multisets, and for computing maxima sets and convex hulls of planar points, is to design
algorithms that partition the input sequence of elements into “easy” subsequences. Our
definitions of “easy” subsequences are determined by measures of difficulty that depend on the
order into which the elements are listed in the sequence, and by the fact that the computation
in such “easy” subsequences can be done in time linear in the sizes of the subsequences
(Sections 4.1.1, 4.2.1, and 4.3.1). We devote this chapter to the study of such partitioning
algorithms, and their combination with the merging algorithms described in Chapter 3 into
synergistic algorithms for those three problems. Those combinations provide us with a better
understanding of the problems and more efficient solutions (Sections 4.1.2, 4.2.2, and 4.3.2).

Concerning the sorting of multisets, in addition to the runs (a notion of local input order
which we described in Section 2.3.2), we develop a new technique that takes advantage of
the pivot positions (i.e., positions p in the multiset such that all the elements to the left of p
are smaller than or equal to all the elements to the right of p, a notion of global input order)
when partitioning the sequence of numbers that represents a multiset (Section 4.1.1).

Concerning the computation of the maxima set of planar points, we define an algorithm
that partitions a sequence of points into smooth subsequences, such that the maxima sets
of the smooth subsequences can be computed in time linear in the sizes of the subsequences
(Section 4.2.1). The definition of smooth sequence is related to the lexicographic order of the
points in the sequence (see Definition 14 page 50).

Concerning the computation of the convex hull of planar points, we improve Levcopoulos
et al.’s partitioning algorithm [50] (described in Section 2.4.2) by presenting a linear time
algorithm that partitions a polygonal chain P of n points into simple polygonal chains. The
entropies of the distributions of the sizes of the simple polygonal chains of the partitions
obtained by both algorithms are asymptotically the same. We refine Levcopoulos et al.’s
measure of difficulty and analysis of the computation of the convex hull in terms of the
entropy of the distribution of the sizes of such simple polygonal chains (Section 4.3.1).

We built upon previous results taking advantage of either some notions of order, or the
input structure, to describe solutions which take advantage of both in a synergistic way. The
ways to take advantage of the input structure are limited [56, 1], but in Section 4.4, we
discuss other possible measures of the input order.
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4.1 Sorting Multisets

In our search to find better partitioning techniques to speed up the sorting of multisets, we
define a simple yet new notion of global input order, formed by the number of pre-existing
pivot positions in the input (i.e., positions p in the multiset such that all the elements to the
left of p are smaller than or equal to all the elements to the right of p), not mentioned in
previous surveys [28, 54| nor extensions [7] (Section 4.1.1).

We show examples of the difficulty of combining both some measures of the input order
and the input structure of a multiset into a single synergistic algorithmic technique for sorting
it. But we describe synergistic sorting algorithms, which never perform worse than MergeSort
with Counters and Minimal MergeSort (previously defined in Section 2.3), and outperform
both of them on some large classes of instances, by taking advantage both of some measures of
the input order (local and global) and the input structure, in a synergistic way (Section 4.1.2).

4.1.1 A Measure of Global Input Order

Given a multiset M, Iverson [41] defined pivot position as a position p in M such that all
the elements in previous positions are smaller than or equal to all the elements at p or in the
following positions (e.g., (3,2,1,6,5,4) has one pivot position in the middle between 1 and 6).
In 1962, Iverson [41] described an improved version of BubbleSort [49] that identifies such
pivot positions (as pairs of consecutive elements that the algorithm have placed at their final
positions and on which it does not make further comparisons). In the following section, we
show that detecting such positions also yields an improved version of QuickSort in general,
and of our QuickSort-inspired solutions in particular. More formally:

Definition 13. Given a multiset M = (xy,...,2,) of size n, a pivot position in M is a
position p € [2..n] such that x, < x}, for all a,b such that a € [1..p — 1] and b € [p..n].

Existing pivot positions in M divide it into subsequences of consecutive elements such
that the range of positions of the elements at each subsequence coincides with the range
of positions of the same elements in the sorted sequence of M: the more there are of such
positions, the more “global” order there is in M (as opposed to “local” measures as the
runs). Detecting such positions takes only a linear number of comparisons by applying the
first phase of algorithm BubbleSort [49], which sequentially compares the elements from
left to right, in a first step, and then a modification of such phase from right to left, in a
second step. The positions of the elements that do not interchange their values during both
executions are the pivot positions in M.

Lemma 12. Given a multiset M of size n with ¢ pivot positions pi,...,ps, the ¢ pivot
positions can be detected using 2n — 2 comparisons.

Proof. Consider the first phase of algorithm BubbleSort [49], which sequentially compares
the elements in positions i — 1 and i of M, for i € [2..n|: we name it the bubble-up step. If
M{i— 1] > M]i], then the elements interchange their values. As consequence of this step the
elements with large values tend to move to the right. In an execution of the bubble-up step
in M, the elements that do not interchange their values are those elements whose values are
greater than or equal to all the elements on their left.

We define the bubble-down step similarly to the bubble-up step, with the difference that
it scans the sequence from right to left, interchanging the elements in positions ¢ — 1 and
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i if M[i — 1] > MJi], for i € [2..n]. In an execution of the bubble-down step in M, the
elements that do not interchange their values are those elements whose values are smaller
than or equal to all the elements on their right. Hence, the positions of the elements that do
not interchange their values during the executions of both the bubble-up and bubble-down
steps are the pivot positions in M. ]

The ¢ pivot positions simply divide a multiset of size n into ¢ + 1 subinstances of sizes
no, - - -, Mg (such that Z?:o n; = n). Each of such subinstances I; for i € [0..¢] has its own
number of runs p; and alphabet size ¢;, on which the synergistic solutions described in this
work can be applied, from merely sorting multiset (Section 4.1.2) to supporting multiselection
(Section 5.1.1) and to the more sophisticated deferred data structures (Section 5.1.2).

4.1.2 Synergistic Sorting

We start this section by describing examples that prove the difficulty of measuring the inter-
action of some forms of input order (i.e., runs and pivot positions) and the input structure
(i.e., the distribution of the multiplicities of the distinct elements). We describe then an
algorithm that takes advantage both of some measures of the input order and the input
structure, at once, in a synergistic way.

Comparison Between Sorting Algorithms

In Section 2.3.3, we showed that the worst-case performances of the algorithms MergeSort
with Counters (described in Section 2.3.1) and Minimal MergeSort (described in Sec-
tion 2.3.2) are incomparable, in the sense that neither one performs always better than
the other in the worst case over instances of size n. We describe here two more sophisticated
algorithms, which are modifications and combinations of the algorithms Minimal MergeSort
and MergeSort with Counters, that still do not take full advantage both of some measures
of the input order (local and global) and the input structure. So, a new approach will be
necessary to take better advantage both of some measures of the input order and the input
structure.

Algorithm Dovetailing MergeSort is a dovetailing combination of the algorithms Minimal
MergeSort and MergeSort with Counters. This algorithm runs both Minimal MergeSort
and MergeSort with Counters in parallel, and when one of them manages to sort the mul-
tiset, it returns the sorted sequence and then finishes. The number of comparisons performed
by algorithm Dovetailing MergeSort in any instance [ is twice the minimum of the num-
ber of comparisons performed by the algorithms Minimal MergeSort and MergeSort with
Counters on I. Algorithm Dovetailing MergeSort also needs to duplicate the input in
order to run both algorithms in parallel.

Combining the ideas of identifying and merging runs from Takaoka [63] with the use
of counters by Munro and Spira [56], we describe the Small vs Small algorithm to sort a
multiset. The algorithm Small vs Small identifies the runs using the same linear scanning as
Minimal MergeSort, and associates counters to the elements in the same way that MergeSort
with Counters does. Once the runs are identified, this algorithm initializes a heap with the
runs ordered by sizes. At each merging step the two shortest runs are selected for merging
and both are removed from the heap. The pair is merged, and the resulting run is inserted
into the heap. The process is repeated until only one run is left and the sorted sequence
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is known. The complexity of the Small vs Small algorithm is adaptive to the sizes of the
resulting runs in the merging process.

Given an instance I, the number of comparisons performed by the algorithm Small vs
Small on [ is never worst than a constant factor of the number of comparisons performed
by the algorithm Dovetailing MergeSort on /. But the next example shows that there are
families of instances where the number of comparisons performed by the algorithm Small
vs Small is asymptotically less than the number of comparisons performed by the algorithm
Dovetailing MergeSort by a factor logarithmic in the size of the input.

Example 5. Consider the family of instances (1,2,...,0,1,2,...,0...,1,2,...,0)

Consider a family of instances formed by p runs, each of size . The number of com-
parisons performed by algorithm MergeSort with Counters for sorting each of such
instances is within ©(po log o), while the number of comparisons performed by algo-
rithm Minimal MergeSort for sorting each of such instances is within ©(po log p). On
the other hand, the number of comparisons performed by algorithm Small vs Small
for sorting each of such instances is better, within ©(po): at each level of the binary
tree representing the merging order, the sum of the sizes of the runs is halved.

Even though algorithm Small vs Small is adaptive to the sizes of the resulting runs, it
does not take advantage of the fact that there may exist a pair of runs that can be merged
very quickly, but it rather pairs one of such runs with another run of the same size, taking
time linear in the sum of the sizes to merge them. We show this disadvantage in Example 6,
where we compare algorithm Small vs Small with the new synergistic algorithm Quick
Synergy Sort, which we describe in the following section.

Quick Synergy Sort Algorithm

Given a multiset M, the algorithm Quick Synergy Sort identifies the runs of M in linear
time through a scanning process, and merges the runs using the algorithm Quick Set Union
(described in Section 3.1.2). The following theorem bounds the number of comparisons
performed by the algorithm Quick Synergy Sort in terms of the block decomposition of the
runs of M (as seen in Section 3.1.1):

Theorem 5. Let M be a multiset of size n formed by p runs, o distinct elements, and o0
blocks of sizes gy, ..., gs such that those blocks induce a partition certificate m of size x of the
output whose members have values my,...,m,. The algorithm Quick Synergy Sort sorts
M performing a number of data comparisons' within

6 X
n+ O (Z log g; + Zlog (ni)) C O(nlog(min{p,c})) C O(nlogn).

There are families of instances where algorithm Quick Synergy Sort performs signifi-
cantly better than algorithm Small vs Small (described above). Consider for instance the
following example:

!Note that the quantity Zle log g; is within O(n) but is much smaller than n for “easy” instances.
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Example 6. Consider the family of intances

p—1 p—2 p—1 1
<TTL+1,...,71,771"‘1,...,7”,...71,...,;71

Consider a family of instances formed by p runs of size % each. The runs are pair-
wise disjoint and the elements of each run are consecutive in the output. The number
of comparisons performed by the algorithm Small vs Small for sorting each of such

instances is within ©(n log p), while the number of comparisons performed by the algo-
rithm Quick Synergy Sort is within © (n + plog p + plog %) = 0O(n+plogn) (which
is better than ©(nlog p) for p € o(n)).

We extend the result described in Theorem 5 to take advantage of the number of existing
pivot positions in the multiset M (i.e., a form of global input order) in a way that can be
combined with the notion of runs (i.e., a form of local input order), and with the distribution
of the multiplicities of the distinct elements in M (i.e, the input structure).

Corollary 1. Let M be a multiset of size n with ¢ pivot positions. The ¢ pivot positions divide
M into ¢p+1 subinstances of sizes n, . .., ng (such that Z?:o n; =n). Each subinstance I; for
i € [0..¢] of size n; is formed by p; runs, o; distinct elements, and §; blocks of sizes g;1, . . ., Gis, -
Such blocks induce a partition certificate m; of size x; of the output whose members have values
M1, - .., Miy,- There is an algorithm that sorts M performing a number of comparisons within

¢ 5 Xi ¢
3n+ O (Z {Zlog gij + Zlog (75:) }) co (Z n; log(min{p;, O'i}>> C O(nlogn).

i=0 \ j=1 i=0

In the following section, we generalize the concept of runs (i.e., a form of local input
order) in multisets to maxima sets by describing sequences of points where the computation
of the maxima sets of such sequences can be done in linear time, and we describe a synergistic
algorithm that takes advantage both of such new measure of the input order and of the input
structure as defined by Kirkpatrick and Seidel [47], in a synergistic way.

4.2 Maxima Sets

Similarly to the sorting of multisets, we describe first a linear time algorithm that partitions
a sequence of points into “easy” subsequences, where the maxima set of such subsequences
can be computed in linear time. The number and sizes of the “easy” subsequences depend on
the order in which the points are listed (Section 4.2.1). We combine then such partitioning
algorithm with the merging maxima sets algorithm, described in Section 3.2, into an algo-
rithm that computes maxima sets in the plane, taking advantage both of some measure of
the input order and the input structure, in a synergistic way (Section 4.2.2).

4.2.1 Input Order Adaptivity

In many cases, the maxima set can be computed in time linear in the size of the input,
independently from its size. For instance, consider an order of the points where (1) the
maximal points are given in order sorted by one coordinate, and (2) for each maximal point
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p, all the points dominated by p are given immediately after p (in any relative order). This
order has similar properties to the lexicographical order regarding the computation of the
maxima set, but is less restricted. The maxima set of a sequence of points given in this order
can be extracted and validated in linear time by a simple greedy algorithm, which throws an
exception if the input is not in such an order. Each of the various ways to deal with such
exceptions directly yields an algorithm adaptive to some measure of the input order [2]. For
example, consider an instance such that the points found to be out of order are inserted in
the partial maxima set M computed up to each of such points using a constant number of
coordinate comparisons or that the points found to be out of order dominate one (or both)
of the end points of M. Let us label such a sequence smooth, and by extension any input
subsequence of consecutive positions which have the same property:

Definition 14. Let S = py,...,p, be a sequence of n planar points. For i € [1..n], let M;
be the mazxima set of the points py,...,p;. If, for all i € [1..n — 1], the point p;1 dominates
one (or both) of the end points of M; or p;y1 is identified that it is dominated by some of the
points of M; using a constant number of coordinate comparisons, then we say S is smooth.

Given a sequence S of points, let ( denote the minimal number of smooth subsequences
into which S can be decomposed. Most interestingly for our synergistic purpose, such a
decomposition can be computed in time linear in the size of S. We name the algorithm that
detects such ¢ smooth subsequences, and computes their individual maxima sets Smooth
Partitioning.

The algorithm Smooth Partitioning considers the points of S one by one, and fixes a
constant c¢. Let p be the current point considered. At each step, the algorithm maintains the
maxima set M up to this point of the smooth sequence to which p belongs. If p dominates
one (or both) of the end points of M, then M is updated by inserting p and deleting all the
points of M dominated by p. If p is identified as dominated by some of the points of M using
at most ¢ coordinate comparisons, then the maxima set up to p of the smooth sequence to
which p belongs is M. Otherwise, a new smooth sequence starting at p is detected.

Using the algorithm Smooth Partitioning to detect the minimum number ¢ of smooth
subsequences into which the sequence of points can be partitioned and to compute their
maxima sets, then merging such maxima sets two by two yields an algorithm that performs
within O(n(1 + log()) € O(nlogn) coordinate comparisons. Such a result is orthogonal to
previous input structure adaptive results [1, 47] described in Section 2.4.1: it can be worse
than O(n(141logh)) when the output size h is small and the input is in a “bad” order, and it
can be much better than O(n(1+ logh)) when h is large and the input is in a “good” order.

In the following, we design an algorithm which never performs asymptotically worse than
those algorithms (whose number of coordinate comparisons are within O(n(1 4 log()) and
O(n(1 + logh))), and, in large classes of instances, asymptotically outperforms both by a
factor logarithmic in the size of the instance (i.e., by more than a constant factor).

4.2.2 Synergistic Computation of Maxima Sets

The algorithm Quick Synergy Maxima decomposes the planar points into the minimal num-
ber ¢ of smooth subsequences and computes their maxima sets using the algorithm Smooth
Partitioning (described above), and then merges such maxima sets using the algorithm
Quick Maxima Union (described in Section 3.2). The algorithm Quick Synergy Maxima
takes advantage of the number of smooth subsequences and the distribution of their sizes,
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and of the block decomposition of the maxima sets of the smooth subsequences as described
in Section 3.2, and hence of the output size. We prove this more formally in the following
theorem:

Theorem 6. Let S be a sequence of planar points which can be partitioned into ( smooth
sequences. Let h be the number of points in the maxima set M of S. The algorithm Quick
Synergy Mazima computes M performing a number of coordinate comparisons® within

B )
2n+ O (Z log s; + Zlog (é)) C O(n(1 +log(min{¢,h}))) € O(nlogn);

where (B is the number of blocks of sizes s1,. .., sg, respectively, in the maxima partition cer-
tificate C' of the maxima sets of such ¢ smooth sequences computed by the merging algorithm;
d is the size of C' (such that 6 < h); and my, ..., ms is a sequence where m; is the number of

blocks in the i-th argument of C.

Proof. This is a consequence of Theorem 2 and of the linear execution time of the partitioning
algorithm Smooth Partitioning. O

On large classes of instances, the Quick Synergy Maxima algorithm outperforms both the
Kirkpatrick and Seidel’s algorithm [47] as well as the combination of the algorithm Smooth
Partitioning with a binary merging algorithm (similar to the Small vs Small algorithm
described in Section 4.1.2 for sorting multisets). Also it never performs asymptotically worse
than those algorithms.

Example 7. A sequence S of planar points that can be partitioned into ( = 5 smooth
subsequences. The numbers indicate the order into which the sequence of points are
given: each from left to right internally. Every point in the maxima set 1 dominates all
the points in the other maxima sets. The other maxima sets are more intricately woven
together.

T

The number of coordinate comparisons performed by the Kirkpatrick and Seidel’s al-
gorithm [47] on such instance is within ©(n(1 + logh)), where h is the number of
points in the maxima set labeled 1. The refined analysis described by Afshani et al. [1]
of the Kirkpatrick and Seidel’s algorithm yields a number of coordinate comparisons
within ©(hlogn). The number of coordinate comparisons performed by the combina-
tion of the Smooth Partitioning algorithm with a binary merging algorithm is within

2Note that the quantity Zle log s; is within O(n) but is much smaller for “easy” instances.
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O(n(1+log()), where ( is the number of smooth subsequences. On the other hand, the
number of coordinate comparisons performed by the algorithm Quick Synergy Maxima
is within ©(n): once it computes the first point of the maxima set of S, it discards all
the points except the points in the maxima set labeled 1. If h € ©(n) and ¢ € ©(n),
then the algorithm Quick Synergy Maxima is faster than those algorithms by a factor
logarithmic in the size of the input.

The histories of the computation of the maxima set and of the convex hull are strongly
correlated: most of the results on one problem also generalize to the other. Our results on
the computation of the maxima set similarly generalize to the computation of the convex
hull, albeit with some quirks.

4.3 Convex Hulls

Similarly to sorting multiset and computing maxima sets, we describe how to partition a
sequence of points into simple polygonal chains in linear time (Section 4.3.1). This notion
of input order (i.e., the decomposition into simple polygonal chains) for the computation of
the convex hull is less restrictive than the one seen for the computation of the maxima set
(i.e., the decomposition into smooth subsequences), in the sense that it can consider more
sophisticated sequences as “easy” sequences.

We combine then such linear time partitioning algorithm with the merging convex hulls
algorithm described in Section 3.3, into a synergistic algorithm for computing the convex
hull of planar points (Section 4.3.2). Such synergistic algorithm takes advantage both of the
decomposition of the points into simple polygonal chains (i.e., a form of input order), and of
the relative positions of the points (i.e., the input structure), in a synergistic way.

4.3.1 Input Order Adaptivity

Levcopoulos et al. [50] described an algorithm that computes the convex hull of a polygonal
chain S of n planar points, taking advantage of the minimal number x of simple polygonal
chains into which S can be partitioned (see Section 2.4.2 for details). The time complexity
of the partitioning and merging steps of such algorithm are both within ©(n(1 + logk)) C
O©(nlogn). We describe an improved partitioning algorithm running in time linear in the
number of points, which is key to the synergistic result of Theorem 8. The entropy of the
distribution of the sizes of the partition obtained by such linear time partitioning algorithm
is asymptotically the minimum among all the partitions of S into simple polygonal chains.
As a consequence, we describe a new algorithm that computes convex hulls whose analysis
takes into account the relative imbalance between the sizes of the simple polygonal chains
(Corollary 2). This new convex hull algorithm makes it possible, among other improvements,
to compute the convex hulls of some instances in linear time, even though the minimum num-
ber x of simple polygonal chains into which such instances can be partitioned is logarithmic
in the number of points (something that the algorithm described by Levcopoulos et al. [50]
does not permit).

Linear Time Partitioning Algorithm
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Algorithm 4 Galloping Partition

Input: A sequence of n planar points pi,...,pn
Output: A sequence of simple polygonal chains
1: Initialize ¢ to 1
2: fort=1,2,... do

3:  if i +2" — 1 > n or the chain p;, ..., pjror_1 is not simple then
4 Output the chain p;, ..., pjiot-1_1

5 Update i <— i+ 2"t and t + 1

6: end if

7: end for

The algorithm Galloping Partition searches one by one for the largest integer ¢ such
that the polygonal chain formed by the first 2' points is simple. It identifies this polygonal
chain as simple and restarts the computation in the rest of the points. Its pseudocode is
described in Algorithm 4. It identifies a simple polygonal chain of size k£ in time within
O(k), because the sizes of the tested chains form a geometric progression of ratio 2. The
time complexity of such algorithm is linear in the number n of points, but we prove that the
entropy of the distribution of the sizes of the resulting k£ simple polygonal chains is within a
constant factor of the entropy of the distribution of the sizes of any® partition of the sequence
of n points into the minimum possible number x of simple polygonal chains:

Theorem 7. Given a polygonal chain P of n planar points, the algorithm Galloping
Partition computes in linear time a partition of P into k simple polygonal chains of sizes
Ty oy Thy Such that n(1+ H(ry,...,7m)) € O(n(l 4+ «)), where « is the minimum value for
the entropy function H(sy,...,sx) of any partition of P into k simple polygonal chains, of
respective SizZes Sy, ..., Sx.

Proof. Consider a partition m of P into x simple polygonal chains of sizes sq,...,s.. Fix
the polygonal chain ¢; of size s;. The polygonal chain ¢; contributes > log o to the value
of H(s1,...,sx) = > i, j-log . The algorithm Galloping Partition partitions ¢; into
simple polygonal chains (if the ends of ¢; are blended with other chains of 7 consider them
as separated chains, this does not decrease the entropy of the partition obtained by the
algorithm). One of such chains is at least of size §, and in the worst case, the sizes of the
rest of them form a decreasing geometric progression of ratio % Hence, the chains into which
00 sy

the algorithm partitions ¢; contribute O(}_;, 5 log 2;—”) = O(s; + *log &) to the entropy of
the partition obtained by the algorithm. Summing over all chains, the result follows. O]

Given the convex hulls of the simple polygonal chains obtained by the algorithm Galloping
Partition, an algorithm that merges two by two the shortest ones takes advantage of the
potential disequilibrium in the distribution of their sizes, a result that improves upon the
algorithm described by Levcopoulos et al. [50]:

Corollary 2. Given a polygonal chain P of n planar points that can be partitioned into k
simple polygonal chains of respective sizes r1,...,7., there is an algorithm that computes the
convex hull of P in time within

On(1+H(ry,...,r))) € O(n(1+log k) C O(nlogn).

3For a given polygonal chain, there can be several partitions into simple polygonal chains of minimum
size for it.
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This time complexity is worse-case optimal over instances of n points that can be partitioned
into k simple polygonal chains of sizes r1,...,7x.

In the following section, we synthesize the algorithm Galloping Partition and the al-
gorithm Quick Hull Union in a synergistic algorithm to compute the convex hull of a set of
planar points.

4.3.2 Synergistic Computation of Convex Hulls

We describe a synergistic algorithm that computes the convex hull of planar points. It is
synergistic in the sense that it takes advantage both of a decomposition of the points into
simple polygonal chains (i.e., a form of input order) and of the relative positions of the points
(i.e., the input structure) at once, such that on some large classes of instances, asymptotically
outperform previous algorithms described by Kirkpatrick and Seidel [48] and Levcopoulos et
al. [50] (both reviewed in Section 2.4) by more than a constant factor. Those previous
solutions take advantage only of one of those aspects.

Similarly to the merging of convex hulls, we focus on the computation of the upper hull
(the computation of the lower hull is symmetric and complete it into the computation of
the convex hull [48]). Given a set S of planar points, the algorithm Quick Synergy Hull
computes the upper hull of S. It proceeds in two phases. It first partitions S into simple
polygonal chains using the algorithm Galloping Partition (described in Section 4.3.1), and
computes the upper hulls of such simple polygonal chains [50], both steps in time linear in
the number of points in S. Then it merges those upper hulls using the algorithm Quick Hull
Union (described in Section 3.3).

We state the time complexity of the Quick Synergy Hull in function of the number and
sizes of a decomposition of the points into simple polygonal chains, and in function of the
hull partition certificate of the upper hulls of such simple polygonal chains obtained by the
algorithm Quick Hull Union. We state this more formally in the following theorem:

Theorem 8. Consider a set S of n planar points that can be partitioned into k simple
polygonal chains of sizes r1,...,r. (such that > i r; =mn); and also can be partitioned into
h subsets of sizes ny,...,ny (such that 2?21 n; = n), where each subset can be enclosed by a
triangle completely below the upper hull of S. The algorithm Quick Synergy Hull computes
the upper hull U of S in time within

5 5
O (n + ij log s; + Zlog <£Z)> C Ol +min{H(ry,...,re), Hna, ..., m)}))
C O(n(1+ log(min{x, h})))
C O(nlogn),

where the upper hulls of such simple polygonal chains admit a hull partition certificate C' of
minimum size 6 (such that 06 < h), mq,...,ms is a sequence where m; is the number of blocks
in the i-th argument of C' (such that m; < k fori € [1..6]), w; is the number of blocks in the
j-th convex argument of C', and s; is the size of the j-th block of U in C.

Proof. This result is a consequence of Theorem 4 and 7. For example, if the simple polyg-
onal chains obtained by the algorithm Galloping Partition are all of constant size (i.e.,
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the algorithm cannot take advantage of such measure of the input order), then the time
complexity of the algorithm Quick Synergy Hull and the one described by Kirkpatrick and
Seidel [48] (as analyzed by Afshani et al. [1]) are asymptotically the same. This algorithm
also takes advantage of the positions of the points when using the algorithm Quick Hull
Union described in Section 3.3 to improve upon the algorithm described in Corollary 2. [

On large classes of instances, the algorithm Quick Synergy Hull outperforms both the
algorithm described by Levcopoulos et al. [50] and the Marriage-before-conquest Hull
algorithm described by Kirkpatrick and Seidel [48] (even when analyzed by Afshani et al. [1]),
as well as any dovetailing combination of them; and never performs asymptotically worse than
them.

Example 8. Consider the sequence S of n points and its decomposition into Kk = 4
simple polygonal chains. The numbers indicate the order in which the sequences of
points are given: each from left to right internally, and mark the simple polygonal
chains drawn below. The line segment that joins the leftmost and rightmost points of
the chain 4 is an eliminator argument for all other simple polygonal chains. The simple
polygonal chains 1,2 and 3 are more intricately woven together.

Consider the computation of the upper hull on such instance, the time complexity
of the algorithm Marriage-before-conquest Hull is within ©(nlogh), where h is
the number of points in the upper hull labeled 4. The refined analysis described by
Afshani et al. [1] of the algorithm Marriage-before-conquest Hull yields a time
complexity within ©(n + hlogn) (all the points in the sequences 1,2 and 3 can be
enclosed by a triangle completely below the upper hull of the points, noted in dashes
in the illustration above, hence ny = --- =n,_; =1 and n, = n — h + 1 in the formula
O(n(l + H(ni,...,ny)))). The time complexity on such instance of the algorithm
described by Levcopoulos et al. [50] is within O(n(1 + log x)), where & is the minimal
number of simple polygonal chains into which the sequence of points can be partitioned.
The time complexity of the algorithm described in Corollary 2 is within O(n + xlogn)
(suppose that the sizes of the simple polygonal chains labeled 1 to x — 1 are a constant
¢ and that the size of the simple polygonal chain labeled k is n — (k — 1)¢, then
rm=--=r.1=cand r, =n— (k—1)cin the formula ©(n(1+ H(ry,...,7)))). On
the other hand, the time complexity on such instances of the algorithm Quick Synergy
Hull is within ©(n): once it computes the first vertex of the upper hull of S, it discards
all the points except the points in the upper hull labeled 4. If h € ©(n) and x € ©(n),
then the algorithm Quick Synergy Hull is faster than those algorithms by a factor
logarithmic in the size of the input.

In the following, we discuss some extensions to the results described in this chapter.
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4.4 Discussion

We have built upon previous results taking advantage of either some notions of input order,
or the input structure, to describe solutions that take advantage of both in a synergistic
way. Munro and Spira [56] described an algorithm for sorting multisets that takes advantage
of the distribution of the multiplicities of the distinct elements in the multiset. Afshani et
al. [1] described instance optimal algorithms in the order-oblivious setting for computing the
maxima set and the convex hull of points in 2D and 3D. As seen in Chapter 2, the algorithm
described by Munro and Spira [56] and Afshani et al. [1] take the best advantage of the input
structure. Nevertheless, the matter is not so clear when we consider algorithms that take
advantage of the (many possible notions of) input order.

The literature about disorder measures for sorting, and algorithms that exploit such mea-
sures to speed up the sorting of multisets is replete with distinct measures (e.g., the number
of inversions, the number of runs, and the number of shuffles up-sequences) as described in
the surveys by Estivill-Castro and Wood [28], by Moffat and Petersson [54], and by Man-
nila [52]. Some of such measures induce a partition of the data, which can potentially yield
another synergistic solution in combination with the algorithm Quick Set Union (described
in Section 3.1.2). The main point on this approach is that the time necessary to obtain the
partitioning can not exceed the merging time.

Along the same line of thought, concerning the computation of the convex hull of a set
of planar points, Ahn and Okamoto [2] described a notion of input order different to the
one considered here (i.e., taking advantage of other features in the order in which the points
are listed), which can potentially yield another synergistic solution in combination with the
algorithm Quick Hull Union (described in Section 3.3). This is true for any of the many
notions of order which could be adapted from sorting [54, 52].

We explored several generalizations of those partitioning techniques to the more chal-
lenging problem of computing the Delaunay triangulation of a set of planar points, and
showed the difficulties of obtaining an optimal partition in terms of several measures that
we proposed [9]. Any algorithm computing the convex hull in 3D can be used to compute
the Delaunay triangulation, or its dual, the Voronoi Diagram, in dimension 2: the first step
to generalize convex hull results in the plane to higher dimensions will be to consider their
generalization to the computation of Delaunay triangulations.

Our runs-adaptive result on sorting multisets is based on a constant-term optimal parti-
tion in terms of the entropy of the distribution of the sizes of the runs. Similarly, our smooth-
adaptive results on computing the maxima set of planar points is based on a constant-term
optimal partition of the sequence of points into smooth sequences in terms of the entropy of
the distribution of the sizes of the smooth sequences. It would be tempting to generalize such
partitioning results for the computation of planar convex hulls in terms of the distribution of
the sizes of the simple polygonal chains into which the sequence of points can be partitioned,
but finding an optimal partition for this problem seems much harder.

This concludes our results about synergistic sorting, and the synergistic computation of
the maxima set and convex hull of planar points. In the following chapter, we consider the
extensions of those results to the context of supporting offline and online queries.
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Chapter 5

Synergistic Data Structures

In this chapter, we consider the extension of the results described in Chapter 4 to supporting
offline and online queries. We describe algorithms and deferred data structures that support
queries related to the problems of sorting multisets, and computing the maxima set and the
convex hull of planar points. Such algorithms and deferred data structures take advantage of
some measures of the input order and the input structure on one hand, and of some measures
of the query order and the query structure on the other hand, in a synergistic way.

As seen in Section 2.5.1, the support of rank and select queries is tightly related to
the task of sorting multisets. We extend the algorithm Quick Synergy Sort, described in
Section 4.1.2, with the analysis of a multiselection algorithm which takes advantage of not
only the number and sizes of the runs (i.e., a notion of input order) and the multiplicities
of the elements (i.e., the input structure) in the multiset, but also of the positions hit by
the queries (i.e., the query structure), in the offline setting (Section 5.1.1). Hence, such
multiselection algorithm extends the result from Kaligosi et al. [44] which takes advantage
only of the query structure. In the online setting, where the queries arrive one by one, we
describe and analyze deferred data structures that support rank and select queries taking
advantage of some measures of the input order and the input structure on one hand, and of
some measures of the query order and the query structure on the other hand, in a synergistic
way (Section 5.1.2). We define the notion of query order by a measure that captures how
close the positions of two consecutive queries are in terms of the number of pivots computed
by the deferred data structures. Hence, such deferred data structures extend the result from
Barbay et al. [6] which takes advantage only of the query structure. As an additional result,
we describe two compressed data structures that represent a multiset taking advantage both
of some measures of the input order and the input structure, while supporting rank and select
queries on the multiset (Section 5.1.3).

Related to the computation of the maxima set of planar points, we define the problem
of supporting domination queries, i.e., given a set of data points and a set of query points,
we need to determine which of the query points are below the staircase represented by the
maxima set of the data points. In the offline setting, we describe an algorithm that answers
several domination queries at once. It takes advantage of a decomposition of the data points
into smooth sequences (i.e., a notion of input order), the relative positions of the data points
(i.e., the input structure), and the relative positions between the query points and the data
points (i.e., the query structure) (Section 5.2.1). We extend such a result to the online setting
by describing a deferred data structure supporting domination queries. Such deferred data
structure takes advantage of the relative order in which the queries are given (i.e., the query
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order) in addition to the other measures considered (Section 5.2.2).

Related to the computation of the convex hull of planar points, we study the problem of
supporting point membership queries as defined by Karp et al. [45], i.e. given a set of data
points and a set of query points, determine which of the query points are included in the
convex hull of the data points. In the offline setting, similarly to the support of domination
queries, we describe an algorithm that answers several point membership queries at once. It
takes advantage of a decomposition of the data points into simple polygonal chains (i.e., a
form of input order), the relative positions of the data points (i.e., the input structure), and
the relative positions between the query points and the data points (i.e., the query structure)
(Section 5.3.1). We extend such result to the online setting by describing a deferred data
structure that supports point membership queries taking advantage of some measure of the
query order in addition to the other measures considered (Section 5.3.2).

In Section 5.4, we discuss how we could improve our results by defining finer measures of
difficulties and analyzing our data structures in terms of such measures.

5.1 Supporting Rank and Select Queries on a Multiset

In Section 2.5.1, we defined rank and select queries, which are among the most well-studied
operations on sequences, along with some solutions supporting them [39, 15, 34, 27].

We describe a multiselection algorithm (Section 5.1.1), based on the sorting algorithm
Quick Synergy Sort introduced in Section 4.1. Such multiselection algorithm is an inter-
mediate result leading to two deferred data structures supporting rank and select queries
on a multiset in the online setting (Section 5.1.2). On some large classes of instances, the
multiselection algorithm and the two deferred data structures asymptotically outperform all
previous solutions [45, 6] described in Section 2.5.1, by taking advantage of the number and
sizes of the runs in the multiset (i.e., a notion of input order), of the multiplicities of the
distinct elements in the multiset (i.e., the input structure), and of the gaps between the posi-
tions hit by the queries (i.e., the query structure), in a synergistic way. One of such deferred
data structures also takes advantage of a measure of the query order. Additionally, we also
describe two compressed data structures that represent a multiset taking advantage both of a
measure of the input order and the input structure, while supporting rank and select queries
on it (Section 5.1.3).

5.1.1 Offline Setting

Given a multiset M and ¢ select queries, the algorithm Synergy MultiSelection follows the
same first steps as the algorithm Quick Synergy Sort while answering the select queries.
But once it has computed the ranks of all the elements in the block B that contains the pivot
of value p, it answers the queries corresponding to B. The algorithm determines which select
queries correspond to elements smaller than or equal to [, where [ is the maximum element
to the left of B. It also determines which elements correspond to elements greater than or
equal to r, where r is the minimum element to the right of B. It then recurses on both sides.
See Algorithm 5 for a formal description of the algorithm Synergy MultiSelection.

o8



Algorithm 5 Synergy MultiSelection

Input: A multiset M and a set () of ¢ offline select queries
Output: The ¢ selected elements
1: Compute the p runs into which M can be partitioned;
2: Compute the median p of the middles of the p runs, note j € [1..p] the run containing p;
3: Perform doubling searches for the value i in all runs except the j-th, starting at both
ends of the runs in parallel;
4: Find the maximum ! (minimum r) among the elements smaller (resp., greater) than p in
all runs except the j-th;
5. Perform doubling searches for [ and r in the j-th run, starting at the position of y;
6: Answer the queries corresponding to the block B whose values are between [ and r, in
the j-th run;
7: Compute the set ); of queries that go to the left of [ and the set (), of queries that go
to the right of r;
8: Recurse on the elements smaller than or equal to [ with ();, and on the elements greater
than or equal to r with Q,.

Complexity Analysis of the Algorithm Synergy MultiSelection

We extend the notion of the decomposition of sorted sets into blocks seen in the analyses
of the merging sorted sets algorithms Sort Set Union and Quick Set Union (described in
Section 3.1), to the context of partial sorting. Next, we introduce the definitions of pivot
blocks and selection blocks (see Figure 5.1 for a graphical illustration of those definitions).
Those new definitions allow us to measure the difficulty of an instance in terms of a measure
of the input order, the input structure, and the query structure.

: b2 yal :
o T
[

Figure 5.1: An instance of the multiselection problem where the multiset M is
formed by p = 5 runs. In each run, the entry M|[i] is represented by a point of z-
coordinate M [i]. The dash lines represent the answers of the two select queries. The
solid vertical lines represent the positions p; and p, of the first two pivots computed
by the algorithm Synergy MultiSelection. The pivot blocks corresponding to the
pivots p; and p, are marked by contiguous open disks. The algorithm divides the
runs into selection blocks. s = 7 is the size of the second selection block, from left
to right, into which the third run is divided by the algorithm. m = 2 is the number
of pivot blocks of size 1, each corresponding to the pivot ps.

Definition 15. Consider a multiset M formed by p runs and o blocks. The pivot blocks are
the blocks of M that contain the pivots and the elements of value equal to the pivots during
the steps of the algorithm Synergy MultiSelection.
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In each run, between the pivot blocks and the insertion ranks of the pivots, there are con-
secutive blocks that the algorithm Synergy MultiSelection has not identified as separated
blocks, because no doubling searches occurred inside them.

Definition 16. Consider the run R formed by blocks, and q select queries. The algorithm
Synergy MultiSelection computes & pivots in the process of answering the q queries, and
finds the insertion ranks of the & pivots inside R. Those positions determine a partition of
size (at most) £+ 1 of R where each element of the partition is formed by consecutive blocks
or is empty. We call the elements of such partition selection blocks. The set of selection
blocks includes the set of pivot blocks.

Using Definitions 15 and 16, we generalize the results proved in Section 4.1.2 on sorting
multisets to the more general problem of multiselection.

Theorem 9. Consider a multiset M of size n formed by p runs and § blocks; and q offline
select queries over M corresponding to elements of ranks ri,...,r,. Let § be the number
of piwots computed by the algorithm Synergy MultiSelection in the process of answering
the q queries. Let sq,...,sg be the sizes of the 3 selection blocks determined by the & pivots
i all runs.  Let mq,...,my be the numbers of pivot blocks among those selection blocks
corresponding to the X\ pwots with multiplicity greater than 1, respectively. Let po, ..., pe
be the sequence where p; is the number of runs that have elements with values between the
pwots p; and p;11 sorted by ranks, fori € [1..£]. Let Aj =141 —r; for j € [0..q], 7o = 0 and
T¢+1 = n. The number of comparisons performed by the algorithm Synergy MultiSelection
while answering the queries is within

B A 3 q
n+ O <Zlogsi+ﬁlogp—2milogmi —Zpilogpi> cC O <nlogn—ZAilogA,-)

i=1 i=1 =0 =0

€ O(nlogg).

Proof. The doubling searches that find the insertion ranks of the pivots during the overall
execution of the algorithm generate within O(Zle log s;) comparisons. Indeed, at each run,
a constant factor of the sum of the logarithm of the sizes of the selection blocks bounds the
number of comparisons performed by those doubling searches (see the proof of Lemma 1
analyzing the Steps 2 and 4 of Algorithm 1 for details).

The pivots computed by the algorithm Synergy MultiSelection for answering the queries
are a subset of the pivots computed by the algorithm Quick Synergy Sort for sorting the
whole multiset. Suppose that the selection blocks determined by every two consecutive piv-
ots sorted by ranks form multisets M; such that for every pair of selection blocks in Mj, the
elements of one are smaller than the elements of the other. Consider the steps that compute
the medians of the middles in the algorithm Quick Synergy Sort, the number of compar-

isons performed by those steps would be within O (Z?Zl log s; + Blogp — Z;‘Zl m; log mz>

on this supposed instance (see the proof of Lemma 2 analyzing the Steps 1 and 3 of Algo-
rithm 1 for details). The number of comparisons needed to sort the multisets M; is within

@(Zfzo pilog p;). The result follows. ]

The process of detecting the ¢ pre-existing pivot positions, seen in Section 4.1.1, can be
applied as the first step of the multiselection algorithm. The ¢ pivot positions divide the
input of size n into ¢+ 1 subinstances of sizes ng, . .., n,. For each subinstance ; for i € [0..¢],
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the multiselection algorithm determines which select queries correspond to I; and executes
then Algorithm 5 inside I; in order to answer those queries.

Corollary 3. Let M be a multiset of size n with ¢ pivot positions. The ¢ pivot positions
divide M into ¢ + 1 subinstances of sizes ng,...,ns (such that Z?:o n; = n). Let q be the
number of offline select queries over M, such that q; queries correspond to the subinstance
I;, fori € [0..¢]. In each subinstance I; of size n; formed by p; runs, the algorithm Synergy
MultiSelection selects & pivots when it answers the q; queries corresponding to elements
of ranks r;1, ..., Tiq,. The & pivots determine [3; selection blocks of sizes s;1, ..., s;s, inside I;.
Let my1,...,m;y, be the numbers of pivot blocks among those selection blocks corresponding
to the A; pivots with multiplicity greater than 1, respectively. Let py, ..., pi, be the sequence
where py; is the number of runs that have elements with values between the pivots p;; and
Pi(j+1) sorted by ranks, for j € [1.&]. Let Ny = i1 — rij for j € [0..¢;], 7o = D jo Tk
and Tig+1 = Z;;lo ni. There is an algorithm that answers the q select queries performing a
number of data comparisons within

¢ Bi i &
@ (” + Z {ZlOgSzj + filog pi — Zmij logm;; — Zpij logpij})
=0 7=1 j=1 §=0
¢ qi
co (n + Z {nz logn,; — ZAij logAij}> C O(nlogq).

i=0 j=0

Similarly to the results described by Dobkin and Munro [27], in this section, we focus
only on the multiselection problem. But, those results could be easily extended to support
rank(z) queries: at each step of the algorithm, once the median p has been computed, the
element x is compared with p to decide if the answer to rank(z) is less than, equal to, or
greater than the rank of . We exploit that idea in the following section.

In the results above, the queries are given all at the same time (i.e., offline). In the
context where they arrive one at the time (i.e., online), we define two deferred data struc-
tures for answering online rank and select queries, both inspired by the algorithm Synergy
MultiSelection.

5.1.2 Online Setting

We describe two deferred data structures that answer g rank and select queries arriving one
at a time over a multiset M, progressively sorting M. Both deferred data structures take
advantage of some measures of the input order (local and global), the input structure, and
of the query structure, in a synergistic way. The first data structure is in the RAM model of
computation, at the cost of not taking advantage of the order in which the queries are given.
The second one is in the pointer-machine model (a more constrained model) but does take
advantage of some measures of the query order.

Taking Advantage of Some Measures of the Input Order and the Input Structure,
but only of the Query Structure

Given a multiset M of size n, the RAM Aware deferred data structure is composed of a
bitvector A of size n, in which it marks the elements in M that have been identified as pivots
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when it answers the online queries; a dynamic predecessor and successor structure B over the
bitvector A, which returns the two successive pivots between which the query fits; and for
each pivot p found, the data structure stores several pointers: in each run, to the insertion
ranks of p, and in the run that contains p, to the beginning and end of the block g to which p
belongs, and to the position of p inside g. The dynamic predecessor and successor structure
B requires the RAM model of computation in order to answer predecessor and successor
queries in time within o(logn) [11].

Theorem 10. Consider a multiset M of size n formed by p runs and d blocks. Let & be
the number of pivots computed by the RAM Aware deferred data structure in the process of
answering q online rank and select queries over M. Letry,...,r, be the ranks of the elements
corresponding to the q queries. Let s1, ..., sg be the sizes of the 8 selection blocks determined
by the & pivots in all runs. Let mq,...,my be the numbers of pivot blocks among those
selection blocks corresponding to the \ pivots with multiplicity greater than 1, respectively.
Let po, . .., pe be the sequence where p; is the number of runs that have elements with values
between the pivots p; and p;y1 sorted by ranks, for i € [1.£]. Let u and ¢i,...,g, be the
number of rank queries and the sizes of the identified and searched blocks in the process of
answering the u rank queries, respectively. Let A; = riy1 — 14, 7o = 0 and rg41 = n. The RAM
Aware deferred data structure answers the q online rank and select queries in time within

B A 3
O(n+ Zlogsi + Blogp — Zmilogmi — Zpilogpi
i=1 i=1 i=0

+¢loglogn 4 ulognloglogn + Zlog gi) C
i=1

q
O <n10gn— ZAilogAi+qlogn> C O(nlogq+ qlogn).

1=0

Proof. The algorithm answers a new select(i) query by accessing in A the query position
i. If Afd] is 1, then the element e that answers the query has been computed as pivot, and
hence the algorithm answers the query in constant time by following the position of e inside
the block at which e belongs. If A[i] is 0, then the algorithm finds the nearest pivots to its
left and right using the predecessor and successor structure, B. If the position ¢ is inside
a block to which one of the two nearest pivots belongs, then the algorithm answers the
query and in turn finishes. If not, it then applies the same steps as the algorithm Synergy
MultiSelection in order to answer the query; it updates the bitvector A and the dynamic
predecessor and successor structure B whenever a new pivot is computed; and for each pivot
p computed, the structure stores several pointers: in each run, to the insertion ranks of p,
and in the run that contains p, to the beginning and end of the block g to which p belongs,
and to the position of p inside g.

The algorithm answers a new rank(z) query by finding for all j € [1..p], the selection
block s; in the j-th run such that z is between the smallest and the greatest values of s;.
For that, the algorithm performs a sort of parallel binary searches for the value z taking
advantage of the pivots that have been computed by the algorithm. The algorithm accesses
the position § in A. If A[Z] is 1, then the element e of rank § has been computed as pivot.
Following the pointer to the block g to which e belongs, the algorithm decides if = is to the
right, to the left or inside g by performing a constant number of data comparisons. In the
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last case, a binary search for the value x inside g yields the answer to the query. If A[%] is
0, then the algorithm finds the nearest pivots to the left and to the right of the position 7
using the predecessor and successor structure, B. Following the pointers to the blocks that
contain those pivots, the algorithm decides if x is inside one of such blocks, to the right of the
rightmost block, to the left of the leftmost block, or between the two blocks. In the last case,
the algorithm applies the same steps as the algorithm Quick Synergy MultiSelection in
order to compute the median p of the middles and partitions the selection blocks by p. The
algorithm then decides to which side x belongs. Those steps identify several new pivots, and

in consequence several new blocks in the structure. O

The RAM Aware deferred data structure includes the pivot positions, seen in Section 4.1.1,
as a natural extension of the algorithm. The ¢ pivot positions are marked in the bitvector
A. For each pivot position p, the structure stores pointers to the end of the runs detected to
the left of p; to the beginning of the runs detected to the right of p; and to the position of p
in the multiset.

Corollary 4. Let M be a multiset of size n with ¢ pivot positions. The ¢ pivot positions
divide M into ¢ + 1 subinstances of sizes ng,...,ny (such that Zf:o n; =mn). Let q be the
number of online rank and select queries over M, such that q; queries correspond to the
subinstance I;, for i € [0..¢]. In each subinstance I; of size n; formed by p; runs, the RAM
Aware deferred data structure computes & pivots in the process of answering the q; online rank
and select queries over I;. Let 1y, ..., i, be the ranks of the elements corresponding to the g;
queries. Let w; and gq, ..., gw, be the number of rank queries and the sizes of the identified
and searched blocks in the process of answering the u; rank queries over I;, respectively. Let
Si1, Si2, - - -, Sip, be the sizes of the B; selection blocks determined by the & pivots in all runs
of I;. Let N;j = rijo1 — iy for j € [0..q], rio = Z;:o ng and Tig41 = Z;;lo ng. There is a
structure that answers those online queries in time within

O (n + Z {ﬁi log p; + Zlogsij + & loglogn + u; logn,; loglogn; + Zlogg@})

i=0 j=1 j=1

¢ qi
cCO <n+ Z {n, logn; — ZAU log A;; +qilognz}> C O(nlogq + qlogn).

i=0 J=0

The RAM Aware deferred data structure takes advantage of the query structure, some
measures of the input order (local and global) and the input structure. Changing the order
of the rank and select queries does not affect the total time complexity of the RAM Aware
deferred data structure. Once the structure identifies the nearest pivots to the left and to
the right of the query positions, the steps of the algorithms are the same as in the offline
case (Section 5.1.1). We describe next a deferred data structure taking advantage of some
measure of the query order and the query structure and of some measures of the input order
(local and global) and the input structure.

Taking Advantage of the Order and Structure in both the Input and the Queries

To take advantage of the order in the queries, we introduce a data structure that finds the
nearest pivots to the left and to the right of a position p € [1..n], while taking advantage of
the distance between the position of the last computed pivot and p. This distance is measured
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in the number of computed pivots between the two positions. For that we use a finger search
tree [37] which is a search tree maintaining fingers (i.e., pointers) to elements in the tree.
Such finger search trees support efficient updates and searches in the vicinity of the fingers.
Brodal [16] described an implementation of finger search trees that supports a search for an
element x, starting the search at the element given by the finger f in time within O(logd),
where d is the distance between = and f in the set (i.e, the difference between rank(x) and
rank(f) in the set). This operation returns a finger to x if x is contained in the set, otherwise
a finger to the largest element smaller than x in the set. This implementation supports the
insertion of an element x immediately to the left or to the right of a finger in worst-case
constant time.

In the description of the RAM Aware deferred data structure from Theorem 10, we sub-
stitute the dynamic predecessor and successor structure B by a finger search tree Figiect, as
described by Brodal [16]. Once a block g is identified, every element in ¢ is a valid pivot
for the rest of the elements in the multiset M. In order to capture such idea, we modify
the structure Fie1ecr S0 that it contains blocks instead of singleton pivots. Each element in
Fie1ect points in M to the beginning and end of the block ¢ that it represents, and in each
run, to the position where the elements of g partition the run. This modification allows the
structure to answer select queries, taking advantage of some measure of the query order and
the query structure and of some measures of the input order and the input structure. But in
order to answer rank queries, the structure needs another finger search tree Frapx. In Franx,
the structure stores for each block ¢ identified, the value of one of the elements in ¢, and
pointers in M to the beginning and end of g, and in each run, to the position where the
elements of g partition the run. We name such a structure the Full Synergy deferred data
structure.

Theorem 11. Consider a multiset M of size n formed by p runs and 6 blocks. Let v be
the number of blocks identified by the Full Synergy deferred data structure in the process of
answering q online rank and select queries over M. Letry,...,r, be the ranks of the elements
corresponding to the q queries. Let s1,...,sg be the sizes of the 3 selection blocks determined
by the pivots in the v blocks in all runs. Let mq,...,my be the numbers of pivot blocks
corresponding to the X\ pivots with multiplicity greater than 1, respectively. Let py,. .., p be
the sequence where p; is the number of runs that have elements with values between the values
in the blocks i and i+ 1 sorted by ranks, fori € [1..y]. Let d,...,d,—1 be the sequence where
d; 1is the number of identified blocks between the block that answers the j-th query and the
one that answers the j + 1-th query before starting the steps to answer the j + 1-th query,
for j € [1.q—1]. Let u and g1,...,g, be the number of rank queries and the sizes of the
identified and searched blocks in the process of answering the u rank queries, respectively. Let
A; =7rip1—1i, 70 =0 and rg41 =n. The Full Synergy deferred data structure answers the
q online queries performing a number of data comparisons within

B A Y q—1 u
n+0 (Zlogsz- +Blogp— Y milogm; = pilogpi+ ) logd; + Zloggz)
i=1 i=1 =0 1=1 =1

q
co <n10gn— ZAilogAqulogn) C O(nlogq + qlogn),

1=0

Proof. The algorithm answers a new select(i) query by searching in Fgeiect for the nearest
pivots to the left and to the right of the query position . If ¢ is contained in an element
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of Fie1ect, then the block ¢ that contains the element in the position ¢ has already been
identified. If ¢ is not contained in an element of Fieiect, then the returned finger f points to
the nearest block b to the left of 7. In Fieiect, the block that follows f is the nearest block
to the right of 7. It then applies the same steps as the algorithm Synergy MultiSelection
in order to answer the query. In Fieect, given f, the algorithm inserts each block identified
in the process of answering the query in constant time, and stores the respective pointers to
positions in M. In Fy., the algorithm searches for the value of one of the elements in the
block b pointed by f. Once the algorithm obtains the finger returned by this search, in Fjp,
the algorithm inserts the value of one of the elements of each block identified in constant
time and stores the respective pointers to positions in M (see Figure 5.2 for a graphical
representation of some of the parameters used in the analysis).

D2 b1 a2 :
T
I
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Figure 5.2: The state of the Full Synergy deferred data structure on an instance
where the multiset M is formed by p = 5 runs. In each run, the entry M[i] is
represented by a point of z-coordinate M[i]. The dash lines represent the positions
¢q1 and gy of the first two queries. The solid vertical lines represent the positions
p1, p2 and ps of the first three pivots computed by the Full Synergy deferred data
structure. The pivot blocks corresponding to the pivots pq, ps and p3 are marked by
contiguous open disks. d = 4 is the distance (i.e., the number of identified blocks)
between the queries ¢; and ¢o. If ¢; is a rank query, then g = 4 is the size of the
identified block that contains the answer to the query ¢;.

The algorithm answers a new rank(z) query by finding for all j € [1..p], the selection
block s; in the j-th run such that z is between the smallest and the greatest values of s;.
For that the algorithm searches for the value x in Fy,,,. The number of data comparisons
performed by such searching process is within O(logd), where d is the number of blocks in
Fanx between the last inserted or searched block and the returned finger f. Given the finger
f, there are three possibilities for the rank r of z: (i) r is between the ranks of the elements
of the block pointed by f, (ii) r is between the ranks of the elements of the block pointed
by the finger following f, or (iii) = is between the ranks of the elements in the selection
blocks determined by f and the finger following f. In the cases (i) and (ii), a binary search
inside the block yields the answer to the query. In case (iii), the algorithm applies the same
steps as the algorithm Synergy MultiSelection in order to compute the median p of the
middles and partitions the selection blocks by p. In Fieiecr and Frang, the algorithm inserts
the identified blocks and their corresponding pointers. The algorithm then decides to which
side x belongs. O]

The process of detecting the ¢ pivot positions, seen in Section 4.1.1, allows the Full
Synergy deferred data structure to insert those pivots in Fieject and Frank. For each pivot
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position p, in Fye1ecr and Fran, the structure stores pointers to the end of the runs detected
to the left of p; to the beginning of the runs detected to the right of p; and to the position of
p in the multiset.

Corollary 5. Let M be a multiset of size n with ¢ pivot positions. The ¢ pivot positions
divide M into ¢ + 1 subinstances of size ng,...,ny (such that Zf;o n; = n). Let q be the
number of online rank and select queries over M, such that q; queries correspond to the
subinstance I;, for i € [0..¢]. In each subinstance I; of size n; formed by p; runs, the Full
Synergy deferred data structure identifies ; blocks in the process of answering the q; online
rank and select queries over I;. Let r;1,...,7, be the ranks of the elements corresponding
to the q; queries. Let s;1,5i2,...,53 be the sizes of the [5; selection blocks determined by
the v; blocks in all runs of I;. Let my;, ..., m;y, be the numbers of pivot blocks among these
selection blocks corresponding to the \; pivots with multiplicity greater than 1, respectively.
Let pio, . . ., pie; be the sequence where p;; is the number of runs that have elements with values
between the pivots p;; and pijy1) sorted by ranks, for j € [1..&]. Let diy, dia, . .., dig,_, be the
sequence where d;; is the number of identified blocks between the block that answers the ij-th
query and the one that answers the i(j+1)-th query before starting the steps for answering the
i(j+1)-th query, for j € [1..q;—1]. Let u; and ga, ..., g, be the number of rank queries and
the sizes of the identified and searched blocks in the process of answering the u; rank queries
over I;, respectively. Let N;j = rij1 —1ij for § € [0..q;], rio = Y p_o Mk and Tig41 = Z;;lo Ng.
There exists a data structure that answers the g online rank and select queries performing a
number of data comparisons within

¢ Bi Aq &i qi—1 u;
O (n + Z {Z log s45 + filog p; — Z mi; log mi; — Z pij log pij + Z logd;; + » log 9@})
i=0 \ j=1 j=1 =0 j=1 j=1

¢ i
cCO (n—l— Z {nl logn; — ZAU log Ajj + ¢ lognl}> C O(nlogq + qlogn).

i=0 j=0

The Full Synergy deferred data structure has two advantages over the RAM Aware de-
ferred data structure: (i) it is in the pointer-machine model of computation, which is less
powerful than the RAM model; and (ii) it takes advantage of some measure of the query
order and the query structure and of some measures of the input order (local and global) and
the input structure, when the RAM Aware deferred data structure does not take advantage
of any measure of the query order. Next, we present two compressed data structures, tak-
ing advantage of the block representation of a multiset M while supporting rank and select
queries over M.

5.1.3 Compressed Data Structures

We describe two compressed representations of a multiset M of size n formed by p runs and ¢
blocks while supporting rank and select queries over it. The first compressed data structure
represents M in § log p+3n+o0(dlog p+n) C O(nlogn) bits and supports each rank query in
constant time and each select query in time within O(loglog p) C O(loglogn). The second
compressed data structure represents M in dlogd + 2n + O(d loglogd) + o(n) C O(nlogn)
bits and supports each select query in constant time and each rank query in time within

9] log § g 9] logn )
loglogd loglogn
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Given a bitvector V, rank;(V, j) finds the number of occurrences of bit 1 in V[0..5], and
selecty(V, ¢) finds the position of the i-th occurrence of bit 1 in V. Given a sequence S over
an alphabet of size p, rank(S, ¢, j) finds the number of occurrences of character ¢ in S[0..5];
select(S, ¢, 1) finds the position of the i-th occurrence of character ¢ in S; and access(S,
j) returns the character at position j in S.

Rank Aware Compressed Data Structure

The Rank Aware compressed data structure supports each rank query in constant time, and
each select query in time within O(loglogp) C O(loglogn), using dlog p + 3n + o(dlog p +
n) C O(nlogn) bits. It contains three bitvectors A, B and C' of size n supporting for
V e {A, B,C}, rank,(V, j) and select;(V, 7) in constant time using n+o(n) bits each [21].
It contains a data structure S representing a sequence of length ¢ from an alphabet of size p
supporting rank(S, ¢, j) in time within O(loglog p), access(S, j) in time within O(log log p),
and select(S, ¢, i) in constant time, using Jlog p + o(d log p) bits [36]. Given the blocks
g1,---,9s in sorted order, A contains the information of the lengths of such blocks in this
order: the set bits mark the positions where each block starts. B contains the information
of the lengths of the blocks similar to A but with the blocks maintaining the original order,
such that all blocks belonging to the same run are consecutive. C' contains the information
of the length of the runs: the set bits mark the positions where each run starts. For each
block ¢ in sorted order, S contains the run to which g belongs.

Theorem 12. Let M be a multiset of size n formed by p runs and 6 blocks. The Rank
Aware compressed data structure represents M in dlogp + 3n + o(dlogp +n) C O(nlogn)
bits, supporting each rank query in constant time, and each select query in time within
O(loglog p) € O(loglogn).

Proof. To answer rank(M, x), the following operations are executed: rank;(C, i) returns
the run r that contains x in constant time, where i is the position of x in the original order of
M; select(C, r) returns the position ¢ where r starts in the original order of M in constant
time; rank;(B, 7) — rank;(B, ¢ — 1) returns the position p inside of r of the block g that
contains x in constant time; select(S, r, p) returns the position j of ¢ in sorted order in
constant time; and select(A, j) returns the rank of the first element in g in constant time.

To answer select(M, i), the following operations are executed: rank;(A, i) returns the
position j of the block ¢ in sorted order that contains the selected element e in constant
time; access(S, j) returns the run r that contains e in time within O(loglog p); rank(sS,
r, 7) returns the position p of ¢ inside r in time within O(loglogp); and select (B, p +
rank; (B, select;(C, r))) returns the position where g starts in the original order of M in
constant time. OJ

We describe next a compressed data structure that represents a multiset, taking advan-
tage of its block representation, but unlike the Rank Aware compressed data structure, the
structure supports select queries in constant time.

Select Aware Compressed Data Structure

The Select Aware compressed data structure supports each select query in constant time,
and each rank query in time within O ( logd ) CcCO ( logn ) , using 0 log 04+2n+0(d log log §)+

log log § loglogn
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o(n) € O(nlogn) bits. It contains the same two structures A and B described above, and

a structure representing a permutation 7 of the numbers [1..6] supporting the direct oper-

ator 7() in constant time and the inverse operator 7~1() in time within O (log)lg(;) ‘; 5) using

dlogd + O(dloglogd) bits [55]. Given the blocks g,. .., gs in sorted order, m(i) returns the
position j of the block g; in the original order of M and 7~1(j) = ¢ if the position of the
block g; is j in the original order of M.

Theorem 13. Let M be a multiset of size n formed by & blocks. The Select Aware com-
pressed data structure represents M in dlogd + 2n + O(dloglogd) + o(n) C O(nlogn)
bits, supporting each select query in constant time, and each rank query in time within

0 (weta) < © (witis)

log log 0 loglogn | *

Proof. To answer select(M, i), the following operations are executed: rank;(A, i) returns
the position j of the block g; in sorted order that contains the selected element in constant
time; 7(j) returns the position p of g; in the original order of M in constant time; and
select(B, p) returns the position where g; starts in M in constant time.

To answer rank(M, z), the following operations are executed: rank;(B, i) returns the
position j of the block ¢ that contains x in constant time, where 7 is the position of z in
the original order of M; 7~!(j) returns the position p of g in sorted order in time within

O (10101‘55 5>? and select(A, p) returns the rank of the first element of g in constant time. [
g log

In the following section, we extend some of these results to the context of supporting
domination queries. The domination queries are related to the computation of the maxima
set of planar points.

5.2 Supporting Domination Queries on a Set of Planar
Points

In this section, we extend the results about the synergistic computation of the maxima set
(described in Section 4.2.2), and the multiselection algorithm and the deferred data structures
supporting rank and select queries on a multiset (described in Section 5.1) to supporting
offline and online domination queries on a set of planar points.

We define the problem of supporting domination queries as follows (see Figure 5.3 for a
graphical representation of such definition):

Figure 5.3: An instance of the problem of supporting domination queries. The black
solid disks mark the data points, and the red open disks mark the query points.
The staircase that represents the maxima set of the data points is marked.
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SUPPORTING DOMINATION QUERIES: Given a set of data points and a set of query points
in the plane, determine which of the query points are above the staircase defined by
the maxima set of the data points (i.e., which of the query points are not dominated
by any of the data points).

The support of domination queries is related to the computation of the maxima set of
planar points. In the offline setting, we describe the algorithm Synergy Domination that
answers several domination queries at the same time (Section 5.2.1), inspired by the algorithm
Quick Synergy Maxima (previously described in Section 4.2.2). In the online setting, where
the queries arrive one by one, we describe the Full Synergy Domination deferred data
structure that progressively computes the maxima set of the data points in a “lazy” way
while answering the domination queries (Section 5.2.2). Similarly to the support of rank
and select queries over a multiset, both the Synergy Domination algorithm and the Full
Synergy Domination deferred data structure take advantage of some measures of the input
order and the input structure of the data points, and of the query structure. In the case of
the deferred data structure, it also takes advantage of some measure of the query order (see
Section 5.2.2 for the details of the analysis).

5.2.1 Offline Setting

Given a set S of data points and a set () of query points, the algorithm Synergy Domination
first computes the maxima sets of the ¢ smooth sequences into which S can be partitioned.
It then follows the same first steps of the algorithm Quick Synergy Maxima. But once it has
computed, in one of such maxima sets, a block B of consecutive points that are in the maxima
set of S, it partitions the points in () into four sets. The first set is formed by the query points
that dominate some of the points in B (such points are output). The second set is formed
by the query points that are dominated by the points in B (such points are discarded). The
third and fourth sets ); and @), are formed by the query points that remain to the left and to
the right of the points in B, respectively. The algorithm Synergy Domination then recurses
on the remaining data points to the left and to the right of the points in B with the sets ),
and @, respectively. A formal description of it is given in Algorithm 6.

As a pedagogical intermediate step before analyzing the complexity of the algorithm
Synergy Domination, we first analyze the complexity of a simpler algorithm, which we
name Simpler Domination, for supporting domination queries. The algorithm Simpler
Domination is directly based on the algorithm described by Kirkpatrick and Seidel [47] for
computing the maxima set of planar points. The algorithm Simpler Domination therefore
does not compute the maxima sets of the smooth subsequences.

Given a set S of data points and a set () of query points, the algorithm Simpler
Domination computes the median p of the x-coordinates of the points in S, in time lin-
ear in the number of points in S, using the median finding algorithm described by Blum et
al. [15]. It computes the point p of maximum y-coordinates to the right of the vertical line ¢
of equation x = u, and discards all the points in S dominated by p, both steps in time linear
in the number of points in S. It discards also the points in ) dominated by p, and outputs
the points in @) that dominate p. Finally, it recurses on the non-discarded data and query
points to the left and to the right of ¢, respectively.

Similarly to the analysis of the Kirkpatrick and Seidel’s algorithm [47] described by Af-
shani et al. [1], we analyze the algorithm Simpler Domination in function of the entropy
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Algorithm 6 Synergy Domination

Input: A set S of data points and a set ) of query points
Output: The subset of points in () that are not dominated by any of the points in §
1: Compute the maxima sets of the ( smooth sequences into which S can be partitioned;
2: Compute the median p of the x-coordinates of the points at the middle position in the
maxima sets;
3: Partition the maxima sets by the vertical line ¢ of equation = = p;
4: Find the data point p of maximum y-coordinate to the right of ¢, note N the maxima
set containing p;
5: Discard all data points dominated by p;
6: Find the points [ and 7 of maximum xz-coordinate such that [, > p, and maximum
y-coordinate such that r, > p,, respectively, in all the maxima sets except N;
7: Find the block B of consecutive points in N that are in the region determined by the
vertical line of equation « = [, and the horizontal line of equation y = r;
8: Output the query points in ) that dominate points in B;
9: Discard the query point in () that are dominated by points in B;
10: Compute the set ); of remaining query points to the left of the points in B, and the set
@, of remaining query points to the right of the points in B;
11: Recurse separately on the non-discarded data points to the left of the points in B with
the set @); of query points, and on the non-discarded data points to the right of the points
in B with the query points @,.

of a partition of the data points determined by the positions of the query points, a concept
captured by the definition of dominance points (see Figure 5.4 for a graphical illustration of
such definition):

Figure 5.4: An instance of the problem of supporting domination queries. The black
solid disks mark the data points. The red open disks mark the query points. The
blue solid squares mark the dominance points.

Definition 17. Given a set S of data points and a set Q) of q query points, let M be the
maxima set of S. Let By, By, ..., B, be the v blocks of consecutive points in M (such that
v < 2q+ 1), sorted by the x-coordinates of the points in them, such that for each i € [1..7],
either there is a point in QQ whose x-coordinate is between the x-coordinates of the rightmost
point in B;_1 and the leftmost point in B; or there is a point in ) whose y-coordinate is
between the y-coordinates of the rightmost points in B;_1 and the leftmost point in B;. For
each block B;, there is a virtual dominance point p; associated with it. The x-coordinate of p;
15 the x-coordinate of the rightmost point in B;, and the y-coordinate of p; is the y-coordinates
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of the leftmost point in B;. Note that p; is not necessarily part of S nor of Q.

It follows from Definition 17 that the dominance points are maximal points among the
set S of data points. We define the dominance entropy H(I) of an instance I to represent
its difficulty in the context of the supporting domination query problem.

Definition 18. Consider an instance I of the supporting domination problem formed by a
set S of data points and a set Q) of query points. Consider a partition 11 of the points in
S into v subsets Si,...,S,. We say that 11 is respectful if the points of each member of 11
can be enclosed by a rectangle completely below the staircase determined by the v dominance
points of 1. Let H(II) = H(ny,...,n,) be the entropy of a partition 11, where ny,...,n, are
the sizes of the members of 11. Define the dominance entropy H(I) of I to be the minimum
of H(IT) over all respectful partitions I1 of S.

Given an instance [ formed by a set S of data points and a set () of query points, the
number of coordinate comparisons performed by the algorithm Simpler Domination can be
bounded in terms of the number of coordinate comparisons needed to compute the maxima
set of S, plus the dominance points, which is related to the dominance entropy H(I) of I:

Lemma 13. Given an instance I formed by a set S of n data points and q query points, let
v be the number of dominance points of I. Let H(I) be the dominance entropy of I. The
algorithm Simpler Domination answers the q domination queries performing a number of
coordinate comparisons within

O (nH(I) + \/qlogn) € O(nlogy + /qlogn).

Proof. In a preprocessing phase, the algorithm builds a k-d tree [12] in which at each step,
it tests which of the query points are dominated by the points of S, which ones form part of
the output, and which ones need more computation to make a decision.

Consider any respectful partition II of S. Fix any member N; of II of size n;. The
algorithm Simpler Domination in the worst case considers the n; points of INV; in all the
levels of the recursion tree from the first one to the [log ] +1. At each level of the recursion
tree, the number of points in the subinstance is reduced Zby half.

In the following levels, if the rectangle R enclosing the points in N; is completely below
the maxima set M of S, then every time the algorithm computes a point in M, it discards at
least half of the remaining points of N;. So, the numbers of remaining points of N; by levels
form a geometry progression of ratio 1/2. As a result, the number of coordinate comparisons
involving points from Nj is within O(n;log ™ + n;).

Otherwise, if the rectangle R enclosing the points in N; is completely below the staircase
determined by the dominance points, but not completely below M, then let p; be one of
the dominance points such that p; dominates all the points in N;. If the point p of M
computed by the algorithm dominates at least half of the points in /V;, then the analysis is
similar to the case where R is completely below M. Otherwise, if there are points of N; to
the left and to the right of p that are not dominated by p, then in the following recursive
calls that involve the rightmost points of N; to the left of p, and the leftmost points of N;
to the right of p, the algorithm stops the computation: all the query points that dominate
(resp., are dominated) by p; are output (resp., discarded) (those are the same points that
dominate (resp., are dominated) by p). Only two branches of the recursion tree require more
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computation. Similarly to the other case, the number of coordinate comparisons involving
points from Nj is within O(n;log = + n;).

Combining the above facts that bound the number of coordinate comparisons involving
points of N; by O(n;log =+ n;), the result follows. O

We adapt the concept of dominance points to the context of a decomposition of ( maxima
sets into blocks of consecutive points as obtained by the merging algorithm Quick Maxima
Union (described in Section 3.2):

Definition 19. Consider an instance I formed by ¢ maxima sets and a set (Q of q query
points. Let M be the mazxima set of the union of the ¢ mazima sets. Let C' be a mazima
partition certificate of minimum size § of the union of the ( maxima sets. The points of )
partition the & blocks in C' that form M into subsets such that two blocks A and B belong to
the same subset if there is not point p in () such that the lines of equations x = p, or y = p,
leave the points of A and B in different half-planes. For each of such subsets S;, there is a
dominance block point p; associated with S;. The x-coordinate of p; is the x-coordinate of
the rightmost point in S;, and the y-coordinate of p; is the y-coordinate of the leftmost point

We adapt the dominance entropy H(/), that represents the difficulty of a general instance
of the supporting domination queries problem to instances of the same problem formed by (
maxima sets and ¢ query points.

Definition 20. Consider an instance I formed by ( maxima sets and q query points. Let
C be a maxima partition certificate of minimum size of the union of the ( maxima sets.
Let B be the number of blocks in C. Let v be the number of dominance block points in I.
Consider a partition 11 of the 8 blocks in C' into v subsets By, ..., B,. We say that II is block
respectful if the points of each member of Il can be enclosed by a rectangle completely below
the staircase determined by the v dominance block points of I. Let H(II) = H(ny,...,n,) be
the block entropy of a partition I1, where ny, ..., n., are the sizes (i.e., the number of blocks)
of the members of I1. Define the block dominance entropy Hp(I) of I to be the minimum of
H(IT) over all block respectful partitions I1 of the blocks in C.

We reduce the analysis of the performance of the algorithm Synergy Domination to the
analysis of the performance of the algorithm Simpler Domination, described in Lemma 13,
using Definition 19 of dominance block points instead of Definition 17 of dominance points.

Theorem 14. Consider an instance I of n data points that can be partitioned into ¢ smooth
sequences, and q query points. Let C' be a maxima partition certificate of minimum size of
the union of the ¢ maxima sets. Let 5 be the number of blocks of consecutive points in C. Let
v be the number of dominance block points in I. Let Hp(I) be the block dominance entropy of
I. The number of coordinate comparisons performed by the algorithm Synergy Domination
while answering the ¢ domination queries is within

O(n + BHp(I) + ¢"*log ) € O(n + Blogy + ¢*/*log B).

Proof. There are two key points to prove the theorem. First, we consider the blocks of con-
secutive points of the maxima sets that form the maxima partition certificate C' as singleton
points, and then Lemma 13 is applied. Second, even though the partition of the maxima
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sets by the median p of the z-coordinates of the points at the middle positions could be
unbalance, the algorithm finds a point p in the maxima set of S with at least (/2 points at
each side of the vertical line through p, using only O(¢) coordinate comparisons. The latest
key point is used in the proof of Theorem 2 to prove the optimality of the algorithm Quick
Maxima Union. O

Though the techniques used in the analyses of the algorithms Synergy MultiSelection
(described in Section 5.1.1) and Synergy Domination (described in this section) seem very
different, they both achieve the same goal of counting only the comparisons associated to the
nodes that are expanded in the recursion tree of the algorithms Quick Set Union (described
in Section 3.1.2) and Quick Maxima Union (described in Section 3.2.1), respectively, when
answering the queries.

In the following section, we extend the results described above to the context where the
queries arrive one by one (i.e., the online setting).

5.2.2 Online Setting

We describe a deferred data structure that answers a set of domination queries arriving one
by one on a set .S of points, progressively computing the maxima set of S. Such deferred data
structures takes advantage of some measure of the input order and the input structure, as well
as of some measure of the query order and the query structure. It is in the pointer-machine
model.

Given a set S of n data points and the maxima sets of the ( smooth sequences into which
S can be partitioned, the Full Synergy Domination deferred data structure is composed of
a finger search tree F', as described by Brodal [16], in which the structure marks the blocks
of consecutive points of the maxima set of S that have been computed in the process of
answering the queries; and for each identified block B, the data structure stores pointers to
the portions of the maxima sets that have non-dominated points to the left and to the right
of B, and to the beginning and end of the block B in the maxima set that contains it.

Theorem 15. Consider an instance I formed by n data points that can be partitioned into
smooth sequences, and q query points. Let C' be a maxima partition certificate of minimum
size of the union of the ( mazxima sets. Let 8 be the number of blocks of consecutive points
in C. Let Hp(I) be the block dominance entropy of I. Let dy,...,d,—1 be the sequence where
d; is the number of identified blocks between the block that answers the j-th query and the
one that answers the j + 1-th query before starting the steps to answer the j + 1-th query,
for j € [1.q —1]. Let g1,...,q, be the sizes of the blocks in which the algorithm obtains
the final answer to the queries. The number of coordinate comparisons performed by the
Full Synergy Dominattion deferred data structure while answering the q online domination
queries s within

q—1 q
O <n+ﬁ7—l3(f) + Zlogdi + Zloggj> C O(n+ Blog~ + qlogh),
i=1 j=1

where v is the number of dominance block points of I, and h is the number of points in the
mazima set of S.
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Proof. The algorithm answers a new domination query by searching in F' for the nearest
blocks A and B of M to the left and to the right of the query point p, respectively. If p,
(resp., py) are in the range of z-coordinates (resp., y-coordinates) of the points of A or B,
then the algorithm answer the domination query in A or B, through a binary search in them.
Otherwise, the structure applies the same steps as the algorithm Synergy Domination in
the points between the blocks A and B to answer the query. The algorithm inserts in F' each
block of M identified in the process of answering the query, in constant time, because all
these blocks are in the vicinity of the finger returned in the first step. The structure stores
the respective pointers to positions to the left and right of these identified blocks in the (
maxima sets. O

In the following section, we consider the extension of some of the results described above
to the support of point membership queries on the convex hull of a set of data points.

5.3 Supporting Point Membership Queries on the Con-
vex Hull of a Set of Planar Points

In this section, we extend the results about the synergistic computation of the convex hull
(described in Section 4.3.2), and the results about supporting domination queries (described
in Section 5.2) to support point membership queries on the convex hull of a set of data points
(see Section 2.5.2 page 21 for the definition of the problem).

We describe solutions for supporting point membership queries in the offline setting (i.e.,
when all the queries are known from the beginning) in Section 5.3.1, and in the online setting
(i.e., when the queries arrive one by one) in Section 5.3.2.

In the offline setting, we describe the algorithm Synergy Membership that supports sev-
eral point membership queries at once (Section 5.3.1), inspired by the algorithm Quick
Synergy Hull (described in Section 4.3.2). The algorithm Synergy Membership takes ad-
vantage of some measure of the input order and the input structure in the data points, as
defined in Section 4.3.2, and of the query structure (captured by the concepts of upper and
lower block entropies in Definition 21).

In the online setting, when the queries arrive one by one, we describe the Full Synergy
Membership deferred data structure that computes the convex hull of the data points in a
“lazy” way while answering the queries. It takes advantage of some measure of the input
order and the input structure of the data points, of the query structure, as well as of some
measure of the query order (see Section 5.3.2 for the details of the analysis).

5.3.1 Offline Setting

Given a set S of data points and a set () of query points, the algorithm Synergy
Membership follows the same first steps of the algorithm Quick Synergy Hull (described in
Section 4.3.2). A minor difference in relation to the support of domination queries is that the
algorithm Synergy Membership needs to partially compute both the upper and lower hulls
of S in order to answer the point membership queries. The algorithm Synergy Membership
first partitions S into x simple polygonal chains, and computes the upper and lower hulls of
such simple polygonal chains, both steps in time linear in the number of points in S. It then
interweaves the “lazy” computation of the upper hull U and lower hull L of S: in one of the
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Algorithm 7 Synergy Membership

Input: A set S of data points and a set ) of query points
Output: The subset of points in () that are inside the convex hull of S

1:

Compute the x upper and lower hulls of the simple polygonal chains into which S can
be partitioned;

Compute the median py (resp., pur) of the slopes of the middle edges of the x upper
(resp., lower) hulls;

Identify the “pivot” point py (resp., pr) that has a supporting line of slope pugy (resp.,
pr) in the upper (resp., lower) hulls;

4: Partition the s upper (resp., lower) hulls by the vertical line through py (resp., pr);

For each upper (resp., lower) hull V', compute the two tangents of V' through py (resp.,
pr), and discard the blocks of consecutive points below (resp., above) the line segments
determined by the points of tangency;

Identify a block A (resp., B) in the upper hull (resp., lower hull) containing py (resp.,
pr) that forms part of the upper (resp., lower) hull of S;

Partition S and () into vertical strips by the vertical lines through the leftmost and the
rightmost points of A and B;

Answer the queries on the strips in which the entire portions of the upper and lower hulls
of S are known;

Recurse on the upper hulls to the left and to the right of the block A, and on the lower
hulls to the left and to the right of the block B, using the corresponding query points.

upper hulls, it computes a block A of consecutive points that forms part of U, and in one
of the lower hulls, it computes a block B of consecutive points that forms part of L. The
vertical lines through the leftmost and rightmost points of the blocks A and B partition the
data points and the query points into (at most 5) vertical strips. If in one of such strips, the
entire portions of both U and L have been already computed, then the algorithm answers the
queries and stops the computation in the strip. If only the entire portion of U or L has been
computed, then the algorithm can answer if the query points inside the strip are below U or
above L. It then recurses on the upper (resp., lower) hulls of the simple polygonal chains and
its corresponding query points to the left and right of A (resp., B). It maintains the query
points sorted by z-coordinates. See Figure 5.5 for a graphical illustration of those steps. A
formal description of the algorithm Synergy Membership is given in Algorithm 7.
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Figure 5.5: An instance of the problem of supporting point membership queries
on the convex hull of a set of data points. The black solid disks mark the data
points. The red open disks mark the query points. The state of the algorithm
Synergy Membership after the computation of the block A of the upper hull of the
data points and the block B of the lower hull of the data points. The vertical lines
through the leftmost and rightmost points of the blocks A and B are marked with
dashed lines.

Similarly to the analysis of the algorithm Synergy Domination (described in Section 5.2.1),
we analyze the time complexity of the algorithm Synergy Membership in function of a par-
tition of the data points into vertical strips determined by the positions of the query points.
Our analysis is similar to the one described by Sen and Gupta [61] for computing the convex
hull of a set S of planar points (described in Section 2.4.1), in which the points of S are
partitioned into vertical strip by the vertical lines through the points in the convex hull of
S. First, we define a measure of difficulty for membership queries.

Definition 21. Consider an instance I formed by a set S of n data points and q query points.
Let k be the minimum number of simple polygonal chains into which S can be partitioned.
Let C' and D be hull partition certificates of the union of the upper and lower hulls of such
k simple polygonal chains, respectively. Let U and L be the upper hull and lower hull of S,
respectively. Let Ay, ..., A, be the v blocks of consecutive points of U (such that v < q) in C
such that all the q query points are inside the vertical strips determined by the leftmost and
rightmost points of each of such blocks. Let By, ..., By be the X blocks of consecutive points
of L (such that A < q) in D such that all the q query points are inside the vertical strips
determined by the leftmost and rightmost points of each of such blocks. Let ny, ..., noyy1 be
the numbers of blocks in C' in a partition of the upper hulls into vertical strips determined by
the leftmost and rightmost points of the blocks Ay,..., A,. Let my, ..., max+1 be the numbers
of blocks in D in a partition of the lower hulls into vertical strips determined by the leftmost

and rightmost points of the blocks By, ..., Bx. (Such that ZZYI n; + Ejf{l m; < n.) Define
the upper block entropy Hp(U) of I to be H(nq,...,n2y41). Define the lower block entropy
Hp(L) of I to be H(my,...,moxy1). Define the solution block length b of I to be the sum of

the number of points in the blocks A;,..., A, and By, ..., By.

We analyze the time complexity of the algorithm Synergy Membership on an instance [
in function of the lower and upper block entropies of I:

Theorem 16. Given an instance I formed by a set S of n data points and q query points. Let
h be the number of points in the convex hull of S. Let Hp(U) be the upper block entropy of I.
Let Hp(L) be the lower block entropy of I. Let b be the solution block length of I. The time
complexity of the algorithm Synergy Membership to answer the q offline point membership
queries is within

0 (n(’H,B(L) + Hp(U)) + glog g) co (n log(min{%, ¢}) + qlog g) |

Proof. The analysis is similar to the ones in the proofs of Lemma 13 and Theorem 14.
The difference is that instead of using a k-d tree to supporting range searching, the algo-
rithm Synergy Membership answers the queries inside a vertical strip by performing doubling
searches for the z-coordinates of the points in () in the list of xz-coordinates of points in the
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block that determined the strip. The term qlogs corresponds to the worst-case complexity
of such searches. N

In the following section, we extend the algorithm Synergy Domination to a deferred data
structure supporting online point membership queries on the convex hull of a set of points.

5.3.2 Online Setting

We describe a deferred data structure that supports online point membership queries (i.e.,
arriving one by one) on the convex hull of a set of points S, progressively computing the
convex hull of S. It takes advantage of some measure of the input order and the input
structure, as well as of some measure of the query order and the query structure.

Given a set S of n data points and ¢ query points that arrive one by one, the Full
Synergy Membership deferred data structure partitions S into s simple polygonal chains,
and computes the convex hulls of such chains. Let U and L be the upper and lower hull of
S, respectively. In the process of answering the queries, the structure identified some blocks
of consecutive points in the upper and lower hulls of the simple polygonal chains that form
part of U and L, respectively. It uses two finger search trees Fy; and Fp, as described by
Brodal [16], to mark them. In Fy;, the structure marks the blocks that form part of U. In
F,, the structure marks the blocks that form part of L. For each block B found that form
part of U (resp., L), the data structure stores pointers to the portions of the upper (resp.,
lower) hulls of the simple polygonal chains that have non-discarded points to the left and to
the right of B, and to the beginning and end of the block B in the upper (resp., lower) hull
that contains it.

Theorem 17. Consider an instance I of n data points that can be partitioned into k simple
polygonal chains, and q point membership queries. Let U and L be the upper and lower
hull of the data points, respectively. Let Hp(U) be the upper block entropy of 1. Let Hp(L)
be the lower block entropy of I. Let dy,...,d,—1 be the sequence where d; is the number of
identified blocks that form part of U between the block that answers the i-th query and the
one that answers the i + 1-th query before starting the steps to answer the i + 1-th query,
forie[l.q—1]. Letey,..., e, 1 be the sequence where e; is the number of identified blocks
that form part of L between the block that answers the j-th query and the one that answers
the j + 1-th query before starting the steps to answer the j + 1-th query, for j € [1..q — 1].
Let fi,..., fq be the sizes of the blocks in U in which the algorithm obtains the answers to
the queries. Let g1, ..., gq be the sizes of the blocks in L in which the algorithm obtains the
answers to the queries. The time complexity of the Full Synergy Membership deferred data
structure to answer the q online queries is within

qg—1

O (n(”HB(U) +Hp(L)) + Y (logd; +loge;) + » (log f; + log gj))

i=1 Jj=1
co (n log(min{h, ¢}) + qlog ﬁ) :
q

Proof. The algorithm answers a new point membership query p by searching in Fy; for the
already computed blocks Ay and By closest to p: the one to the left of p, and the one to the
right of p, respectively. In Fp, the algorithm also searches for the already computed blocks
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Ay and By closest to p: the one to the left of p, and the one to the right of p, respectively.
If p, is in the range of the x-coordinates of the points of Ay or By, then the structure can
answer whether p is below or above U, through a binary search in the block. A symmetric
situation arise if the p, is in the range of the x-coordinates of the points of Ay, or By, then
the structure can answer whether p is above or below L, through a binary search in the
block. Otherwise, if p, is not in the range of the z-coordinates of the points in Ay or By,
then the structure applies the same steps as the algorithm Synergy Membership in order
to answer the query in the portions of the upper hulls to the right of Ay and to the left of
By. Symmetrically, if p, is not in the range of the x-coordinates of the points in Ay, or By,
then the structure applies the same steps as the algorithm Synergy Membership in order to
answer the query in the portions of the lower hulls to the right of A; and to the left of By.
In Fy and Fp, the algorithm inserts each block of U and L, respectively, identified in the
process of answering the query, in constant time, because all such blocks are in the vicinity of
the finger return in the first steps. The structure stores the respective pointers to positions
to the left and to the right of each of such identified blocks in the upper and lower hulls of
the simple polygonal chains. O

In the following, we discuss some ideas to improve the results described in this chapter.

5.4 Discussion

A perspective for future work is to refine the synergistic results about supporting point
membership queries on the convex hull of a set of planar points described in this section.
Afshani et al. [1] described an upper hull algorithm that takes advantage of a partition of
the points into enclosing triangles completely below the upper hulls of the points. We only
managed to refine the analysis of the algorithm and the deferred data structure supporting
point membership queries in terms of a partition of the blocks that form the upper hulls of
the simple polygonal chains into vertical strips (inspired by similar results described by Sen
and Gupta [61]). Such partition is more restrained than the one considered by Afshani et
al. [1]. Tt is not clear how we can measure the interactions between the query points and
the data points if we consider a partition of the upper hulls of the simple polygonal chains
determined by the arguments that form a hull partition certificate.

Even though our synergistic data structures proved to be more efficient when supporting
queries than previous data structures that take advantage only of a subset of the features
considered in this work, we do not know if our data structures are the best we can hope
for solving these problems. One step in this direction is to provide lower bounds for these
problems in terms of some of the measures that we have defined here. This is a very interesting
and challenging task because of the (many) parameters involved in our analyses.

We describe algorithms and data structures supporting rank and select queries on mul-
tisets. However, we only support “membership” queries in Computational Geometry: dom-
ination queries and point membership queries. But supporting rank and select queries on
the maxima set (resp., the convex hull) of a set of planar points implies computing all the
maximal points (resp., all the vertices of the convex hull) to the left of the query, which result
in a very different situation to the support of rank and select queries on multisets.

This concludes the description of our synergistic results. In the next chapter, we discuss
more general issues left open for improvement.
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Chapter 6

Discussion

We have shown that it is possible to take advantage, at the same time, of features that
depend on the order in which the input data is given and of features that depend on the
structure of the input data for three fundamental problems in Computer Science. We further
extended these results to the context of supporting queries, and described solutions that, in
addition to taking advantage of some features of the input data, also take advantage of some
features of the order in which the queries are given and of the structure of the queries. On
large classes of instances, such solutions improve the best previous solutions by more than a
constant factor while never performing worse by more than a constant factor.

In the context of supporting online rank and select queries on multisets, the deferred data
structures described in this work take advantage of the runs in the multiset, a measure that
depend on the order in which the elements are given. In this context, the concept of runs
was introduced previously by Kaligosi et al. [44] and Barbay et al. [6], but for a different
purpose than the refined analysis of the complexity presented in this work. In the context of
supporting queries in Computational Geometry, other queries have been considered [1]. We
clarify the differences and the research perspectives that these facts suggest in Section 6.1,
and other perspectives for future research in Sections 6.2, 6.3, and 6.4, where we discuss
the support of other queries to the ones considered in this work. In Section 6.5, we state a
general paradigm for synergistic techniques, and discuss its application to the problems of
computing the Delaunay triangulation and the Voronoi diagram of a set of planar points. At
a metalevel, we discuss the importance of categorizing techniques of multivariate analysis of
algorithms in Section 6.6.

6.1 Comparison with Previous Work

Kaligosi et al.’s multiselection algorithm [44] and Barbay et al.’s deferred data structure [6]
use the very same concept of runs as the one described in this work. The difference is, the
algorithms and data structures described in Chapters 4 and 5 detect the existing runs in the
input to take advantage of them, while the algorithms described by those previous works do
not take into consideration any pre-existing runs in the input, and rather build and maintain
such runs as a strategy to minimize the number of comparisons performed while partially
sorting the multiset. At best, a combination of both approaches could shave a constant factor
off the number of comparisons performed by the sorting and the multiselection algorithms,
and by the deferred data structures supporting rank and select queries on multisets.

79



Johnson and Frederickson [34] described an algorithm answering a single select query in a
set of sorted arrays of sizes 11,7, ..., r,, in time within O(}%_, logr;). When there is a single
query, using their algorithm on pre-existing runs outperforms the deferred data structures
described in Section 5.1.2. Yet it is not clear how to generalize their algorithm into a deferred
data structure in order to support more than one query, so that the deferred data structure
takes advantage of the information obtained by answering previous queries. The difference
is somehow negligible as the cost of such a query is anyway dominated by the cost (n — 1
comparisons) of partitioning the input into runs. To this date, the generalization of Johnson
and Frederickson’s algorithm into a deferred data structure which optimally supports any
quantity of queries is still an open problem.

In the following sections, we discuss the support of queries in Computational Geometry
different from those considered in this work.

6.2 Other Queries in Computational (Geometry

Afshani et al. [1], among other results, described a general framework to study online versions
of point location and related problems. They considered the following online problem: given
a set S of n points in R? and a mapping function M from points in R? to “answers” in
some space for some constant d, build a data structure to compute M(q) for any query point
g € R?, while trying to minimize the average query cost over all the points in S. Through
their framework they described a solution to such a problem assuming the existence of an
oracle data structure that answers the following queries: given a point ¢ € R?, answer M (q)
in O(log m + k) worst-case time for output of size x, where m is a parameter describing the
size of M, and given a convex polyhedral cell v of size a, test if every point ¢ in + have the
same answer M (q) in time within O(am'~®), where o > 0. In a preprocessing algorithm,
the framework builds a tree data structure 7' that represents a partition of R% by recursively
subdividing it into b polyhedral regions. The preprocessing algorithm subdivides each region
R until every point ¢ € S N R has the same answer. In a query algorithm, the framework
searches in T" the answer to the query. If the preprocessing time is not considered, they proved
matching upper and lower bounds for the average query cost over all the points in S, in the
order-oblivious setting. They applied such framework to online versions of several problems:
point location queries in 2D, half-space range reporting queries in 2D and 3D, dominance
reporting queries in 2D and 3D, orthogonal range reporting/counting queries in 2D. These
queries are the most studied and the ones that appear the most frequently in practice.

In a more general setting, S can be replaced by a probability distribution, and the goal
is to bound the expected query time for a point randomly chosen from S. In this case, the
preprocessing time depends on the probability distribution, and could be overkill if we only
consider a few queries. Therefore, a deferred data structure that “lazily” builds the tree
data structure while answering the queries would take advantage of the number of queries
and of the probability distribution S to minimize the expected query time, including any
preprocessing. For each probability distribution, the issue lies in analyzing how much time
the data structure spends partitioning the space in a “lazy” way while answering the queries.
We leave the generalization of our deferred data structure results to these problems as a topic
of future work.
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6.3 Compressed Data Structures in Computational Ge-
ometry

In Section 5.1.3, we described compressed data structures supporting rank and select on
multisets, which are directly inspired by our synergistic (analysis of) sorting algorithms. A
natural question arises about whether our synergistic (analysis of) algorithms for comput-
ing maxima sets and convex hulls also yield similar compressed data structures supporting
domination queries on a set of planar points and point membership queries on the convex
hull of a set of planar points, respectively. The answer to such question is “yes”, but such
compressed data structures would encode the maxima set/convex hull partition certificate
as opposed to the maxima set/convex hull itself, which might have some applications when
the data points are added, removed or moved, but which has much less applications than the
compressed data structures on multisets.

6.4 Range Queries on Multisets

In another line of though, consider an array A[l..n] of n comparable objects. A range mini-
mum query [14] consists of a pair of integers ¢ and j such that 1 <7 < j < n, and is answered
by RminQ, (%, j), the leftmost position of a minimum in Afi..j]. Such queries have a wide range
of applications in various data structures and algorithms, including text indexing [32], pattern
matching [22], and more elaborate kinds of range queries [20]. If the array A is formed by re-
peated elements, then it is possible to define more specific queries related to the RminQ, (%, j)
operation. Given m elements of minimum values of ranks r1,...,7, in the range A[i..j],
the range leftmost minimum queries RLminQ4 (i, j) returns rq, the range rightmost minimum
queries RRminQ, (i, j) returns r,,, and range k-th minimum query RKminQ, (7, j) returns ry.
Related queries are previous smaller value PSV4(i) and previous larger value PLV 4(7), which
are answered by the positions of the nearest smaller and larger values among A[l..7], respec-
tively. By analogy the operations range mazimum query RmaxQu(i,j), next smaller value
NSV4(i), and next larger value NLV 4(i) can be defined.

Fischer [30] described a non-systematic succinct index (which does not access the origi-
nal data when answering queries) using 2n + o(n) bits and supporting RminQu (¢, j) in zero
accesses to A and constant accesses to the index, which can be built in time within O(n).
Gawrychowski and Nicholson [35], among other results, described an index that supports
RminQ,(7,j) and RmaxQ,(7,7) on A in constant time using 3n + o(n) bits. Fischer [31] de-
scribed a non-systematic succinct index using 2.54n + o(n) to support PSV4(i),NSV4(i) and
RminQ4 (7, 7). By combining both approaches, Jo and Rao [43] described encodings that sup-
port a wide range of queries: an encoding using 3.322n + o(n) bit that supports RminQ4 (4, j),
RmaxQ4 (7, 7), RRminQu (7, j), RRmaxQ4 (i, 7), PSV4(i) and PLV4(7) in constant time, and an en-
coding using 4.585n + o(n) bits that supports RminQ4(,7), RRminQ,(7,j), RLminQ4 (4, 5),
RKminQ4(7,5), PSV4(i), NSV4(7), RmaxQ4(i,7), RRmaxQy(7,7), RLmaxQ,(i,7), RKmaxQ, (7, ),
PLV,4(7), NLV4(4) in constant time.

In the worst case over all possible arrays of n comparable objects, any fully separated
index requires at least 2n bits in order to support RminQ4(i,7) queries. Taking advantage
of the repetitions in multisets is unlikely to yield much better results for indexes that only
support RminQ (%, j), from the point of view of these indexes, instances varying in repetitions
such as (2,1,3) and (2, 1,2) are indistinguishable.
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Those results suggest the following questions:

1. Is there a compressed index for an ordered input A that supports the operations
PSV,4(i),NSV4(7) and RminQ4 (4, j), while taking advantage of the local and global order
and of the repetitions in A?

2. Is there a compressed index for an ordered input A that supports the operations
RminQ,(7,j) and RmaxQ4(i,7), while taking advantage of the local and global order
and of the repetitions in A?

3. Is there a compressed index for A that supports a wide range of operations, while taking
advantage of the local and global order and of the repetitions in A in a synergistic way,
so that it takes less space on instances where it can take advantage of both at the same
time?

The block decomposition used in the analyses of the algorithms Sorted Set Union and
Quick Set Union (seen in Section 3.1) is the basis of the compressed data structures for
supporting rank and select queries on multisets (described in Section 5.1.3). Such decom-
position contains all the information to sort the entire multiset, which can be much more
than what is needed to answer range minimum queries and related queries. A new approach
therefore is needed to answer the previous questions.

6.5 A General Paradigm for Synergistic Techniques

We partially answered a question suggested by Afshani et al. [1] related to a unified the-
ory about order-dependent and order-oblivious algorithms, by describing solutions taking
advantage both of some measures of the input order and the input structure.

We conjecture that synergistic techniques taking advantage of more than one “easiness”
aspect will be of practical importance if the gap between theoretical analysis and practice is
to ever be reduced.

We proved that it is possible to take advantage at the same time of characteristics that
depend on the order and on the structure of the data, such that on some large classes of
instances, these synergistic solutions outperform any solution that only takes advantage of
one of those features. We described features essential for a problem to be amenable to
this approach. If a problem can be partitioned efficiently into “simpler” instances taking
advantage of the input order, and if the structure resulting from such simpler instances can
be merged efficiently taking advantage of the input structure, then our synergistic paradigm
can be applied to the problem. Using this technique, on large classes of instances, our
solutions for sorting multisets, and computing the maxima set and the convex hull of planar
points, perform order of magnitude better than previous solutions.

Problems that could fit into this paradigm are the computation of the Delaunay trian-
gulation and its dual, the Voronoi diagram, of a set of planar points. These problems are
natural extensions to the problems we considered in this work.

Concerning the partitioning phase of our synergistic approach, it is possible to take ad-
vantage of some measure of the input order when computing the Delaunay triangulation and
the Voronoi diagram of a set of planar points. Djidjev and Lingas [26] defined a monotone
histogram as a sequence of points sorted with respect to two orthogonal directions. They
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described an algorithm which, given a monotone histogram, computes the Voronoi diagram
(and hence the Delaunay triangulation) of a sequence of points in linear time. This suggests
a way of partitioning the input into subsequences such that the Voronoi diagram and the
Delaunay triangulation of each subsequence can be computed in linear time in its length.

Concerning the merging phase of our synergistic approach, Kirkpatrick [46] described an
algorithm for the merging of two arbitrary Voronoi diagrams. Given the Voronoi diagrams
of two disjoint point sets P and @), the algorithm finds the Voronoi diagram of PU(Q in time
within O(|P|+|@]). The plane is partitioned into points closer to P, points closer to (), and
points equidistant from P and (). The points equidistant from P and () are defined as the
contour separating P and (). The contour is composed of straight line segments: it is formed
from the edges of the Voronoi diagram of PUQ that separates the points in P from the points
in Q. Inside the region of points closer to P (resp., @) the Voronoi diagram of PUQ and the
Voronoi diagram of P (resp., @) are identical. Thus, the merging of two Voronoi diagrams
can be seen as the process of cutting the Voronoi diagrams of P and ) along the contour.
This leads to a divide-and-conquer algorithm for constructing the Voronoi diagram of an
n-point set and hence for computing the Delaunay triangulation in time within O(nlogn).
This suggests that there are easy instances in which the merging of these structures can be
done efficiently.

6.6 Importance of the Parameterization of Structure
and Order

The computational complexity of most problems is studied in the worst case over instances of
fixed size n, for n asymptotically tending to infinity. This approach was refined for NP-hard
problems under the term “parameterized complexity” [33], for polynomial problems under
the term “Adaptive (Analysis of) Algorithms” [28, 54], and more generally for data encodings
under the term of “Data Compression” [7], for a wide range of problems and data types.

Such a variety of results has motivated various classifications, in the context of NP-hard
problems with a theory of Fixed Parameter Tractability [33], and in the context of sorting in
the decision tree model with a theory of reduction between parameters [59]. We introduced
other perspectives from which to classify algorithms and data structures. Through the study
of the sorting of multisets, and the computation of the maxima set and the convex hull, the
two latter in the plane, according to the potential “easiness” in both the order and the values
in the input, we aimed to introduce a way to classify refined techniques of complexity analysis
between the ones considering the input order and the ones considering the input structure;
and to show examples of the difficulty of combining both into a single hybrid algorithmic
technique. Through the study of the online support of queries according to the potential
“easiness” in both the order and the structure in the queries themselves (in addition to the
potential easiness in the data being queried), we aimed to introduce such new categorizations
which depend on the queries. We predict that such analysis techniques will take on more
importance in the future, along with the growth of the gap between practical cases and the
worst case over instances of fixed sizes.

83



Bibliography

1]

[10]

[11]

[12]

[13]

P. Afshani, J. Barbay, and T. M. Chan. Instance-optimal geometric algorithms. Journal
of the ACM (JACM), 64(1):3:1-3:38, 2017.

H.-K. Ahn and Y. Okamoto. Adaptive algorithms for planar convex hull problems.
IEICE Transactions on Information and Systems (T1S), 94-D(2):182-189, 2011.

A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley Longman Publishing Co., Inc., 1974.

N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the fre-
quency moments. In Proceedings of the Twenty-eighth Annual ACM Symposium on
Theory of Computing (STOC), pages 20-29, New York, NY, USA, 1996. ACM.

J. Barbay and E. Y. Chen. Convex hull of the union of convex objects in the plane: an
adaptive analysis. In Proceedings of the Annual Canadian Conference on Computational

Geometry (CCCG), 2008.

J. Barbay, A. Gupta, S. R. Satti, and J. Sorenson. Near-optimal online multiselection
in internal and external memory. Journal of Discrete Algorithms (JDA), 36:3-17, 2016.

J. Barbay and G. Navarro. On compressing permutations and adaptive sorting. Theo-
retical Computer Science (TCS), 513:109-123, 2013.

J. Barbay and C. Ochoa. Synergistic solutions for merging and computing planar convex
hulls. In Computing and Combinatorics - 24rd International Conference (COCOON),
Qingdao, China, July 2-4, 2018, Proceedings, 2018.

J. Barbay, C. Ochoa, and P. Perez-Lantero. Refining the analysis of divide and conquer:
How and when. 2015. arXiv:1505.02820v3.

J. Barbay, C. Ochoa, and S. R. Satti. Synergistic solutions on multisets. In 28th An-
nual Symposium on Combinatorial Pattern Matching (CPM), July 4-6, 2017, Warsaw,
Poland, pages 31:1-31:14, 2017.

P. Beame and F. E. Fich. Optimal bounds for the predecessor problem and related
problems. Journal of Computer and System Sciences (JCSS), 65(1):38 — 72, 2002.

J. L. Bentley. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM (CACM), 18(9):509-517, Sept. 1975.

J. L. Bentley and A. C. Yao. An almost optimal algorithm for unbounded searching.
Information Processing Letters (IPL), 5(3):82-87, 1976.

84



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. SIAM Journal
on Computing (SICOMP), 22(2):221-242, 1993.

M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for
selection. Journal of Computational System Science (JCSS), 7(4):448-461, 1973.

G. S. Brodal. Finger search trees with constant insertion time. In Proceedings of the
ninth annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 540-549.
Society for Industrial and Applied Mathematics, 1998.

T. M. Chan, J. Snoeyink, and C.-K. Yap. Primal dividing and dual pruning: Output-
sensitive construction of four-dimensional polytopes and three-dimensional voronoi dia-
grams. Discrete €9 Computational Geometry (DCG), 18(4):433-454, 1997.

D. R. Chand and S. S. Kapur. An algorithm for convex polytopes. Journal of the ACM
(JACM), 17(1):78-86, 1970.

B. Chagzelle. Triangulating a simple polygon in linear time. Discrete & Computational
Geometry (DCG), 6(5):485-524, Aug. 1991.

K.-Y. Chen and K.-M. Chao. On the range maximum-sum segment query problem.
In Proceedings of the International Symposium Algorithms and Computation (ISAAC),
LNCS 3341, pages 294-305. Springer, 2004.

D. R. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.

M. Crochemore, C. S. Iliopoulos, M. Kubica, M. S. Rahman, and T. Walen. Improved
algorithms for the range next value problem and applications. In Proceedings of the
International Symposium on Theoretical Aspects of Computer Science (STACS), pages
205-216. IBFT Schloss Dagstuhl, 2008.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geom-
etry: Algorithms and Applications. Springer-Verlag, 1997.

E. D. Demaine, A. Lépez-Ortiz, and J. I. Munro. Adaptive set intersections, unions, and
differences. In Proceedings of the 11" ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 743-752, 2000.

E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Experiments on adaptive set inter-
sections for text retrieval systems. In Proceedings of the 3rd Workshop on Algorithm
Engineering and Ezperiments (ALENEX), Lecture Notes in Computer Science, pages
5-6, Washington DC, January 2001.

H. N. Djidjev and A. Lingas. On computing voronoi diagrams for sorted point sets.
International Journal of Computational Geometry & Applications (IJCGA), 05(03):327—
337, 1995.

D. P. Dobkin and J. I. Munro. Optimal time minimal space selection algorithms. Journal

of the ACM (JACM), 28(3):454-461, 1981.

V. Estivill-Castro and D. Wood. A survey of adaptive sorting algorithms. ACM Com-
puting Surveys (CSUR), 24(4):441-476, 1992.

85



[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[39]

[40]

[41]

[42]

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
Journal of Computational System Science (JCSS), 66(4):614-656, 2003.

J. Fischer. Optimal succinctness for range minimum queries. In Proceedings of the Latin
American Theoretical INformatics Symposium (LATIN), LNCS 6034, pages 158-169.
Springer, 2010.

J. Fischer. Combined data structure for previous- and next-smaller-values. Theoretical
Computer Science (TCS), 412(22):2451 — 2456, 2011.

J. Fischer, V. Makinen, and G. Navarro. Faster entropy-bounded compressed suffix
trees. Theoretical Computer Science (TCS), 410(51):5354-5364, 2009.

J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical Com-
puter Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

G. N. Frederickson and D. B. Johnson. Generalized selection and ranking. In Proceedings
of the 12th Annual ACM Symposium on Theory of Computing (STOC), April 28-30,
1980, Los Angeles, California, USA, pages 420-428, 1980.

P. Gawrychowski and P. K. Nicholson. Automata, Languages, and Programming: 42nd
International Colloquium (ICALP) Kyoto, Japan, July 6-10, 2015, Proceedings, Part I,
chapter Optimal Encodings for Range Top-k, Selection, and Min-Max, pages 593-604.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets: A
tool for text indexing. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithm (SODA), pages 368-373, Philadelphia, PA, USA, 2006. Society
for Industrial and Applied Mathematics.

L. J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts. A new representation for
linear lists. In Proceedings of the ninth annual ACM symposium on Theory of computing
(STOC), pages 49-60, New York, NY, USA, 1977. ACM Press.

C. A. R. Hoare. Algorithm 64: Quicksort. Communication of the ACM (CACM),
4(7):321, 1961.

C. A. R. Hoare. Algorithm 65: Find. Communication of the ACM (CACM), 4(7):321—
322, 1961.

D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceed-
ings of the Institute of Radio Engineers (IRE), 40(9):1098-1101, September 1952.

K. E. Iverson. A Programming Language. John Wiley & Sons, Inc., New York, NY,
USA, 1962.

R. Jarvis. On the identification of the convex hull of a finite set of points in the plane.
Information Processing Letters (IPL), 2(1):18 — 21, 1973.

86



[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

S. Jo and S. R. Satti. Computing and Combinatorics: 21st International Conference,
COCOON 2015, Beijing, China, August 4-6, 2015, Proceedings, chapter Simultaneous
Encodings for Range and Next/Previous Larger/Smaller Value Queries, pages 648-660.
Springer International Publishing, Cham, 2015.

K. Kaligosi, K. Mehlhorn, J. I. Munro, and P. Sanders. Towards optimal multiple
selection. In Proceedings of the International Conference on Automata, Languages, and
Programming (ICALP), pages 103-114, 2005.

R. M. Karp, R. Motwani, and P. Raghavan. Deferred data structuring. SIAM Journal
on Computing (SICOMP), 17(5):883-902, 1988.

D. G. Kirkpatrick. Efficient computation of continuous skeletons. In Proceedings of the
20th Annual Symposium on Foundations of Computer Science (FOCS), pages 18-27,
Washington, DC, USA, 1979. IEEE Computer Society.

D. G. Kirkpatrick and R. Seidel. Output-size sensitive algorithms for finding maximal
vectors. In Proceedings of the Annual Symposium on Computational Geometry (SoCG),
pages 89-96, New York, NY, USA, 1985. ACM.

D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM
Journal on Computing (SICOMP), 15(1):287-299, 1986.

D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, 1973.

C. Levcopoulos, A. Lingas, and J. S. B. Mitchell. Adaptive algorithms for constructing
convex hulls and triangulations of polygonal chains. In Proceedings of the Scandinavian
Workshop on Algorithm Theory (SWAT), pages 80-89, London, UK, 2002. Springer-
Verlag.

C. Levcopoulos and O. Petersson. Sorting shuffled monotone sequences. Information
and Computation (IC), 112(1):37-50, 1994.

H. Mannila. Measures of presortedness and optimal sorting algorithms. IEEE Transac-
tions on Computers (TC), 34(4):318-325, 1985.

A. A. Melkman. On-line construction of the convex hull of a simple polyline. Information
Processing Letters (IPL), 25(1):11-12, Apr. 1987.

A. Moffat and O. Petersson. An overview of adaptive sorting. Australian Computer
Journal (ACJ), 24(2):70-77, 1992.

J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of permu-
tations and functions. Theoretical Computer Science (TCS), 438:74-88, 2012.

J. I. Munro and P. M. Spira. Sorting and searching in multisets. SIAM Journal on
Computing (SICOMP), 5(1):1-8, 1976.

G. Navarro. Wavelet trees for all. Journal of Discrete Algorithms (JDA ), 25:2-20, 2014.

87



[58]

[59]

[60]

[61]

[62]

[63]

M. Overmars and J. van Leeuwen. Maintenance of configurations in the plane (revised
edition). Technical Report RUU-CS-81-03, Department of Information and Computing
Sciences, Utrecht University, 1981.

O. Petersson and A. Moffat. A framework for adaptive sorting. Discrete Applied Math-
ematics (DAM), 59:153-179, 1995.

F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, 1985.

S. Sen and N. Gupta. Distribution-sensitive algorithms. Nordic Journal on Computing

(NJC), 6:194-211, 1999.

J. M. Steele and A. C. Yao. Lower bounds for algebraic decision trees. Journal of

Algorithms (JoA), 3(1):1 — 8, 1982.

T. Takaoka. Partial solution and entropy. In R. Kréalovi¢c and D. Niwinski, editors,
Mathematical Foundations of Computer Science (MFCS) 2009: 34th International Sym-
posium, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009. Proceedings, pages
700-711, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

88



