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EARLY DETECTION OF EXTREME WAVES BY ACOUSTIC-GRAVITY WAVES

Extreme waves generated in the ocean are of high importance because various maritime struc-
tures in the world, including ships, are confronted to this type of wave events, both in deep
waters and in coastal areas. Some extreme waves correspond to wave phenomena generated
in an atypical way in the ocean, also called monster waves, freak waves, rogue waves, extreme
waves, solitons etc., since their generation differs from the common waves generated by wind.
Assuming a slightly compressible ocean, the generation and analysis of acoustic-gravity waves
(AGW or acoustic waves) in the ocean have been the subject of study for some time, because
from them it is possible to obtain some information from the gravity wave, in this case a
extreme wave that have generated them, and also to know other kind of phenomena induced
by these AGW, as is the case of the bottom pressure.
In the present work, a mathematical model has been developed which represents the gener-
ation and propagation of an extreme wave represented by a pressure change in the surface
of the ocean considering compressible fluid, from which the generation and propagation of
acoustic waves is induced. Since sound travels at a speed of 1500 m/s in the ocean, these
waves arrive first at any observation point, allowing early detection of the extreme wave from
the pressure in the oceanic bottom due to propagation of the acoustic wave. The theoretical
development and two-dimensional numerical simulations are presented in the document.
The implementation of this methodology and its results is relevant in the field of civil and
maritime engineering in Chile since its high potential in coastal zones, due to the fact that
for some years, the frequency of extreme wave events has been seen increased, and having an
alternative detection system for extreme wave events can become a relevant factor in coastal
management and natural disasters services.
It is important to mention that this type of work has not been developed previously in Chile.
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DETECCIÓN TEMPRANA DE ONDAS EXTREMAS POR MEDIO DE ONDAS ACÚS-
TICAS

Olas extremas generadas en el océano son de alta importancia debido a que diversas es-
tructuras marítimas en el mundo, inclyendo barcos, son enfrenatados a este tipo de eventos
de oleaje, tanto en aguas profundas como en zonas costeras. Algunas olas extremas corre-
sponden a fenómenos de oleaje generados de manera atípica en el océano, también llamadas
monster waves, freak waves, rogue waves, extreme waves, solitons etc., ya que su generación
difiere de las olas comúnes generadas por viento.
Asumiendo un océano ligeramente compresible, la generación y análisis de ondas acústicas en
el océano (acoustic waves o acoustic-gravity waves, en inglés) han sido tema de estudio desde
hace algún tiempo, debido a que a partir de ellas es posible obtener alguna información de
la onda de gravedad que las generó, y también conocer otros fenómenos inducidos por éstas,
como es el caso de la presión en el fondo.
En el presente trabajo, se ha desarrollado un modelo matemático que representa la generación
y propagación de una onda extrema representada por un cambio de presión en la superfi-
cie del océano considerando fluido compresible, a partir de la cual se induce la generación
y propagación de ondas acústicas. Dado que el sonido viaja a una velocidad de 1500 m/s
en el océano, éstas ondas llegan primero a cualquier punto de observación, permitiendo una
detección anticipada de la onda extrema a partir de la presión en el fondo por efecto de la
propagación de la onda acústica. El desarrollo teórico y simulaciones numéricas bidimension-
ales son presentadas en el documento.
La implementación de esta metodología y sus resultados es relevante en el ámbito de la inge-
niería civil y marítima de Chile por su alto potencial en las zonas costeras, debido a que desde
algunos años, la frecuencia de los eventos extremos de oleaje se han visto incrementada, y
contar con un sistema de detección alternativo de eventos extremos de oleaje puede llegar a
ser relevante en los servicios de gestión costera y desastres naturales.
Es importante mencionar que este tipo de trabajos no ha sido desarrollada anteriormente en
Chile.
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Chapter 1

Introduction

Coastal and offshore areas around the world are affected by extreme waves events commonly
called giant waves, rogue waves, monster waves, freak waves, solitons, etc. These kinds of
waves are generated in some point at the ocean and have a physical mechanism of generation
(different to other water waves such as the generated by winds) that occurs in a sudden
manner containing high energy associated to the wave height and period. Figure 1.1 shows
an example of an extreme wave event impacting on an offshore platform.

Figure 1.1: Extreme wave event on Borgholm Dolphin platform, Scotland. Source: BBC News

By now, many of these extreme waves have been recorded by different devices, such as deep
water buoys or ADCP’s (Acoustic Doppler Current Profiler) in coastal areas; or have been
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detected by technologies, such as, satellite altimetry of the ocean surface. A typical example
of an extreme wave is the famous "New Year Wave", measured on January 1st 1995 in the
North Sea with a very large height about 26m. Figure 1.2 shows a time series record of this
event.

Figure 1.2: The famous “New Year Wave” measured on the 1st of January 1995 in the North Sea.
(Wave height about 26m). Source: Rogue waves in the ocean. Kharif 2009.

Despite of the above, not too much efforts have been carried out on the prediction or early
detection of these wave events, what can have a very high impact in saving people’s life,
reducing the destruction of maritime facilities or to evacuate populated areas.

There are different theories around the generating mechanism of extreme waves in the ocean,
such as the Benjamin-Feir instability, which is well understood and has been reproduced
experimentally, such as in Chabchoub (2011). Recently, there have been some efforts pre-
dicting rogue waves arising in realistic ocean spectra by characterizing the trigger of rogue
waves Cousins (2016). Nevertheless, to our knowledge, none of the previous works on extreme
waves considers the slight compressibility of the ocean, which reveals a family of propagating
acoustic-gravity waves (AGWs) that can be excellent precursors for an early warning system.

When the developments have been been treated as incompressible, that assumption is only
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valid so long as the time taken for a disturbance to be propagated to the bottom is small
compared with the period of the waves, that is, h/c� T or h� cT , where c is the velocity
of sound in water, h is the depth and T is the wave period. For ocean waves h may be of the
order of several kilometers, c is about 1500 m/s and T lies between about 5 and 20 s. The
condition above is therefore no longer satisfied. It follows that in practice the compressibility
of the water must be taken into account.

According the above, taking Cartesian axes (x, y, z) with the origin in the undisturbed free
surface, the y-axis parallel to the wave crests, and the z-axis vertically downwards. It is
assumed that the motion is periodic in the x-direction with wave-length λ. Let z = h be the
equation of the rigid bottom and z = η the equation of the free surface. Also let u = velocity,
p = pressure, ρ = density, and let ps, and ρs, denote the (constant) values of p and ρ at the
free surface. We shall assume that viscosity is negligible and that the velocity is irrotational,
so that

u = ∇φ (1.1)

We assume also that ρ is a function of p only. Then the equations of motion may be integrated
(Lamb 1932) to give

φt −
1

2
u2 + gz − P = 0 (1.2)

where φ contains an arbitrary function of the time t and where

P =

∫ ρ

ρs

dp
ρ

(1.3)

The relation between p and ρ is assumed as follow,

dp
dρ

= c2 = constant (1.4)

that is, the velocity of sound c in the medium is constant. Then

P = c2

∫ ρ

ρs

dp
ρ

= c2 log(ρ/ρs) (1.5)

Now, the equation of continuity can be written as

Dρ

Dt
− ρ∇2φ = 0 (1.6)

where Dρ/Dt denotes the differentiation following the motion. Thus

∇2φ =
1

ρ

Dρ

Dt
=

D

Dt
log(ρ) (1.7)

and from (1.5) the next expression is obtained

∇2φ =
1

c2

DP

Dt
(1.8)
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To eliminate P between the above equations

c2∇2φ =
DP

Dt

(
φt −

1

2
u2 + gz

)

= φtt −
∂

∂t

(
1

2
u2

)
+ u · ∇φt − u · ∇

(
1

2
u2

)
+ gφz (1.9)

but as

u · ∇φt = u · ∂
∂t

(∇φ) = − ∂

∂t

(
1

2
u2

)
(1.10)

then

φtt − c2∇2φ+ gφz −
∂

∂t

(
1

2
u2

)
− u · ∇

(
1

2
u2

)
= 0 (1.11)

which corresponds to the differential equation for φ, what can be expressed as follows once
the non linear terms are neglected

φtt − c2∇2φ+ gφz = 0 (1.12)

The above conducts to AGW theory considers wave disturbances in a compressible medium
under the effects of gravity, accounting for two types of waves, gravity (surface) and acoustic
(compression), that are virtually decoupled due to the disparity in time and length scales. It
is essential to consider both gravity and compressibility effects, during one of the following
scenarios: (1) when the frequency of the wave disturbance is extremely low, since the phase
speed of the wave can then be altered (Kadri & Stiassnie, 2012; Kadri, 2019; Abdolali,
2019); (2) when studying energy exchange via a nonlinear triad mechanism (Kadri & Akylas,
2016; Kadri & Stiassnie, 2013; Kadri, 2017; Dias, 2018; Kadri, 2018); (3) when focusing on
small scale drifting (Kadri, 2014); and (4) when analysing the propagation of AGWs from a
disturbance at the bottom, such as a submarine earthquake, e.g. Kadri (2017); Mei & Kadri
(2018), an impact on the sea-surface as in Kadri (2017), or a general disturbance on the free
surface, e.g. Renzi & Dias (2014).

Based on the above and due to the pressure changes in the ocean surface because of extreme
waves generation, they can induce the acoustic-gravity waves formation, which travel through
the ocean at the speed of sound in the water (1500 m/s), velocity that is much higher than the
phase velocity of a generated surface gravity wave, as the case of an extreme wave. As these
AGW possess a high velocity, they can arrive the coast, or another point in the ocean earlier
than an extreme gravity wave. Considering the aforementioned, these sound phenomena can
be used for the early detection of these extreme waves, what have a great impact in to prevent
this kind of extreme events in some point of the ocean, either deep water or coastal zones.

The present work is aimed to develop theoretically and numerically the generation and prop-
agation of AGW by the generation of an extreme wave assuming compressible fluid. A
multiple scale approach has been applied for the generation of the acoustic-gravity wave due
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to a pressure change on the ocean surface. This sudden change of pressure has been induced
by the extreme wave once it has been generated. Bi-dimensional numerical simulations have
been carried out to test the theory and to assess the developed calculations. The work has
been developed with the aim to study the case of extreme waves and the potential to apply
acoustic-gravity wave in live recordings as part of an early warning system.

The work presents the development of the mathematical model in Chapter 2, where the gov-
erning equations for the slightly compressible fluid are solved estimating the general form for
the velocity potential of the gravity and acoustic-gravity waves using the Green’s functions.
In Chapter 3, the estimation of the potential for both, gravity and acoustic-gravity waves
is presented. Chapter 4 shows the stationary phase approximation applied to obtain the
gravity and acoustic–gravity wave potentials in the far field for rapidly varying solutions.
In the same way, Chapter 5 presents the validation of the methodology compared with the
theoretical results of other authors. Also, numerical simulations are presented in this chap-
ter, where the bottom pressures due acoustic and acoustic–gravity waves are analyzed for
different locations. Finally, conclusions and future work, and also the bibliography of the
document are presented in Chapter 6 and Chapter 7, respectively.
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Chapter 2

Mathematical Model

In the present chapter the considered mathematical model comes from Longuet-Higgins
(1950), which corresponds to model of wave motion in a compressible fluid. The govern-
ing equations are developed as a basis to obtain the systems of equations for the gravity and
acoustic-gravity waves. A scalement has been used to set and estimate the latter according
to Kadri & Akylas (2015), where the scalement parameter µ = gh/c2 controls the effects
of compressibility relative to gravity. At the end of the chapter, the Green’s functions are
calculated to obtain the potentials for each wave, gravity and acoustic-gravity, respectively.

2.1 Governing Equations

We consider the propagation of wave disturbances in a compressible ocean of a constant
depth h under the effects of gravity. The sea bottom (z = −h) is assumed rigid, the water is
treated as an inviscid barotropic fluid with constant sound speed c, and motion is irrotational.
Following (Kadri & Akylas, 2016), we shall use dimensionless variables, employing h/c as time
scale and µh as length scale, where µ = gh/c2 controls the effects of compressibility relative
to gravity (typically µ� 1).

The problem is formulated in terms of velocity potential φ(x, z, t), where u = ∇φ is the
velocity field. Combining the unsteady Bernoulli equation with continuity, yields the field
equation which governs the interior fluid (Longuet-Higgins (1950)),

φtt −
1

µ2
∇2φ+ φz = 0 ; on −1/µ < z < η (2.1)

where µ = gh/c2. Here c corresponds to the speed of sound in water (c = 1.5× 103 m/s), h
is the depth and g is the gravitational acceleration. The parameter µ controls the effects of
compressibility relative to gravity (typically µ� 1).
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The ∇ operator corresponds to

∇ =

(
∂

∂x
,
∂

∂z

)
(2.2)

then ∇2 becomes

∇2 = ∆ =

(
∂2

∂x2
+

∂2

∂z2

)
(2.3)

where ∆ is the Laplacian operator. The equation (1.1) can be rewritten as

φtt −
1

µ2
(φxx + φzz) + φz = 0 ; on −1/µ < z < η (2.4)

The bottom boundary condition in z = −1/µ is stated as

φz = 0 ; on z = −1/µ (2.5)

By the other hand, on free surface z = η(x, t), we consider the dynamic and kinematic
conditions as follow

φt + z ; on z = 0 (2.6)

∇2φ = 0 ; on z = 0 (2.7)

what gives the combined boundary condition in the surface. After expanding the two free-
surface conditions about z = 0, η can be expressed in terms of φ to this first order of
approximation

∂φt
∂t

+
∂η

∂t
=
∂P (x, t)

∂t
; on z = 0 (2.8)

or

φtt + φz = Pt(x, t) ; on z = 0, (2.9)

where P (x, t) is the pressure acting as external force on the water surface. Now, we have to
solve the system composed by the equations (1.4), (1.5) and (1.9)

φtt −
1

µ2
(φxx + φzz) + φz = 0 ; on −1/µ < z < 0

φtt + φz = Pt(x, t) ; on z = 0

φz = 0 ; on z = −1/µ

(2.10)

Assuming the potential φ can be expressed by the next equation according to (Kadri &
Akylas, 2016)

φ(x, z, t) = f(z)e
1
2
µ2zei(kx−ωt), (2.11)
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we consider the Laplace transform and its inverse in the next forms

φ̄(x, z, ω) =

∫ ∞
0

φ(x, z, t)e−iωtdt; φ(x, z, t) =
1

2πi

∫
Γ

φ̄(x, z, ω)eiωtdω (2.12 a, b)

ˆ̄φ(z, k, ω) =

∫ ∞
−∞

φ̄(x, z, ω)e−ikxdx; φ̄(x, z, ω) =
1

2π

∫ ∞
−∞

ˆ̄φ(z, k, ω)eikxdk (2.13 a, b)

ˆ̄φ(z, k, ω) =

∫ ∞
−∞

∫ ∞
0

φ(x, z, t)e−iωte−ikxdtdx (2.14)

then, the potential can be obtained as follow

ˆ̄φ(z, k, ω) =

∫ ∞
−∞

(∫ ∞
0

f(z)e
1
2
µ2ze−iωtdt

)
e−ikxdx (2.15)

ˆ̄φ(z, k, ω) = f(z)e
1
2
µ2z

∫ ∞
−∞

∫ ∞
0

e−iωte−ikxdtdx. (2.16)

Using the potential of (2.16) and replacing it on the system (2.10) doing the corresponding
derivatives we get

ˆ̄φtt(z, k, ω) = −ω2f(z)e
1
2
µ2z

(∫ ∞
−∞

∫ ∞
0

e−iωte−ikxdtdx
)

(2.17)

ˆ̄φxx(z, k, ω) = −k2f(z)e
1
2
µ2z

(∫ ∞
−∞

∫ ∞
0

e−iωte−ikxdtdx
)

(2.18)

ˆ̄φz(z, k, ω) = (fz +
1

2
µ2f)e

1
2
µ2z

(∫ ∞
−∞

∫ ∞
0

e−iωte−ikxdtdx
)

(2.19)

ˆ̄φzz(z, k, ω) = (fzz + µ2fz +
1

4
µ4f)e

1
2
µ2z

(∫ ∞
−∞

∫ ∞
0

e−iωte−ikxdtdx
)
. (2.20)

Replacing the derivatives in the field equation and boundary conditions of the system (2.10),
we have that

(2.21)
∫ ∞
−∞

∫ ∞
0

(
−ω2f +

k2

µ2
f − 1

µ2

[
fzz +µ2fz +

µ4

4
f +fz +

µ2

2
f

])
e

1
2
µ2ze−iωte−ikxdtdx= 0,

now, multiplying (2.21) by µ2 and reducing the corresponding terms, we obtain,∫ ∞
−∞

∫ ∞
0

(
−ω2µ2f + k2f − fzz +

µ4

4
f

)
e

1
2
µ2ze−iωte−ikxdtdx = 0 (2.22)

To the above integral be equal to 0, the next term has to be null(
−ω2µ2f + k2f − fzz +

µ4

4
f

)
= 0 (2.23)
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and rearranging the terms, we get the next expression for the field equation

fzz −
(
k2 − ω2µ2 +

µ4

4
f

)
= 0 ; on −1/µ < z < 0 (2.24)

It is important to note that equation (2.24) holds also for ˆ̄φ as the integrals cancel out.
Applying the same previous process to the surface boundary condition

φtt + φz = Pt(x, t) ; on z = 0 (2.25)

and using the corresponding expressions (2.17) to (2.20), we find

(2.26)
∫ ∞
−∞

∫ ∞
0

(
−ω2f +fz +

µ2

2
f

)
e

1
2
µ2ze−iωte−ikxdtdx=

∂

∂t

∫ ∞
−∞

∫ ∞
0

P (x, t)e−iωte−ikxdtdx

(2.27)
∫ ∞
−∞

∫ ∞
0

(
−ω2f + fz +

µ2

2
f

)
e

1
2
µ2ze−iωte−ikxdtdx =

∫ ∞
−∞

∫ ∞
0

P (x, t)
∂

∂t
e−iωte−ikxdtdx

∫ ∞
−∞

∫ ∞
0

(
−ω2f + fz +

µ2

2
f

)
e

1
2
µ2ze−iωte−ikxdtdx = −iω

∫ ∞
−∞

∫ ∞
0

P (x, t)e−iωte−ikxdtdx

(2.28)

By using the expression (2.14) on the right side of (2.28) we get the next form∫ ∞
−∞

∫ ∞
0

(
−ω2f + fz +

µ2

2
f

)
e

1
2
µ2ze−iωte−ikxdtdx = −iω ˆ̄P (k, ω) (2.29)

what gives the surface boundary condition

fz −
(
ω2 − µ2

2

)
f = −iω ˆ̄P (k, ω) ; on z = 0 (2.30)

To get the bottom boundary condition, we apply the corresponding expressions (2.17) - (2.20)
to the expression

φz = 0 ; on z = −1/µ (2.31)

obtaining the next form∫ ∞
−∞

∫ ∞
0

(
fz +

1

2
µ2f

)
e

1
2
µ2ze−iωte−ikxdtdx = 0 (2.32)

which implies that the term inside the parenthesis has also to be null

fz +
1

2
µ2f = 0 ; on z = −1/µ (2.33)
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With the use of the equations (2.24), (2.30) and (2.33), we get the new system of the equations
as follows 

fzz −
(
k2 − ω2µ2 + 1

4
µ4
)
f = 0 ; on −1/µ < z < 0

fz −
(
ω2 − 1

2
µ2
)
f = −iω ˆ̄P e−

1
2
µ2z ; on z = 0

fz + 1
2
µ2f = 0 ; on z = −1/µ

(2.34)

where ˆ̄P = ˆ̄P (k, z, ω).

2.1.1 System of Equations for gravity and acoustic-gravity waves

As the problem involves two kind of waves, there are two limit cases to study, what corre-
sponds to the relation of dispersion for gravity and acoustic-gravity waves.

1.- Gravity wave
First, the case when µ → 0 implies that only the gravity mode is present, and system
can be stated as follows

fzz − k2f = 0 ; on −1/µ < z < 0

fz − ω2f = −iω ˆ̄P ; on z = 0

fz = 0 ; on z = −1/µ

(2.35)

To solve the above system, the general solution corresponds to

f = Ae|k|z +Be−|k|z (2.36)
fz = |k|Ae|k|z − |k|Be−|k|z → fz = |k| (Ae|k|z −Be−|k|z) (2.37)

from the equations(2.36) and (2.37), we can note that the terms Be−|k|z and kBe−|k|z →
0 because they decays exponentially due the negative sign. In this way, the general
solution and its derivative can reformulated in the next form

f = Ae|k|z (2.38)
fz = |k| (Ae|k|z) (2.39)

using (2.38) and (2.39) in the second expression of the system (2.35) is

|k|Ae|k|z − ω2Ae|k|z = −iω ˆ̄P, (2.40)

then, evaluating the above equation on z = 0 and finding A we get

A =
−iω ˆ̄P

|k| − ω2
. (2.41)

By replacing (2.41) in the general solution (2.38) we can find the value of f , where

f =
−iω ˆ̄P

|k| − ω2
e|k|z (2.42)
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which satisfies the complete system (2.35) and corresponds to the solution for the
gravity wave of the problem. We note that the dispersion relation for this problem is
given by the next form

ω2 = |k| . (2.43)

2.- Acoustic-gravity wave
By the other hand, using the field equation of the system (2.35), the vertical profile
f(z) becomes oscillatory in the low-wavenumber limit, k2 < µ2ω2. To analyze this
possibility, we write

k = µκ→ k2 = µ2κ2 ; Z = µz, (2.44)

this rescaling amounts to using h instead µh as the characteristic length scale. Assuming
γ2 = ω2 − κ2 > 0 and using the conditions (2.44) on the system (2.35), we have that
the field equation and the boundary conditions are as follow

µ2fZZ −
(
µ2κ2 − ω2µ2 + 1

4
µ4
)
f = 0 ; on −1 < Z < 0

µfZ −
(
ω2 − 1

2
µ2
)
f = −iω ˆ̄P ; on Z = 0

µfZ + 1
2
µ2f = 0 ; on Z = −1

(2.45)

neglecting the higher order terms (µ2), the system reduces to
fZZ + γ2f = 0 ; on −1 < Z < 0

µfZ − ω2f = −iω ˆ̄P ; on Z = 0

fZ + 1
2
µf = 0 ; on Z = −1

(2.46)

The general solution for the above system has the next form

f = A cos(γ(Z + 1)) +B(sin γ(Z + 1)) (2.47)

then

fZ = −Aγ sin(γ(Z + 1)) +Bγ cos(γ(Z + 1)) (2.48)
fZZ = −Aγ2 cos(γ(Z + 1))−Bγ2 sin(γ(Z + 1)) (2.49)

fZZ = −γ2[A cos(γ(Z + 1)) +B sin(γ(Z + 1))] = −γ2f (2.50)

with the above the field equation is satisfied by the general solution. Let’s apply now
the obtained derivatives to the boundary conditions. Taking the bottom boundary
condition from the system (2.46) and replacing the corresponding values, the next form
is obtained

fZ +
1

2
µf = 0 (2.51)

−Aγ sin(γ(Z + 1)) +Bγ cos(γ(Z + 1)) +
1

2
µ [A cos(γ(Z + 1)) +B(sin γ(Z + 1))] = 0

(2.52)
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on Z = −1, the above equation becomes to

−Aγ sin(γ(0)) +Bγ cos(γ(0)) +
1

2
µ [A cos(γ(0)) +B(sin(γ(0))] = 0 (2.53)

Bγ +
1

2
µA = 0 (2.54)

⇒ A = −2Bγ

µ
(2.55)

Replacing A in the surface boundary condition to obtain B

µfZ − ω2f = −iω ˆ̄P (2.56)

µ

[
−
(
−2Bγ

µ

)
γ sin(γ(Z + 1)) +Bγ cos(γ(Z + 1))

]
−

− ω2

[(
−2Bγ

µ

)
cos(γ(Z + 1)) +B sin(γ(Z + 1))

]
= −iω ˆ̄P (2.57)

on Z = 0 and simplifying some terms, we get

(2Bγ2) sin(γ) + µBγ cos(γ) +

(
2Bω2γ

µ

)
cos(γ)− ω2B sin(γ) = −iω ˆ̄P (2.58)

B

[
(2γ2) sin(γ) + µγ cos(γ) +

(
2ω2γ

µ

)
cos(γ)− ω2 sin(γ)

]
= −iω ˆ̄P (2.59)

B
[
(2µγ2) sin(γ) + µ2γ cos(γ) + (2ω2γ) cos(γ)− µω2 sin(γ)

]
= −iµω ˆ̄P (2.60)

B
[
sin(γ)(2µγ2 − µω2) + cos(γ)(µ2γ + 2ω2γ)

]
= −iµω ˆ̄P (2.61)

B =
−iµω ˆ̄P

sin(γ)(2µγ2 − µω2) + cos(γ)(µ2γ + 2ω2γ)
(2.62)

Now, replacing B on (2.55) to get the expression for the parameter A

A =
2iωγ ˆ̄P

sin(γ)(2µγ2 − µω2) + cos(γ)(µ2γ + 2ω2γ)
(2.63)

Taking A and B to the general equation (2.47)

f = A cos(γ(Z + 1)) +B(sin γ(Z + 1)) (2.64)

f =
2iωγ ˆ̄P

sin(γ)(2µγ2 − µω2) + cos(γ)(µ2γ + 2ω2γ)
cos(γ(Z + 1))

− iµω ˆ̄P

sin(γ)(2µγ2 − µω2) + cos(γ)(µ2γ + 2ω2γ)
sin(γ(Z + 1)) (2.65)

f = iω ˆ̄P

[
2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))

sin(γ)(2µγ2 − µω2) + cos(γ)(µ2γ + 2ω2γ)

]
(2.66)
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Let’s to analyze the denominator of the equation (2.66) in order to find the limiting
cases for the acoustic-gravity wave.

sin(γ)
µ

γ

{
2γ2 − ω2

µ2 + 2ω2

}
+ cos(γ) = O(µ2) (2.67)

Since γ2 = ω2 − κ2, the dispersion relation can be rewritten as

µ

{
γ2 − κ2

2γω2

}
sin(γ) + cos(γ) = O(µ2) (2.68)

When cos(γ) = 0 ⇒ γ = (n+ 1/2)π, the term (γ2 − κ2) sin(γ) survives because
sin(γ) = 1. In this case, the equation (2.68) can be rewritten as

µ

{
γ2 − κ2

ω2

}
sin(γ) + 2γ cos(γ) = O(µ2) (2.69)

as γ =
(
n+ 1

2

)
π and ω2 = γ2 + κ2, the expression (2.69) can be reformulated as

µ

{(
n+ 1

2

)2
π2 − κ2(

n+ 1
2

)2
π2 + κ2

}
sin(γ) + (2n+ 1)π cos(γ) = O(µ2) (2.70)

the expression (2.70) becomes

µ

{
ω2
n − κ2

ω2
n + κ2

}
sin(γ) + cos(γ) = O(µ2) (2.71)

thus, the dispersion relation has the following form

ω2 = ω2
n + κ2 + µ

{
ω2
n − κ2

ω2
n + κ2

}
+O(µ2) ; with n = 0, 1, 2, ..., (2.72)

where ωn = (n+ 1/2) π.
Now, we can recover the potential φ by using the double inverse transform (2.12 b) and
(2.13 b) on the expression (2.16) obtaining

ˆ̄φ(z, k, ω) = f(z)e
1
2
µ2z

∫ ∞
−∞

∫ ∞
0

e−iωte−ikxdtdx (2.73)

φ(x, z, t) =
1

2πi

∫
Γ

{
1

2π

∫ ∞
−∞

ˆ̄φ(z, k, ω)eikxdk
}
eiωtdω (2.74)
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2.1.2 Green’s functions for the gravity and acoustic-gravity wave
potentials

Considering the function f as in equations (2.42) and (2.66), we can solve them separately,
first for the gravity wave and later for the acoustic-gravity wave as follows.

1 - Gravity wave

Let us consider the equation (2.42)

f =
−iω ˆ̄P (k, z, ω)

|k| − ω2
e|k|z (2.75)

φg(x, z, t) = e
1
2
µ2z

∫ t

0

∫ ∞
−∞

ˆ̄P (ξ, τ)Gg(x− ξ, t− τ)dξdτ (2.76)

Where φg is the gravity wave potential and G is the Green’s function associated. Let’s take
the Green’s function of the gravity wave in the following form:

Gg(x, z, t) = − 1

4π2

∫ ∞
−∞

eikx
{∫

Γ

[
ωe|k|z

|k| − ω2

]
eiωtdω

}
dk (2.77)

Gg(x, z, t) = − 1

2π2

∫ ∞
0

eikx
{∫

Γ

[
ωe|k|z

|k| − ω2

]
eiωtdω

}
dk. (2.78)

We are going to analyze the two poles for the gravity wave when ω = ±
√
|k| by using the

Cauchy’s Residue Theorem, where the integration domain Γ ∈ [0,∞) . We need to find the
integrals over the poles, points that are critical for the solution∫

Γ

= I1 + I2 (2.79)

. Let’s going to solve both critical cases for (2.78)

(a) Case: ω = −
√
|k|

I1 = 2πiRes
(
f(ω),−

√
|k|
)

(2.80)

Res
(
f(ω),−

√
|k|
)

= lim
ω→−
√
|k|

[
ωe|k|z

(
√
|k| − ω)(

√
|k|+ ω)

eiωt

]
(
√
|k|+ ω) (2.81)

= −
√
|k|e|k|ze−i

√
|k|t

2
√
|k|

(2.82)

I1 = −πie|k|ze−i
√
|k|t (2.83)
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(b) Case: ω = +
√
|k|

I2 = 2πiRes
(
f(ω),

√
|k|
)

(2.84)

Res
(
f(ω),+

√
|k|
)

= lim
ω→+
√
|k|

[
ωe|k|z

(
√
|k|+ ω)(

√
|k| − ω)

eiωt

]
(
√
|k| − ω) (2.85)

=

√
|k|e|k|ze−i

√
|k|t

2
√
|k|

(2.86)

I2 = πie|k|ze−i
√
|k|t (2.87)

Now, summing I1 and I2 and factorizing terms, we obtain the solution of the integral (2.79)

I1 + I2 = πie|k|z
{
−e−i
√
|k|t + ei

√
|k|t
}

(2.88)

I1 + I2 = −2πe|k|z sin(
√
|k|t) (2.89)

Now, replacing the equation (2.89) on (2.78) and simplifying terms we found the Green’s
Function for the gravity equation

Gg(x, z, t) =
1

π

∫ ∞
0

sin(
√
|k|t)e|k|zeikxdk (2.90)

2 - Acoustic-gravity wave

In an analog way, let’s take the equation (2.66)

f = iω ˆ̄P (k, z, ω)

[
2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))

sin(γ)(2µγ2 − µω2) + cos(γ)(µ2γ + 2ω2γ)

]
(2.91)

φs(x, z, t) = e
1
2
µ2z

∫ t

0

∫ ∞
−∞

ˆ̄P (ξ, τ)Gs(x− ξ, t− τ)dξdτ (2.92)

Where φs is the potential associated to the acoustic-gravity wave and G is the Green’s
function considered in the next form

Gs(x, z, t) =
1

4π2

∫ ∞
−∞

eikx
{∫

Γ

ω

[
2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))

sin(γ)(2µγ2 − µω2) + cos(γ)(µ2γ + 2ω2γ)

]
eiωtdω

}
dk

Gs(x, z, t) =
1

2π2

∫ ∞
0

eikx
{∫

Γ

ω

[
2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))

sin(γ)(2µγ2 − µω2) + cos(γ)(µ2γ + 2ω2γ)

]
eiωtdω

}
dk

(2.93)
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Using now the Cauchy’s Residue Theorem on the acoustic-gravity wave to get∫
Γ

= In+ + In− (2.94)

We are going to analyze the poles for the acoustic-gravity wave from (2.93) when ω = ±κn,
where Γ ∈ [0,∞)

(a) Case: ω = +κn

In+ = 2πiRes (f(ω),+κn) (2.95)

we have that

Res (f(ω),+κn) = lim
ω→+κn

ω [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] eiωt (2.96)

Res (f(ω),+κn) = (+κn) [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] ei(+κn)t (2.97)

Res (f(ω),+κn) = κn [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] eiκnt (2.98)

replacing (2.98) on (2.95), we get

In+ = 2πiκn [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] eiκnt (2.99)

(b) Case: ω = −κn

In− = 2πiRes (f(ω),−κn) (2.100)

we have that

Res (f(ω),−κn) = lim
ω→−κn

ω [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] eiωt (2.101)

Res (f(ω),−κn) = (−κn) [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] ei(−κn)t (2.102)

Res (f(ω),−κn) = −κn [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] e−iκnt (2.103)

replacing (2.103) on (2.100) yields

In− = −2πiκn [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] e−iκnt (2.104)∫
Γ

= In+ + In− (2.105)

2πiκn[2γcos(γ(Z+1))−µ sin(γ(Z+1))]eiκnt+
(
−2πiκn[2γcos(γ(Z+1))−µ sin(γ(Z+1))]e−iκnt

)
(2.106)
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2πiκn [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] (eiκnt − e−iκnt) (2.107)

2πiκn [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] (2i sin(κnt)) (2.108)

∫
Γ

= −4πκn [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] (sin(κnt)). (2.109)

Replacing the equation (2.109) on (2.93) we have the expression of the Green’s Function for
the acoustic-gravity wave equation

Gs(x, z, t) = − 2

π

∞∑
n=1

∫ ∞
0

κn [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] (sin(κnt))eikxdk. (2.110)
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Chapter 3

Estimation of the potential

To estimate the potential φ(x, z, t), let us analyze the pressures on the ocean assuming
that they can be exponentially gaussian distributed in order to simplify the physics of the
phenomena, by using a double gaussian in time and space with the next form

P (x, t) =
2I0

πεσ
e−( xσ )

2

e−( tε)
2

; x ∈ R, t ≥ 0, (3.1)

where I0 is the total impulse per unit width (considering y as the transversal coordinate
equal to 1). Replacing the expression (3.1) for the pressure and the found Green’s equations
(2.90) on (2.76) and (2.110) on (2.92) for the gravity wave and for the acoustic-gravity wave
respectively, we can find the related potentials φg and φs.

1 - Calculation of gravity wave potential φg

Once the mentioned replacements have been made, the following expression is obtained for
the gravity wave potential

φg(x, z, t) = e
1
2
µ2z

∫ t

0

∫ ∞
−∞

2I0

πεσ
e−( xσ )

2

e−( tε)
2
(

1

π

∫ ∞
0

sin(
√
|k|(t− τ))e|k|zeik(x−ξ)dk

)
dξdτ

(3.2)
rearranging terms

φg(x, z, t) =
2I0

εσπ2
e

1
2
µ2z

∫ t

0

∫ ∞
−∞

e−( xσ )
2

e−( tε)
2
(∫ ∞

0

sin(
√
|k|(t− τ))e|k|zeik(x−ξ)dk

)
dξdτ

(3.3)
In order to solve the above equation, a grouping of the corresponding terms is made, resulting
in the next expression, which consists of two integrals Ig1 and Ig2

φg(x, z, t) =
2I0

εσπ2
e

1
2
µ2z

∫ ∞
0

e|k|z


∫ t

0

sin(
√
|k|(t− τ))e−( τε )

2

dτ︸ ︷︷ ︸
Ig1

∫ ∞
−∞

e−( ξσ )
2

eik(x−ξ)dξ︸ ︷︷ ︸
Ig2

 dk

(3.4)
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rewriting the equation (3.4) in exponential form, yields

φg(x, z, t)

=
2I0

εσπ2
e

1
2
µ2z

∫ ∞
0

e|k|z

 1

2i

∫ t

0

{
ei
√
|k|(t−τ) − e−i

√
|k|(t−τ)

}
e−( τε )

2

dτ︸ ︷︷ ︸
Ig1

∫ ∞
−∞

e−( ξσ )
2

eik(x−ξ)dξ︸ ︷︷ ︸
Ig2

 dk

(3.5)

Now, to try this formulation, let us solve first the integral Ig1

Ig1 =
1

2i

{∫ t

0

ei
√
|k|(t−τ)e−( τε )

2

dτ −
∫ t

0

e−i
√
|k|(t−τ)e−( τε )

2

dτ
}
, (3.6)

going through the algebra, the solving is made as follows

Ig1 =
1

2i

{∫ t

0

ei
√
|k|te−i

√
|k|τe−( τε )

2

dτ −
∫ t

0

e−i
√
|k|tei
√
|k|τe−( τε )

2

dτ
}

(3.7)

Ig1 =
1

2i

{
ei
√
|k|t
∫ t

0

e−i
√
|k|τe−( τε )

2

dτ − e−i
√
|k|t
∫ t

0

ei
√
|k|τe−( τε )

2

dτ
}

(3.8)

Ig1 =
1

2i

{
ei
√
|k|t
∫ t

0

e−
[
( τε )

2
+i
√
|k|τ

]
dτ − e−i

√
|k|t
∫ t

0

e−
[
( τε )

2
−i
√
|k|τ

]
dτ
}

(3.9)

Ig1 =
1

2i
e
−
(
ε
√
|k|

2

)2 {
ei
√
|k|t
∫ t

0

e
−
(
τ
ε

+
i√|k|ε

2

)2

dτ − e−i
√
|k|t
∫ t

0

e
−
(
τ
ε
− i
√
|k|ε
2

)2

dτ

}
. (3.10)

Setting the variables ug1 = τ/ε+ i
√
|k|ε/2 and ug2 = τ/ε− i

√
|k|ε/2, we have that equation

(3.10) becomes

Ig1 =
1

2i
e
−
(
ε
√
|k|

2

)2
ei
√
|k|t
∫ t

ε
+
i√|k|ε

2

i√|k|ε
2

e−u
2
g1dug1 − e−i

√
|k|t
∫ t

ε
− i
√
|k|ε
2

−i√|k|ε
2

e−u
2
g2dug2

 , (3.11)

the above expression (3.11) has two integrals that have the form of the error function. Ac-
cording this, the next equation is obtained

(3.12)Ig1 =
1

2i
e
−
(
ε
√
|k|

2

)2 {
ε

√
π

2
ei
√
|k|t

[
erf

(
t

ε
+

i
√
|k|ε
2

)
− erf

(
iε
√
|k|

2

)]

− ε
√
π

2
e−i
√
|k|t

[
erf

(
t

ε
−

i
√
|k|ε
2

)
− erf

(
−
iε
√
|k|

2

)]}
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(3.13)Ig1 =
1

2i
e
−
(
ε
√
|k|

2

)2 {
ε

√
π

2
ei
√
|k|t

[
erf

(
t

ε
+

i
√
|k|ε
2

)
− erf

(
iε
√
|k|

2

)]

− ε
√
π

2
e−i
√
|k|t

[
erf

(
t

ε
−

i
√
|k|ε
2

)
+ erf

(
iε
√
|k|

2

)]}

(3.14)Ig1 = ε

√
π

4i
e
−
(
ε
√
|k|

2

)2 {
erf

(
t

ε
+

i
√
|k|ε
2

)
ei
√
|k|t − erf

(
iε
√
|k|

2

)
ei
√
|k|t

− erf

(
t

ε
−

i
√
|k|ε
2

)
e−i
√
|k|t − erf

(
iε
√
|k|

2

)
e−i
√
|k|t

}

(3.15)Ig1 = ε

√
π

4i
e
−
(
ε
√
|k|

2

)2 {
erf

(
t

ε
+

i
√
|k|ε
2

)
ei
√
|k|t − erf

(
t

ε
−

i
√
|k|ε
2

)
e−i
√
|k|t

− erf

(
iε
√
|k|

2

)(
ei
√
|k|t + e−i

√
|k|t
)}

converting the exponential terms to functions of sin and cos, (3.15) can be rewritten as

(3.16)Ig1 = ε

√
π

4i
e
−
(
ε
√
|k|

2

)2 {
erf

(
t

ε
+

i
√
|k|ε
2

)
ei
√
|k|t − erf

(
t

ε
−

i
√
|k|ε
2

)
e−i
√
|k|t

− 2erf

(
iε
√
|k|

2

)
cos(

√
|k|t)

}

(3.17)Ig1 = ε

√
π

4i
e
−
(
ε
√
|k|

2

)2 {
erf

(
t

ε
+

i
√
|k|ε
2

)[
cos(

√
|k|t) + i sin(

√
|k|t)

]
− erf

(
t

ε
−

i
√
|k|ε
2

)[
cos(

√
|k|t)− i sin(

√
|k|t)

]
− 2erf

(
iε
√
|k|

2

)
cos(

√
|k|t)

}
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Equation (3.17) can be rewritten as

(3.18)

Ig1 = ε

√
π

4i
e
−
(
ε
√
|k|

2

)2 {
erf

(
t

ε
+

i
√
|k|ε
2

)
cos(

√
|k|t) + ierf

(
t

ε
+

i
√
|k|ε
2

)
sin(
√
|k|t)

− erf

(
t

ε
−

i
√
|k|ε
2

)
cos(

√
|k|t) + ierf

(
t

ε
−

i
√
|k|ε
2

)
sin(
√
|k|t)

− 2erf

(
iε
√
|k|

2

)
cos(

√
|k|t)

}

grouping terms we get

Ig1 = ε

√
π

4i
e
−
(
ε
√
|k|

2

)2 {[
erf

(
t

ε
+

i
√
|k|ε
2

)
− erf

(
t

ε
−

i
√
|k|ε
2

)
− 2erf

(
iε
√
|k|

2

)]
cos(

√
|k|t)

+

[
ierf

(
t

ε
+

i
√
|k|ε
2

)
+ ierf

(
t

ε
−

i
√
|k|ε
2

)]
sin(
√
|k|t)

}
.

(3.19)

Multiplying (3.19) by i/i = 1 and considering only the terms that have positive imaginary
part or the expression (3.19) and naming the rest as complex conjugated (c.c.), we obtain
the next form for the integral Ig1

(3.20)

Ig1 = −ε
√
π

4
e
−
(
ε
√
|k|

2

)2 {[
ierf

(
t

ε
+

i
√
|k|ε
2

)
− ierf

(
t

ε
−

i
√
|k|ε
2

)

− 2ierf

(
iε
√
|k|

2

)]
cos(

√
|k|t)

+

[
i2erf

(
t

ε
+

i
√
|k|ε
2

)
+ i2erf

(
t

ε
−

i
√
|k|ε
2

)]
sin(
√
|k|t)

}

Ig1 =−ε
√
π

4
e
−
(
ε
√
|k|

2

)2 {[
ierf

(
t

ε
+
i
√
|k|ε
2

)
−ierf

(
t

ε
−
i
√
|k|ε
2

)
+2erfi

(
ε
√
|k|

2

)]
cos(

√
|k|t)

−

[
erf

(
t

ε
+

i
√
|k|ε
2

)
+ erf

(
t

ε
−

i
√
|k|ε
2

)]
sin(
√
|k|t)

}
(3.21)
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thus,

(3.22)Ig1 = −ε
√
π

4
e
−
(
ε
√
|k|

2

)2 {[
ierf

(
t

ε
+

i
√
|k|ε
2

)
+ 2erfi

(
ε
√
|k|

2

)
+ c.c.

]
cos(

√
|k|t)

−

[
erf

(
t

ε
+

i
√
|k|ε
2

)
+ c.c.

]
sin(
√
|k|t)

}

Now, we are going to solve the integral Ig2 .

Ig2 =

∫ ∞
−∞

e−( ξσ )
2

eik(x−ξ)dξ (3.23)

Ig2 =

∫ ∞
−∞

e−( ξσ )
2

eikxe−ikξdξ (3.24)

Ig2 = eikx
∫ ∞
−∞

e−( ξσ )
2

e−ikξdξ (3.25)

Ig2 = eikx
∫ ∞
−∞

e−
[
( ξσ )

2
+ikξ

]
dξ (3.26)

Ig2 = eikxe−( kσ2 )
2
∫ ∞
−∞

e
−
(
ξ
σ

+ ikσ
2

)2

dξ (3.27)

Setting the variable vg1 = ξ/σ + ikσ/2, we get the following expression

Ig2 = eikxe−( kσ2 )
2
∫ ∞
−∞

e−v
2
g1dvg1 (3.28)

Ig2 = eikxe−( kσ2 )
2

σ

√
π

2
{erf(∞)− erf(−∞)} (3.29)

Ig2 = eikxe−( kσ2 )
2

σ

√
π

2
{2} (3.30)

Ig2 = σ
√
πeikxe−( kσ2 )

2

(3.31)
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Rewriting the equation (3.5) with the found expressions for Ig1 and Ig2

(3.32)φg(x, z, t)

=
2I0

εσπ2
e

1
2
µ2z

∫ ∞
0

e|k|z
(
−ε
√
π

4
e
−
(
ε
√
|k|

2

)2 {[
ierf

(
t

ε
+
i
√
|k|ε
2

)
+2erfi

(
ε
√
|k|

2

)
+c.c.

]
cos(

√
|k|t)

−

[
erf

(
t

ε
+

i
√
|k|ε
2

)
+ c.c.

]
sin(
√
|k|t)

}
σ
√
πeikxe−( kσ2 )

2

)
dk

where

ag = e
−
(
ε
√
|k|

2

)2 [
ierf

(
t

ε
+

i
√
|k|ε
2

)
+ 2erfi

(
ε
√
|k|

2

)
+ c.c.

]
and

bg = e
−
(
ε
√
|k|

2

)2 [
erf

(
t

ε
+

i
√
|k|ε
2

)
+ c.c.

]

Simplifying terms of the above equation, we get the solution for the gravity wave poten-
tial,which has the next form

(3.33)φg(x, z, t) = − I0

2π
e

1
2
µ2z

∫ ∞
0

e|k|zeikxe−( kσ2 )
2 {
ag cos(

√
|k|t)− bg sin(

√
|k|t)

}
dk.

2 - Calculation of acoustic-gravity wave potential φs

Now, we are going to calculate the potential for the acoustic-gravity wave using the replace-
ments mentioned in the beginning of the section. The calculations are as follows

φs(x, z, t) = e
1
2
µ2z

∫ t

0

∫ ∞
−∞

2I0

πεσ
e−( xσ )

2

e−( tε)
2

(
− 2

π

∞∑
n=1

∫ ∞
0

κn [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] sin(κn(t− τ)eik(x−ξ)dk

)
dξdτ (3.34)

rearranging terms

φs(x, z, t) = − 4I0

εσπ2
e

1
2
µ2z

∫ t

0

∫ ∞
−∞

e−( ξσ )
2

e−( τε )
2

(
∞∑
n=1

∫ ∞
0

κn [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] (sin(κn(t− τ))eik(x−ξ)dk

)
dξdτ (3.35)

In order to solve the above equation, a grouping of the corresponding terms is made, resulting
in the next expression, which is expressed in exponential form and consists of two integrals
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Is1 and Is2 as follows

φs(x, z, t) = − 4I0

εσπ2
e

1
2
µ2z


∞∑
n=1

∫ ∞
0

κn [2γ cos(γ(Z + 1))

− µ sin(γ(Z + 1))]


∫ t

0

(sin(κn(t− τ))e−( τε )
2

dτ︸ ︷︷ ︸
Is1

∫ ∞
−∞

eik(x−ξ)e−( ξσ )
2

dξ︸ ︷︷ ︸
Is2


 dk

(3.36)

rearranging the above equation, it yields

φs(x, z, t)

= − 4I0

εσπ2
e

1
2
µ2z


∞∑
n=1

∫ ∞
0

κn [2γ cos(γ(Z + 1))

− µ sin(γ(Z + 1))]


1

2i

∫ t

0

{
eiκn(t−τ) − e−iκn(t−τ)

}
e−( τ

ε
)2

dτ︸ ︷︷ ︸
Is1

∫ ∞
−∞

eik(x−ξ)e−( ξ
σ

)2

dξ︸ ︷︷ ︸
Is2


 dk

(3.37)

To try the (3.35) formulation, let’s solve first the integral Is1 .

Is1 =
1

2i

{∫ t

0

eiκn(t−τ)e−( τε )
2

dτ −
∫ t

0

e−iκn(t−τ)e−( τε )
2

dτ
}

(3.38)

going though the algebra, the following expressions are obtained

Is1 =
1

2i

{∫ t

0

eiκnte−iκnτe−( τε )
2

dτ −
∫ t

0

e−iκnteiκnτe−( τε )
2

dτ

}
(3.39)

Is1 =
1

2i

{
eiκnt

∫ t

0

e−iκnτe−( τε )
2

dτ − e−iκnt
∫ t

0

eiκnτe−( τε )
2

dτ
}

(3.40)

Is1 =
1

2i

{
eiκnt

∫ t

0

e−
[
( τε )

2
+iκnτ

]
dτ − e−iκnt

∫ t

0

e−
[
( τε )

2
−iκnτ

]
dτ
}

(3.41)
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Is1 =
1

2i

{
eiκnt

∫ t

0

e
−
(
τ
ε

+ iκnε
2

)2

−(κnε2 )
2

dτ − e−iκnt
∫ t

0

e
−
(
τ
ε
− iκnε

2

)2

−(κnε2 )
2

dτ

}
(3.42)

Is1 =
1

2i
e−(κnε2 )

2

{
eiκnt

∫ t

0

e
−
(
τ
ε

+ iκnε
2

)2

dτ − e−iκnt
∫ t

0

e
−
(
τ
ε
− iκnε

2

)2

dτ

}
(3.43)

Setting now the variable us1 = τ/ε+ iκnε/2 and us2 = τ/ε− iκnε/2, we have that

Is1 =
1

2i
e−(κnε2 )

2

eiκnt
∫ t

ε
+ iκnε

2

iκnε
2

e−u
2
s1dus1 − e−iκnt

∫ t
ε
− iκnε

2

− iκnε
2

e−u
2
s2dus2

 (3.44)

the above expression (3.44) has two integrals that have the form of the error function. Ac-
cording this, the next equation is obtained

(3.45)Is1 =
1

2i
e−(κnε2 )

2
{
eiκnt
√
π

2
ε

[
erf
(
t

ε
+

iκnε
2

)
− erf

(
iκnε

2

)]
− e−iκnt

√
π

2
ε

[
erf
(
t

ε
− iκnε

2

)
− erf

(
− iκnε

2

)]}

re-accommodating terms, the step by step calculations are performed as follow

(3.46)Is1 =
1

2i
e−(κnε2 )

2
{
eiκnt
√
π

2
ε

[
erf
(
t

ε
+

iκnε
2

)
− erf

(
iκnε

2

)]
− e−iκnt

√
π

2
ε

[
erf
(
t

ε
− iκnε

2

)
+ erf

(
iκnε

2

)]}

(3.47)Is1 = ε

√
π

4i
e−(κnε2 )

2
{
eiκnt

[
erf
(
t

ε
+

iκnε
2

)
− erf

(
iκnε

2

)]
− e−iκnt

[
erf
(
t

ε
− iκnε

2

)
+ erf

(
iκnε

2

)]}

(3.48)Is1 = ε

√
π

4i
e−(κnε2 )

2
{
erf
(
t

ε
+

iκnε
2

)
eiκnt − erf

(
iκnε

2

)
eiκnt − erf

(
t

ε
− iκnε

2

)
e−iκnt

− erf
(
iκnε

2

)
e−iκnt

}
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grouping terms and expressing the formulation in terms of sin and cos

Is1 = ε

√
π

4i
e−(κnε2 )

2
{
erf
(
t

ε
+

iκnε
2

)
eiκnt − erf

(
t

ε
− iκnε

2

)
e−iκnt − erf

(
iκnε

2

)(
eiκnt + e−iκnt

)}
(3.49)

Is1 = ε

√
π

4i
e−(κnε2 )

2
{
erf
(
t

ε
+

iκnε
2

)
eiκnt − erf

(
t

ε
− iκnε

2

)
e−iκnt − 2erf

(
iκnε

2

)
cos(κnt)

}
(3.50)

(3.51)Is1 = ε

√
π

4i
e−(κnε2 )

2
{
erf
(
t

ε
+

iκnε
2

)
[cos(κnt) + i sin(κnt)]

− erf
(
t

ε
− iκnε

2

)
[cos(κnt)− i sin(κnt)]− 2erf

(
iκnε

2

)
cos(κnt)

}
the equation (3.51) can be rewritten as

(3.52)Is1 = ε

√
π

4i
e−(κnε2 )

2
{
erf
(
t

ε
+

iκnε
2

)
cos(κnt) + ierf

(
t

ε
+

iκnε
2

)
sin(κnt)

− erf
(
t

ε
− iκnε

2

)
cos(κnt) + ierf

(
t

ε
− iκnε

2

)
sin(κnt)− 2erf

(
iκnε

2

)
cosh(κnt)

}
grouping terms, we get

(3.53)Is1 = ε

√
π

4i
e−(κnε2 )

2
{[

erf
(
t

ε
+

iκnε
2

)
− erf

(
t

ε
− iκnε

2

)
− 2erf

(
iκnε

2

)]
cos(κnt)

+

[
ierf
(
t

ε
+

iκnε
2

)
+ ierf

(
t

ε
− iκnε

2

)]
sin(κnt)

}
Multiplying (3.53) by i/i = 1 and considering only the terms that have positive imaginary
part or the expression (3.53) and naming the rest as complex conjugated (cc), we obtain the
next form for the integral Is1

(3.54)Is1 = −ε
√
π

4
e−(κnε2 )

2
{[

ierf
(
t

ε
+

iκnε
2

)
− ierf

(
t

ε
− iκnε

2

)
− 2ierf

(
iκnε

2

)]
cos(κnt)

+

[
i2erf

(
t

ε
+

iκnε
2

)
+ i2erf

(
t

ε
− iκnε

2

)]
sin(κnt)

}

(3.55)Is1 = −ε
√
π

4
e−(κnε2 )

2
{[

ierf
(
t

ε
+

iκnε
2

)
− ierf

(
t

ε
− iκnε

2

)
+ 2erfi

(κnε
2

)]
cos(κnt)

−
[
erf
(
t

ε
+

iκnε
2

)
+ erf

(
t

ε
− iκnε

2

)]
sin(κnt)

}
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Thus,

(3.56)Is1 = −ε
√
π

4
e−(κnε2 )

2
{[

ierf
(
t

ε
+

iκnε
2

)
+ 2erfi

(κnε
2

)
+ c.c

]
cos(κnt)

−
[
erf
(
t

ε
+

iκnε
2

)
+ c.c

]
sin(κnt)

}

Now, we are going to solve the integral Is2 .

Is2 =

∫ ∞
−∞

e−( ξσ )
2

eik(x−ξ)dξ (3.57)

Is2 =

∫ ∞
−∞

e−( ξσ )
2

eikxe−ikξdξ (3.58)

Is2 = eikx
∫ ∞
−∞

e−( ξσ )
2

e−ikξdξ (3.59)

Is2 = eikx
∫ ∞
−∞

e−
[
( ξσ )

2
+ikξ

]
dξ (3.60)

Is2 = eikxe−( kσ2 )
2
∫ ∞
−∞

e
−
(
ξ
σ

+ ikσ
2

)2

dξ (3.61)

Setting the variable vs1 = ξ/σ + ikσ/2, we get the following expression

Is2 = eikxe−( kσ2 )
2
∫ ∞
−∞

e−v
2
s1dvs1 (3.62)

Is2 = eikxe−( kσ2 )
2

σ

√
π

2
{erf(∞)− erf(−∞)} (3.63)

Is2 = eikxe−( kσ2 )
2

σ

√
π

2
{2} (3.64)

Is2 = σ
√
πeikxe−( kσ2 )

2

(3.65)
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Rewriting the equation (3.37) with the found expressions for Is1 and Is2

φs(x, z, t)

= − 4I0

εσπ2
e

1
2
µ2z

(
∞∑
n=1

∫ ∞
0

κn [2γ cos(γ(Z + 1))

− µ sin(γ(Z + 1))]

[
−ε
√
π

4
e−(κnε2 )

2
{[

ierf
(
t

ε
+

iκnε
2

)
+ 2erfi

(κnε
2

)
+ c.c.

]
cos(κnt)

−
[
erf
(
t

ε
+

iκnε
2

)
+ c.c.

]
sin(κnt)

}]
σ
√
πeikxe−( kσ2 )

2

)
dk

(3.66)

where
as = e−(κnε2 )

2
[
ierf
(
t

ε
+

iκnε
2

)
+ 2erfi

(κnε
2

)
+ c.c.

]
and

bs = e−(κnε2 )
2
[
erf
(
t

ε
+

iκnε
2

)
+ cc

]

Simplifying terms of the above equation (3.66), we get the solution for the acoustic-gravity
wave potential, which has the next form

(3.67)φs(x, z, t) =
I0

π
e

1
2
µ2z

(
∞∑
n=1

∫ ∞
0

κn [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] {as cos(κnt)

− bs sin(κnt)} eikxe−( kσ2 )
2

)
dk.
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Chapter 4

Stationary phase approximation

For rapidly varying solutions, as the case for the obtained potentials for gravity and acoustic-
gravity waves, they present stationary points along the integration domain. Due to this, a
Stationary Phase Approximation can be applied in a direct manner to the solutions. This
rises when the integration domain becomes larger (for a large distance, x) and an integration
by parts can be applied to develop an asymptotic expansion in inverse powers of the domain
so long as the boundary terms are finite and the resulting integrals exist.

The method of stationary phase gives the leading asymptotic behavior of generalized Fourier
integrals having stationary points.

1 - Stationary phase approximation for the gravity wave potential φg

Let us consider the equation (3.33) from the previous section

φg(x, z, t) = − I0

2π
e

1
2
µ2z

∫ ∞
0

e|k|zeikxe−( kσ2 )
2 {
ag cos(

√
|k|t)− bg sin(

√
|k|t)

}
dk (4.1)

which by replacing µ→ 0 and ω(k) =
√
|k| results in the next expression

φg(x, z, t) = − I0

2π

∫ ∞
0

eω
2(k)zeikxe−( kσ2 )

2

{ag(k) cos(ω(k)t)− bg(k) sin(ω(k)t)} dk (4.2)

Now, the equation (4.2) can be reformulated as

(4.3)φg(x, z, t) = − I0

2π

∫ ∞
0

eω
2(k)zeikxe−( kσ2 )

2
{
ag(k)

(
eiω(k)t + e−iω(k)t

2

)
− bg(k)

(
eiω(k)t − e−iω(k)t

2i

)}
dk
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factorizing terms and separating (4.3) in two integrals Iga and Igb showed next

(4.4)

φg(x, z, t) = − I0

4π


∫ ∞

0

eω
2(k)z

(
ag(k)− bg(k)

i

)
ei(kx+ω(k)t)e−( kσ2 )

2

dk︸ ︷︷ ︸
Iga

+

∫ ∞
0

eω
2(k)z

(
ag(k) +

bg(k)

i

)
ei(kx−ω(k)t)e−( kσ2 )

2

dk︸ ︷︷ ︸
Igb


To solve the equation (4.4) we are going to solve the integrals Iga and Igb independently by
using the Stationary Phase Approximation formulation according Bender (1999), that can
be written as

(4.5)I =

∫ b

a

F (k)ei(kx∓ω(k)t)dk

and which has a direct solution in the next form,

(4.6)I =
|F (k0)|
π

√
2π

t |ω′′(k0)|
cos(k0x− ω(k0)t± π

4
)

due to integrals Iga and Igb have the form exposed in equation (4.4), the equation (4.5) can
be applied directly on them. Regarding the above, the integrals of the equation (4.4) can be
expressed in the next form

Iga =

∫ ∞
0

eω
2(k)z

(
ag(k)− bg(k)

i

)
e−( kσ2 )

2

︸ ︷︷ ︸
Fga (k)

ei(kx+ω(k)t)dk; (4.7a)

(4.7b)

Igb =

∫ ∞
0

eω
2(k)z

(
ag(k) +

bg(k)

i

)
e−( kσ2 )

2

︸ ︷︷ ︸
Fgb (k)

ei(kx−ω(k)t)dk (4.7b)

for which the phase term is stated as as g+
g (k) = (kx + ω(k)t) and g−g (k) = (kx − ω(k)t).

The point of stationary phase is k = k0 where its derivative corresponds to

(4.8)
dg±g (k)

dk
= 0

(4.9)
dg+

g (k)

dk
= x

dk
dk

+ t
dω(k)

dk
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(4.10)x+ t
dω(k)

dk
= 0

(4.11)
dω(k)

dk
= −x

t

In an analog way, when the phase term g−g is considered, its first derivative will be

(4.12)
dω(k)

dk
=
x

t

For this case ω(k0) = (k0)1/2, then the equations (4.11) and (4.12) can be rewritten as
1

2
(k0)−

1
2 = −x

t
;

1

2
(k0)−

1
2 =

x

t
(4.13 a, b)

What implies for g±g (k0) that

(4.14)k0 =
1

4

(
t

x

)2

Considering the above results and formulations, we can express the integrals Iga and Igb as

Iga =

∣∣∣∣eω2(k0)z
(
ag(k0)− bg(k0)

i

)
e−( k0σ

2 )
2
∣∣∣∣

π

√
2π

t |ω′′(k0)|
cos(k0x − ω(k0)t +

π

4
) (4.15)

Igb =

∣∣∣∣eω2(k0)z
(
ag(k0) + bg(k0)

i

)
e−( k0σ

2 )
2
∣∣∣∣

π

√
2π

t |ω′′(k0)|
cos(k0x − ω(k0)t − π

4
) (4.16)

Let us consider the second derivative of ω(k) as

ω′′(k) = −1

4
k−3/2

Replacing the obtained value k0 on the above derivative, we get

ω′′(k0) = −1

4

(
1

4

t2

x2

)−3/2

= −1

4
(2)3

(x
t

)3

= −2

(
x3

t3

)
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replacing the terms accordingly, the next expressions are obtained

Iga =

∣∣∣∣∣∣∣∣
1

π
eω

2(k0)z

(
ag(k0)− bg(k0)

i

)
e
−

 1
4( tx)

2
σ

2

2
∣∣∣∣∣∣∣∣
√

2π

t
∣∣−2

(
x3

t3

)∣∣ cos

(
1

4

(
t

x

)2

x− 1

2

t

x
t+

π

4

)

(4.17)

(4.18)Iga =

∣∣∣∣ 1π eω2(k0)z

(
ag(k0)− bg(k0)

i

)
e−
(
t4σ2

64x2

)∣∣∣∣
√
t2π

x3
cos

(
− t

2

4x
+
π

4

)

Igb =

∣∣∣∣∣∣∣∣
1

π
eω

2(k0)z

(
ag(k0) +

bg(k0)

i

)
e
−

 1
4( tx)

2
σ

2

2
∣∣∣∣∣∣∣∣
√

2π

t
∣∣−2

(
x3

t3

)∣∣ cos

(
1

4

(
t

x

)2

x− 1

2

t

x
t− π

4

)

(4.19)

(4.20)Igb =

∣∣∣∣ 1π eω2(k0)z

(
ag(k0) +

bg(k0)

i

)
e−
(
t4σ2

64x2

)∣∣∣∣
√
t2π

x3
cos

(
− t

2

4x
− π

4

)

thus, the gravity wave potential can be rewritten as

(4.21)φg(x, z, t) =
I0

4π
{Iga + Igb}

(4.22)

φg(x, z, t) = − I0

4π{
1

π
e

1
4( tx)

2
z

(
ag(k0)− bg(k0)

i

)
e−
(
t4σ2

64x2

)√
t2π

x3
cos

(
− t

2

4x
+
π

4

)
+

1

π
e

1
4( tx)

2
z

(
ag(k0) +

bg(k0)

i

)
e−
(
t4σ2

64x2

)√
t2π

x3
cos

(
− t

2

4x
− π

4

)}

φg(x, z, t) = − I0

4π2
e

1
4( tx)

2
ze−

(
t4σ2

64x2

)
t

x

√
π

x{(
ag(k0)− bg(k0)

i

)
cos

(
− t

2

4x
+
π

4

)
+

(
ag(k0) +

bg(k0)

i

)
cos

(
− t

2

4x
− π

4

)}
(4.23)
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Thus, from the equation (4.4) the derivative of the potential φg(x, z, t) with respect to the
time is

(4.24)

φ′g(x, z, t) = − I0

4π


∫ ∞

0

iω(k)eω
2(k)z

(
ag(k)− bg(k)

i

)
ei(kx+ω(k)t)e−( kσ2 )

2

dk︸ ︷︷ ︸
Iga

−
∫ ∞

0

iω(k)eω
2(k)z

(
ag(k) +

bg(k)

i

)
ei(kx−ω(k)t)e−( kσ2 )

2

dk︸ ︷︷ ︸
Igb


factorizing the corresponding terms, we get

(4.25)

φ′g(x, z, t) = − iω(k)I0

4π


∫ ∞

0

eω
2(k)z

(
ag(k)− bg(k)

i

)
ei(kx+ω(k)t)e−( kσ2 )

2

dk︸ ︷︷ ︸
Iga

−
∫ ∞

0

eω
2(k)z

(
ag(k) +

bg(k)

i

)
ei(kx−ω(k)t)e−( kσ2 )

2

dk︸ ︷︷ ︸
Igb


Once k0 is replaced, the next expression is found

(4.26)φ′g(x, z, t) = −i t
2x

I0

4π2
e

1
4( tx)

2
ze−

(
t4σ2

64x2

)
t

x

√
π

x{(
ag(k0)− bg(k0)

i

)
cos

(
− t

2

4x
+
π

4

)
−
(
ag(k0)+

bg(k0)

i

)
cos

(
− t

2

4x
− π

4

)}

finally,

φ′g(x, z, t) = −i tI0

8xπ2
e

1
4( tx)

2
ze−

(
t4σ2

64x2

)
t

x

√
π

x{(
ag(k0)− bg(k0)

i

)
cos

(
− t

2

4x
+
π

4

)
−
(
ag(k0) +

bg(k0)

i

)
cos

(
− t

2

4x
− π

4

)}
.

(4.27)

Now, to obtain the surface elevation ηg due to gravity modes, we can employ the following
form

∂φg/∂t+ ηg(x, t) = 0, (z = 0). (4.28)
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from which we can state ηg as

ηg(x, t) = −∂φg/∂t, (z = 0). (4.29)

Thus, considering expression (4.27), we get

ηg(x, t) = i
tI0

8xπ2
e

1
4( tx)

2
ze−

(
t4σ2

64x2

)
t

x

√
π

x{(
ag(k0)− bg(k0)

i

)
cos

(
− t

2

4x
+
π

4

)
−
(
ag(k0) +

bg(k0)

i

)
cos

(
− t

2

4x
− π

4

)}
, (4.30)

for the gravity wave.

2 - Stationary phase approximation for the acoustic-gravity wave potential φs

In the same way than the in previous calculations, lets apply the Stationary Phase Method
to the expression (3.67) corresponding to the AGW potential. The calculations are as follows

(4.31)φs(x, z, t) =
I0

π
e

1
2
µ2z

(
∞∑
n=1

∫ ∞
0

κn [2γ cos(γ(Z + 1))−µ sin(γ(Z + 1))] {as(κn) cos(κnt)

− bs(κn) sin(κnt)} eikxe−( kσ2 )
2

)
dk

or in an equivalent manner

φs(x, z, t) =
I0

π
e

1
2
µ2z

(
∞∑
n=1

∫ ∞
0

ωn [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] {as(ωn) cos(ωnt)

− bs(ωn) sin(ωnt)} eikxe−( kσ2 )
2

)
dk

Now, doing the replacement of k = µκ and considering n = 0, we have that

φs(x, z, t) =
I0

π
e

1
2
µ2z

(∫ ∞
0

ω0 [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] {as(ω0) cos(ω0t)

− bs(ω0) sin(ω0t)} eiµκ0xe−(µκ0σ
2 )

2
)
dµκ

rearranging terms,

(4.32)φs(x, z, t) = µ
I0

π
e

1
2
µ2z

(∫ ∞
0

ω0 [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))] {as(ω0) cos(ω0t)

− bs(ω0) sin(ω0t)} eiµκ0xe−(µκ0σ
2 )

2
)
dκ
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rewriting (4.32) with exponential forms for cos and sin

φs(x, z, t) = µ
I0

π
e

1
2
µ2z

(∫ ∞
0

ω0 [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))]

{
as(ω0)

(
eiω0t + e−iω0t

2

)
− bs(ω0)

(
eiω0t − e−iω0t

2i

)}
eiµκ0xe−(µκ0σ

2 )
2
)
dκ

(4.33)

the equation becomes to

φs(x, z, t) = µ
I0

2π
e

1
2
µ2z

(∫ ∞
0

ω0 [2γ cos(γ(Z + 1))− µ sin(γ(Z + 1))]

{(
as(ω0)− bs(ω0)

i

)
eiω0t

+

(
as(ω0) +

bs(ω0)

i

)
e−iω0t

}
eiµκ0xe−(µκ0σ

2 )
2
)
dκ

(4.34)

making the corresponding calculations in order to reduce terms, we get

(4.35)
φs(x, z, t) = µ

I0

2π
e

1
2
µ2z

(∫ ∞
0

ω0 [2γ cos(γ(Z + 1))

− µ sin(γ(Z + 1))]

{(
as(ω0)− bs(ω0)

i

)
ei(µκ0x+ω0t)

+

(
as(ω0) +

bs(ω0)

i

)
ei(µκ0x−ω0t)

}
e−(µκ0σ

2 )
2
)
dκ

Similar to the calculations made for the gravity wave, (4.35) is composed of two integrals,
Isa and Isb , respectively
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φs(x, z, t) = µ
I0

2π
∫ ∞

0

ω0[2γ(κ0)cos(γ(κ0)(Z+1))−µ sin(γ(κ0)(Z+1))] e−(µκ0σ
2 )

2
{(
as(ω0)− bs(ω0)

i

)
ei(µκ0x+ω0t)

}
dκ︸ ︷︷ ︸

Isa

+

∫ ∞
0

ω0[2γ(κ0)cos(γ(κ0)(Z+1))−µ sin(γ(κ0)(Z+1))] e−(µκ0σ
2 )

2
{(
as(ω0)+

bs(ω0)

i

)
ei(µκ0x−fω0t)

}
dκ︸ ︷︷ ︸

Isb


(4.36)

To solve the equation (4.36), the Stationary Phase Approximation is considered to reduce
the integrals Isa and Isb . The formulation can be expressed as follows

(4.37)I =

∫ b

a

F (κn)ei(µκnx∓ω(κn)t)dµκ

with its direct solution

(4.38)I = µ
|F (κn)|
π

√
2π

t |ω′′(κn)|
cos(µκnx− ω(κn)t± π

4
)

Now, the integrals of the equation (4.36) can be expressed in the next form

Isa=

∫ ∞
0

ω0[2γ(κ0)cos(γ(κ0)(Z+1))−µ sin(γ(κ0)(Z+1))] e−(µκ0σ
2 )

2
(
as(ω0)− bs(ω0)

i

)
︸ ︷︷ ︸

Fsa

ei(µκ0x+ω0t)dκ

(4.39a)

Isb=

∫ ∞
0

ω0[2γ(κ0)cos(γ(κ0)(Z+1))−µ sin(γ(κ0)(Z+1))] e−(µκ0σ
2 )

2
(
as(ω0)+

bs(ω0)

i

)
︸ ︷︷ ︸

Fsb

ei(µκ0x−ω0t)dκ

(4.39b)

The phase term of the above integrals is stated as g+
s (κ0) = (µκ0x + ω(κ0)t) and g−s (κ0) =

(µκ0x− ω(κ)t). The point of stationary phase is κ = κ0 where the derivative is
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(4.40)
dg±s (κ0)

dω0

= 0

(4.41)
dg−s (κ0)

dω0

= µx
dκ0

dω0

− tdω(κ0)

dω0

(4.42)µx
dκ0

dω
− t = 0

(4.43)
dκ0

dω
=

t

µx

In an analog way, when the phase term g+
g is considered, its first derivative will be

(4.44)
dκ0

dω
= − t

µx

Recalling that the dispersion relation for the AGW has the following form

ω2 = ω2
n + κ2 + µ

{
ω2
n − κ2

ω2
n + κ2

}
+O(µ2) ; with n = 0, 1, 2, ..., (4.45)

Neglecting the term associated to µ, we can rewrite ω as

ω2 = ω2
n + κ2 → κn(ω) =

√
ω2 − ω2

n (4.46)

Doing the derivative of κn with respect to ω we will have

dκn
dω

=
ω√

ω2 − ω2
n

(4.47)

Replacing the equation (4.47) on (4.43) and (4.44)

ω√
ω2 − ω2

n

=
t

µx
;

ω√
ω2 − ω2

n

= − t

µx
(4.49 a, b)

respectively. The point of stationary phase is at ω = ψn where dg±s /dω = 0. According this,
we can state the next expression

ψn√
ψ2
n − ω2

n

= ± t

µx
(4.49)
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which follows that

ψn =
ωn√

1−
(
±µx

t

)2
=

ωn√
1−

(
µx
t

)2
(4.50)

ψ2
n − ω2

n = ω2
n

( (
µx
t

)2

1−
(
µx
t

)2

)
(4.51)

√
ψ2
n − ω2

n = ωn

(
µx
t

)√
1−

(
µx
t

)2
(4.52)

In this way, we will have for κn

κn(ψn) ≡ Kn =
√
ψ2
n − ω2

n = ωn

(
µx
t

)√
1−

(
µx
t

)2
(4.53)

As we are considering only the zero mode, where n = 0, and recalling from (2.72) that
ωn = (n+ 1/2)π → ω0 = (0 + 1/2)π = π/2. Thus, the equation (4.53) becomes

κ0(ψ0) ≡ K0 =
√
ψ2

0 − ω2
0 = ω0

(
µx
t

)√
1−

(
µx
t

)2
(4.54)

K0 =
(π

2

) (
µx
t

)√
1−

(
µx
t

)2
(4.55)

and (4.50) yields

ψ0 =
π
2√

1−
(
µx
t

)2
(4.56)

Now, we are going to obtain the second derivative ∂2g±s /∂ω
2 in the following way

∂2g±s
∂ω2

=
µx

t

(
∂ψn
∂ω√

ψ2
n − ω2

n

− ωψn

(ψ2
n − ω2

n)
3
2

)
(4.57)

Taking ω = ψn, we can rewrite

∂2g±s
∂ω2

=
µx

t

(
∂ω
∂ω√

ψ2
n − ω2

n

− ω2

(ψ2
n − ω2

n)
3
2

)
=
µx

t

(
1√

ψ2
n − ω2

n

− ω2

(ψ2
n − ω2

n)
3
2

)
(4.58)

∂2g±s
∂ω2

=
µx

t

(
ψ2
n − ω2

n − ω2

(ψ2
n − ω2

n)
3
2

)
=
µx

t

(
ω2 − ω2

n − ω2

(ψ2
n − ω2

n)
3
2

)
(4.59)
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∂2g±s
∂ω2

=
µx

t

ω2
n

(ψ2
n − ω2

n)
3
2

(4.60)

for ω0 = π/2 the equation (4.60) is

∂2g±s
∂ω2

=

(
π
2

)2 (µx
t

)((
ωn√

1−(µxt )
2

)2

−
(
π
2

)2

) 3
2

(4.61)

∂2g±s
∂ω2

=

(
π
2

)2 (µx
t

)((
π
2√

1−(µxt )
2

)2

−
(
π
2

)2

) 3
2

(4.62)

Taking the above results and formulations, we can express the integrals Isa and Isb (eqs.
4.39a and 4.39b) using the solution for stationary phase approximation (4.38) as

Isa =

∣∣∣∣ 1π [2γ(K0) cos(γ(K0)(Z + 1))− µ sin(γ(K0)(Z + 1))] e−(µK0σ
2 )

2
(
as(ω0)− bs(ω0)

i

)∣∣∣∣√√√√√ 2π

t

∣∣∣∣µxt ω2
n

(ψ2
n−ω2

n)
3
2

∣∣∣∣ cos(µK0x− ψ0t+
π

4
) (4.63)

Isa =

∣∣∣∣ 1π [2γ(K0) cos(γ(K0)(Z + 1))− µ sin(γ(K0)(Z + 1))] e−(µK0σ
2 )

2
(
as(ω0)− bs(ω0)

i

)∣∣∣∣√√√√ 2π

µx ω2
n

(ψ2
n−ω2

n)
3
2

cos(µK0x− ψ0t+
π

4
) (4.64)

Isb =

∣∣∣∣ 1π [2γ(K0) cos(γ(K0)(Z + 1))− µ sin(γ(K0)(Z + 1))] e−(µK0σ
2 )

2
(
as(ω0) +

bs(ω0)

i

)∣∣∣∣√√√√√ 2π

t

∣∣∣∣µxt ω2
n

(ψ2
n−ω2

n)
3
2

∣∣∣∣ cos(µK0x− ψ0t−
π

4
) (4.65)

Isb =

∣∣∣∣ 1π [2γ(K0) cos(γ(K0)(Z + 1))− µ sin(γ(K0)(Z + 1))] e−(µK0σ
2 )

2
(
as(ω0) +

bs(ω0)

i
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3
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4
) (4.66)
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Once obtained the formulations for Isa and Isb , we can replace the to get the general form
for the acoustic-gravity wave potential

(4.67)φs(x, z, t) = µ
I0

2π
e

1
2
µ2z {Isa + Isb}

what yields

φs(x, z, t) =

µ
I0

2π2
ω0 [2γ(K0) cos(γ(K0)(Z + 1))− µ sin(γ(K0)(Z + 1))] e

1
2
µ2ze−(K0Σ

2 )
2
√√√√ 2π
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i

]
cos
(
K0X − ψ0t+

π

4

)
+

[
as(ω0) +

bs(ω0)

i

]
cos
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π

4

)}
(4.68)

for n = 0, where X = µx and Σ = µσ. To obtain the derivative of the potential φs(x, z, t),
lets derivate the equation (4.36) with respect to the time

φ′s(x, z, t) = iµω2
0

I0

2π2
∫ ∞

0
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2
{(
as(ω0)− bs(ω0)

i

)
ei(µκ0x+ω0t)

}
dκ︸ ︷︷ ︸

Isa

−
∫ ∞

0

[2γ(κ0) cos(γ(κ0)(Z+1))−µ sin(γ(κ0)(Z+1))] e−(µκ0σ
2 )

2
{(
as(ω0)+

bs(ω0)

i

)
ei(µκ0x−ω0t)

}
dκ︸ ︷︷ ︸

Isb


(4.69)

after applying the stationary phase approximation on Isa and Isb and doing the corresponding
replacements, we obtain the expression for the derivative of the AGW potential with respect
to the variable t

φ′s(x, z, t) =

iµω2
0

I0

2π2
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(4.70)
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In an analogue manner, to obtain the surface elevation ηs due to acoustic-gravity modes, we
can employ the same form (4.29) to get the wave elevation

ηg(x, t) = −∂φg/∂t, (z = 0) (4.71)

resulting in

ηs(x, z, t) =

− iµω2
0
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2π2
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)}
(4.72)

for the acoustic-gravity wave.
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Chapter 5

Numerical Simulations

5.1 Validation

To validate the calculations and results obtained until here, we are going to compare the
two found potentials φg and φs; with the potentials obtained by Renzi & Dias (2014). In
this case, the validations will be carried out in a qualitative and not quatitative manner, due
to the scarce information of measured in-situ data. One future goal is to perform physical
experiments in order to can validate the solutions of this kind of theories for AGW’s.

1 - Validation for the gravity wave potential φg

Let us take the expression (2.31) of the section 2

(5.1)φg(x, z, t) = − I0

2π
e

1
2
µ2z

∫ ∞
0

e|k|zeikxe−( kσ2 )
2 {
ag(k) sin(

√
|k|t)− bg(k) cos(

√
|k|t)

}
dk

Considering that µ → 0, then the term e
1
2
µ2z → 1. Now, the equation (5.1) can be written

as this latter equation can be also expressed as

(5.2)φg(x, z, t) = − I0

2π

∫ ∞
0

{cosh(|k| z − kx) + sinh(|k| z − kx)} {ag(k) sin(ω(k)t)

− bg(k) cos(ω(k)t)} e−( kσ2 )
2

dk

which is in agreement equation (3.11) of the gravity wave potential according to Renzi &
Dias (2014).
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2 - Validation for the acoustic-gravity wave potential φs

Let us take now the expression (3.64) of the section 3

φs(x, z, t) =
I0

π
e

1
2
µ2z

(
∞∑
n=1

∫ ∞
0
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2

)
dk

(5.3)

Doing the replacement of k = µκ, the next expression is obtained

φs(x, z, t) = µ
I0

π
e

1
2
µ2z

(
∞∑
n=1

∫ ∞
0
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2

)
dκ

(5.4)

For the zero mode (n = 0), the expression (5.4) becomes to

φs(x, z, t) = µ
I0

π
e

1
2
µ2z

(∫ ∞
0

[2γ(κ0) cos(γ(κ0)(Z + 1))−µ sin(γ(κ0)(Z + 1))] {as(κ0) cosh(κ0t)

− bs(κ0) sinh(κ0t)} eiµκ0xe−(µκ0σ
2 )

2
)
dκ

(5.5)

In the same way than than the gravity wave, the equation (5.5) is comparable to the equa-
tion (3.10) corresponding to the Acoustic-Gravity wave potential according to Renzi & Dias
(2014). Doing again a qualitative comparison between them, it can be noted that both have
similar form respect to their components, nevertheless, the found expression (4.5) is more
simplified due to the implemented escalations.
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5.2 Double-Gaussian pressure

The present section is aimed to expose the numerical results from the developed method.
The simulations where carried out applying the equations obtained in section 4, where the
general free surface elevation (η) was calculated. We are going to consider all the results
non-dimensionally in space and time.

In order to have a physical insight on the results we have carried out the following examples.
Consider a sudden double Gaussian pressure given in (3.1), with I0 = 1, ε = 2 and h = 500
m, so that µ = 2.18 × 10−3. Also, the simulated cases consider values of Σ = 1 and σ = 1
in order to test the variability of the gravity and acoustic-gravity signals according to these
parameters. The length scale is defined by µh = 1.09 and the timescale by h/c = 1/3. The
simulations where carried out applying equations (4.30) and (4.72) obtained in the previous
section, where a closed form relation for the bottom pressure (Pb) was derived.

Figure 5.1 shows the arrival of the bottom pressure due acoustic-gravity wave considering
Σ = 1 = 459 for different modes in an observation point located at 550 m away from the
origin, which corresponds to x = 500. Different modes arrival are exposed in a time interval
0 < t < 20, where the critical time corresponds to t = 1.09. In the same manner, Figure 5.2
presents the arrival of different modes at an observation point at x = 15000 or 16350 m in a
time interval 0 < t < 500. The critical time for this case corresponds to t = 32.7.

Figure 5.1: Comparison of the bottom pressure due different acoustic modes between 0 < t < 20
at a location x = 500 with Σ = 1 and ε = 2 at x = 500. (a) First mode, (b) First 3 modes, and (c)
First 6 modes.
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Figure 5.2: Comparison of the bottom pressure due different acoustic modes between 0 < t < 500
at a location x = 500 with Σ = 1 and ε = 2 at x = 15000. (a) First mode, (b) First 3 modes, and
(c) First 6 modes.

Figures 5.3 and 5.4 shows the gravity (left) and acoustic-gravity (right) bottom pressures at
different locations considering the first 6 modes for the acoustic-gravity signal. Results show
that the arrival time of the acoustic bottom pressures are shorter than the gravity signal for
locations x = 200, 500 and 1000. By the other hand, when the distances are further, as the
case of x = 10000, 15000 and 20000, arrival times are shorter for the gravity signal. Despite
the above, in both figures it can be noted that the values of the bottom pressure for the
acoustic-gravity wave are higher than the gravity wave.
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Figure 5.3: Gravity and acoustic-gravity bottom pressures at different locations with Σ = 1 and ε
= 2.

Figure 5.4: Gravity and acoustic-gravity bottom pressures at different locations with Σ = 1 and ε
= 2.

Similarly to the previous simulations, the next figures expose the arrival of different modes
for the bottom pressure signal due acoustic-gravity wave considering σ = 1. Figure 5.5 shows
the results an observation point located x = 500 and Figure 5.6 at x = 15000 with arrival
times of t = 1.09 and t = 32.7, respectively.
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Figure 5.5: Comparison of the bottom pressure due different acoustic modes between 0 < t < 4
at a location x = 500 with σ = 1 and ε = 2 at x = 500. (a) First mode, (b) First 3 modes, and (c)
First 6 modes.

Figure 5.6: Comparison of the bottom pressure due different acoustic modes between 0 < t < 200
at a location x = 500 with σ = 1 and ε = 2 at x = 15000. (a) First mode, (b) First 3 modes, and
(c) First 6 modes.

Results show that the arrival time of the acoustic bottom pressures are shorter than the
gravity signal for locations when a value of σ = 1. Figure 5.7 and Figure 5.8 expose the
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results for locations at x = 200, 500 and 1000 and also at x = 10000, 15000 and 20000,
respectively. In the same way that the previous simulations the values of the bottom pressure
for the acoustic-gravity wave are higher than the gravity wave.

Figure 5.7: Gravity and acoustic-gravity bottom pressures at different locations with σ = 1 and ε
= 2.

Figure 5.8: Gravity and acoustic-gravity bottom pressures at different locations with σ = 1 and ε
= 2.
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In order to assess the behavior of the bottom pressure signal due acoustic and acoustic-
gravity wave for different values of ε, σ and x a sensitivity analysis has been carried out.
The following figures expose maximum bottom pressures due to gravity and acoustic-gravity
waves for different values of Σ, ε and different locations x. The values of the parameters
considered in the analysis are shown in each subplot. In Figures 5.9 and 5.10 it can be
noted that for different increasing values of Σ (subplots a and b) and ε (subplots c and
d), the maximum bottom pressure tends to decay at a specific location of x = 1000 and
x = 20000. When Σ = 1 = 459 and ε = 2, the maximum bottom pressure due gravity wave
and acoustic-gravity decays with an increasing distance as it is shown in subplots (e) and (f).
As a generalized result for the simulated conditions, bottom pressure due acoustic-gravity
waves is always higher than gravity’s.

Figure 5.9: Gravity and acoustic-gravity maximum bottom pressures due different parameters Σ,
ε and locations x. (Top) Results due different values of Σ (x = 1000, ε = 2). (Middle) Results due
different values of ε (x = 1000, Σ = 1). (Bottom) Results due different values of x (Σ = 1, ε = 2)
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Figure 5.10: Gravity and acoustic-gravity maximum bottom pressures due different parameters Σ,
ε and locations x. (Top) Results due different values of Σ (x = 20000, ε = 2). (Middle) Results due
different values of ε (x = 20000, Σ = 1). (Bottom) Results due different values of x (Σ = 1, ε = 2)

In the same way, Figure 5.11 and Figure 5.12 show signals considering varying values of σ
and ε in the same locations at x = 1000 and x = 20000. It can be noted that similarly
to the previous simulated cases the bottom pressure decays. Subplots (a), (b), (c) and (d)
show this behavior for the signals. Subplots (e) and (f) show the gravity and acoustic-gravity
signals when parameters σ = 1 and ε = 2. Here, the acoustic-gravity signal shows variability
in lengths between 100 and 1000 and a specific decaying can not appreciated. However, for
further distances, the signal due acoustic-gravity wave shows a decay, even when a variation
in the signal is present. It is due to mention that in these cases the magnitude of the bottom
pressure due to the acoustic wave is higher than gravity’s similarly to the other simulated
cases.
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Figure 5.11: Gravity and acoustic-gravity maximum bottom pressures due different parameters σ,
ε and locations x. (Top) Results due different values of σ (x = 1000, ε = 2). (Middle) Results due
different values of ε (x = 1000, σ = 1). (Bottom) Results due different values of x (σ = 1, ε = 2)

Figure 5.12: Gravity and acoustic-gravity maximum bottom pressures due different parameters σ,
ε and locations x. (Top) Results due different values of σ (x = 20000, ε = 2). (Middle) Results due
different values of ε (x = 20000, σ = 1). (Bottom) Results due different values of x (σ = 1, ε = 2)
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5.3 Generation time and location

In this section, an inverse calculus has been applied using the arrival of the acoustic-gravity
wave signal at different specific locations in order to calculate the distance in what the gravity
wave was generated. To try this and for simplicity, we consider only the first mode n = 0,
similar to the considered in Mei & Kadri (2018), and denote quantities obtained from the
recordings, assuming a recording device at some specific locations (x) listed in Table 5.1.
The frequencies at the specific locations are estimated using the following equation,

ψ̂t̂j =
π

2

√
1−

(
X

t̂j−ti

)2
j, i = 1, 2, ... (5.6)

what represents the measured frequency at the selected instant t̂j in the acoustic signal,
where j, i = 1, 2, . . ., with j 6= i. Thus, the equation 4.50 can be rewritten in terms of the
measured quantities as

X0 =
t̂2 − t̂1{

1−
[
π/(2ψ̂t̂2)

]2
}−1/2

−
{

1−
[
π/(2ψ̂t̂1)

]2
}−1/2

(5.7)

which allows to estimate the inverse location X0. Table 5.1 shows the input locations where
the signal frequencies were measured. Here can be noted that after the inverse calculation
there is no difference between the modified location X and X0, which represents a high
accuracy of the implemented model and method.

Input location, x Modified location, X = µx Calculated location (inverse) - X0

100 0.218 0.218
200 0.436 0.436
500 1.090 1.090
1000 2.180 2.180
2000 4.360 4.360
5000 10.900 10.900
10000 21.800 21.800
15000 32.700 32.700
20000 43.600 43.600
50000 109.000 109.000

Table 5.1: Inverse calculation of the distance X0

The results allows to infer that if only the measurement of the acoustic signal exists, it would
be possible to know the location of the gravity wave source or the existing distance between
the record device and the gravity wave.
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Chapter 6

Conclusions and future work

The aim of the present work has been to develop theoretically and numerically the generation
and propagation of acoustic-gravity waves (AGWs) because of the generation of an extreme
wave assuming compressible fluid, with the aim of implement the methodology as an early
detection of extreme wave events due to sound waves in the water travel faster than gravity
waves. A pressure change in the ocean surface has been considered as an acoustic-gravity
wave percusor. Furthermore, as part of the analysis, a multi scaling approach was applied
to the generation of the acoustic-gravity wave due to a pressure change on the ocean sur-
face. Also, the stationary phase approximation was implemented to analyze and solve the
rapidly varying solutions for the gravity and acoustic-gravity waves in long distances (Kadri,
2017). The solutions of this work were validated against results from another authors such
as Renzi & Dias (2014), theoretically and numerically. A numerical example was performed
in order to assess the method, it corresponds to simplified 2D simulations what was devel-
oped considering an arbitrary Double-Gaussian pressure on the ocean surface as an AGW
precursor. Different parameter values for the scale and time parameters were tested in order
to asses the behavior of both, gravity and acoustic gravity waves. In general, the magni-
tude of the bottom pressures due acoustic-gravity waves results higher than the associated
to the gravity wave regardless the distance. Also, results for the simulations present that
the acoustic signals arrive first to the pressure associated to the gravity wave in a specific
fixed point in the far field when the scale parameter σ is 1 or lower. Nevertheless, the results
show that when a high value of sigma is considered, the arrival time of the acoustic signal is
higher only until a distance of x = 1000. From the arrival time of the acoustic-gravity wave
at different locations, an inverse estimation of gravity wave generation distance was imple-
mented. The results show good results for the inverse calculation, due there is no difference
between the input location and the inverse calculated location. This implies a high precision
of the proposed mathematical model and methodology. One future work is to extended this
methodology to 3D simulations numerically. Also, to perform physical measurements in or-
der to compare simulations with laboratory experiments would be very helpful to asses how
robust and precise could the method faced to physical measurements.

It is concluded that the development of the theory and also the numerical experiments in
this work have been carried our successfully, due acoustic-gravity and gravity waves shows
the strong relationship between them when a compressible fluid is considered.

53



Chapter 7

Bibliography

Abdolali, A., Kadri, U., Parsons, W. & Kirby, J. T. 2019 On the propagation of
acoustic–gravity waves under elastic ice sheets. J. Fluid Mech. 837, 640–656.

Bender, C. & Orszag, S. Advanced mathematical methods for scientists and engineers.
1st Edition. Springer 1999.

Chabchoub, A., Hoffmann, N. P. & Akhmediev, N. 2011 Rogue wave observation in
a water wave tank. PRL., 106, 204502 1–4.

Kadri, U. 2014 Deep ocean water transportation by acoustic–gravity waves. J. Geophys.
Res. 10.1002/2014JC010234.

Cousins, W. & Sapsis, T. P. 2016 Reduced-order precursors of rare events in unidirectional
nonlinear water waves. J. Fluid Mech. 790, 368–388.

Yang, X., Dias, F. & Liao, S. 2018 On the steady-state resonant acoustic–gravity waves.
J. Fluid Mech. 849, 111–135.

Kadri, U. 2019 Effect of sea-bottom elasticity on the propagation of acoustic—gravity waves
from impacting objects. Scientific Reports , 9, 912 (2019).

Kadri, U., Crivelli, D., Parsons, W., Colbourne, B. & Ryan, A. 2017 Rewind-
ing the waves: tracking underwater signals to their source. Scientific Reports , 7:13949,
doi:10.1038/s41598-017-14177-3.

Kadri, U. 2017 Tsunami mitigation by resonant triad interaction with acoustic-gravity
waves. Heliyon, doi: 10.1016/j.heliyon.2017.e00234.

Kadri, U. & Stiassnie, M. 2012 Acoustic–gravity waves interacting with the shelf break.
J. Geophys. Res. 117, C03035.

Kadri , U. & Stiassnie, M. 2013 Generation of an acoustic–gravity wave by two gravity
waves, and their subsequent mutual interaction. J. Fluid Mech. 735, R6 1–6.

54



Kadri, U. & Akylas, T. R. 2016 On resonant triad interactions of acoustic–gravity waves.
J. Fluid Mech., 788. R1 1–12.

Kadri, U., Wang, Z. & Chabchoub, A. 2018 Tsunami mitigation via nonlinear triad res-
onance with acoustic–gravity waves II: 3D theory and laboratory experiments. Conference
Paper . October 2018.

Kharif, C., Pelinovsky, E. & Slunyaev, A. Rogue waves in the ocean. Advances
in Geophysical and Environmental Mechanics and Mathematics. Springer-Verlag Berlin
Heidelberg, 2009.

Lehner, S. H. (2005) Extreme wave statistics from radar data sets. In Proc. 14th Aha
Huliko‘a Winter Workshop, Honolulu, Hawaii, 2005.

Longuet-Higgins, M. S. 1950 A theory of the origin of microseisms. Phil. Trans. R. Soc.
Lond. A 243, 1–35.

Mei, C. & Kadri, U. 2018 Sound signals of tsunamis from a slender fault. J. Fluid Mech.
836, pp. 352–373.

Renzi, E. & Dias, F. 2014 Hydro-acoustic precursors of gravity waves generated by surface
pressure disturbances localised in space and time. J. Fluid Mech. 754, pp. 250–262.

Rosenthal, W., Lehner, S. & Dankert, H., et al. 2003 Detection of extreme single
waves and wave statistics. In Rogue Waves: Forecast and Impact on Marine Structures.
GKSS Research Center, Geesthacht, Germany .

Stiassnie, M. 2010 Tsunamis and acoustic–gravity waves from underwater earthquakes. J.
Eng. Math. 67, pp. 23–32.

Yamamoto , T. 1982 Gravity waves and acoustic waves generated by submarine earth-
quakes. Intl. J. Soil Dyn. Earthq. Engng. 1 (2), 75–82.

55


	Introduction
	Mathematical Model
	Governing Equations
	System of Equations for gravity and acoustic-gravity waves
	Green's functions for the gravity and acoustic-gravity wave potentials


	Estimation of the potential
	Stationary phase approximation
	Numerical Simulations
	Validation
	Double-Gaussian pressure
	Generation time and location

	Conclusions and future work
	Bibliography

