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DROOP-CONTROLLED INVERTERS SMALL-SIGNAL IMPEDANCE
CHARACTERIZATION FOR STABILITY STUDIES

Las microrredes son una de las tecnologías claves para la integración de grandes cantidades
de tecnologías de generación a partir de fuentes renovables a la red eléctrica. Las principales
fuentes de generación dentro de una microrred son los dispositivos de electrónica de poten-
cia, responsables de la conversión de energía y del control necesario para la operación. La
interacción dinámica entre la microrred y una fuente basada en electrónica de potencia recién
integrada puede llevar a inestabilidad de pequeña señal. Es por esto que distintos enfoques
para el estudio de estabilidad se han desarrollado en los últimos años, particularmente méto-
dos para asegurar estabilidad a través de la división del sistema en subsistemas para la fuente
y para la carga, aplicando posteriormente el criterio de Nyquist a la respectiva razón de im-
pedancias fuente/carga. Sin embargo, este aspecto ha sido raramente estudiado considerando
inversores controlados por droop, en los cuales el control de potencia activa impacta además
la frecuencia de salida de las fuentes, teniendo un impacto considerable en las impedancias
de pequeña señal de los inversores.

El principal objetivo de esta tesis es la caracterización de la impedancia de pequeña señal
de inversores controlados por control droop, típicamente usados en microrredes, mediante
modelos simplificados, en función de lograr un amplio entendimiento de su comportamiento
ante cambios en las condiciones de operación. Este trabajo postula como hipótesis que el
comportamiento general de la impedancia de pequeña señal de inversores controlados por
droop ante cambios en las condiciones de operación puede ser caracterizada a través del aná-
lisis de la funcion de transferencia MIMO (múltiples-entradas múltiples-salidas) de modelos
linealizados de inversores de orden reducido, al contrastarla con las impedancias de pequeña
señal de modelos más complejos.

Los resultados obtenidos muestran que la impedancia de pequeña señal de este tipo de
inversores fué efectivamente caracterizada, especialmente por uno de los modelos propuestos.
Dos indicadores fueron desarrollados para cuantificar los resultados obtenidos de manera
gráfica, los cuales confirmaron el desempeño de los modelos desarrollados, especialmente con
respecto a los canales DD, DQ y QD, identificando correctamente las variables de operación
que más impactan la impedancia de pequeña señal al ser perturbadas. Los resultados indican
además que principalmente es el rango de baja frecuencia de la impedancia de pequeña señal
el que se ve mayormente afectado al cambiar las condiciones de operación, mientras que el
rango de frecuencias altas tiende a converger a la impedancia de gran señal.

Este trabajo de tesis podría llevar a mejores estudios de estabilidad de pequeña señal, en
los cuales uno de los mayores problemas hoy en día es la dependencia de la impedancia de
pequeña señal con respecto a los cambios en el punto de operación del sistema.
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Microgrids are one of the key technologies to facilitate the integration of large amounts
of renewable generation technologies to the main grid. The main power supplies inside the
microgrid are power electronic devices which are responsible for energy conversion and provide
the necessary control. Dynamical interactions between the microgrid and newly connected
power electronic-based sources can lead to small-signal instability. Hence, several stability
analysis approaches have been developed over the recent years, particularly methods to ensure
stability by first dividing the system into source and load subsystems and then applying the
Nyquist criterion to the respective source/load impedances ratio. Nevertheless, this aspect
has been rarely studied considering droop-controlled inverters, as the active power droop
control also impacts the output frequency of micro-sources and has a deep impact in the
small-signal impedances of the inverters.

The main objective of this thesis is to characterize the small-signal impedance of droop-
controlled inverters typically used in microgrids through simplified models, in order to achieve
a comprehensive understanding of their behavior. This work postulates as hypothesis that the
general behavior of the small-signal impedance of droop-controlled inverters when operation
conditions change can be characterized through the analysis of the transfer functions of
linearized multi-input multi-output reduced-order inverter models, by contrasting them with
the resulting small-signal impedances of more complex models.

The obtained results show that the small-signal impedance of these inverters were effec-
tively characterized, specially by one of the proposed models. Two indices were developed in
order to quantify the graphically obtained results, which confirmed the performance of the
developed models, specially with respect to DD, DQ and QD-Channels.The indices confir-
med the identification of the operating variables that impact the small-signal impedance the
most when perturbed. The results also indicate that the low-frequency range of the small-
signal impedance is the most affected range when changing the operating conditions, as the
high-frequency range tends to converge to the large-signal impedance.

This work could lead to improved small-signal stability studies, in which one of the big-
gest problems nowadays is the dependence of the small-signal impedance on the changing
operating point.
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Chapter 1

Introduction

1.1. Motivation

Distributed energy resources (DER) and microgrids have become an important research
focus in recent years. Microgrids are one of the key technologies to accomplish a large-
scale application of distributed power generation systems, facilitating the integration of large
amounts of renewable generation technologies to the main grid [1].

One of the main power supplies inside a microgrid are power electronic devices, which are
responsible for energy conversion and for providing the necessary control of the microgrid
itself [1]. Therefore the stability in a microgrid largely depends on the characteristics of
these sources [2]. One of the desired characteristics of a microgrid is the capability to ensure
beforehand its stable operation after a change in its topology due to the connection of new
generation units, usually denominated ‘plug & play’ capability [3]. This characteristic could
allow power electronic inverters in particular to be easily connected to the microgrid, without
concerning about stability issues.

As the penetration of inverted-interfaced DER increases, so does the complexity of analy-
zing the stability of the microgrid [4]. In particular, small-signal stability has become an
important issue under study in the recent years. Dynamical interactions between existing
elements and newly connected renewable generation technologies affect the small-signal sta-
bility of the whole system, even if the microgrid and the new source are separately stable.
A popular approach to analyze the stability and dynamical response of a particular system
is its simulation through a dynamic model. Nevertheless, considering the desired ‘plug &
play’ capability of microgrids, this approach would require to constantly model new elements
whenever a new source is added to such system. Due to the complexity of this, many efforts
have been made to simplify the stability analysis in microgrids with grid-feeding inverters,
most commonly known as PQ inverters. Particularly, in 1976, Middlebrook introduced an
impedance-based criterion for ensuring small-signal stability operation in direct current (DC)
systems by first dividing the system into source and load subsystems and then applying the
Nyquist criterion to the respective source/load impedances ratio [5]. This approach simplified
the stability studies, allowing to assess small-signal stability by measuring these impedan-
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ces at the point of connection (PoC), without the need to know each specific element of the
grid. Several studies have been developed following this approach, leading to new impedance-
based small-signal stability criteria for both DC systems [6, 7, 8] and alternating current (AC)
systems [9, 10, 11]. Despite the aforementioned progress, the main discussion has not been
focused on droop-controlled microgrids.

As mentioned in [11], droop-controlled inverters are among the most widely employed
power sources in microgrids. Unlike PQ inverters, droop-controlled inverters present dynamics
affecting the fundamental frequency due to the impacts of the active power droop control.
This affects both the small-signal impedance and the dynamic response of the inverters. As
mentioned in [12, 13], this aspect has been rarely studied. Although an additional transfer
function besides the small-signal impedance is needed to ensure small-signal stability (the
one related to the frequency dynamics), the study of the effects of droop-controlled inverters
in the microgrid impedance is of utmost importance.

The characterization of the small-signal impedance of these inverters could lead to a better
understanding about the small-signal stability and its dependency to changes in the operating
conditions of the microgrid and also to changes in the parameters of the inverter controls.
This characterization could lead to self-tuning elements of a microgrid, achieving the concept
of “plug & play” capability, facilitating the inclusion of renewable resources to microgrids and
therefore to distribution systems.

1.2. Hypothesis

This work postulates that the general behavior of the small-signal impedance of droop-
controlled inverters, when facing changes in the operation conditions, can be characterized th-
rough the analysis of the small-signal impedance of linearized, reduced-order inverter models
obtained by the linearization of their multi-input multi-output (MIMO) transfer functions.

1.3. Objectives

1.3.1. General Objectives

The main objective of this thesis is to characterize the small-signal impedance of droop-
controlled inverters in order to achieve a comprehensive understanding of its behavior.

1.3.2. Specific Objectives

1. Review the state of art involving power inverters in microgrids and the importance of
their small-signal impedance in small-signal stability studies.
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2. Obtain analytical expressions describing the behavior of the small-signal impedance of
simplified models of droop-controlled inverters.

3. Understand the effects on the small-signal impedance of each control subsystem of the
inverter.

4. Contrast the obtained analytical expressions of the reduced-order models with the re-
sulting small-signal impedances of more complex models through a sensitivity analysis
for each critical variable considering a real case study.

1.4. Scope

As this thesis aims to characterize the general behavior of the small-signal impedance
by contrasting analytical expressions obtained from simplified models with the impedance
of more complex models, the results are not expected to exactly match the small-signal
impedance curves of a real, full featured converter, but to give an intuition about which
operation parameters have more significant impact on the impedance.
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Chapter 2

Theorical Background

2.1. Microgrids

2.1.1. Definition

The microgrid concept was first mentioned in 2001 by Lasseter [14] and introduced again
in 2002 [15]. It was described as a cluster of loads and micro-sources operating as a single
controllable system that provides both power and heat to its local area, being electrically
isolated from the main system. Subsequently, the microgrid concept has evolved, according
to several characteristics assigned to them.

The IEEE Std 1547.4-2011 Standart define microgrids as all intentional island systems
that could include local and/or area electric power system (EPS). They are described as
EPSs that: (1) have distributed resources and loads, (2) have the ability to disconnect from
and parallel with the area EPS, (3) include the local EPS and may include portions of the
area EPS, and (4) are intentionally planned [16].

For its part, the U.S Department of Energy has defined the microgrids as "group of
interconnected loads and DER within clearly defined electrical boundaries that acts as a
single controllable entity with respect to the grid, that can connect and disconnect from the
grid to enable it to operate in both grid-connected or island-mode"[17].

Although definition of microgrid is not completely unified, it is generally recognized that
a microgrid is a power electric system that satisfies the following aspects [18]:

1. It is made up of a variety of DER, distributed storage devices, loads, supervisory control,
and protection systems.

2. It is flexible and dispatchable, namely, it could operate in grid-connected or stand-alone
mode and could switch between the two modes seamlessly by using static switches.

3. It can provide both thermal and electrical energy to consumers via cooperation of
related devices.
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4. The capacity of a microgrid is generally between kilowatts and megawatts.
5. It is interconnected to low or middle level distribution networks.

Unique characteristics that differentiate microgrids with large-scale traditional grids are
presented in [19] and listed below.

1. Smaller system size.
2. Higher penetration of renewable energy sources (RES).
3. Higher uncertainty in the system.
4. Lower system inertia.
5. Higher R/X ratio of the feeders (medium and low voltage systems is, respectively, 0.85

and 0.77 in medium and low voltage systems, respectively [20]).
6. Low short-circuit capacities.
7. Unbalanced three-phase loading.
8. Plug & play capability.

The main power supplies inside the microgrid are power electronic devices which are
responsible for energy conversion and provide the necessary control [1]. A microgrid is mostly
composed by locally controlled and low sized (<100 kW) energy sources, that are connected
in the near of loads through power electronic interfaces such as inverters. Power electronics
provide the control and flexibility required by the microgrids concept. Correctly designed
power electronics and controls insure that the microgrid can meet its customers as well as
the utilities needs [15]. Microgrid have also storage system in order to respond immediately to
operation problems as blackouts and stability issues. Given the weak ability of microgrids to
bear disturbances, storage systems are a key issue in order to maintain the stable operation
of the system and stabilize the fluctuation of renewable energy. There are different storage
technologies, but batteries are the best option for microgrids due to its easy installment
and manufacture [1]. Batteries are typically connected to the grid through droop-controlled
inverters, known as grid-supporting inverters, as will be specified in next section. As the main
power supplies inside the microgrid are power electronic devices, the inertia of the system is
less than traditional systems. The dynamics of the microgrid largely depends on these power
electronics and their dynamical characteristics.

As stated previously, a microgrid can operate in both (1) grid-connected or (2) stand-
alone mode [21]. In grid-connected mode, most of the system-level dynamics are dictated by
the main grid due to the relatively small size of the sources. In the stand-alone mode, the
microgrid operates disconnected from the utility grid. In this mode, the system dynamics are
dictated by the main sources themselves, their power regulation control and, to an unusual
degree, by the network itself [22].

Disconnection of the microgrid from the host grid, can be either intentional (scheduled) or
unintentional. Intentional islanding can occur in situations such as scheduled maintenance,
or when degraded power quality of the host grid can endanger microgrid operation. Uninten-
tional islanding can occur due to faults and other unscheduled events that are unknown to
the microgrid; proper detection of such a disconnection is imperative for safety of personnel,
proper operation of the microgrid, and implementation of changes required in the control
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strategy [23].

Microgrid can also be presented in AC and DC configurations. The most appropriate
configuration will depend on the context and can be selected based on economic, technical,
and environmental criteria [21].

2.2. Inverter Characterization

2.2.1. Classification of Power Converters in AC Microgrids

As stated in Section 1.1, the main elements that compose a microgrid are the power
converters. In AC microgrids, there has been identified mainly 3 different types of inverters,
from the viewpoint of the control loops system: (1) Grid-forming inverters, (2) grid-supporting
inverters, and (3) grid-feeding inverters [24].

Grid forming converters can be represented as an ideal voltage source with small output
impedance, where reference voltage E∗ and frequency ω∗ are fixed by the rated operation
conditions of the grid.

On the other hand, grid-feeding inverters are designed to supply electric power to an
already operating grid. These inverters can be represented by a current source with high
output impedance. Output active power P ∗ and reactive power Q∗ are fixed by an adequate
controller, by synchronizing the current source appropriately using a phase-locked loop (PLL).
Voltage measurement of the PoC is also required. It is important to remark that grid-feeding
inverters cannot operate independently.

Finally, grid-supporting inverters can be represented by a voltage source in series with
the output impedance, or by a current source in parallel with the output impedance. These
inverters regulate both the output voltage and frequency, by controlling the active and reac-
tive power delivered to the grid by a droop controller, thus helping to maintain the operation
variables near their nominal value.

Figure 2.1 shows simplified representations of the above-mentioned inverter configurations,
emphasizing the controlled variables in each case. Specific control details associated to each
inverter configuration are discussed below in detail.

1. Grid-forming Converters: As grid-forming inverters fix the voltage and the fre-
quency at the PoC, it is required a perfect synchronization to operate more than one
grid-forming converter in parallel, considering its small output impedance. Its internal
control scheme is displayed in Figure 2.2.
Two cascaded PI loop controls, referenced in the rotating dq reference frames, com-
pose the control of grid-forming converters. The first external loop corresponds to the
voltage controller, which controls the output voltage in order to match the reference
voltage E∗. The internal loop, on the other hand, corresponds to the current controller,
which regulates the current supplied by the power electronics source. Thus, the current
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Figure 2.1: Simplified representation of grid-connected power inverters. (a) grid-forming, (b)
grid-feeding, (c) grid-supporting as current source, and (d) grid-supporting as voltage source
[24].

Figure 2.2: Internal control of the grid-forming converter [24].
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Figure 2.3: Internal Control of the Grid-Feeding Converter [24].

through LF charges the CF capacitor, maintaining the voltage in the PoC near the
given reference.

2. Grid-feeding Converters: As stated previously, grid-feeding (or grid-following) con-
verters are controlled as high impedance parallel current sources. Unlike grid-forming
converters, they can operate in parallel multi-converter systems, injecting power to the
grid according to specified references values. Although they can be controlled in order
to participate in the voltage and frequency regulation of the microgrid, they are typi-
cally controlled by maximum power point tracking systems. The basic control scheme
of these converters is shown in Figure 2.3.
A PLL is used to obtain the rotating angle θ of the voltage in the PoC vabc, used
in the internal control loops. Two input power references P ∗ and Q∗ are divided by
the direct reference frame of the voltage in the PoC, obtaining a reference current
for each dq channel. The internal current control loop regulates the current through
the LF inductance, charging the CF capacitor, hence maintaining the voltage near the
appropriate values.

3. Grid-supporting Converters: The main objective of these converters is the parti-
cipation in the voltage and frequency regulation. Unlike grid-forming converters, and
despite having similar closed control loops, grid-supporting converters are able to par-
ticipate directly in the regulation through an adequate control, as shown in Figure
2.4.
As mentioned earlier, two main types of power converters can be found within the grid-
supporting group: (a) current-controlled inverters and (b) voltage-controlled inverters.
(a) Current-controlled Inverter: The objective of the current source-controlled in-

verter is to not only supply the load connected to the grid, but also to additionally
contribute in the voltage amplitude and frequency regulation of the microgrid. In
this case, reference parameters are given as inputs, as shown in Figure 2.4 (a), whi-
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Figure 2.4: Basic control structure of three-phase grid-supporting power converters. (a) Grid-
supporting power converter controlled as a current source. (b) Grid-supporting power con-
verter controlled as a voltage source [24].
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le a PLL is used to obtain the rotating angle θ and the frequency ω of the voltage
in the PoC vabc, used in the internal control loops. This droop control gives the
input voltage to the power control block, where algebraic operations are perfor-
med and current set points are obtained. Finally, in the current control loop, two
PI controllers, one for each dq axis, are used, in order to obtain the modulating
voltage references [24].

(b) Voltage-controlled Inverter: The voltage source-controlled inverters presented
in Figure 2.4 (b) emulate the behavior of AC voltage sources, connected through
a coupling impedance. In this case, the traditional droop control, presented in
Section 2.2.2 is used in order to obtain the input references of the voltage control
loop. No measuring PLL is needed in this configuration, as the droop control gives
the reference rotating angle θ to the voltage control loop. PI controllers for each dq
axis set the current references given to the internal current control loop. Similar
as in the current source-controlled inverter, the current control loop uses two PI
controllers in order to obtain the modulating voltage references. This kind of of
converters can participate in the voltage and frequency regulation in both grid-
connected and stand-alone modes, with no need of connecting any grid-forming
converter to the microgrid [24].

2.2.2. Droop-controlled Inverter Modelling

In this section, a detailed model of a droop-controlled is presented, assuming a grid-
supporting inverter. The full schematic model is presented in Figure 2.5 [25], where every
block, including the actuator controller, is presented in dq reference frame.

Figure 2.5: Droop-controlled Inverter Control Subsystems [26].

Droop Controller

The traditional droop control in microgrids, used to share the demanded electric power
between parallel inverters in order to avoid instabilities, is graphically presented in Figure
2.6.
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Figure 2.6: Conventional Droop Control Applied in Microgrids [27].

This control is based on the traditional synchronous machines droop control. Despite the
assumption of small R/X ratio, which is not fully met in low voltage grids, it is still used in
most microgrids due to its simplicity [28].

As stated in Section 2.2.1, droop-controlled inverters determine the frequency and voltage
set point to ensure correct real and reactive power sharing between the parallel connected
inverters, in response to load changes. The frequency set point is thus made to decrease with
increasing real power supplied by the inverter, as described by the P − ω droop characte-
ristic presented in Figure 2.6 a). In a similar manner, the set points for the voltages can be
determined from the Q− V droop characteristics, as described in Figure 2.6 b) [29].

The set points values are calculated as in (2.1) and (2.2). Note that the reference voltage
is aligned with the direct axis of the coupling filter capacitor, in the local rotating reference
frame dq, as stated in (2.2).

ω∗ = ωn −mp (P − Pn) , θ̇ = ω (2.1)

v∗od = Vn − npQ, v∗oq = 0 (2.2)

Where ω∗ and v∗od correspond to the calculated frequency and direct voltage set points. ωn
and Vn are the frequency and voltage nominal values. P and Q correspond to the measured
active and reactive power. Finally, mp and nq are the droop slopes that determine the relative
power sharing between the inverters. Note that no communication system is needed in order
to define the set points values.

The droop gains mp and nq are tuned according to the expected frequency and voltage
range of values, as shown in (2.3):
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mp =
ωmax − ωmin

Pmax
, nq =

Vodmax − Vodmin
Qmax

(2.3)

In order to obtain the output power, output currents and voltages are measured. Expres-
sing the values in local dq rotating reference, considering a three-phase system, the output
powers are obtained as follows:

p = vodiod + voqioq, q = vodioq + voqiod (2.4)

These measured powers are passed through a low-pass filter with low cut-off frequency,
achieving a good attenuation of high distortion frequency components, thus avoiding any
interaction with the internal current controls. Thus, by considering the typical low-pass filter
equations, two state variables are introduced as inputs to the droop controller block.

Ṗ = ωc (p− P ) (2.5)

Q̇ = ωc (q −Q) (2.6)

Subsequently, the droop control is performed, obtaining the frequency and voltage refe-
rence set points. In order to be used in the rotating reference frame transformations, the
reference frequency is integrated, obtaining a reference phase angle.

To sum up, the complete droop control scheme is shown in Figure 2.7.

Figure 2.7: Droop Controller Structure [26].

Voltage Controller

Figure 2.8 shows the voltage controller block diagram including all feed-back and feed-
forward terms. The control is achieved with a standard PI controller for each dq axis.
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Figure 2.8: Voltage Controller Structure [26].

PI controllers maintain the LC filter output voltage in the reference value given by the
droop controller, by setting the current set points of the internal current controller. Each PI
controller introduces a differential equation, corresponding to two more state variables.

The mathematical model is presented in (2.7) and (2.8).

φd
dt

= v∗od − vod,
φq
dt

= v∗oq − voq (2.7)

i∗ld = Fiod − ωnCfvoq +Kpv (v∗od − vod) +Kivφd

i∗lq = Fioq + ωnCfvod +Kpv

(
v∗oq − voq

)
+Kivφq

(2.8)

Current Controller

Figure 2.9 shows the current controller structure. As in the voltage controller, this con-
troller is composed by a PI block for each dq axis.
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Figure 2.9: Current Controller Structure [26].

In this case, the PI controllers maintain the output current of the inductance Lf in the re-
ference values given by the voltage controller. Thus, the reference voltage values are acquired,
being modulated by the power electronics actuator.

The corresponding differential equations and algebraic expressions are presented in (2.9)
and (2.10).

γd
dt

= i∗ld − ild,
γq
dt

= i∗lq − ilq (2.9)

v∗id = vod − ωnLf ilq +Kpc (i∗ld − ild) +Kicγd

v∗iq = voq + ωnLf ild +Kpc

(
i∗lq − ilq

)
+Kicγq

(2.10)

Output LC filter and Coupling Inductance

If vi = v∗i is assumed, this is, assuming an ideal-modulated voltage source, the output
LC filter and the coupling inductance models can be described with the following differential
equations, representing the state-space equations of the physical inverter construction [26].
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dild
dt

=
−rf
Lf

ild + ωilq +
1

Lf
vid −

1

Lf
vod

dilq
dt

=
−rf
Lf

ilq − ωild +
1

Lf
viq −

1

Lf
voq

dvod
dt

= ωvoq +
1

Cf
ild −

1

Cf
iod

dvoq
dt

= −ωvod +
1

Cf
ilq −

1

Cf
ioq

diod
dt

=
−rc
Lc

iod + ωioq +
1

Lc
vod −

1

Lc
vbd

dioq
dt

=
−rc
Lc

ioq − ωiod +
1

Lc
voq −

1

Lc
vbq

(2.11)

Reference Frame Transformation

The presented inverter model was modelled in a local dq reference frame. In order to
connect the inverter to a whole system, the output variables need to be converted to a global
DQ reference frame, as presented in Figure 2.10:

Figure 2.10: Reference Frame Transformation [25].

Three different rotating axes are presented. (D −Q) is the global (or common) reference
frame, (d − q)i is the reference frame of the ith inverter, rotating at ωi and (d − q)j is the
reference frame of the j th inverter, rotating at ωj.

With the aim of translating the inverters to the common reference frame, the transforma-
tion technique defined in (2.12) is used [25].

[
fD
fQ

]
=

[
cos (δi) − sin (δi)
sin (δi) cos (δi)

]
·
[
fd
fq

]
(2.12)
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Note that δi is the angle of the reference frame of ith inverter with respect to the common
reference frame, as presented in (2.13),

δi =

∫
(ωi − ωcom) dt (2.13)

where ωi and ωcom are the rotation frequency of the ith inverter reference frame and the
common reference frame, respectively. If (2.13) is derived, the following differential equation
can be obtained:

δ̇ = ω − ωcom (2.14)

Steady-State Operation

In steady-state operation, Kirchhoff algebraic relationships between the different electrical
variables can be obtained by evaluating in a static operating point, as all the derivatives are
zero:

0 = − rf
Lf
Ild + ωIlq +

1

Lf
Vid −

1

Lf
Vod

0 = − rf
Lf
Ilq − ωIld +

1

Lf
Viq −

1

Lf
Voq

0 = ωVoq +
1

Cf
Ild −

1

Cf
Iod

0 = −ωVod +
1

Cf
Ilq −

1

Cf
Ioq

0 = − rc
Lc
Iod + ωIoq +

1

Lc
Vod −

1

Lc
Vbd

0 = − rc
Lc
Ioq − ωIod +

1

Lc
Voq −

1

Lc
Vbq

(2.15)

where the overlines and the capital letters represent variables evaluated in the operating
point.

Additionally, in the rotating reference frames the d axis is typically aligned with the defined
reference voltage. Considering this, in steady-state regime, the voltage phase corresponds to
the angle of the reference frame with respect to the common reference frame.

If the global reference steady-state operating points values of the LCL electric system are
known, then the global phase angle of the Vo voltage of the inverter can also be obtained.

Thus, as in the local reference frame the phase angle of the Vo voltage is defined as zero
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by the droop control, then δ can be obtained as the global Vo phase angle, as presented in
(2.16).

δ = V g
o − V l

o

⇒ δ = V g
o − 0

⇒ δ = V g
o

⇒ δ = arctan

(
VoQ
VoD

) (2.16)

2.3. Stability in Microgrids

As established in [30], stability of an EPS is defined as the capability of the system to
remain in a certain operating equilibrium under normal operating conditions and to regain
an acceptable operating point after being subjected to a disturbance. It represent a balance
of opposing forces. The response of the system depends directly on the nature and magnitude
of the perturbation.

Microgrids facilitate the effective integration of DER via power electronics interfaces (e.g.
inverter or converter) [31], therefore the stability in a microgrid largely depends on the
characteristics of the sources, as stated in Section 1.1.

Due to the aforementioned systemic differences between traditional power systems and
microgrids, there is a need to redefine the categorization of power systems stability in order
to be applied in microgrids, properly reflecting relevant stability issues in this type of sys-
tems. For example, maintaining frequency stability in microgrids is more challenging than in
traditional power systems due to the low system inertia and high penetration of renewable
energy sources. Moreover, transient and voltage stability are more common in larger grids
than microgrids [19].

Stability problems in microgrids are classified in two categorizes by addressing the most
recurrent issues: (1) Control System Stability and (2) Power Supply and Balance Stability,
as indicated in Figure 2.11.
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Figure 2.11: Stability in Microgrids [19].

2.3.1. Control System Stability [19]

Control system stability problems are related to inadequate control schemes or poor tu-
ning of equipment controllers in both electric machines and inverters. Until the destabilizing
element is disconnected or re-tuned, the whole system cannot be stabilized. This stability
category can be subcategorized as follows:

1. Electric Machine Stability In the traditional systems, electric machines instability is
caused by the lack of synchronizing torque or inadequate damping torque. Considering
also that in resistive lines synchronous machines are likely to decelerate during short-
circuits, it is concluded that this type of stability issues are associated mostly with poor
tuning of the exciters and governors of the synchronous machines in the microgrid.

2. Converter Stability As microgrids are composed by large amount of inverters and
power electronic devices, instability caused by inverters is an important issue to be
considered. There are three main causes regarding this matter: (1) Inner Current and
Voltage Control Loops, (2) LCL Output Filters and (3) PLL-based Synchronization
Strategies. Inner control loops, contrary to low-frequency oscillations caused by outer
power controls, may cause high harmonic-frequency oscillations, in the range of hun-
dreds of Hz to several kHz. High-frequency instability can also be caused by the LCL
filter resonance, triggered by the high-frequency switching, by the control of the inverter
itself or by interactions with controllers nearby. Damping strategies can prevent these
high-frequency instabilities. PLL-triggered instability is caused by the changes produ-
ced by the PLL in the impedance of the grid, and depends on the PLL bandwidth.
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2.3.2. Power Supply and Balance Stability [19]

Stability issues in traditional grids are also presented in microgrids, but some essential
system differences implies to redefine the mitigation strategies. Therefore specific descriptions
for microgrids are presented next.

1. Frequency Stability As microgrids have low system inertia, due to the small number
of rotating machines and high share of renewable energy sources, frequency stability
is a major concern. Frequency regulation is complicated by the high R/X ratio of
the distribution feeders, thus coupling voltage and frequency, invalidating traditional
regulation techniques. There are several reasons for frequency instability in microgrids,
as (1) large load increases, considering the low system inertia, (2) poor coordination
of frequency and power controllers that may trigger undamped frequency oscillations
and (3) insufficient generation reserve, activating under-frequency load tripping in the
steady-state regime.

2. Voltage Stability As lines in microgrids are short, the transferred power between
generation and loads is not limited as in traditional systems, resulting in relatively
small voltage drops. Nevertheless, there are other factors that may imply unacceptable
voltages. As feeders in microgrids are short, any change in DER are reflected in the rest
of the system, yielding high circulating reactive power flows if not properly coordinated,
and thus resulting in large voltage oscillations. Power droop control is frequently used
to achieve a proper power sharing strategy, as will stated in Section 2.2. If not properly
used, in some cases this strategy fails to achieve the desired reactive power sharing,
causing severe voltage deviations and in worst cases, voltage instabilities. Another type
of voltage stability pertains to the ability of DER based on voltage source converters
to maintain the voltage across the dc-link capacitor. Situations may occur where the
active power demand may result in undamped ripples in the dc-link voltage capacitor,
resulting in large fluctuations on power injections of the source.

As illustrated in Figure 2.11, the period of interest in stability studies can be short or long,
depending on the specific analyzed phenomenon. Also, a differentiation can be made between
large and small perturbations. Small perturbations in particular are the ones involved in
small-signal stability assessments. Small-signal stability is defined as the capability of the
electric system to maintain a certain operating point before these perturbations. For more
details see Section 2.4.

It is important to note that there is not a complete decoupling between the different types
of stability, and a system can be unstable both by control system stability or power supply
and balance stability. A voltage perturbation, for example, can unleash electric machine or
frequency instabilities.

2.4. Small-Signal Stability

Besides the factors involved in microgrid instabilities presented in previous section, small-
signal stability in microgrids is primarily affected by controllers feedback (it has been proved
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that droop control affect significantly the microgrid stability [32]). Other factors as small
load changes, the damping factor of the system and power limits in DER, are also important.
In order to enhance the stability of the system, it is needed to control the critical parameters
such as the droop gains, the connection impedance value, the X/R ratio, among others.

The small signal stability in a microgrid can be analyzed with a linearized model around
the operating point [2], hence a representation of the grid as a state-space model can be
developed considering small perturbations.

2.4.1. State-Space Representation

Systems can be represented as state-space models, expressing them as follows:

ẋ = f (x, u, t) (2.17)

where x =
[
x1 . . . xn

]T , u =
[
u1 . . . un

]T and f =
[
f1 . . . fn

]T .
Moreover, vector x represents every state variables xi of the system and u corresponds to

the entries vector with ui being the ith-entry of the system.

An output vector is also defined, expressed as function of states and entries:

y = g(x, u) (2.18)

where y =
[
y1 . . . yn

]T and g =
[
g1 . . . gn

]T

2.4.2. State-Space Linearization

Considering a small deviation in states ∆x and entries ∆u, the system is linearized, re-
sulting from (2.17) and (2.18) in:

∆ẋ = A∆x+B∆u (2.19)

∆y = C∆x+D∆u (2.20)

where
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A =

 ∂f1
∂x1

. . . ∂f1
∂xn

. . . . . . . . .
∂fn
∂x1

. . . ∂fn
∂xn

 B =

 ∂f1
∂u1

. . . ∂f1
∂ur

. . . . . . . . .
∂fn
∂u1

. . . ∂fn
∂ur


C =

 ∂g1
∂x1

. . . ∂g1
∂xn

. . . . . . . . .
∂gm
∂x1

. . . ∂gm
∂xn

 D =

 ∂g1
∂u1

. . . ∂g1
∂ur

. . . . . . . . .
∂gm
∂u1

. . . ∂gm
∂ur


(2.21)

Partial derivatives in matrices A, B, C and D are evaluated in the operation point x0.

In (2.19) and (2.20):

∆x is the state vector of the linearized system, of dimension n
∆y is the output vector of dimension m
∆u is the input vector of dimension r
A is the system matrix, of dimension n× n
B is the control matrix, of dimension n× r
C is the output matrix, of dimension m× n
D is the feed-forward matrix, of dimension m× r

It is important to notice that, in small-signal studies, some elements are not linearizable, e.g.
tap-changing controllers in transformers, therefore their effects will not be reflected adequa-
tely in the results. In order to improve the representativeness in this cases, mixed small and
large signal studies are carried out [30].

By applying Laplace transform to (2.19) and (2.20) and rearranging, the following pair of
frequency-space linearized equations can be obtained:

∆x (s) = (sI − A)−1 [∆x (0) +B∆u (s)]

∆y (s) = C∆x (s) +D∆u (s)
(2.22)

Starting with (2.22), the characteristic polynomial can be obtained, whose roots corres-
pond to the poles of the system:

det|sI − A| = 0 (2.23)

2.4.3. Small-Signal Analysis

The small-signal stability analysis of an equilibrium point is done studying the stability
of the corresponding linearized system in the vicinity of the equilibrium point. The principal
methods of analyzing linearized transfer function and ensuring small-signal stability in power
electric systems are listed and described bellow.
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1. Bode Diagram Analysis: A Bode diagram consist of two graphs: (1) A plot of the
logarithm of the magnitude of a sinusoidal transfer function, where the unit used in this
representation is the decibel and (2) a plot of the phase angle. Both are plotted against
the frequency on a logarithmic scale [33]. These diagrams represent the frequency res-
ponse. The main advantage of these diagrams is the availability of a simple method for
sketching an approximate log-magnitude curve, based on asymptotic approximations.
The construction of the approximated Bode diagrams depends basically of three para-
meters:
(a) Zero Frequency Value: Corresponds to the transfer function value when s = 0.

It determines the systems response when a DC perturbation is applied.
(b) Poles: By solving (2.23), the poles of the system can be obtained, this is, the

frequencies for which the value of the denominator of the transfer function becomes
zero.

(c) Zeros: Similar as poles, zeros correspond to the frequencies for which the value
of the nominator of the transfer function becomes zero.

Considering the transfer function presented in 2.24, the magnitude and phase angle
asymptotic graphs construction are summarized below:

H(s) = A
∏ (s− zn)an

(s− pn)bn
(2.24)

(a) Magnitude Plot:
i. Although it is not possible to plot curves down to zero frequency because

of the logarithmic frequency (log(0) = −∞), this does not create a serious
problem, as limit approximations can be made. Hence, the initial value of
graph is approximately | H(0) |dB.

ii. At every zero zn of the system, increase the slope of the line by 20 · an dB per
decade.

iii. At every pole pn of the system, decrease the slope of the line by 20 · bn dB per
decade.

iv. As complex conjugates zeros or poles equations can be written as (s − ωR +
jσ)(s − ωR − jσ) = s2 − 2ωRs + σ2 + ω2

R = s2 + 2ξωns + ω2
n, the critical

slope-changing frequency corresponds to the natural frequency ωn of the co-
rresponding poles or zeros pair.

v. The damping factor can be determined as ξ = −ωR/ωn, which determines the
peak magnitude (in the case of poles) and negative peak magnitude (in the
case of zeros), if ξ < 0, 707, as presented in Figure 2.12.

(b) Phase Angle: To draw the phase plot for each pole and zero, the following rules
have been developed.
i. The basis initial value of the graph is set to 0◦ if A > 0, and to −180◦ if
A < 0.

ii. If the sum of the number of unstable (i.e. right half plane) poles and zeros is
odd, add 180◦ to that basis.

iii. At every zero zn, increase (for stable zeros) or decrease (for unstable zeros)
the slope by 45 · an ◦ per decade, beginning one decade before ω =| zn |
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iv. At every pole pn, increase (for stable poles) or decrease (for unstable poles)
the slope by 45 · bn ◦ per decade, beginning one decade before ω =| pn |

v. When the phase has changed by 90 · a◦n (for a zero) or by 90 · b◦n (for a pole),
flatten again the slope.

Once every poles and zeros have been graphed, the different lines are added to-
gether, obtaining a single final phase plot.

Figure 2.12: Log-magnitude curves, together with the asymptotes, and phase-angle curves of
a quadratic transfer function [33].

2. First Lyapunov Method: The first Lyapunov method analyze the real part poles of
the system, acquired from (2.23):
(a) A linear system is asymptotically stable if and only if real parts of all poles (or

eigenvalues of the system matrix) are negative.
(b) If the real part of at least a single pole is positive, the system is unstable.
(c) A linear system is marginally stable if and only if it has at least one simple pole

(not repeated) with real part zero, and all other poles have negative real parts.
Therefore, a system cannot be both asymptotically stable and marginally stable.

3. Nyquist Stability Criteria:

The polar diagram, also known as Nyquist diagram, of a transfer function G(jω) is
a magnitude versus phase-angle plot of G(jω), when ω varies from 0 to ∞. In other
words, the Nyquist diagram is the locus of the vectors |G(jω)| G(jω).
G(jω) axis projections are their real and imaginary components, as presented in Figure
2.13.
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Figure 2.13: Nyquist Diagram [33].

Nyquist stability criterion determines the stability of a closed-loop system as from the
open-loop frequency response and the respective system poles.

Figure 2.14: Closed-Loop System [33].

Equation (2.25) corresponds to the transfer function of the closed-loop system displayed
in Figure 2.14, whereas that (2.26) represents the open-loop function.

FCL(s) =
G(s)

1 +G(s)H(s)
(2.25)

FOL(s) = G(s)H(s) (2.26)

Nyquist stability criterion, for the special case when G(jω)H(jω) has neither poles nor
zeros on the jω axis, postulate that: If the open-loop transfer function G(jω)H(jω) has
k poles in the right-half s plane and lim

s→∞
G(s)H(s) = constant, then for stability the

G(jω)H(jω) locus, as ω varies from −∞ to∞, must encircle the −1+j0 point k times
in the counterclockwise direction [33].
Remarks on the Nyquist Stability Criterion [33]:
(a) This criterion can be expressed as: Z = N + P , where

i. Z = number of zeros of 1 +G(s)H(s) in the right-half s plane.
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ii. N = number of clockwise encirclements of the −1 + j0 point.
iii. P = number of poles of G(s)H(s) in the right-half s plane.
For a stable control system, Z must be zero.

(b) For multiple-loop systems, Nyquist stability criterion is not sufficient to detect
instability. Other methods, like Routh criterion can be applied in these cases.

(c) If the locus of G(jω)H(jω) passes through the −1 + j0 point, then zeros of the
characteristic equation, or closed-loop poles, are located on the jω axis, which is
not desirable for practical control systems.

For a general case when G(jω)H(jω) has poles and/or zeros on the jω axis, it is
postulated that: If the open-loop transfer function G(jω)H(jω) has k poles in the right-
half s plane, then for stability the G(jω)H(jω) locus, as representative point s traces
on the modified Nyquist path in the clockwise direction, must encircle the −1 + j0 point
k times in the counterclockwise direction [33].

2.5. Small-Signal Stability in Microgrids

2.5.1. Small-Signal Impedance

Small-signal impedance corresponds to a transfer function that determines the output of a
certain electric system, given each possible input. By defining inputs as currents and outputs
as voltages, an impedance transfer function can be defined.

Considering a rotating dq reference frame, both direct and quadrature voltage and currents
must be considered. Hence, a multi-input multi-output (MIMO) linearized system can be
defined, as presented in (2.27)

[
∆vd
∆vq

]
=

[
Zdd(s) Zdq(s)
Zqd(s) Zqq(s)

]
·
[
∆id
∆iq

]
(2.27)

where Zjk is the linearized transfer function relating output vk with perturbations in input
ij, with j = d, q and k = d, q

As small-signal impedance can be seen as a transfer function, a bode plot can be graphed
for each dq-channel, in order to characterize its frequency response shape.

2.5.2. Small-Signal Stability Criteria

Small-signal stability was previously defined as the capability to maintain an operating
point when facing small perturbations. As stated in the previous section, the Nyquist criteria
has been widely used to determine stability against small-signal perturbations in microgrids
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connected to newly added sources. By splitting the system at the PoC, two subsystem can
be defined, as presented in Figure 2.15.

New Source Microgrid
PoC

Neighbour 

Microgrid

National 

Grid

Subsystem 1 Subsystem 2

Subsystem 1 Subsystem 2
iPoC

vPoC

Figure 2.15: Conceptual Microgrid Split into Source and Load Subsystems [3].

Subsystem 1 (also known as the source subsystem) corresponds to the source itself. Furt-
hermore, subsystem 2 (also known as the load subsystem) correspond to the rest of the
system, involving the microgrid and other connected elements as for example a neighbour
microgrid or the national grid. Both subsystems 1 and 2 can be arbitrarily treated as the
following feedback state-space transfer functions H1(s) and H2(s), presented in (2.28):

v1 = H1(s) · i1
−i2 = H2(s) · v2

(2.28)

Where i1 = −i2 = iPoC and v1 = v2 = vPoC . Note that, by strategically defining these
inputs and outputs, the transfer functions correspond to an impedance and to a negative ad-
mittance, respectively. Hence, H1(s) = Z1 and H2(s) = −Y2. Furthermore, both subsystems
share input and output signals, as presented in Figure 2.16.

Subsystem 1 Subsystem 2
PoC

Z1 -Y2

Subsystem 1

Subsystem 2

v1

v2

i1

-i2

Figure 2.16: Source and Load Subsystems Impedances Feedback Loop [3].

By the feedback loop connection of these two subsystems, the Nyquist stability criteria
can be applied and thus the small-signal stability can be studied.
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As introduced in Section 1.1, in droop-controlled microgrids, impedances, i.e., transfer
function between currents and voltages, are not enough to ensure stable operation. Unlike
traditional PQ-inverters, droop-controlled inverters involve dynamics addressing the funda-
mental frequency, hence the analysis of the poles of the transfer functions relating voltages
and currents are not enough. As a matter of fact, additional transfer functions relating the
fundamental frequency should be considered in both subsystems, as shown in (2.29):

v1 =
[
H1(s) Hω

1 (s)
]
·
[
i1
ω

]
[
i2
ω

]
=

[
H2(s)
Hω

2 (s)

]
· v2

(2.29)

A graphical generalized representation of the aforementioned feedback loops of droop-
controlled microgrids is presented in Figure 2.17 [13].

Subsystem 1

Subsystem 2

i1

-i2

v1

v2

Figure 2.17: Source and Load Subsystems Transfer Functions Considering Frequency Channel

Despite the fact that small-signal impedance is just part of the necessary information
in the case of the droop-controlled inverter, it is still a key issue for ensuring small-signal
stability in the presence of a newly added power source of this type. This thesis production
focuses on the dq impedance analysis in the synchronous reference frame, emphasizing in all
four Zdd, Zdq, Zqd and Zqq transfer functions of this kind of inverter.
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Chapter 3

Methodology

In this section, a description of the different stages of the proposed methodology to cha-
racterize the small-signal impedance of a droop-controlled inverter is presented. In Figure 3.1
is shown the methodological scheme as a flowchart.

Figure 3.1: Methodological Framework

As stated in section 1.3.1, the main objective of this work is to understand how the small-
signal impedance of the inverter is affected by both the internal parameters of the inverter
and the operating point changes of the microgrid. The main idea to achieve this goal is
divided in two main analysis:

1. Analytical Assessment: The main objective of this analysis is to obtain analytical
expressions of the small-signal impedances of the inverter. With the formulation of these
analytical expressions, the critical parameters of the inverter can be easily identified
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(in this work, the critical parameters are referred to as the operational variables and
inverter parameters whose changes directly affect the small-signal impedance of the
inverter).
To achieve this goal, due to the complexity of the full-order model of the inverter and
the impracticability to obtain its analytical small-signal impedance expressions, three
different simplified low-order models (M1, M2 and M3) are developed. M1 corresponds
to a simple ideal source. On the other hand, M2 corresponds to an active power droop-
controlled source. Finally, M3 corresponds to a reactive power droop-controlled source.
These three simplified models where specifically developed because they separately
represent the main characteristics of a full-featured inverter, despite the simplifications.
This analysis is made by firstly linearizing the reduced-order systems and then obtaining
analyzable mathematical expressions of the small-signal impedances of the inverter.
Once these expressions are obtained, and considering that the small-signal impedances
can be represented as multi-input multi-output transfer functions, an analytic bode plot
characterization is developed. To do this, the poles, zeros and zero frequency values are
obtained. Hence, the asymptotic limits of the Bode plots that describe the small-signal
impedance shape are obtained.
Despite the fact that these models do not fully represent the real dynamics of an
inverter, by analytically understanding the behavior of the small-signal impedances of
these models, an intuition can be achieved about the impact that the operating point
and the inverter parameters have on the small-signal impedance of the full-featured
inverter.

2. Numerical Assessment: This analysis has two objectives. The main objective is to
qualitatively analyze the small-signal impedance of the full-order model of the inverter
presented in [25] through a sensitivity analysis with respect to the critical parameters
identified in the analytical assessment, and then contrasting these results with the
expected values from the analytical expressions of the low-order models.
In addition, as presented in section 2.2.2, the full-order inverter model presents several
subsystems, including the internal voltage and current controllers, the coupling induc-
tance and the LC-filter, among others. It is desirable to identify the effects that these
subsystems have on the small-signal impedance of the inverter. Therefore, additionally
to the simplified models M1, M2, and M3, two partially complete models are developed
by progressively adding the remaining subsystems. Specifically, M4 corresponds to a
combination of both M2 and M3, having both droop controllers present. In M5, on
the other hand, the LCL filter is completed by adding a series inductor and a parallel
capacitor to the coupling inductor. Furthermore, the full-order model is also formalized
as M6.
In this case, the impedances cannot be analytically obtained, as explained previously,
due to the complexity of the models, specially regarding models M5 and M6. There-
fore, the small-signal impedances must be numerically computed for each model, by
linearizing the models and then assessing the resulting small-signal impedances in pre-
viously defined operating points. In order to assess the small-signal impedances with a
realistic operating point, the Huatacondo grid, a real microgrid located in the north of
Chile, is studied. Once the study case is defined and the historical operating data of
the microgrid is collected, a proper operating point (including currents, voltages and
frequency) must be selected in order to assess the small-signal impedance expressions.
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The centroid (the mean position of all the points in all of the coordinate directions) of
these operating points is obtained and then the nearest point is selected as the base
operating point. Additionally, the maximum and minimum values of these operating
variables are obtained, in order to obtain the ranges of the sensitivity analysis.
Once the operating points are acquired, the small-signal impedances are numerically
computed for each model. By varying, one at a time, each operating variable and
inverter parameter of interest from the minimum to the maximum values, the sensitivity
analysis can be performed.
Additionally, by assessing the small-signal impedance of all six inverter models in the
base operating point, a comparison between them can be made. Considering that the
models were developed by progressively adding the subsystems of the inverter, the
effects that the subsystems have on the small-signal impedance can be successfully
identified.

Once the analytical and numerical assessments are made, the critical parameters are tested
on the full-order model, thus allowing us to conclude about the impedance characteristics.
The main characteristics of the developed inverter models are presented below:

• M1: Ideal Source This model corresponds to a simple ideal source without control
connected to an infinite busbar through a coupling inductor.
• M2: Active Power Droop-Controlled Source In this case, besides the ideal source

and the coupling inductor, a single active power droop controller is added to the model,
thus including a frequency dependency to the model.
• M3: Reactive Power Droop-Controlled Source Similar to M2, this model consi-

ders a single reactive power droop controller, in addition to the coupling inductor.
• M4: Active and Reactive Power Droop-Controlled Source This model corres-

ponds to a combination of both M2 and M3, having both droop controllers present.
• M5: Active and Reactive Power Droop-Controlled Source Considering LCL
Filter In this case, besides the aforementioned components, the LCL Filter is completed
by coupling a series inductor and a parallel capacitor to the coupling inductor.
• M6: Full Model Finally, the inverter model is completed by considering the power

measuring low-pass filter in the power control loop.
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Chapter 4

Inverter Models Development

Once the equations that describe the grid-supporting inverter, presented in 2.2.2, are
studied, simplified and linearized models can be obtained. Six different linearized models are
developed and detailed in this chapter.

As stated previously, although the reduced-order models does not represent the real dy-
namics of the inverter, important insights can be obtained in order to be further compared
with the full-order inverter analysis.

4.1. M1: Ideal Source

With the purpose of understanding the basic characteristics of the small-signal impedan-
ce of a voltage source inverter a non-controlled ideal source with a coupling inductance is
modeled. The simplified inverter is presented in Figure 4.1.

Figure 4.1: Ideal Source Inverter with Coupling Inductor

If neither control nor LC filter are present, this model only has three state-space equations,
corresponding to the electrical equations of the coupling inductor and the local reference frame
relative angle.
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˙iod = − rc
Lc
iod + ωioq +

1

Lc
vod −

1

Lc
vbd

˙ioq = − rc
Lc
ioq − ωiod +

1

Lc
voq −

1

Lc
vbq

δ̇ = ω − ωcom

(4.1)

As no control is present, the ideal source is assumed to set the voltage and frequency in
nominal values, as presented below:

vod = Vn

voq = 0

ω = ωn

(4.2)

In addition, from the reference frame transformation presented in (2.12), the following
algebraic equations can be developed, making the connection of the inverter compatible with
the global system:

vbd = vbD · cos(δ) + vbQ · sin(δ)

vbq = −vbD · sin(δ) + vbQ · cos(δ)

ioD = iod · cos(δ)− ioq · sin(δ)

ioD = iod · sin(δ)− ioq · cos(δ)

(4.3)

4.1.1. Linearization

The state, input, and output vectors are defined according to:

x1 =
[
iod ioq δ

]T
u1 =

[
vbD vbQ ωcom

]T
y1 =

[
ioD ioQ

]T (4.4)

By evaluating (4.2) and (4.3) in (4.1) and linearizing, the following matrices are obtained,
where capital letters and overlines denotes the variable evaluated in the operating point:

A1 =

a11,1 a11,2 a11,3
a12,1 a12,2 a12,3
0 0 0

 (4.5)

34



where

a11,1 = − rc
Lc

a11,2 = ωn

a11,3 = −VbQ · cos(δ)− VbD · sin(δ)

Lc
a12,1 = −ωn
a12,2 = − rc

Lc

a12,3 =
VbD · cos(δ) + VbQ · sin(δ)

Lc

B1 =


−cos(δ)

Lc
−sin(δ)

Lc
0

sin(δ)

Lc
−cos(δ)

Lc
0

0 0 −1

 (4.6)

C1 =

[
cos(δ) − sin(δ) −Ioq · cos(δ)− Iod · sin(δ)

sin(δ) cos(δ) Iod · cos(δ)− Ioq · sin(δ)

]
(4.7)

D1 = 0 (4.8)

Evaluating in (2.19) and (2.20), it can be obtained the following linearized state-space
system:

∆ẋ1 = A1∆x1 +B1∆u1

∆y1 = C1∆x1
(4.9)

4.2. M2: Active Power Droop-Controlled Source

To analyze the droop control effects on the linearized models, a purely active-power droop
controlled inverter is modelled by adding the active droop control equations to M1, as shown
in Figure 4.2
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Figure 4.2: Ideal Source Inverter with Coupling Inductor and Active Power Droop Control

In this case, (4.1) are also valid. However, the expressions presented in (4.2) are replaced
by the following droop-controlled frequency equation, assuming still an ideal voltage source:

vod = Vn

voq = 0

ω = ωn −mp(P − Pn)

(4.10)

As no low-pass filter is considered, measured power is instantly computed by the droop
control equation as follows:

P = p = vodiod + voqioq (4.11)

Thus, (4.10) can be rewritten as follows:

vod = Vn

voq = 0

ω = ωn −mp (Vniod − Pn)

(4.12)

4.2.1. Linearization

States, inputs, and outputs are the same as the previous case, as presented below:

x2 =
[
iod ioq δ

]T
u2 =

[
vbD vbQ ωcom

]T
y2 =

[
ioD ioQ

]T (4.13)
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,

Considering the reference frame transformations presented in (4.3) and evaluating (4.1)
in the corresponding (4.12), the linearized matrices are obtained:

A2 =

a21,1 a21,2 a21,3
a22,1 a22,2 a22,3
a23,1 0 0

 (4.14)

where

a21,1 = − rc
Lc
− VnIoqmp

a21,2 = ωn −mp(VnIod − Pn)

a21,3 = −VbQ · cos(δ)− VbD · sin(δ)

Lc
a22,1 = VnIodmp − (ωn −mp(VnIod − Pn))

a22,2 = − rc
Lc

a22,3 =
VbD · cos(δ) + VbQ · sin(δ)

Lc
a23,1 = −Vnmp

B2 =


−cos(δ)

Lc
−sin(δ)

Lc
0

sin(δ)

Lc
−cos(δ)

Lc
0

0 0 −1

 (4.15)

C2 =

[
cos(δ) − sin(δ) −Ioq · cos(δ)− Iod · sin(δ)

sin(δ) cos(δ) Iod · cos(δ)− Ioq · sin(δ)

]
(4.16)

D2 = 0 (4.17)

Thus, the following system is obtained:

∆ẋ2 = A2∆x2 +B2∆u2

∆y2 = C2∆x2
(4.18)
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4.3. M3: Reactive Power Droop-Controlled Source

In this case, a reactive-power droop controlled inverter is modelled. Similar to the previous
case, the reactive droop control equations are added to M1, as shown in Figure 4.3

Figure 4.3: Ideal Source Inverter with Coupling Inductor and Reactive Power Droop Control

Same as previous model, coupling inductor dynamics represented in (4.1) are used. Howe-
ver, it is the voltage expression presented in (4.2) that needs to be changed. Considering the
alignment with the d axis, the vod reference voltage is presented next, as voq is still zero.

vod = Vn − nqQ
voq = 0

(4.19)

As the voltage source is considered ideal, and considering that measured power is instantly
computed by the droop control equation, d axis source voltage vod can be solved as follows:

Q = q = vodioq − voqiod
⇒ Q = vodioq

⇒ vod = Vn − nq (vodioq)

⇒ vod =
Vn

1 + nqioq

(4.20)

Thus, the obtained equations set is presented below:

vod =
Vn

1 + nqioq

voq = 0

ω = ωn

(4.21)
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4.3.1. Linearization

As no state is added by the reactive droop controller, the state, input, and output vectors
remain the same as previous cases:

x3 =
[
iod ioq δ

]T
u3 =

[
vbD vbQ ωcom

]T
y3 =

[
ioD ioQ

]T (4.22)

After evaluating (4.1) with (4.21) and considering (4.3), the system is linearized, obtaining
the following matrices:

A3 =

a31,1 a31,2 a31,3
a32,1 a32,2 a32,3
0 0 0

 (4.23)

where

a31,1 = − rc
Lc

a31,2 = ωn +
Vnnq

Lc (nqioq)
2

a31,3 = −VbQ · cos(δ)− VbD · sin(δ)

Lc
a32,1 = −ωn
a32,2 = − rc

Lc

a32,3 =
VbD · cos(δ) + VbQ · sin(δ)

Lc

B3 =


−cos(δ)

Lc
−sin(δ)

Lc
0

sin(δ)

Lc
−cos(δ)

Lc
0

0 0 −1

 (4.24)

C3 =

[
cos(δ) − sin(δ) −Ioq · cos(δ)− Iod · sin(δ)

sin(δ) cos(δ) Iod · cos(δ)− Ioq · sin(δ)

]
(4.25)
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D3 = 0 (4.26)

Thus, the next system is obtained:

∆ẋ3 = A3∆x3 +B3∆u3

∆y3 = C3∆x3
(4.27)

4.4. M4: Active and Reactive Power Droop-Controlled
Source

In order to analyze the combined effect of both active and reactive power droop controllers,
the model presented in Figure 4.4 is developed.

Figure 4.4: Ideal Source Inverter with Coupling Inductor and Complete Droop Control

In this case, both voltage and frequency reference values are modified as follows:

vod = Vn − nqQ
voq = 0

ω = ωn −mp (P − Pn)

(4.28)

Same as in M2 and M3, measured powers are instantly operated in the droop equations,
as follows:

P = p = vodiod + voqioq

Q = q = vodioq − voqiod
(4.29)

Controlled voltage vod can be solved as in (4.20). Thus, (4.30) obtained.
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vod =
Vn

1 + nqioq

voq = 0

ω = ωn −mp

(
Vn

1 + nqioq
iod − Pn

) (4.30)

4.4.1. Linearization

Once again, no states variables are added by the reactive droop controller, thus the state,
input, and output vectors remain the same as the previous cases:

x4 =
[
iod ioq δ

]T
u4 =

[
vbD vbQ ωcom

]T
y4 =

[
ioD ioQ

]T (4.31)

As no electrical component has been added, by evaluating (4.1) with (4.3) and (4.30) are
obtained and linearized, resulting in the following matrices:

A4 =

a41,1 a41,2 a41,3
a42,1 a42,2 a42,3
a43,1 a43,2 0

 (4.32)

where

a41,1 =
VnIoqmp

nqIoq − 1
− rc
Lc

a41,2 =

(
ωn −mp

(
Vn

1 + nqIoq
Iod − Pn

))
+

Vnnq

Lc (nqIoq)
2 −

VnIodIoqmpnq

(nqIoq)
2

a41,3 = −VbQ · cos(δ)− VbD · sin(δ)

Lc

a42,1 = −
(
ωn −mp

(
Vn

1 + nqIoq
Iod − Pn

))
− VnIodmp

nqIoq − 1

a42,2 =
Vni

2
odmpnq

(nqIoq − 1)2
− rc
Lc

a42,3 =
VbD · cos(δ) + VbQ · sin(δ)

Lc

a43,1 =
Vnmp

nqIoq − 1

a43,2 = − VnIodmpnq

(nqIoq − 1)2
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B4 =


−cos(δ)

Lc
−sin(δ)

Lc
0

sin(δ)

Lc
−cos(δ)

Lc
0

0 0 −1

 (4.33)

C4 =

[
cos(δ) − sin(δ) −Ioq · cos(δ)− Iod · sin(δ)

sin(δ) cos(δ) Iod · cos(δ)− Ioq · sin(δ)

]
(4.34)

D4 = 0 (4.35)

Hence, the linearized system presented in (4.36) is obtained:

∆ẋ4 = A4∆x4 +B4∆u4

∆y4 = C4∆x4
(4.36)

4.5. M5: Active and Reactive Power Droop-Controlled
Source Considering LCL Filter

In this model, an LC filter is added. As the droop controller is not expected to control
power in terminals of the ideal voltage source, but in the capacitor, the internal control loops
are also included, as shown in Figure 4.5.

Figure 4.5: Ideal Source Inverter with Coupling Inductor, Complete Droop Control and LC
Filter

This case considers both the differential equations of the ideal source connected to the
LCL system, presented in (2.11) and the reference frame rotation angle equation in (2.14).
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Additionally, both differential and algebraic voltage and current control equations, presented
in (2.7)-(2.10), are used.

Same as previous model, as still no measuring filter is considered, (4.29) can be used to
evaluate the model. Then, the voltage reference and droop-controlled frequency equations
are obtained. Note that unlike previous cases, reference voltages are not instantly applied in
the capacitor.

v∗od = Vn − nq (vodioq − voqiod)
v∗oq = 0

ω = ωn −mp (vodiod + voqioq − Pn)

(4.37)

4.5.1. Linearization

Four states were introduced by the LC filter, in addition to four states corresponding to
the PI controllers of the voltage and current loops, totaling an 11 th order system. Hence,
the state, input and output vectors are, respectively:

x5 =
[
vod voq iod ioq ild ilq δ φd φq γd γq

]T
u5 =

[
vbD vbQ ωcom

]T
y5 =

[
ioD ioQ

]T (4.38)

By evaluating the corresponding differential equations with (2.8), (2.10) and (4.3), consi-
dering also the output current globally-referred equations, the linearization is made and the
obtained matrices are presented in (4.39).

A5 =



a51,1 a51,2 a51,3 a51,4 a51,5 0 0 0 0 0 0
a52,1 a52,2 a52,3 a52,4 0 a52,6 0 0 0 0 0
a53,1 a53,2 a53,3 a53,4 0 0 a53,7 0 0 0 0
a54,1 a54,2 a54,3 a54,4 0 0 a54,7 0 0 0 0
a55,1 a55,2 a55,3 a55,4 a55,5 a55,6 0 a55,8 0 a55,10 0
a56,1 a56,2 a56,3 a56,4 a56,5 a56,6 0 0 a56,9 0 a56,11
a57,1 a57,2 a57,3 a57,4 0 0 0 0 0 0 0
a58,1 a58,2 a58,3 a58,4 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0

a510,1 a510,2 a510,3 a510,4 −1 0 0 a510,8 0 0 0
a511,1 a511,2 0 1 0 −1 0 0 a511,9 0 0


(4.39)

where
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a51,1 = −VoqIodmp

a51,2 = ω − VoqIoqmp

a51,3 = − 1

Cf
− VodVoqmp

a51,4 = −V 2
oqmp

a51,5 =
1

Cf

a52,1 = VodIodmp − ω
a52,2 = VodIoqmp

a52,3 = V 2
odmp

a52,4 = − 1

Cf
+ VodVoqmp

a52,6 =
1

Cf

a53,1 =
1

LC
− IodIoqmp

a53,2 = −I2oqmp

a53,3 = − rC
LC
− VodIoqmp

a53,4 = ω − VoqIoqmp

a53,7 = −VbQ · cos(δ)− VbD · sin(δ)

LC
a54,1 = I2odmp

a54,2 =
1

LC
+ IodIoqmp

a54,3 = −ω + VodIodmp

a54,4 = ω − VoqIoqmp

a54,7 =
VbD · cos(δ) + VbQ · sin(δ)

LC

a55,1 = −KpcKpv (Ioqnq + 1) + 1

Lf
− IlqIodmp

a55,2 = −Kpc (Cfωn − IodKpvnq)

Lf
− IlqIoqmp

a55,3 =
Kpc (VoqKpvnq + 1)

Lf
− VodIlqmp

a55,4 = −VodKpcKpvnq
Lf

− VoqIlqmp

a55,5 = −Kpc

Lf
− rf
Lf

a55,6 = ω − ωn

a55,8 =
KivKpc

Lf

a55,10 =
Kic

Lf

a56,1 =
CfKpcωn

Lf
+ IldIodmp

a56,2 = −KpcKpv + 1

Lf
+ IldIoqmp

a56,3 = VodIldmp

a56,4 =
Kpc

Lf
+ VoqIlqmp

a56,5 = ωn − ω

a56,6 = −Kpc

Lf
− rf
Lf

a56,9 =
KivKpc

Lf

a56,11 =
Kic

Lf

a57,1 = −Iodmp

a57,2 = −Ioqmp

a57,3 = −Vodmp

a57,4 = −Voqmp

a58,1 = −Ioqnq − 1

a58,2 = Iodnq

a58,3 = Voqnq

a58,4 = −Vodnq
a510,1 = −Kpv (Ioqnq + 1)

a510,2 = IodKpvnq − Cfωn
a510,3 = VoqKpvnq + 1

a510,4 = −VodKpvnq

a510,8 = Kiv

a511,1 = Cfωn

a511,2 = −Kpv

a511,3 = Kiv
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B5 =



0 0 0
0 0 0

−cos(δ)

Lc
−sin(δ)

Lc
0

sin(δ)

Lc
−cos(δ)

Lc
0

0 0 0
0 0 0
0 0 −1
0 0 0
0 0 0
0 0 0
0 0 0



(4.40)

C5 =

[
0 0 cos(δ) − sin(δ) 0 0 −Ioq · cos(δ)− Iod · sin(δ) 0 0 0 0

0 0 sin(δ) cos(δ) 0 0 Iod · cos(δ)− Ioq · sin(δ) 0 0 0 0

]
(4.41)

D5 = 0 (4.42)

The obtained system is presented below:

∆ẋ5 = A5∆x5 +B5∆u5

∆y5 = C5∆x5
(4.43)

4.6. M6: Full Model

Finally, the full-order inverter is presented in Figure 4.6. The main difference with the
previous model is the inclusion of the power measuring low-pass filter.

Figure 4.6: Full-order modelled inverter
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As this model corresponds to the full model, equations presented in Section 2.2.2 are used.

4.6.1. Linearization

Two states are introduced by the low-pass filter, corresponding to the measured active
and reactive power, completing the 13 th order model. The corresponding vectors are listed
below:

x6 =
[
vod voq iod ioq ild ilq δ φd φq γd γq P Q

]T
u6 =

[
vbD vbQ ωcom

]T
y6 =

[
ioD ioQ

]T (4.44)

The resulting linearized matrices are obtained, as presented below:

A6 =



0 a61,2 a61,3 0 a61,5 0 0 0 0 0 0 a61,12 0
a62,1 0 0 a62,4 0 a62,6 0 0 0 0 0 a62,12 0
a63,1 0 a63,3 a63,4 0 0 a63,7 0 0 0 0 a63,12 0
0 a64,2 a64,3 a64,4 0 0 a64,7 0 0 0 0 a64,12 0
a65,1 a65,2 a65,3 0 a65,5 a65,6 0 a65,8 0 a65,10 0 a65,12 a65,13
a66,1 a66,2 0 a66,4 a66,5 a66,6 0 0 a66,9 0 a66,11 a66,12 0
0 0 0 0 0 0 0 0 0 0 0 a67,12 0
−1 0 0 0 0 0 0 0 0 0 0 0 a68,13
0 −1 0 0 0 0 0 0 0 0 0 0 0

a610,1 a610,2 1 0 −1 0 0 a610,8 0 0 0 0 a610,13
a611,1 a611,2 0 1 0 −1 0 0 a611,9 0 0 0
a612,1 a612,2 a612,3 a612,4 0 0 0 0 0 0 0 a612,12 0
a613,1 a613,2 a613,3 a613,4 0 0 0 0 0 0 0 0 a613,13


(4.45)

where
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a61,2 = ω

a61,3 = − 1

Cf

a61,5 =
1

Cf

a61,12 = −Voqmp

a62,1 = −ω

a62,4 = − 1

Cf

a62,6 =
1

Cf

a62,12 = −Vodmp

a63,1 =
1

LC
a63,2 = 0

a63,3 = − rC
LC

a63,4 = ω

a63,7 = −VbQ · cos(δ)− VbD · sin(δ)

LC
a63,12 = −Ioqmp

a64,2 =
1

LC
a64,3 = −ω

a64,4 = − rC
LC

a64,7 =
VbD · cos(δ) + VbQ · sin(δ)

LC
a64,12 = Iodmp

a65,1 = −KpcKpv + 1

Lf

a65,2 = −KpcCfωn
Lf

a65,3 =
Kpc

Lf

a65,5 = −Kpc

Lf
− rf
Lf

a65,6 = ω − ωn

a65,8 =
KivKpc

Lf

a65,10 =
Kic

Lf

a65,12 = −Ilqmp

a65,13 = −KpcKpvnq
Lf

a66,1 =
CfKpcωn

Lf

a66,2 = −KpcKpv + 1

Lf

a66,4 = −Kpc

Lf

a66,5 = ωn − ω

a66,6 = −Kpc

Lf
− rf
Lf

a66,9 =
KivKpc

Lf

a66,11 =
Kic

Lf

a66,12 = Ildmp

a67,12 = −mp

a68,13 = −nq
a610,1 = −Kpv

a610,2 = −Cfωn
a610,8 = Kiv

a610,13 = −Kpvnq

a611,1 = Cfωn

a611,2 = −Kpv

a611,9 = Kiv

a612,1 = Iodωc

a612,2 = Ioqωc

a612,3 = Vodωc

a612,4 = Voqωc

a612,12 = −ωc
a613,1 = Ioqωc

a613,2 = −Iodωc
a613,3 = −Voqωc
a613,4 = Vodωc

a613,13 = −ωc
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B6 =



0 0 0
0 0 0

−cos(δ)

Lc
−sin(δ)

Lc
0

sin(δ)

Lc
−cos(δ)

Lc
0

0 0 0
0 0 0
0 0 −1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



(4.46)

C6 =

[
0 0 cos(δ) − sin(δ) 0 0 −Ioq · cos(δ)− Iod · sin(δ) 0 0 0 0 0 0

0 0 sin(δ) cos(δ) 0 0 Iod · cos(δ)− Ioq · sin(δ) 0 0 0 0 0 0

]
(4.47)

D6 = 0 (4.48)

The obtained system is presented below:

∆ẋ6 = A6∆x6 +B6∆u6

∆y6 = C6∆x6
(4.49)
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Chapter 5

Analytical Assessment

The main objective of this chapter is to provide analytic expressions of the small-signal
impedances for the simplified inverter models presented in previous section, specifically for
the ideal source and single droop-controlled models. Understanding the small-signal behavior
of these simplified reduced order models can provide important insights about the small-signal
impedance of the full-order inverter model.

In order to simplify the analysis and to provide more understandable algebraic conclusions,
the reference frame angle δ is approximated to zero in the models of this analytical assessment,
as specified later in this chapter.

5.1. M1: Ideal Source

5.1.1. Small-Signal Impedance Obtainment

In first place, the small-signal impedance must be obtained from the corresponding linea-
rized matrices presented from (4.5) to (4.8). Firstly, the transfer function H1 is obtained, by
rearranging (2.22) as follows:

∆y1 = H1 ·∆u1 (5.1)

where

H1 = C1 (sI − A1)
−1B1 +D1 (5.2)

Considering (4.4), the result can be rewritten as:
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[
∆ioD
∆ioQ

]
=

[
H11(s) H12(s) H13(s)
H21(s) H22(s) H23(s)

]
·

 ∆vbD
∆vbQ

∆wcom

 (5.3)

As defined in Section 2.5.1, only the channels relating currents and voltages are of interest.
Hence, the following small-signal admittance transfer function can be defined by fixing the
common reference frequency input:

[
∆ioD
∆ioQ

]
=

[
YDD(s) YDQ(s)
YQD(s) YQQ(s)

]
·
[
∆vbD
∆vbQ

]
(5.4)

where

YDD = H11(s) YDQ = H12(s)

YQD = H21(s) YQQ = H22(s)
(5.5)

By evaluating (5.4) with (4.5)-(4.8) and then computing the inverse, the following small-
signal impedance is obtained:

[
∆voD
∆voQ

]
=

[
ZDD(s) ZDQ(s)
ZQD(s) ZQQ(s)

]
·
[
∆ibD
∆ibQ

]
(5.6)

where

ZDD(s) = − (rC + s · LC)

ZDQ(s) = Lcωn

ZQD(s) = −Lcωn

ZQQ(s) = − (rC + s · LC)

(5.7)

5.1.2. Bode Plot Analytic Characterization

As stated in section 2.4.3, in order to characterize the asymptotic limits of the small-signal
impedance plot, if seen as a transfer function, a Bode plot analysis is made.

1. ZDD Impedance: Firstly, the impedance value is obtained by replacing the correspon-
ding equation in (5.7), when the frequency is set to zero, as follows:
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ZM1
DD(0) = − (rC + 0 · LC)

⇒ ZM1
DD(0) = −rC

(5.8)

In second place, the set of poles pM1
DD is obtained similarly as in Section 2.4.3. It can be

noted that, in this case, there are no poles, as it has no denominator:

pM1
DD = {∅} (5.9)

At last, the set of zeros of the system is obtained. As this case is a 1 st order transfer
function with no poles, only one zero is obtained, as follows:

ZDD(s) = 0

⇒ − (rC + s · LC) = 0

⇒ zM1
DD = {− rC

LC
}

(5.10)

2. ZDQ Impedance: As no frequency dependency is present, the small-signal transfer
function is a constant value. Thus, the zero frequency value corresponds to:

ZM1
DQ(0) = Lcωn (5.11)

In this case, as the transfer function is constant, neither poles nor zeros are present.
Thus, the set of poles and zeros for this model are empty, as presented below:

pM1
DQ = {∅} (5.12)

zM1
DQ = {∅} (5.13)

3. ZQD Impedance: Similarly to previous case, the QD impedance is a constant. In this
case, the resulting zero frequency value, and the set of poles and zeros, are listed below:

ZM1
QD(0) = −Lcωn (5.14)

pM1
QD = {∅} (5.15)

zM1
QD = {∅} (5.16)
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4. ZQQ Impedance: Finally, the QQ-channel impedance is analyzed. As ZQQ = ZDD,
then the same zero frequency values and set of poles and zeros are obtained and listed
below:

ZM1
QQ(0) = −rC (5.17)

pM1
QQ = {∅} (5.18)

zM1
QQ = {− rC

LC
} (5.19)

5.1.3. Critical Parameters Determination

In Table 5.1, the main values of the characterization of the transfer function plot are
summarized, this is, the parameters that describe the asymptotic limits of the small-signal
impedances plots.

Table 5.1: M1 Summarized Impedances Critical Values
ZDD ZDQ ZQD ZQQ

Zero Frequency
Value ZM1

DD(0) = −rC ZM1
DQ(0) = Lcωn ZM1

QD(0) = −Lcωn ZM1
QQ(0) = −rC

Poles pM1
DD = {∅} pM1

DQ = {∅} pM1
QD = {∅} pM1

QQ = {∅}

Zeros zM1
DD = {− rC

LC
} zM1

DQ = {∅} zM1
QD = {∅} zM1

QQ = {− rC
LC
}

As the modeled inverter corresponds to an ideal voltage source with an output impedance,
the impedances plot depend purely of the coupling inductor values. How these impedances
affect the Bode diagram are graphically displayed in Figures 5.1-5.4.

1. ZDD & ZQQ Diagrams: As both DD-channel and QQ-channel diagrams behave
equally, they are both analyzed in this item.
(a) Magnitude Plot: The initial value of the magnitude plot is defined purely by
|Z0

DD| =
∣∣Z0

QQ

∣∣ = rC , as shown in Table 5.1. As explained in Section 2.4.3, slope
changes occur due to poles and zeros. In this particular case, as there is only one
zero and as no poles are present, the entire slope changes are determined by the
frequency value of zM1

DD = zM1
QQ, this is, ωz1DD = ωz1QQ = rC

LC
.

(b) Phase Plot: As zero frequency value is always negative and no unstable poles nor
zeros are present, the initial phase value is always φ0

DD = φ0
QQ = 180◦. Same as in

the magnitude plot, the frequency slope changes are determined by ωz1DD = ωz1QQ.
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Figure 5.1: Ideal Source ZDD Impedance Bode Diagrams

Figure 5.2: Ideal Source ZQQ Impedance Bode Diagrams

2. ZDQ Diagram:
(a) Magnitude Plot: In this case, the initial value of the magnitude plot is directly

defined by
∣∣Z0

DQ

∣∣ = Lcωn. As neither poles nor zeros are present, no slope changes
occurs, i.e. the Bode diagram remains constant.

(b) Phase Plot: The zero frequency value is in this case always positive, hence the
phase diagram is represented by a constant line φ0

DQ = 0◦.
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Figure 5.3: Ideal Source ZDQ Impedance Bode Diagrams

3. ZQD Diagram:
(a) Magnitude Plot: Same as previous case, the initial value of the magnitude plot

is directly defined by
∣∣Z0

QD

∣∣ = Lcωn, remaining constant.
(b) Phase Plot: The only difference between DQ-channel and QD-channel is the

sign of the zero frequency value. In consequence, the phase diagram is displaced,
resulting in φ0

QD = 180◦.

Figure 5.4: Ideal Source ZQD Impedance Bode Diagrams
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5.2. M2: Active Power Droop-Controlled Source

5.2.1. Small-Signal Impedance Obtainment

Same as previous case, the small-signal impedance expression is obtained, by considering
(4.14)-(4.17). In this case, where (5.5) is also valid, the resulting impedance values are listed
in (5.20).

ZDD(s) =
1

s+mpVnIoq
(−LC · s2 − (rC + LcVnIoqmp) · s+mpVn(VbQ · cos(δ)

+(Iod · cos(δ)− Ioq · sin(δ)) · (rC · sin(δ) + LC(ωn −mp(VnIod − Pn)) · cos(δ))))

ZDQ(s) =
1

s+mpVnIoq
(LC(ωn −mp(VnIod − Pn)) · s+mpVn(VbQ · sin(δ)

+(Iod · sin(δ) + Ioq · cos(δ)) · (rC · sin(δ) + LC(ωn −mp(VnIod − Pn)) · cos(δ))))

ZQD(s) =
1

s+mpVnIoq
(−LC(ωn −mp(VnIod − Pn)) · s−mpVn(VbD · cos(δ)

−(Iod · cos(δ)− Ioq · sin(δ))(−rC · cos(δ) + LC · (ωn −mp(VnIod − Pn)) · sin(δ))))

ZQQ(s) =
1

s+mpVnIoq
(−LC · s2 − (rC + LCVnIoqmp) · s−mpVn(VbD · sin(δ)

−(Iod · sin(δ) + Ioq · cos(δ))(−rC · cos(δ) + LC(ωn −mp(VnIod − Pn)) · sin(δ))))

(5.20)

In this case, impedance results have algebraically greater complexity, such that the asym-
ptotic Bode limits solving is unpractical. Hence, the small-signal impedance when δ ≈ 0,
considering also (4.10) and (4.11), is presented in (5.21). This corresponds to analyzing the
locally-referred small-signal impedance. The validity of this assumption, in order to charac-
terize the globally-referred small-signal impedance of the converter, will be analyzed in next
chapter.
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ZDD(s) =
−LC · s2 − (rC + LcVnIoqmp) · s+mpVn (VbQ + IodLCω)

s+mpVnIoq

ZDQ(s) = Lcω

ZQD(s) =
−LCω · s−mpVn (VbD − IodrC)

s+mpVnIoq

ZQQ(s) = − (rC + s · LC)

(5.21)

where ω corresponds to the operating frequency, resulting from the droop-controlled sour-
ce.

5.2.2. Bode Plot Analytic Characterization

Similarly to previous models, the critical Bode plot parameters for each DQ-channel are
computed.

1. ZDD Impedance: Evaluating the corresponding DD-channel equation in (5.21) with
s = 0, the following result is obtained:

ZM2
DD(0) =

VbQ + IodLCω

Ioq
(5.22)

In second place, the poles of the transfer function are obtained by solving the equation
presented in (5.23).

s+ VnIoqmp = 0

⇒ pM2
DD = {−VnIoqmp}

(5.23)

At last, the zeros of the system are obtained, by solving the quadratic equation presen-
ted below:

s2 +

(
rC
LC

+ VnIoqmp

)
· s−mpVn

(
VbQ
LC

+ Iodω

)
= 0

⇒ zM2
DD1,2 =

{−( rC
LC

+ VnIoqmp

)
±

√(
rC
LC

+ VnIoqmp

)2

+ 4

(
VnIodmpω +

VbQVnmp

LC

)
2

}
(5.24)
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2. ZDQ Impedance: As no complex frequency s dependency is present, the small-signal
transfer function is a constant value. Thus, the zero frequency value corresponds to:

ZM2
DQ(0) = Lcω (5.25)

As neither poles nor zeros are present, the following empty sets are obtained:

pM2
DQ = {∅} (5.26)

zM2
DQ = {∅} (5.27)

3. ZQD Impedance: First, s is replaced by 0 in order to obtain the zero frequency value
of the QD-channel, as follows:

ZM2
QD(0) = −VbD − IodrC

Ioq
(5.28)

The set of poles of the transfer function is also obtained by solving the equation below:

s+ VnIoqmp = 0

⇒ pM2
QD = {−VnIoqmp}

(5.29)

Finally, (5.30) is solved, obtaining the zeros of the system.

−LCω · s−mpVn(VbD + IodrC) = 0

⇒ zM2
QD = {−mpVn(VbD + IodrC)

LCω
}

(5.30)

4. ZQQ Impedance: As the QQ-channel impedance in this case is the same as in M1, the
same critical parameters are obtained, as shown below:

ZM2
QQ(0) = −rC (5.31)

pM2
QQ = {∅} (5.32)

zM2
QQ = {− rC

LC
} (5.33)
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Table 5.2: M2 Summarized Impedances Critical Values
ZDD ZDQ ZQD ZDD

Zero Frequency
Value ZM2

DD(0) =
VbQ + IodLCω

Ioq
ZM2
DQ(0) = Lcω ZM2

QD(0) = −VbD − IodrC
Ioq

ZM2
QQ(0) = −rC

Poles pM2
DD = −VnIoqmp pM2

DQ = ∅ pM2
QD = −VnIoqmp pM2

QQ = ∅

Zeros zM2
DD1,2 =

−
(
rC
LC

+ VnIoqmp

)
±

√(
rC
LC

+ VnIoqmp

)2

+ 4

(
VnIodmpω +

VbQVnmp

LC

)
2

zM2
DQ = ∅ zM2

QD = −mpVn(VbD + IodrC)

LCω
zM2
QQ = − rC

LC

5.2.3. Critical Parameters Determination

In Table 5.2 are summarized the parameters that describe the asymptotic limits of the
small-signal impedances plots for this case in particular.

In Figures 5.5-5.8 are displayed the Bode diagrams that describe the transfer functions of
the active power droop-controlled inverter. Considering that the active power droop control
impacts the frequency dynamics of power inverters, the influence of the active droop control
is specially important in the QD-channel, as shown in Figure 5.6. Further details are analyzed
below.

1. ZDD Diagrams: Firstly, the complexity condition of the corresponding pair of zeros
presented in Table 5.2 is determined, by analyzing the discriminant presented in (5.34)

∆ =

(
rC
LC

+ VnIoqmp

)2

+ 4Vnmp

(
Iodω +

VbQ
LC

)
(5.34)

The critical value of active power P c that determine the zeros complexity, in terms of
the other parameters and operation point, can be obtained. Considering from (4.10)
and (4.11) that P = VnIod and Q = VnIoq, P c is obtained, as follows:

(
rC
LC

+Qmp

)2

+ 4

(
P cmpω +

mpVnVbQ
LC

)
= 0

⇒ P c = − 1

mpω

(
1

4

(
rC
LC

+Qmp

)2

+
mpVnVbQ
LC

) (5.35)

Hence, P > P c, this is, ∆ > 0, yields to a pair of real zeros. Otherwise, the zeros of the
transfer function are complex conjugates. Finally, in the case when P = P c (∆ = 0), a
zero of multiplicity 2 is obtained.

Note that P c is always negative as VbQ ≈ 0, thus only when the inverter is acting as
a sink, complex poles can appear. In that case, as stated in Section 2.4.3, a resonance
peak might show up, depending on the value of ξ, as analyzed further below.

• Real Zeros As stated before, a pair of real poles is obtained when P > P c. If the
stated condition is held, then zM2

DD1,2 can be rewritten as follows:
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zM2
DD1,2 =

{
− 1

2

(
rC
LC

+ VnIoqmp

)
± 1

2

√√√√∣∣∣∣∣
(
rC
LC

+ VnIoqmp

)2

+ 4Vnmp

(
Iodω +

VbQ
LC

)∣∣∣∣∣
}

=

{
− 1

2

(
rC
LC

+Qmp

)
± 1

2

√(
rC
LC

+Qmp

)2

+ 4mp

(
Pω +

VnVbQ
LC

)}
(5.36)

Hence, a critical active power P c
+ can be defined to study the existence of a positive

zero. From (5.36), it is clear that:

P c
+ω +

VnVbQ
LC

= 0

⇒ P c
+ = −VnVbQ

ωLC

(5.37)

Therefore, considering that this case assumes P > P c, when P > P c
+ a pair of

positive and negative zero is obtained. Otherwise, when P < P c
+, a pair of negative

zeros (if
(
rC
LC

+Qmp

)
> 0) or a pair of positive zeros (if

(
rC
LC

+Qmp

)
< 0) is

obtained. On the other hand, if P = P c
+, a negative zero and a zero in the origin

are present.
• Complex Conjugates Zeros Assuming that P < P c, zM2

DD1,2 can be rewritten as
follows:

zM2
DD1,2 =

{
− 1

2

(
rC
LC

+ VnIoqmp

)
± j · 1

2

√√√√∣∣∣∣∣
(
rC
LC

+ VnIoqmp

)2

+ 4Vnmp

(
Iodω +

VbQ

LC

)∣∣∣∣∣
}

(5.38)

As ξ = −ωR/ω′n, and considering that ω′n =
√
ω2
R + σ2, expressions for ωR and

σ are obtained and presented below. Note that, in this case, ω′n corresponds to
the natural frequency of the oscillations associated to the zeros of the system and
must not be confused with the rated frequency of the inverter.

ωR = −1

2

(
rC
LC

+Qmp

)
(5.39)

σ =

√√√√1

4

∣∣∣∣∣
(
rC
LC

+Qmp

)2

+mpPω +
VnVbQ
LC

∣∣∣∣∣ (5.40)

Hence,
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ω′n =

√√√√1

4

(
rC
LC

+Qmp

)2

+
1

4

∣∣∣∣∣
(
rC
LC

+Qmp

)2

+mpPω +
VnVbQ
LC

∣∣∣∣∣ (5.41)

As complex zeros are being analyzed, (5.41) can be rewritten as follows:

ω′n =

√√√√1

4

(
rC
LC

+Qmp

)2

− 1

4

((
rC
LC

+Qmp

)2

+mpPω +
VnVbQ
LC

)

⇒ ω′n =

√
−(mpPω +

VnVbQ
LC

)

(5.42)

Note that, when P < P c, it is always true that (mpPω+
mpVnVbQ

LC
) ≤ 0. Hence, the

calculated frequency ω′n is always a real positive.
Then, the damping factor ξ can be obtained as follows.

ξ = −
(
rC
LC

+Qmp)

2(mpPω +
mpVnVbQ
LC

)
(5.43)

In Figure 5.5 is firstly summarized the critical parameters sensibility, describing how
they affect the Bode diagram of the DD-channel small-signal impedance.
(a) Magnitude Plot: As presented in previous sections, the initial value of the mag-

nitude plot depends on the magnitude of the zero frequency value presented in
(5.22), such that |Z0

DD| =
∣∣∣ (VbQ+IodLCω)

Ioq

∣∣∣. This value increases as VbQ, Iod, LC or ω
increase. On the other hand, this value decreases as Ioq increases.
The break points, as stated previously, dictates the slope changes. In this case, an
increase in the curve slope is presented in ωp1DD = VnIoqmp. Decreases in the slope
are determined by the zeros. If the zeros are real, then from (5.36):

ωz1DD = −1

2
(
rC
LC

+Qmp) +
1

2

√
(
rC
LC

+Qmp)2 + 4mp(Pω +
VnVbQ
LC

)

ωz2DD = −1

2
(
rC
LC

+Qmp)−
1

2

√
(
rC
LC

+Qmp)2 + 4mp(Pω +
VnVbQ
LC

)

(5.44)

If the zeros are otherwise complex, then from Equation 5.42:

ωz1DD = ωz2DD =

√
−(mpPω +

VnVbQ
LC

) (5.45)

A resonance peak might appear in this case and depends purely on the damping
factor ξ, as presented in Figure 2.12.
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(b) Phase Plot: In this case, considering instructions presented in Section 2.4.3, two
phase initial values are possible, depending on sign of the zero frequency value and
the number of unstable poles and zeros. Below are the conditions of the possible
unstable poles and zeros.
i. Poles:

A. Single Positive Pole:
• Q < 0

ii. Zeros:
A. Single Positive Zero:

• P < P c & (
rC
LC

+Qmp) < 0

• P > P c & P > P c
+

B. Double Positive Zero:
• P c < P < P c

+ & (
rC
LC

+Qmp) < 0

Therefore, if nz and np are the number of unstable zeros and poles, respectively, then:
(a) If nz +np is an even number, then the initial phase value corresponds to φ0

DD = 0◦

if ZM2
DD(0) > 0 and 180◦ if ZM2

DD(0) < 0.
(b) On the other hand, if nz + np is an odd number, then the initial phase value

corresponds to φ0
DD = 180◦ if ZM2

DD(0) > 0 and 0◦ if ZM2
DD(0) < 0.

Similarly as in the magnitude plot, the slope changes depending on the values of ωp1DD,
ωz1DD and ωz2DD. When complex zeros are present, ξ determines the transition real slope
between the initial and final phase values, as presented in Figure 2.12.

Figure 5.5: Active Power Droop Controlled Inverter ZDD Impedance Bode Diagrams

2. ZDQ Diagram:
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(a) Magnitude Plot: In this case, as displayed in 5.6 and similarly to the DQ-
channel impedance of the ideal source model, neither zeros nor poles are present.
The initial value of the magnitude plot depends directly on

∣∣Z0
DQ

∣∣ = Lcω.
(b) Phase Plot: The phase angle is always φ0

DQ = 0◦, as Lcω is always positive.

Figure 5.6: Active Power Droop Controlled Inverter ZDQ Impedance Bode Diagrams

3. ZQD Diagram:
(a) Magnitude Plot: The initial value is determined in this channel by the absolute

value
∣∣Z0

QD

∣∣ = VbD−IodrC
Ioq

, as shown in Figure 5.7. The decrease in the slope occurs

in frequency ωp1QD = |VnIoqmp| and the increase occurs in ωz1QD =
∣∣∣mpVn

VbQ+IodrC
LCω

∣∣∣.
(b) Phase Plot: Similar as presented in DD-channel, from (5.29) and (5.30) the

conditions of the possible positive poles and zeros are obtained and listed below:
i. Poles:

A. Single Positive Pole:
• Q < 0

ii. Zeros:
A. Single Positive Zero:
• (VnVbD + Prc) < 0

Then, same as in DD-Channel, considering nz and np as the number of unstable
zeros and poles, respectively:
i. If nz + np is an even number, then the initial phase value is φ0

QD = 0◦ if
ZM2
QD(0) > 0 and φ0

QD = 180◦ if ZM2
QD(0) < 0.

ii. If nz + np is an odd number, then the initial phase value is φ0
QD = 180◦ if

ZM2
QD(0) > 0 and φ0

QD = 0◦ if ZM2
QD(0) < 0.
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Figure 5.7: Active Power Droop Controlled Inverter ZQD Impedance Bode Diagrams

4. ZQQ Diagram: Finally, as here the QQ-channel impedance behaves the same as in the
ideal source model, the same conclusions are made.

Figure 5.8: Active Power Droop Controlled Inverter ZQQ Impedance Bode Diagrams
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5.3. M3: Reactive Power Droop-Controlled Source

5.3.1. Small-Signal Impedance Obtainment

Finally, M3 is analyzed. In the first place and similar to previous case, the small-signal
impedances are obtained, computing (4.23)-(4.26), and presented below:

ZDD(s) = −LC · s− rC −
nqVn · sin(δ) · cos(δ)

(Ioqnq − 1)2
(5.46)

ZDQ(s) = LCωn +
nqVn · cos2(δ)

(Ioqnq − 1)2
(5.47)

ZQD(s) = −LCωn +
nqVn · sin2(δ)

(Ioqnq − 1)2
(5.48)

ZQQ(s) = −LC · s− rc+
nqVn · sin(δ) · cos(δ)

(Ioqnq − 1)2
(5.49)

With the intention of analogically analyze the reactive power droop-controlled with the
active power droop-controlled inverter, δ is again assumed to be zero, this is, the locally-
referred small-signal impedances are computed and presented in (5.50).

ZDD(s) = −(rC + s · LC)

ZDQ(s) = Lcωn +
nqVn

(Ioqnq − 1)2

ZQD(s) = −Lcωn

ZQQ(s) = −(rC + s · LC)

(5.50)

5.3.2. Bode Plot Analytic Characterization

Same as before, the critical Bode plot parameters are obtained.
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1. ZDD Impedance: In this case, ZDD impedance is the same as in M1. Hence, for DD-
channel, the same critical values are obtained, as presented in (5.51)-(5.53).

ZM3
DD(0) = −rC (5.51)

pM3
DD = {∅} (5.52)

zM3
DD = {− rC

LC
} (5.53)

2. ZDQ Impedance: Same as in M1, no complex frequency s dependency is present.
Hence the zero frequency value corresponds to:

ZM3
DQ(0) = Lcωn +

nqVn
(Ioqnq − 1)2

(5.54)

In consequence, neither poles or zeros are present, as shown in (5.55) and (5.56)

pM3
DQ = {∅} (5.55)

zM3
DQ = {∅} (5.56)

3. ZQD Impedance: Considering that QD-channel impedance is the same as in M1, the
computed zero frequency value, poles and zeros are listed below:

ZM3
QD(0) = Lcωn (5.57)

pM3
QD = {∅} (5.58)

zM3
QD = {∅} (5.59)
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Table 5.3: M3 Summarized Impedances Critical Values
ZDD ZDQ ZQD ZQQ

Zero Frequency
Value ZM3

DD(0) = −rC ZM3
DQ(0) = Lcωn +

nqVn
(Ioqnq − 1)2

ZM3
QD(0) = −Lcωn ZM3

QQ(0) = −rC

Poles pM3
DD = ∅ pM3

DQ = ∅ pM3
QD = ∅ pM3

QQ = ∅

Zeros zM3
DD = − rC

LC
zM3
DQ = ∅ zM3

QD = ∅ zM3
QQ = − rC

LC

4. ZQQ Impedance: As the DD-channel and QQ-channel small-signal impedances are
the same in this model, then the critical parameters are the same as in (5.51)-(5.53),
as follows:

ZM3
QQ(0) = −rC (5.60)

pM3
QQ = {∅} (5.61)

zM3
QQ = {− rC

LC
} (5.62)

5.3.3. Critical Parameters Determination

In Table 5.3 are summarized the computed critical values of M3.

In Figures 5.9-5.12 are displayed the Bode diagrams of the transfer functions of the reactive
power droop-controlled inverter.

1. ZDD, ZQD & ZQQ Diagrams: As only the DQ-channel impedance behaves differently
than the presented in the ideal source model, the conclusions for these channels are the
same.

2. ZDQ Diagram: In this case, only a small change is presented in the magnitude Bode
diagram initial value, in comparison with the ideal source model, as displayed in Figure
5.12.
(a) Magnitude Plot: In this case, besides Lcωn, the term

nqVn
(Ioqnq−1)2 must be taken into

account when computing the initial magnitude value, as
∣∣Z0

DQ

∣∣ = Lcωn+ nqVn
(Ioqnq−1)2 .

As neither poles nor zeros are present, the curve remains constant.
(b) Phase Plot: In this case, as both Lcωn and nqVn

(Ioqnq−1)2 expressions are positive, the
frequency response phase angle is always φ0

DQ = 0.
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Figure 5.9: Reactive Power Droop Controlled Inverter ZDD Impedance Bode Diagrams

Figure 5.10: Active Power Droop Controlled Inverter ZQD Impedance Bode Diagrams
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Figure 5.11: Reactive Power Droop Controlled Inverter ZQQ Impedance Bode Diagrams

Figure 5.12: Reactive Power Droop Controlled Inverter ZDQ Impedance Bode Diagrams
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5.4. Summary

In Table 5.4 are summarized the critical parameters that defines the asymptotic limits of
the small-signal impedances of the simplified models.

Table 5.4: Critical Parameters Summary
Channel Asymptotic

Limits Definition M1 M2 M3

DD-Channel

‖Z0
DD‖ rC

∣∣∣ (VbQ+IodLCω)

Ioq

∣∣∣ rC

φ0
DD 180o

even nz + np: 0o(ZM2
DD(0) > 0); 180o(ZM2

DD(0) < 0)
odd nz + np: 180o(ZM2

DD(0) > 0); 0o(ZM2
DD(0) < 0)

180o

ωziDD
rC
LC

1

2
( rC
LC

+ VnIoqmp)± 1
2

√
( rC
LC

+ VnIoqmp)2 + 4mp(VnIodω +
VnVbQ
LC

) (P > PC)√
−(mpVnIodω +

VnVbQ
LC

) (P < PC)

rC
LC

ωpiDD - VnIoqmp -

ξ - −
(
rC
LC

+VnIoqmp)

2(mpVnIodω+
mpVnVbQ

LC
)

(P < PC) -

DQ-Channel

‖Z0
DQ‖ LCωn LCωn LCω

φ0
DQ 0o 0o 0o

ωziDQ - - -

ωpiDQ - - -

QD-Channel

‖Z0
QD‖ LCωn

∣∣∣VbD−IodrCIoq

∣∣∣ LCωn

φ0
QD 180o

even nz + np: 0o (ZM2
QD(0) > 0); 180o (ZM2

QD(0) < 0)
odd n_z+n_p: 180o (ZM2

QD(0) > 0); 0o (ZM2
QD(0) < 0)

180o

ωziQD - mpVn
VbQ+IodrC

LCω
-

ωpiQD - VnIoqmp -

QQ-Channel

‖Z0
QQ‖ rC rC rC

φ0
QQ 180o 180o 180o

ωziQQ
rC
LC

rC
LC

rC
LC

ωpiQQ - - -
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Chapter 6

Numerical Assessment

In this chapter, a numerical assessment is carried through, in order to graphically contrast
the different models and to test the validity of the previous determined critical parameters,
as stated in Chapter 3.

6.1. Study Case Definition

As presented in Chapter 3, the study case is defined in order to select a proper operating
point to assess the developed models. For this purpose, real operating points from a field
microgrid will be used. This microgrid is described below.

The ‘Huatacondo’ project is a renewable energy-based AC microgrid conceived for an
isolated small village in the Atacama Desert in the North of Chile. Currently, it provides 24
hours service. For most of the day, the energy is provided by a photovoltaic (PV) array and
a battery energy storage system (BESS). Its structure is presented in Figure 6.1. It is formed
by 11 busbars, predominantly resistive lines and the aforementioned PV and BESS arrays,
besides a diesel generation unit.

The PV converter is built as a Current Source Converter (CSC) and the BESS corresponds
to a Voltage Source Converter (VSC), with 40 kVA and 30 kVA capacity, respectively. The
PV array is controlled as a grid-feeding converter and the BESS array as a grid-supporting
converter. The latter is the element under study and its internal structure corresponds to the
one presented in Section 2.2.2.

As the real parameters of the BESS components are not available, the same parameters
of [22] are assumed. Furthermore, the droop control parameters are selected based on (2.3),
as presented in Table 6.1.
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Figure 6.1: Huatacondo Grid

Table 6.1: Droop-Controlled Inverter Internal Parameters
Parameter Value Parameter Value

mp 9e− 4 nq 1,3e− 4
LF 1,35 mH ωc 31,41 rad/s
rF 0,1 Ω Kpv 0,05
CF 50 µF Kiv 390
LC 0,35 mH Kpc 10,5
rC 0,03 Ω Kic 16e3

The Huatacondo microgrid has several measurement units. In particular, a Schneider
PM750 equipment is located between the BESS and busbar 5, measuring line-to-line volta-
ge magnitude, active and reactive power, and frequency. The measurements are uploaded
instantly to an online server. The available data covers from 13-6-2017 to 17-12-2018, with
minute resolution.

Firstly, the corrupted data are removed, this is, periods where no data was measured due
to communication problems or technical issues, leaving 518000 available operating points.

Once the final points are selected, the centroid of the operating point is obtained, by
performing a k-means clustering with k = 1 and then selecting the operating point with
minimum distance to the single cluster centroid. Furthermore, the minima and maxima of
all the measured variables are obtained. These results are summarized in Table 6.2.

Note that, as the diesel generator is selected as the slack machine and it is located in the
same busbar, the Q-axis voltage on the inverter is always zero. Furthermore, currents are
referred to the local reference frame and voltages to the global reference frame, as required
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Table 6.2: Study Case Operating Points
Variable Symbol Units Centroid Minimum Maximum

D-axis Voltage VbD [V] 384.6918 364.5932 445.2113
Q-axis Voltage VbQ [V] 0 0 0
d-axis Current Iod [A] -4.4336 -44.9347 65.4753
q-axis Current Ioq [A] 11.6271 -4.684 37.4849
Frequency f [Hz] 49.9709 47.0312 51.9954

by the models.

6.2. Sensitivity Analysis

In order to realize the sensitivity analysis, the small-signal impedances of both simplified
and advanced models are needed. As analytically obtaining the small-signal impedances of
M5 and M6 would demand excessive computational resources (their linearized models have 11
and 13 states respectively), the linearized matrices are first assessed in the desired operating
point and then the small-signal impedances are computed as shown in (5.1)-(5.6).

The absence of the LC-filter in models M1 to M4 generates an electrical dependency
between the variables Iodq and Vbdq. Therefore, with the objective of contrasting all the models
under equal conditions, this dependency is obviated when evaluating the models in the study
case operating points and when performing the sensitivity analysis. Furthermore, in this case
δ is again assumed to be 0. The validity of this assumption will be studied later, by sweeping
the value of δ in order to analyze the impact of the changes in the small-signal impedance of
the final full model.

As stated before, sensitivity analysis is performed on the critical parameters obtained in
Chapter 5, based on the values presented in Table 6.2. Furthermore, output inductor values
rC and LC , as well as droop parameters mp and nq, are also swept. The reason for the latter
is that the small-signal impedance also depends on those values. The sweep ranges of these
parameters are selected based on the rated values, defining an arbitrary range from 50% to
150% of the rated value for the sweep.

Thus, the sensitivity parameters are introduced in (6.1). The centroid of the operating
points shown in Table 6.2 will be used as the base operating point.

v =
[
mp nq Iod Ioq VbD ω rC LC

]
(6.1)
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6.2.1. Comparison of Models

In this section, each model is evaluated at the base operating point and then compared to
each other in Figures 6.2-6.5, in order to progressively analyze the effects of each additional
element incorporated in the models.

Asymptotic Limits

For M1, M2, and M3, based on the results from Chapter 5, the expected asymptotic curves
are obtained. Only the asymptotic boundaries of M2 and M3 are graphed, as both incorpo-
rate the effects of M1. The black continuous line corresponds to the asymptotic boundaries
determined by M2 and the dashed black line corresponds to the boundaries determined by
M3.

Note that in this case, P c = −7,119 · 103 W . Furthermore, P c
+ = −0,2002 W . As in this

case, computing for M2, P = VnIod = −1,6894 · 103 W , then P c < P < P c
+. Considering also

that, for M2, ( rC
LC

+ Qmp) = 89,7018 > 0 then a pair of negative zeros besides a single pole
are present in DD-channel asymptotic curve of M2, as expected from Section 5.2.

M1, M2 and M3

M1, M2, and M3 follows their corresponding asymptotic line, as expected. Note that the
curves of M1 and M3 overlap in both DD, QD and QQ-channels. Furthermore, the curves
of M1 and M2 overlap in DQ-channel.

M4

By considering both active and reactive droop controls with neither LC-filter nor current
and voltage control, major deviations in the DD and QQ-channels, specially in low frequen-
cies, are present. In channels DQ and QD, the resulting small-signal impedance tend to follow
the M3 and M2 asymptotic curves, respectively.

M5

The addition of the LC filter with the internal voltage and current controls generates a
resonance peak in every channel near the frequency ω = 1

2π
√
rCLC

, affecting both magnitude
and angle curves. Furthermore, in this particular case the low-frequency effects of the active-
power droop controller are present in both DD and QQ-channels magnitudes, but highly
attenuated. A deviation is also presented in the DQ-channel magnitude, converging to the
asymptotic curves only past the LCL-filter resonance peak. A major deviation in the phase
angle graph is induced by the resonance peak.
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M6

Finally, by considering the power measuring filter, only DQ and QD-channel impedances
are affected in comparison to the previous model. In the DQ-channel, the magnitude curve
converges at lower frequency to the active droop-driven asymptotic line. In the QD-channel
by the other hand, a resonance peak near ω = 2π · 10 is presented, altering the slope in the
magnitude graph.
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Figure 6.2: DD-Channel Impedances: Base Case.
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Figure 6.3: DQ-Channel Impedances: Base Case.
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Figure 6.4: QD-Channel Impedances: Base Case.
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Figure 6.5: QQ-Channel Impedances: Base Case.

6.2.2. M6: Full Model Numerical Assessment

For the sake of simplicity, only the sensitivities of the full-order model are studied. For
further details of the sensitivity curves of the other models, check Appendix A.

In order to numerically evaluate the precision of the simplified models, two different indexes
are developed. The first index corresponds to the mean deviation of the mid-lines between
the full-model curves and the asymptotic curves in a specific range of frequencies, this is,
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the difference between the lines drawn in the center of the superior and inferior limits of
the sensitivity curves of the full-model and the expected asymptotic curves, averaged over a
specific frequency range. Hence, Index 1 (I1) can be mathematically formulated as presented
in (6.2).

I1f (f) =

∣∣∣∣Z2
asym(f) + Z1

asym(f)

2
− Z2

M6(f) + Z1
M6(f)

2

∣∣∣∣
⇒ I1 =

∫ f2

f1

I1f (f)df

(6.2)

Zi
asym corresponds to the magnitude (in decibels) or the phase of the asymptotic curves

(depending on whether the magnitude curves or the phase curves are studied) of M1, M2, or
M3, studied in Chapter 5. Analytically, Zi

M6 corresponds to the magnitude or phase of the
small-signal impedance of the full-order model. i = 1 corresponds to the impedance expression
assessed in the minimum value of the sensitivity variable, and i = 2 to the impedance assessed
in the maximum value of the sensitivity variable.

Index 2, as presented in (6.3), corresponds to the difference, at each frequency, between
the impedance magnitude or phase sensitivity range of M6 and the impedance magnitude or
phase range of the asymptotic curves, averaged over a specific range of frequencies.

I2f (f) =
∣∣(Z2

asym(f)− Z1
asym(f)

)
−
(
Z2
M6(f)− Z1

M6(f)
)∣∣

⇒ I2 =

∫ f2

f1

I2f (f)df
(6.3)

Index 1 basically represents the accuracy of the results of Chapter 5, whilst index 2
represents the precision of the obtained expressions of the analytical assessment, regarding
the sensitivity ranges of the models. Graphically, this is presented in Figure 6.6, where U
corresponds to decibels, when the magnitude graphs are analyzed or to grades, when the
phase graphs are analyzed. Note that I2f (f) = |∆Zasym(f)−∆ZM6(f)|. By averaging both
I1f (f) and I2f (f) in a specific frequency range, I1 and I2 are obtained.
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Figure 6.6: Index 1 and Index 2 Explanation.

In order to properly analyze the results through the developed indexes, three frequency
ranges are defined: (1) Range 1, corresponding to low frequencies (< 10−1 Hz), (2) range 2,
corresponding to medium frequencies (10−1− 102 Hz) and (3) range 3, corresponding to high
frequencies (> 102 Hz).

The resulting graphs of the numerical assessment are presented in Figures 6.7-6.14.

In the graphs, similarly to Section 6.2.1, the black continuous line corresponds to the
asymptotic boundaries determined by M2 and the dashed black line corresponds to the
boundaries determined by M3. It would be expected that the small-signal impedance of the
actual full-order model was bounded by these limits. Note that, when no variation is presented
by the asymptotic limits of M2 and M3, only one overlapped line is present for each case. For
the sake of simplicity, it is not explicitly shown which line is the boundary corresponding to
the sensitivity variable assessed in the minimum and to the sensitivity variable assessed in
the maximum.

Sensitivity Variable: mp

In Tables 6.3 and 6.4 are presented the index analysis of the numerical assessment of the
mp variable.
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Model 2 Asymptotic Boundaries Model 3 Asymptotic Boundaries
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Figure 6.7: M6 Small-Signal Impedance Sensitivity: mp

• DD-Channel
– Range 1 As presented, both M1 and M3 have a better performance with respect

to index 1 than M2 in this frequency range, showing that the mentioned models
are highly accurate. On the other hand, as none of the models is sensitive to mp,
index 2 is the same and almost null in all three models, showing effectively that,
in this range, |Zdd| does not vary when mp changes.

– Range 2 In this frequencies, same as in range 1, M1 and M3 have a better
performance with respect to index 1 than M2. On the other hand, index 2 shows
that the variation presented in M2 is not precise, as in the reality almost zero
variation is presented when mp is changed, demonstrated by the results of M1 and
M3.

– Range 3 It can be seen that in high frequencies all models have almost the same
indexes values, as they all converge to the same curve. Despite that the models
follow relatively good the real curve, index 1 presents a relatively high value in the
magnitude analysis, due to the resonance produced by the LCL filter, as presented
in Section 6.2.1. In the phase analysis, on the other hand, a major deviation is
presented, specially in higher frequencies, where the phase considerably decreases.
On the other hand, index 2 represents with precision the non-dependence of the
inverter with the mp parameter.

• DQ-Channel
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– Ranges 1, 2 and 3 In this cases, M1 and M2 present almost the same index
1 in each case (magnitude and phase), showing a better performance than M3.
With respect to index 2, all three models have the same result, showing that this
channel is practically non-sensitive to mp in the whole frequency spectrum.

• QD-Channel

– Range 1 In the low frequencies, M2 accurately represents the behavior of the full
model.

– Range 2 Considering the major distortion of the curves by the peak resonance
produced by the low-pass filter, M2 is the model that represents considerably
better the actual behavior of the small-signal impedance for both accuracy and
precision. Note that, in this particular case, a combination of the effects of the
low-pass filter

– Range 3 As expected from the previous results, M1, M2, and M3 converge to
the real magnitude value, while the phase angle decreases considerably in higher
frequencies.

• QQ-Channel

– Range 1, 2 and 3 M1, M2, and M3 behave the same in this channel. With the
exception of the resonance in higher frequencies, the models represent precisely
the behavior of the full-order model, specially with respect to index 2.

From this analysis it is clear that the mp parameter mainly affects the small-signal im-
pedance only in the QD − channel, specially regarding the values obtained for index 2, as
stated by M2, representing with precision the dependency of the inverter with respect to mp

in all four channels.

Table 6.3: Magnitude Graphs Indexes Results: mp

Channel Frequency
Range

Asymptotic
Limits

Index 1
[dB]

Index 2
[dB] Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB]

DD − Channel

Range 1
M1 0.2758 0.0052

DQ− Channel

Range 1
M1 2.6283 5.5433e-08

M2 2.6257 0.0052 M2 2.6232 5.5433e-08
M3 0.2758 0.0052 M3 5.8669 5.5433e-08

Range 2
M1 0.6780 0.0893

Range 2
M1 1.4028 5.4958e-06

M2 1.3030 0.5209 M2 1.3977 5.4958e-06
M3 0.6780 0.0893 M3 4.6414 5.4958e-06

Range 3
M1 5.3199 3.3740e-05

Range 3
M1 2.5044 2.1082e-05

M2 5.3199 3.3740e-05 M2 2.5057 2.1082e-05
M3 5.3199 3.3740e-05 M3 3.6402 2.1082e-05

QD − Channel

Range 1
M1 44.7146 0.1269

QQ− Channel

Range 1
M1 0.2846 0.0058

M2 0.0774 0.1269 M2 0.2846 0.0058
M3 44.7146 0.1269 M3 0.2846 0.0058

Range 2
M1 21.3607 6.8131

Range 2
M1 0.6711 0.0932

M2 7.6200 4.4811 M2 0.6711 0.0932
M3 21.3607 6.8131 M3 0.6711 0.0932

Range 3
M1 2.5463 0.0386

Range 3
M1 5.3199 1.0067e-04

M2 2.6631 0.2713 M2 5.3199 1.0067e-04
M3 2.5463 0.0386 M3 5.3199 1.0067e-04
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Table 6.4: Phase Graphs Indexes Results: mp

Channel Frequency
Range

Asymptotic
Limits

Index 1
[o]

Index 2
[o] Channel Frequency

Range
Asymptotic

Limits
Index 1

[o]
Index 2

[o]

DD − Channel

Range 1
M1 0.0440 0.1358

DQ− Channel

Range 1
M1 0.0927 2.7684e-06

M2 0.8214 1.4242 M2 0.0927 2.7684e-06
M3 0.0440 0.1358 M3 0.0927 2.7684e-06

Range 2
M1 3.1832 0.4217

Range 2
M1 3.7980 3.4764e-05

M2 5.3774 1.5269 M2 3.7980 3.4764e-05
M3 3.1832 0.4217 M3 3.7980 3.4764e-05

Range 3
M1 34.9287 1.9298e-04

Range 3
M1 146.8813 1.5201e-04

M2 34.9059 0.0244 M2 146.8813 1.5201e-04
M3 34.9287 1.9298e-04 M3 146.8813 1.5201e-04

QD − Channel

Range 1
M1 4.6304 4.5261

QQ− Channel

Range 1
M1 0.1550 0.1470

M2 3.0176 2.0163 M2 0.1550 0.1470
M3 4.6304 4.5261 M3 0.1550 0.1470

Range 2
M1 64.2857 23.7421

Range 2
M1 3.2531 0.4398

M2 30.8558 19.2326 M2 3.2531 0.4398
M3 64.2857 23.7421 M3 3.2531 0.4398

Range 3
M1 146.9302 0.0350

Range 3
M1 34.9292 8.0873e-04

M2 156.3923 13.3089 M2 34.9292 8.0873e-04
M3 146.9302 0.0350 M3 34.9292 8.0873e-04

Sensitivity Variable: nq

Tables 6.5 and 6.6 present the index analysis of the numerical assessment of the nq variable.

• DD-Channel
– Range 1 Similarly to mp, for nq both M1 and M3 have a better performance with

respect to index 1 than M2, but presents a slightly higher index 2 value than the
previous case.

– Range 2 In this frequencies, same as in range 1, M1 and M3 have a better
performance with respect to both indexes than M2. Nevertheless, the performance
of M2 is still acceptable, as I1 = 1,4027 dB in the case of the magnitude analysis
and I1 = 5,5264 o in the case of the phase.

– Range 3 As expected, all models have almost the same indexes values, as in the
previous case. The resonance produced by the LCL filter produces higher devia-
tions, increasing index 1. Nevertheless, the value of index 2 is small, demonstrating
a non-dependency of the DD-channel of the inverter with the nq parameter. In
general, this non-dependence is well demonstrated in all frequencies.

• DQ-Channel
– Ranges 1, 2 and 3 In this case, similar to the analysis of mp, M1 and M2

present almost the same index 1 and index 2, having a better performance than
M3. Note that, despite M3 appears to perform better according to Figure 6.8, it
has a higher index 2. This is explained as follows: In the case of the full-order
model, the impedance magnitude decreases as nq increases, but in the case of the
asymptotic boundaries, it increases as nq increases. For the sake of simplicity, this
behavior is not explicitly detailed in the graphs, as expressed previously in this
Section.

• QD-Channel
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Figure 6.8: M6 Small-Signal Impedance Sensitivity: nq

– Range 1, 2 and 3 In this channel, the resulting indexes 1 are similar to the
presented for mp, hence the analysis is analog. In the case of index 2, a better
result is obtained, showing that the small-signal impedance of both the asymptotic
models and the full-order model is not sensitive to changes in the value of nq

• QQ-Channel

– Range 1, 2 and 3 As M1, M2, and M3 behave the same in this channel and
the resulting indexes are also similar to the presented for the QQ-channel in the
analysis of mp, the results are also analogized.

Obviating the major deviations due to the resonances, it can be noticed that, specially
by M2, the behavior of the full-order inverter with respect to changes in nq is in general
accurately and precisely represented. The main sensitivity is presented in the DQ-channel.
Despite not being quite precisely represented, it can be noted from the values of index 2 that
there does not exist a major dependency with respect to nq.
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Table 6.5: Magnitude Graphs Indexes Results: nq
Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB] Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB]

DD − Channel

Range 1
M1 0.1464 3.0598

DQ− Channel

Range 1
M1 2.7636 3.0895

M2 2.7551 3.0598 M2 2.7585 3.0895
M3 0.1464 3.0598 M3 5.8972 5.8228

Range 2
M1 0.6819 0.5324

Range 2
M1 1.4521 1.5723

M2 1.4027 0.5324 M2 1.4470 1.5723
M3 0.6819 0.5324 M3 4.5857 4.3055

Range 3
M1 5.3199 1.1884e-04

Range 3
M1 2.5044 0.0119

M2 5.3199 1.1884e-04 M2 2.5057 0.0119
M3 5.3199 1.1884e-04 M3 3.5832 2.7221

QD − Channel

Range 1
M1 44.7578 0.0019

QQ− Channel

Range 1
M1 0.4396 3.2705

M2 0.0342 0.0019 M2 0.4396 3.2705
M3 44.7578 0.0019 M3 0.4396 3.2705

Range 2
M1 22.4707 3.3293e-04

Range 2
M1 0.6818 0.5623

M2 7.8872 3.3293e-04 M2 0.6818 0.5623
M3 22.4707 3.3293e-04 M3 0.6818 0.5623

Range 3
M1 2.5463 3.7026e-05

Range 3
M1 5.3199 3.4011e-05

M2 2.5467 3.7026e-05 M2 5.3199 3.4011e-05
M3 2.5463 3.7026e-05 M3 5.3199 3.4011e-05

Table 6.6: Phase Graphs Indexes Results: nq
Channel Frequency

Range
Asymptotic

Limits
Index 1

[o]
Index 2

[o] Channel Frequency
Range

Asymptotic
Limits

Index 1
[o]

Index 2
[o]

DD − Channel

Range 1
M1 0.1934 1.3877

DQ− Channel

Range 1
M1 0.1039 0.1290

M2 0.7349 1.3877 M2 0.1039 0.1290
M3 0.1934 1.3877 M3 0.1039 0.1290

Range 2
M1 3.2861 3.7576

Range 2
M1 3.9941 4.4767

M2 5.5264 3.7576 M2 3.9941 4.4767
M3 3.2861 3.7576 M3 3.9941 4.4767

Range 3
M1 34.9287 6.7679e-04

Range 3
M1 146.8813 0.1878

M2 34.9064 6.7679e-04 M2 146.8813 0.1878
M3 34.9287 6.7679e-04 M3 146.8813 0.1878

QD − Channel

Range 1
M1 3.5343 8.2240e-04

QQ− Channel

Range 1
M1 0.2587 1.5028

M2 2.9122 8.2240e-04 M2 0.2587 1.5028
M3 3.5243 8.2240e-04 M3 0.2587 1.5028

Range 2
M1 65.0506 0.0023

Range 2
M1 3.4213 3.9947

M2 34.6510 0.0023 M2 3.4213 3.9947
M3 65.0506 0.0023 M3 3.4213 3.9947

Range 3
M1 146.9302 2.4878e-04

Range 3
M1 34.9292 2.0285e-04

M2 157.8378 2.4878e-04 M2 34.9292 2.0285e-04
M3 146.9302 2.4878e-04 M3 34.9292 2.0285e-04

Sensitivity Variable: Iod

In Tables 6.7-6.10 are presented the index analysis of the numerical assessment of the
Iod variable. Note that in this case the graphs and their respective index analysis have been
divided into two groups, when Iod < 0 and Iod > 0, in order to avoid mounted plots.
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Figure 6.9: M6 Small-Signal Impedance Sensitivity: Iod < 0 and Iod > 0
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• DD-Channel
– Range 1 and 2 In this case, only M2 is able to recreate the small-signal impedance

behavior with respect to changes in Iod.
– Range 3 Same as previously, M1, M2, and M3 behave the same for high fre-

quencies, where a major deviation is described by index 1, due to the LCL-filter
resonance.

• DQ-Channel
– Ranges 1 and 2 Similar to previous analysis, M1 and M2 present almost the

same index 1 and index 2, having a better performance than M3 and describing
well-enough the non-dependency of the impedance to perturbations in Iod.

– Range 3 All the three models behave the same for high frequencies, experiencing
a deviation due to the LCL-filter.

• QD-Channel
– Range 1, 2 and 3 As index 1 behaves similar to previously analyzed parameters,

the same analysis can be made. Nevertheless, in regard to index 2, it can be
stated that M2 precisely predicts the sensitivity of the small-signal impedance
with respect to changes in the analyzed variable, specially for lower frequencies.

• QQ-Channel
– Range 1, 2 and 3 As none of the developed models is sensitive to changes in

the analyzed variable, major indexes values are obtained for the lower frequencies,
as there are major deviations between the simplified and the full-order models.
In higher frequencies, however, the curves tend to converge, reducing the indexes
values.

Obviating the resonances, it can be noticed that M2 accurately and precisely represent
the behavior of the full-order inverter with respect to changes in Iod, excepting for the QQ-
channel.

Table 6.7: Magnitude Graphs Indexes Results: Iod < 0

Channel Frequency
Range

Asymptotic
Limits

Index 1
[dB]

Index 2
[dB] Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB]

DD − Channel

Range 1
M1 3.8541 46.7461

DQ− Channel

Range 1
M1 2.3844 0.4817

M2 1.4678 3.6730 M2 2.3793 0.4817
M3 3.8541 46.7461 M3 5.6230 0.4817

Range 2
M1 3.2945 8.3667

Range 2
M1 1.3600 0.0902

M2 2.1180 4.7611 M2 1.3549 0.0902
M3 3.2945 8.3667 M3 4.5986 0.0902

Range 3
M1 5.3199 1.1443e-04

Range 3
M1 2.5036 0.0032

M2 5.3199 1.1443e-04 M2 2.5048 0.0032
M3 5.3199 1.1443e-04 M3 3.6395 0.0032

QD − Channel

Range 1
M1 44.9931 0.4608

QQ− Channel

Range 1
M1 12.5041 13.2240

M2 0.1659 0.5371 M2 12.5041 13.2240
M3 44.9931 0.4608 M3 12.5041 13.2240

Range 2
M1 22.4837 0.1350

Range 2
M1 4.6650 5.9156

M2 7.9162 0.1447 M2 4.6650 5.9156
M3 22.4837 0.1350 M3 4.6650 5.9156

Range 3
M1 2.5447 0.0040

Range 3
M1 5.3200 1.1610e-04

M2 2.5452 0.0040 M2 5.3200 1.1610e-04
M3 2.5447 0.0040 M3 5.3200 1.1610e-04
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Table 6.8: Magnitude Graphs Indexes Results: Iod > 0

Channel Frequency
Range

Asymptotic
Limits

Index 1
[dB]

Index 2
[dB] Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB]

DD − Channel

Range 1
M1 3.0745 50.8371

DQ− Channel

Range 1
M1 1.9394 1.3711

M2 1.4485 3.3144 M2 1.9343 1.3711
M3 3.0745 50.8371 M3 5.1780 1.3711

Range 2
M1 4.9562 10.8189

Range 2
M1 1.2980 0.2428

M2 1.5004 3.6640 M2 1.2930 0.2428
M3 4.9562 10.8189 M3 4.5366 0.2428

Range 3
M1 5.3198 1.9719e-04

Range 3
M1 2.5060 0.0047

M2 5.3198 1.9719e-04 M2 2.5075 0.0047
M3 5.3198 1.9719e-04 M3 3.6418 0.0047

QD − Channel

Range 1
M1 45.4609 1.3955

QQ− Channel

Range 1
M1 16.0108 19.8333

M2 0.6253 1.3191 M2 16.0108 19.8333
M3 45.4609 1.3955 M3 16.0108 19.8333

Range 2
M1 22.6342 0.3358

Range 2
M1 5.6634 8.4128

M2 7.7860 0.2999 M2 5.6634 8.4128
M3 22.6342 0.3358 M3 5.6634 8.4128

Range 3
M1 2.5494 0.0058

Range 3
M1 5.3199 1.6996e-04

M2 2.5499 0.0058 M2 5.3199 1.6996e-04
M3 2.5494 0.0058 M3 5.3199 1.6996e-04

Table 6.9: Phase Graphs Indexes Results: Iod < 0

Channel Frequency
Range

Asymptotic
Limits

Index 1
[o]

Index 2
[o] Channel Frequency

Range
Asymptotic

Limits
Index 1

[o]
Index 2

[o]

DD − Channel

Range 1
M1 20.9730 48.6093

DQ− Channel

Range 1
M1 0.0041 0.1896

M2 5.0473 14.7369 M2 0.0041 0.1896
M3 20.9730 48.6093 M3 0.0041 0.1896

Range 2
M1 13.2322 46.6254

Range 2
M1 3.4952 0.5989

M2 8.0152 15.4580 M2 3.4952 0.5989
M3 13.2322 46.6254 M3 3.4952 0.5989

Range 3
M1 34.9297 0.0025

Range 3
M1 146.8790 0.0320

M2 34.8844 0.2284 M2 146.8790 0.0320
M3 34.9297 0.0025 M3 146.8790 0.0320

QD − Channel

Range 1
M1 3.6481 0.2316

QQ− Channel

Range 1
M1 87.1003 177.5934

M2 3.0259 0.2316 M2 87.1003 177.5934
M3 3.6481 0.2316 M3 87.1003 177.5934

Range 2
M1 65.3282 0.8349

Range 2
M1 23.8288 59.4845

M2 34.9818 0.8286 M2 23.8288 59.4845
M3 65.3282 0.8349 M3 23.8288 59.4845

Range 3
M1 146.9242 0.0196

Range 3
M1 34.9285 0.0019

M2 157.8265 0.0868 M2 34.9285 0.0019
M3 146.9242 0.0196 M3 34.9285 0.0019
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Table 6.10: Phase Graphs Indexes Results: Iod > 0

Channel Frequency
Range

Asymptotic
Limits

Index 1
[o]

Index 2
[o] Channel Frequency

Range
Asymptotic

Limits
Index 1

[o]
Index 2

[o]

DD − Channel

Range 1
M1 152.1434 47.2809

DQ− Channel

Range 1
M1 0.2033 0.5878

M2 10.3634 13.5388 M2 0.2033 0.5878
M3 152.1434 47.2809 M3 0.2033 0.5878

Range 2
M1 37.7861 35.7045

Range 2
M1 3.4289 1.6837

M2 13.6244 16.6237 M2 3.4289 1.6837
M3 37.7861 35.7045 M3 3.4289 1.6837

Range 3
M1 34.9265 0.0040

Range 3
M1 146.8862 0.0469

M2 35.6283 1.2532 M2 146.8862 0.0469
M3 34.9265 0.0040 M3 146.8862 0.0469

QD − Channel

Range 1
M1 3.7965 0.5286

QQ− Channel

Range 1
M1 2.7610 2.0482

M2 3.1744 0.5286 M2 2.7610 2.0482
M3 3.7965 0.5286 M3 2.7610 2.0482

Range 2
M1 65.9385 1.7565

Range 2
M1 23.8227 29.2592

M2 35.4369 1.7483 M2 23.8227 29.2592
M3 65.9385 1.7565 M3 23.8227 29.2592

Range 3
M1 146.9428 0.0293

Range 3
M1 34.9308 0.0028

M2 157.8608 0.1261 M2 34.9308 0.0028
M3 146.9428 0.0293 M3 34.9308 0.0028

Sensitivity Variable: Ioq

In Tables 6.11-6.14 are presented the index analysis of the numerical assessment of the Ioq
variable. Same as in the case of Iod, the graphs and their respective index analysis have been
divided into two groups, when Ioq < 0 and Ioq > 0, in order to avoid mounted plots.

• DD-Channel
– Range 1 In this case, only M2 recreates the small-signal impedance behavior

relatively good with respect to changes in Ioq.
– Range 2 Despite performing slightly better with respect to index 1, M1 and M3

show a lower performance with respect to index 2. Hence, M2 describes in a better
way the response to changes in Ioq in a general view.

– Range 3 In this case, M1, M2, and M3 behave mainly the same for high frequen-
cies as excepted because of the major deviation, described by index 1, due to the
LCL-filter resonance.

• DQ-Channel
– Ranges 1 and 2 Once again, M1 and M2 present almost the same index 1 and

index 2 values, having a better performance than M3 and describing well-enough
the non-dependency of the impedance to perturbations in Ioq.

– Range 3 All the three models behave the same for high frequencies, deviating due
to the LCL-filter. The non-dependency in this range of the impedance to changes
in the analyzed parameter is accurately predicted.

• QD-Channel
– Range 1, 2 and 3 Considering the similar behavior of the indexes, the same

analysis as for the sensitivity in respect with Iod can be made.
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Figure 6.10: M6 Small-Signal Impedance Sensitivity:Ioq < 0 and Ioq > 0
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• QQ-Channel
– Range 1, 2 and 3 Similarly to the case of Iod, major indexes values are obtained

in the lower frequencies, as there are major deviations between the simplified and
the full-order models. In the higher frequencies, the models tends to converge, as
expected from previous results.

Similar to the case of Iod, it can be noticed that, obviating the resonances, M2 represents
in a better way the behavior of the full-order inverter with respect to changes in Ioq, excepting
for the QQ-channel.

Table 6.11: Magnitude Graphs Indexes Results: Ioq < 0

Channel Frequency
Range

Asymptotic
Limits

Index 1
[dB]

Index 2
[dB] Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB]

DD − Channel

Range 1
M1 18.5712 21.3087

DQ− Channel

Range 1
M1 2.7501 0.1524

M2 4.8074 3.8513 M2 2.7450 0.1524
M3 18.5712 21.3087 M3 5.9789 0.1528

Range 2
M1 1.6729 0.5699

Range 2
M1 1.4171 0.0063

M2 2.1204 0.3417 M2 1.4120 0.0063
M3 1.6729 0.5699 M3 4.6459 0.0055

Range 3
M1 5.3198 4.0592e-05

Range 3
M1 2.5043 3.2513e-05

M2 5.3198 4.0592e-05 M2 2.5056 3.2513e-05
M3 5.3198 4.0592e-05 M3 3.6348 0.0032

QD − Channel

Range 1
M1 63.0870 21.2970

QQ− Channel

Range 1
M1 21.1629 16.4534

M2 2.1822 3.8630 M2 21.1629 16.4534
M3 63.0870 21.2970 M3 21.1629 16.4534

Range 2
M1 23.4032 0.5289

Range 2
M1 2.6524 0.6579

M2 8.6846 0.3457 M2 2.6524 0.6579
M3 23.4032 0.5289 M3 2.6524 0.6579

Range 3
M1 2.5467 1.8174e-04

Range 3
M1 5.3199 4.0226e-05

M2 2.5472 1.8174e-04 M2 5.3199 4.0226e-05
M3 2.5467 1.8174e-04 M3 5.3199 4.0226e-05

Table 6.12: Magnitude Graphs Indexes Results: Ioq > 0

Channel Frequency
Range

Asymptotic
Limits

Index 1
[dB]

Index 2
[dB] Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB]

DD − Channel

Range 1
M1 9.8826 39.3571

DQ− Channel

Range 1
M1 2.5297 0.1528

M2 4.4636 3.8713 M2 2.5246 0.1528
M3 9.8826 39.3571 M3 5.7734 0.1513

Range 2
M1 1.1172 3.8913

Range 2
M1 1.3952 0.0370

M2 1.5633 1.8194 M2 1.3901 0.0370
M3 1.1172 3.8913 M3 4.6389 0.0315

Range 3
M1 5.3199 3.3102e-04

Range 3
M1 2.5044 2.8024e-04

M2 5.3199 3.3102e-04 M2 2.5057 2.8024e-04
M3 5.3199 3.3102e-04 M3 3.6430 0.0265

QD − Channel

Range 1
M1 54.3446 39.4520

QQ− Channel

Range 1
M1 16.9648 24.9458

M2 1.8971 3.7834 M2 16.9648 24.9458
M3 54.3446 39.4520 M3 16.9648 24.9458

Range 2
M1 21.8555 3.9778

Range 2
M1 2.1113 1.0888

M2 7.7332 1.8183 M2 2.1113 1.0888
M3 21.8555 3.9778 M3 2.1113 1.0888

Range 3
M1 2.5460 0.0015

Range 3
M1 5.3200 3.2124e-04

M2 2.5465 0.0015 M2 5.3200 3.2124e-04
M3 2.5460 0.0015 M3 5.3200 3.2124e-04
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Table 6.13: Phase Graphs Indexes Results: Ioq < 0

Channel Frequency
Range

Asymptotic
Limits

Index 1
[o]

Index 2
[o] Channel Frequency

Range
Asymptotic

Limits
Index 1

[o]
Index 2

[o]

DD − Channel

Range 1
M1 141.0234 54.3282

DQ− Channel

Range 1
M1 0.5153 1.0472

M2 8.6117 6.8697 M2 0.5153 1.0472
M3 141.0234 54.3282 M3 0.5153 1.0472

Range 2
M1 24.4924 8.9840

Range 2
M1 3.8180 0.0128

M2 13.1778 5.6745 M2 3.8180 0.0128
M3 24.4924 8.9840 M3 3.8180 0.0128

Range 3
M1 34.9283 2.8526e-04

Range 3
M1 146.8811 5.3878e-04

M2 34.8355 0.0232 M2 146.8811 5.3878e-04
M3 34.9283 2.8526e-04 M3 146.8811 5.3878e-04

QD − Channel

Range 1
M1 144.5204 54.2911

QQ− Channel

Range 1
M1 32.8975 52.8755

M2 5.1496 6.8832 M2 32.8975 52.8755
M3 144.5204 54.2911 M3 32.8975 52.8755

Range 2
M1 87.9376 9.0103

Range 2
M1 17.2769 5.0987

M2 28.8677 5.5561 M2 17.2769 5.0987
M3 87.9376 9.0103 M3 17.2769 5.0987

Range 3
M1 146.9302 1.7123e-04

Range 3
M1 34.9281 3.9346e-04

M2 157.8378 1.7123e-04 M2 34.9281 3.9346e-04
M3 146.9302 1.7123e-04 M3 34.9281 3.9346e-04

Table 6.14: Phase Graphs Indexes Results: Ioq > 0

Channel Frequency
Range

Asymptotic
Limits

Index 1
[o]

Index 2
[o] Channel Frequency

Range
Asymptotic

Limits
Index 1

[o]
Index 2

[o]

DD − Channel

Range 1
M1 29.5150 64.4544

DQ− Channel

Range 1
M1 0.5315 1.0922

M2 5.7833 9.7954 M2 0.5315 1.0922
M3 29.5150 64.4544 M3 0.5315 1.0922

Range 2
M1 7.4823 31.3253

Range 2
M1 3.7647 0.1089

M2 10.2619 8.5512 M2 3.7647 0.1089
M3 7.4823 31.3253 M3 3.7647 0.1089

Range 3
M1 34.9289 0.0023

Range 3
M1 146.8815 0.0045

M2 34.9588 0.2216 M2 146.8815 0.0045
M3 34.9289 0.0023 M3 146.8815 0.0045

QD − Channel

Range 1
M1 33.1816 64.1554

QQ− Channel

Range 1
M1 55.4631 111.7539

M2 5.0443 9.7235 M2 55.4631 111.7539
M3 33.1816 64.1554 M3 55.4631 111.7539

Range 2
M1 67.1929 31.5478

Range 2
M1 9.6855 23.5682

M2 32.5741 6.8561 M2 9.6855 23.5682
M3 67.1929 31.5478 M3 9.6855 23.5682

Range 3
M1 146.9302 0.0014

Range 3
M1 34.9297 0.0031

M2 157.8378 0.0014 M2 34.9297 0.0031
M3 146.9302 0.0014 M3 34.9297 0.0031

Sensitivity Variable: VbD

The index analysis of the numerical assessment of VbD is presented in Tables 6.15 and
6.16.
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Model 2 Asymptotic Boundaries Model 3 Asymptotic Boundaries
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Figure 6.11: M6 Small-Signal Impedance Sensitivity: VbD

• DD-Channel
– Range 1, 2 and 3 It can be noted that the resulting indexes are similar to the

ones of the case of mp. The main difference between the sensitivities of mp and
the VbD is the results of index 2, where no difference exist between the different
asymptotic models in the case of VbD. Despite presenting a higher index 2 (for both
magnitude and phase graphs), it still shows a low dependency of the impedance
with respect to the analyzed variable.

• DQ-Channel
– Ranges 1, 2 and 3 Same as the previous channel, the resulting indexes are

similar to the ones of the case of mp, including both index 1 and 2. Hence, similar
conclusions can be made.

• QD-Channel
– Range 1, 2 and 3 In the case of indexes 1, very similar results to mp are obtai-

ned. Index 2, however, presents a notably better performance in this case, with
exception of the higher frequencies phase angle, where the same deviation is pre-
sent.

• QQ-Channel
– Range 1, 2 and 3 M1, M2, and M3 behave the same in this channel. With the

exception of the resonance in higher frequencies, the models represent precisely
the behavior of the full-order model, specially with respect to index 2.
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Similar as in the case of mp, this analysis shows that variations in VbD mainly affects only
the small-signal impedance in the QD − channel. The values of index 2 for M2 represents
the sensitivity of the inverter with respect to the VbD parameter in all four channels.

Table 6.15: Magnitude Graphs Indexes Results: Vbd
Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB] Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB]

DD − Channel

Range 1
M1 0.1092 0.6527

DQ− Channel

Range 1
M1 2.7979 0.6585

M2 2.7923 0.6527 M2 2.7928 0.6585
M3 0.1092 0.6527 M3 6.0365 0.6585

Range 2
M1 0.6623 0.1213

Range 2
M1 1.4883 0.3346

M2 1.4309 0.1213 M2 1.4883 0.3346
M3 0.6623 0.1213 M3 4.7269 0.3346

Range 3
M1 5.3199 1.3989e-05

Range 3
M1 2.5041 0.0025

M2 5.3199 1.3989e-05 M2 2.5041 0.0025
M3 5.3199 1.3989e-05 M3 3.6399 0.0025

QD − Channel

Range 1
M1 45.1620 1.7493

QQ− Channel

Range 1
M1 0.1231 0.6705

M2 0.0317 0.0133 M2 0.1231 0.6705
M3 45.1620 1.7493 M3 0.1231 0.6705

Range 2
M1 22.9719 2.9395

Range 2
M1 0.6519 0.1268

M2 7.7673 2.0714 M2 0.6519 0.1268
M3 22.9719 2.9395 M3 0.6519 0.1268

Range 3
M1 2.5507 0.0172

Range 3
M1 5.3199 2.3955e-05

M2 2.5700 0.0550 M2 5.3199 2.3955e-05
M3 2.5507 0.0172 M3 5.3199 2.3955e-05

Table 6.16: Phase Graphs Indexes Results: Vbd
Channel Frequency

Range
Asymptotic

Limits
Index 1

[o]
Index 2

[o] Channel Frequency
Range

Asymptotic
Limits

Index 1
[o]

Index 2
[o]

DD − Channel

Range 1
M1 0.1434 0.2933

DQ− Channel

Range 1
M1 0.1000 0.0275

M2 0.6850 0.2933 M2 0.1000 0.0275
M3 0.1434 0.2933 M3 0.1000 0.0275

Range 2
M1 3.3768 0.8468

Range 2
M1 4.0439 0.9543

M2 5.6160 0.8468 M2 4.0439 0.9543
M3 3.3768 0.8468 M3 4.0439 0.9543

Range 3
M1 34.9287 9.6789e-05

Range 3
M1 146.8829 0.0393

M2 34.9064 9.6789e-05 M2 146.8829 0.0393
M3 34.9287 9.6789e-05 M3 146.8829 0.0393

QD − Channel

Range 1
M1 3.3930 0.6654

QQ− Channel

Range 1
M1 0.0615 0.2955

M2 2.7708 0.6654 M2 0.0615 0.2955
M3 3.3930 0.6654 M3 0.0615 0.2955

Range 2
M1 65.7566 6.9509

Range 2
M1 3.0579 0.8741

M2 33.8798 6.8721 M2 3.0579 0.8741
M3 65.7566 6.9509 M3 3.0579 0.8741

Range 3
M1 146.9335 0.0159

Range 3
M1 34.9293 1.8959e-04

M2 157.9920 2.6368 M2 34.9293 1.8959e-04
M3 146.9335 0.0159 M3 34.9293 1.8959e-04

Sensitivity Variable: ω

The index analysis of the numerical assessment of ω is presented in Tables 6.17 and 6.18.
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Figure 6.12: M6 Small-Signal Impedance Sensitivity: ω

• DD-Channel, DQ-Channel and QQ-Channel

– Range 1, 2 and 3 Same as in the previous case, it can be noted that the resulting
indexes are similar to the ones of the case of mp in DD-channel, DQ-channel and
QQ-channel, specially for index 1. The main difference between the sensitivities of
mp and this case is the results of index 2, where slightly higher results are obtained.
Nevertheless, it still shows that the asymptotic models represent precisely the non-
dependency of the impedance with respect to this parameter.

• QD-Channel

– Range 1, 2 and 3 In this channel, the results are similar to the ones of the case
of nq. Hence, the same conclusions can be made.

In this case, it can be observed that M2 represents effectively the shape of the impedance
graphs as well as the low dependency of the small-signal impedance with respect to changes
in ω.
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Table 6.17: Magnitude Graphs Indexes Results: ω
Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB] Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB]

DD − Channel

Range 1
M1 0.1506 1.1751

DQ− Channel

Range 1
M1 2.7568 1.1854

M2 2.6601 0.3034 M2 2.6609 0.3138
M3 0.1506 1.1751 M3 5.9954 1.1854

Range 2
M1 0.6675 0.2116

Range 2
M1 1.5107 1.0146

M2 1.3882 0.1081 M2 1.4167 0.1746
M3 0.6675 0.2116 M3 4.7493 1.0146

Range 3
M1 5.3199 0.0040

Range 3
M1 2.5046 1.4209

M2 5.3199 0.0040 M2 2.5244 0.7326
M3 5.3199 0.0040 M3 3.7068 1.4209

QD − Channel

Range 1
M1 44.7578 6.7185e-04

QQ− Channel

Range 1
M1 0.1949 1.2228

M2 0.0343 6.7185e-04 M2 0.1949 1.2228
M3 44.7578 6.7185e-04 M3 0.1949 1.2228

Range 2
M1 22.5006 0.3777

Range 2
M1 0.6601 0.2217

M2 7.9098 0.3777 M2 0.6601 0.2217
M3 22.5006 0.3777 M3 0.6601 0.2217

Range 3
M1 2.5470 1.4253

Range 3
M1 5.3200 0.0040

M2 2.5603 0.7337 M2 5.3200 0.0040
M3 2.5470 1.4253 M3 5.3200 0.0040

Table 6.18: Phase Graphs Indexes Results: ω
Channel Frequency

Range
Asymptotic

Limits
Index 1

[o]
Index 2

[o] Channel Frequency
Range

Asymptotic
Limits

Index 1
[o]

Index 2
[o]

DD − Channel

Range 1
M1 0.1366 0.4935

DQ− Channel

Range 1
M1 0.0943 0.0129

M2 0.6668 0.4054 M2 0.0943 0.0129
M3 0.1366 0.4935 M3 0.0943 0.0129

Range 2
M1 3.2939 1.4475

Range 2
M1 3.8474 0.4660

M2 5.4319 0.8818 M2 3.8474 0.4660
M3 3.2939 1.4475 M3 3.8474 0.4660

Range 3
M1 34.9277 0.0264

Range 3
M1 146.8133 5.6074

M2 34.9061 0.0344 M2 146.8133 5.6074
M3 34.9277 0.0264 M3 146.8133 5.6074

QD − Channel

Range 1
M1 3.5343 2.4154e-04

QQ− Channel

Range 1
M1 0.0914 0.5081

M2 2.9122 2.4154e-04 M2 0.0914 0.5081
M3 3.5343 2.4154e-04 M3 0.0914 0.5081

Range 2
M1 65.1915 1.3507

Range 2
M1 3.1708 1.5090

M2 34.6623 1.3207 M2 3.1708 1.5090
M3 65.1915 1.3507 M3 3.1708 1.5090

Range 3
M1 146.9187 5.6769

Range 3
M1 34.9282 0.0262

M2 157.5303 5.7073 M2 34.9282 0.0262
M3 146.9187 5.6769 M3 34.9282 0.0262

Sensitivity Variable: rC

Tables 6.19 and 6.20 present the index analysis of the numerical assessment of the rC
variable.
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Model 2 Asymptotic Boundaries Model 3 Asymptotic Boundaries
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Figure 6.13: M6 Small-Signal Impedance Sensitivity: rC

• DD-Channel
– Range 1 In this frequency range, both M1 and M3 have a slightly better perfor-

mance with respect to index 1 than M2, but presents considerably higher index 2
value than the latter.

– Range 2 In this frequencies, M2 has slightly worse performance than the other
models with respect to index 1, but a slightly better with respect to index 2.

– Range 3 As expected, all models have almost the same indexes values, similar as
in previous cases.

• DQ-Channel
– Ranges 1, 2 and 3 M1 and M2 present almost the same index 1 and index 2,

having a better performance than M3 in all the frequency ranges.
• QD-Channel

– Range 1, 2 and 3 Regarding indexes 1, the results are similar to the presented
for mp, hence the analysis is analog. In the case of index 2 it is shown that the
small-signal impedances of both the asymptotic models and the full-order model
are not sensitive to changes in the value of rC .

• QQ-Channel
– Range 1, 2 and 3 In this case, the asymptotic models describe a poor perfor-

mance, specially with respect to index 2, as the curves of the full model present
high dependency with respect to values of rC , specially at low values.
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From the aforementioned results, it can be noted that M2 describes effectively the behavior
of the small-signal impedance (specially regarding the sensitivity represented by index 2),
with the exception of the QQ-channel, where the high dependency between the impedance
and changes in rC is not correctly predicted.

Table 6.19: Magnitude Graphs Indexes Results: rC
Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB] Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB]

DD − Channel

Range 1
M1 1.5369 9.4692

DQ− Channel

Range 1
M1 2.6270 0.0015

M2 2.6140 0.0733 M2 2.6219 0.0015
M3 1.5369 9.4692 M3 5.8656 0.0015

Range 2
M1 1.0048 2.3192

Range 2
M1 1.4026 8.2008e-04

M2 1.6190 2.1588 M2 1.3975 8.2008e-04
M3 1.0048 2.3192 M3 4.6412 8.2008e-04

Range 3
M1 5.3177 0.1339

Range 3
M1 2.5044 7.7678e-06

M2 5.3177 0.1339 M2 2.5057 7.7678e-06
M3 5.3177 0.1339 M3 3.6402 7.7678e-06

QD − Channel

Range 1
M1 44.7578 0.0104

QQ− Channel

Range 1
M1 9.2680 23.2138

M2 0.0342 0.0052 M2 9.2680 23.2138
M3 44.7578 0.0104 M3 9.2680 23.2138

Range 2
M1 22.4707 0.0096

Range 2
M1 1.0359 2.4625

M2 7.8872 0.0072 M2 1.0359 2.4625
M3 22.4707 0.0096 M3 1.0359 2.4625

Range 3
M1 2.5463 4.6972e-05

Range 3
M1 5.3177 0.1339

M2 2.5467 4.6972e-05 M2 5.3177 0.1339
M3 2.5463 4.6972e-05 M3 5.3177 0.1339

Table 6.20: Phase Graphs Indexes Results: rC
Channel Frequency

Range
Asymptotic

Limits
Index 1

[o]
Index 2

[o] Channel Frequency
Range

Asymptotic
Limits

Index 1
[o]

Index 2
[o]

DD − Channel

Range 1
M1 0.0533 3.3699

DQ− Channel

Range 1
M1 0.0922 4.9322e-05

M2 0.2961 2.5658 M2 0.0922 4.9322e-05
M3 0.0533 3.3699 M3 0.0922 4.9322e-05

Range 2
M1 3.0050 15.2400

Range 2
M1 3.7964 0.0022

M2 4.9773 7.9946 M2 3.7964 0.0022
M3 3.0050 15.2400 M3 3.7964 0.0022

Range 3
M1 35.3356 0.5448

Range 3
M1 146.8813 1.1572e-04

M2 35.3392 0.5448 M2 146.8813 1.1572e-04
M3 35.3356 0.5448 M3 146.8813 1.1572e-04

QD − Channel

Range 1
M1 3.5343 2.1064e-05

QQ− Channel

Range 1
M1 72.4482 146.5629

M2 2.9122 2.1064e-05 M2 72.4482 146.5629
M3 3.5343 2.1064e-05 M3 72.4482 146.5629

Range 2
M1 65.0506 0.0157

Range 2
M1 10.1809 24.3032

M2 34.6510 0.0156 M2 10.1809 24.3032
M3 65.0506 0.0157 M3 10.1809 24.3032

Range 3
M1 146.9302 4.4966e-05

Range 3
M1 35.3361 0.5448

M2 157.8378 0.0077 M2 35.3361 0.5448
M3 146.9302 4.4966e-05 M3 35.3361 0.5448

Sensitivity Variable: LC

Finally, in Tables 6.21 and 6.22 are presented the index analysis of the numerical assess-
ment of the LC variable.

96
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Figure 6.14: Model 6 Small-Signal Impedance Sensitivity: LC

• DD-Channel
– Range 1 and 2 In this frequency ranges the behavior of the indexes are similar

to the presented for rC , hence the analysis can be analogized.
– Range 3 As expected, all models have almost the same indexes values, similar as

in previous cases. However, unlike the results presented for rC , here a relatively
high index 2 is presented, mainly produced by the resonance introduced by the
LCL-filter.

• DQ-Channel
– Ranges 1, 2 and 3 M1 and M2 present almost the same indexes 1 and 2. Despite

having a considerably better performance than model 3, the indexes of these mo-
dels are still slightly higher than previous cases, specifically with respect to index
2.

• QD-Channel
– Range 1, 2 and 3 With respect to indexes 1 and same as previous cases, the

results are similar to the presented for mp, hence the analysis is analog. In the
case of index 2 it is shown that higher results are obtained, because of the effects
of the LCL-filter, as presented in Figure 6.14.

• QQ-Channel
– Range 1 In this case, for lower frequencies, the asymptotic models describe a poor
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performance, specially with respect to index 2, as the curves of the full Mpresent
high dependency with respect to values of LC , specially at low values.

– Range 2 and 3 For medium and high frequencies, a good performance is presented
by both index 1 and 2 of the asymptotic models with respect to the magnitude of
the impedance, having in consideration the deviation produced by the LCL-filter.
Nevertheless, a worse performance is presented with respect to the phase graphs.

Consistent with previous results, M2 is the one that better describes the characteristics of
the small-signal impedance, with the exception of the QQ-channel. Having in consideration
the deviations produced by the peak resonances, the magnitude graph is accurately and
precisely determined by this model. With respect to the phase graphs, bigger indexes were
obtained for higher frequencies, due to the deviation presented by the full-order model.

Table 6.21: Magnitude Graphs Indexes Results: LC
Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB] Channel Frequency

Range
Asymptotic

Limits
Index 1
[dB]

Index 2
[dB]

DD − Channel

Range 1
M1 2.2553 14.0066

DQ− Channel

Range 1
M1 4.0405 4.7685

M2 3.9071 4.4628 M2 4.0354 4.7685
M3 2.2553 14.0066 M3 7.9802 8.0735

Range 2
M1 0.7795 2.5607

Range 2
M1 2.0616 2.3257

M2 1.2975 1.7077 M2 2.0566 2.3257
M3 0.7795 2.5607 M3 6.0013 5.6305

Range 3
M1 6.0665 5.1283

Range 3
M1 3.0016 4.6075

M2 6.0665 5.1283 M2 3.0042 4.6075
M3 6.0665 5.1283 M3 3.9439 4.0946

QD − Channel

Range 1
M1 46.0072 9.5357

QQ− Channel

Range 1
M1 3.3124 15.4503

M2 0.0342 0.0068 M2 3.3124 15.4503
M3 46.0072 9.5357 M3 3.3124 15.4503

Range 2
M1 23.1787 8.5326

Range 2
M1 0.7795 2.8182

M2 8.1664 3.7163 M2 0.7795 2.8182
M3 23.1787 8.5326 M3 0.7795 2.8182

Range 3
M1 3.0561 4.6698

Range 3
M1 6.0665 5.1283

M2 3.3794 5.3132 M2 6.0665 5.1283
M3 3.0561 4.6698 M3 6.0665 5.1283

6.3. Reference Frame Angle Sensitivity

As stated before, it was assumed for the obtained results that δ ≈ 0. However, this
is not true, as it should be computed as presented in (2.16). Despite this, as microgrids
and distribution systems in general present highly resistive lines, voltage phase angles does
not deviate considerably, as in [34], where a modified IEEE 33-Bus distribution system is
simulated, obtaining a deviation of less than 1 degree at every busbar.

In Figures 6.15 and 6.16 are presented the sensitivity analysis where the angle δ is forcedly
evaluated from −10 to 10 degrees, ignoring (2.16), in order to identify the effects of changing
the voltage angle, without modifying the impedance by the effects of changes in the voltages
and currents. Figure 6.15 present the complete frequency range while Figure 6.16 focuses on
the low-frequency range. The dashed line corresponds to the impedance value when δ = 0.
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Table 6.22: Phase Graphs Indexes Results: LC
Channel Frequency

Range
Asymptotic

Limits
Index 1

[o]
Index 2

[o] Channel Frequency
Range

Asymptotic
Limits

Index 1
[o]

Index 2
[o]

DD − Channel

Range 1
M1 2.7279 8.1637

DQ− Channel

Range 1
M1 0.1697 0.2304

M2 2.4831 6.4299 M2 0.1697 0.2304
M3 2.7279 8.1637 M3 0.1697 0.2304

Range 2
M1 4.2211 19.4028

Range 2
M1 5.8424 6.9047

M2 5.6646 9.9953 M2 5.8424 6.9047
M3 4.2211 19.4028 M3 5.8424 6.9047

Range 3
M1 40.7906 29.0387

Range 3
M1 146.9061 18.6928

M2 40.8084 29.0744 M2 146.9061 18.6928
M3 40.7906 29.0387 M3 146.9061 18.6928

QD − Channel

Range 1
M1 3.5344 0.0024

QQ− Channel

Range 1
M1 3.6552 10.1781

M2 2.9122 0.0024 M2 3.6552 10.1781
M3 3.5344 0.0024 M3 3.6552 10.1781

Range 2
M1 66.9397 14.3932

Range 2
M1 4.8997 19.3714

M2 32.3382 14.7442 M2 4.8997 19.3714
M3 66.9397 14.3932 M3 4.8997 19.3714

Range 3
M1 146.9908 18.8049

Range 3
M1 40.7914 29.0398

M2 157.4332 27.6882 M2 40.7914 29.0398
M3 146.9908 18.8049 M3 40.7914 29.0398
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Figure 6.15: M6 Small-Signal Impedance Sensitivity: δ (Complete Frequency Range)

It can be noted that the principal affected are the channels DD and QQ, specially in the
low-frequency range. As the angle δ increases, the magnitude of Zdd also increases, while the
magnitude of Zqq decreases. The phases, on the other hand, experience a slight deviation
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Small-Signal Impedance (δ=0)
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Figure 6.16: M6 Small-Signal Impedance Sensitivity: δ (Low-Frequency Range)

Table 6.23: Minimum and Maximum Reference Frame Angle for each Sensitivity Values
Iod Ioq VbD ω rC LC

Base, mp, nq Min Max Min Max Min Max Min Max Min Max Min Max

δ [◦] -0,0359 -1,1978 1,9394 -0,1265 0,1676 -0,0379 -0,031 -0,041 -0,0284 -0,0811 0,0093 -0,0994 0,0272

that converges back to the dashed curve.

In the context of the study case, as the inverter is connected to the defined reference
busbar, the angle δ is defined only by the output currents and voltages of the inverter,
according to (2.16).

In Table 6.23 are presented the corresponding computed δ angles for each minimum and
maximum sensitivity value, including the corresponding reference frame angle for the base
case and for the droop gains, which do not change the angle value when swept.

It can be noted that, considering that the larger reference frame angle value is less than
2 degrees in this case, and based on the results shown in Figure 6.16, the results are barely
affected by changes in δ, as the larger difference generated by | δ |≈ 2 is 0,95 dB.
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Chapter 7

Conclusions

Throughout this work, it was confirmed the hypothesis that sensitivity of droop-controlled
inverters can be analytically characterized by the transfer functions of the linearized reduced-
order inverter models. By treating the linearized small-signal impedances of the simplified
inverter models as MIMO-system transfer functions, approximate log-magnitude asymptotic
curves were computed. As these curves can be constructed only by the zero frequency value,
the poles and the zeros, analytical expressions, involving the internal parameters and the
electrical variables evaluated in the operating point, were developed.

By comparing the differences between the small-signal impedances of the different six
models, an approach about the influence of each subsystem of the inverter in the small-signal
impedance was obtained. It can be concluded that the active-power droop control has a
deeper impact on the QD-channel, as well as affecting the initial value of the magnitude
curve, while the reactive-power droop control impacts the DQ-channel deeper. The inclusion
of the LC-filter generates a peak in the filter resonance frequency, and by considering the
measuring low-pass filter another resonance peak appears in the QD-channel.

Notwithstanding the simplifications, a good characterization of the small-signal impedan-
ces of the full model of the inverter was developed, through the log-magnitude asymptotic
curves of the simplified models, specifically by M2. Despite the presented differences, a good
approach about the impact of each operating variable and internal parameter was obtained,
as validated through a real study case. In general terms, M2 performs the best with respect to
the other models, with the exception of the low-frequency range of the DD-Channel, where
a slightly worse performance is determined by the developed indexes.

The results also indicate that principally is the low-frequency range of the small-signal
impedance that gets affected by changes in the operating conditions, as the high-frequency
range tends to converge to the large-signal impedance. Particularly in the high-frequency
range of the DQ and QD-Channels, a major deviation is present between the impedance
phase angle of the full-order and the simplified models, induced by the LCL-filter resonance
peak.

Additionally, the dependence of the obtained results on the reference frame angle δ was
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analyzed. Changes in δ mainly affect the low-frequency range of the DD and QQ channels,
increasing the DD-channel impedance and decreasing the QQ-channel impedance as δ increa-
se. As in microgrids and distribution systems the lines are mainly resistive, no large voltage
angles are expected, hence the results are not expected to be significantly altered.

Considering the magnitude order of the studied critical parameters, the results could lead
to determine which operating variable has deepest impact on the small-signal impedance.
Hence, this work could lead to improved small-signal stability studies, in which one of the
biggest problems nowadays is the dependence of the small-signal impedance on the changing
operating point, and where the influence of the droop-controlled inverters has barely been
studied.

7.1. Future Work

Despite the promising results of this thesis work, there are still several tasks to keep
working. Particularly, it is necessary to first analyze the results experimentally. It would be
interesting to apply small-signal measuring techniques to compare the computed results of
the Huatacondo case with the real small-signal impedance behavior.

As presented by the indexes results, theQQ-Channel could not be effectively characterized.
Nevertheless, similarities with the results of DD-Channel can be observed. These similarities
must be further explored in order to characterize this channel in particular.

Another interesting aspect is the analysis of the frequency-channel related transfer function
presented in Section 2.5.2. Once the small-signal impedance related channels are characteri-
zed, in order to fully analyze the small-signal stability of the droop-controlled inverter, the
frequency channel must be firstly identified and modeled, and then also characterized in order
to understand its sensitivity to the operating point conditions.

Finally, once the droop-controlled inverter is fully characterized, it would be interesting
to extrapolate these results to a full inverter-driven microgrid. In order to do this, it would
be necessary to also consider the models of grid-forming and grid-feeding inverters, and their
impact on the final microgrid impedance, considering also others microgrid elements and
characteristics, as topology, loads, protections and controllers.
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Appendix A

Numerical Assessment

A.1. M1: Ideal Source

Model 1 Asymptotic Boundaries
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Figure A.1: M1 Small-Signal Impedance Sensitivity: mp
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Model 1 Asymptotic Boundaries
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Figure A.2: M1 Small-Signal Impedance Sensitivity: nq
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Figure A.3: M1 Small-Signal Impedance Sensitivity: Iod < 0
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Model 1 Asymptotic Boundaries
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Figure A.4: M1 Small-Signal Impedance Sensitivity: Iod > 0
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|Z
d
d
| 

[d
B

]

-50

0

50

|Z
d
q
| 

[d
B

]

-22

-20

-18

|Z
q
d
| 

[d
B

]

-22

-20

-18

|Z
q
q
| 

[d
B

]

-50

0

50

Frequency [Hz]

10-3 10-1 101 103

Z
d
d
 [

°]

100

200

300

Frequency [Hz]

10-3 10-1 101 103

Z
d
q
 [

°]

-1

0

1

Frequency [Hz]

10-3 10-1 101 103

Z
q
d
 [

°]

179

180

181

Frequency [Hz]

10-3 10-1 101 103

Z
q
q
 [

°]

100

200

300

I o
q
 [
A

]

5

10

15

20

25

30

35

Figure A.6: M1 Small-Signal Impedance Sensitivity: Ioq > 0

Model 1 Asymptotic Boundaries

|Z
d
d
| 

[d
B

]

-50

0

50

|Z
d
q
| 

[d
B

]

-22

-20

-18

|Z
q
d
| 

[d
B

]

-22

-20

-18

|Z
q
q
| 

[d
B

]

-50

0

50

Frequency [Hz]

10-3 10-1 101 103

Z
d
d
 [

°]

100

200

300

Frequency [Hz]

10-3 10-1 101 103

Z
d
q
 [

°]

-1

0

1

Frequency [Hz]

10-3 10-1 101 103

Z
q
d
 [

°]

179

180

181

Frequency [Hz]

10-3 10-1 101 103

Z
q
q
 [

°]

100

200

300

V
b
D

 [
V

]

215

220

225

230

235

240

245

250

255

Figure A.7: M1 Small-Signal Impedance Sensitivity: VbD

110



Model 1 Asymptotic Boundaries

|Z
d
d
| 

[d
B

]
-50

0

50

|Z
d
q
| 

[d
B

]

-19.1756

-19.1756

|Z
q
d
| 

[d
B

]

-19.1756

-19.1756

|Z
q
q
| 

[d
B

]

-50

0

50

Frequency [Hz]

10-3 10-1 101 103

Z
d
d
 [

°]

100

200

300

Frequency [Hz]

10-3 10-1 101 103

Z
d
q
 [

°]

-1

0

1

Frequency [Hz]

10-3 10-1 101 103

Z
q
d
 [

°]

179

180

181

Frequency [Hz]

10-3 10-1 101 103

Z
q
q
 [

°]

100

200

300

ω
[r
ad

/s
]

300

305

310

315

320

325

Figure A.8: M1 Small-Signal Impedance Sensitivity: ω
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Figure A.10: M1 Small-Signal Impedance Sensitivity: LC

A.2. M2: Active Power Droop-Controlled Source
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Figure A.11: M2 Small-Signal Impedance Sensitivity: mp
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Figure A.12: M2 Small-Signal Impedance Sensitivity: nq
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Figure A.13: M2 Small-Signal Impedance Sensitivity: Iod < 0
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Figure A.14: M2 Small-Signal Impedance Sensitivity: Iod > 0
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Figure A.15: M2 Small-Signal Impedance Sensitivity: Ioq < 0
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Figure A.16: M2 Small-Signal Impedance Sensitivity: Ioq > 0
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Figure A.17: M2 Small-Signal Impedance Sensitivity: VbD
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Figure A.18: M2 Small-Signal Impedance Sensitivity: ω
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Figure A.19: M2 Small-Signal Impedance Sensitivity: rC
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Figure A.20: M2 Small-Signal Impedance Sensitivity: LC

A.3. M3: Reactive Power Droop-Controlled Source
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Figure A.21: M3 Small-Signal Impedance Sensitivity: mp
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Figure A.22: M3 Small-Signal Impedance Sensitivity: nq
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Figure A.23: M3 Small-Signal Impedance Sensitivity: Iod < 0
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Figure A.24: M3 Small-Signal Impedance Sensitivity: Iod > 0
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Figure A.25: M3 Small-Signal Impedance Sensitivity: Ioq < 0
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Figure A.26: M3 Small-Signal Impedance Sensitivity: Ioq > 0
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Figure A.27: M3 Small-Signal Impedance Sensitivity: VbD
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Figure A.28: M3 Small-Signal Impedance Sensitivity: ω
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Figure A.29: M3 Small-Signal Impedance Sensitivity: rC
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Figure A.30: M3 Small-Signal Impedance Sensitivity: LC

A.4. M4: Active and Reactive Power Droop Controlled
Source
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Figure A.31: M4 Small-Signal Impedance Sensitivity: mp
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Figure A.32: M4 Small-Signal Impedance Sensitivity: nq
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Figure A.33: M4 Small-Signal Impedance Sensitivity: Iod < 0
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Figure A.34: M4 Small-Signal Impedance Sensitivity: Iod > 0
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Figure A.35: M4 Small-Signal Impedance Sensitivity: Ioq < 0
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Figure A.36: M4 Small-Signal Impedance Sensitivity: Ioq > 0

Model 2 Asymptotic Boundaries Model 3 Asymptotic Boundaries

|Z
d
d
| 

[d
B

]

-50

0

50

|Z
d
q
| 

[d
B

]

-20

-15

|Z
q
d
| 

[d
B

]

-50

0

50

|Z
q
q
| 

[d
B

]

-50

0

50

Frequency [Hz]

10-3 10-1 101 103

Z
d
d
 [

°]

100

200

300

Frequency [Hz]

10-3 10-1 101 103

Z
d
q
 [

°]

×10-3

-4

-2

0

Frequency [Hz]

10-3 10-1 101 103

Z
q
d
 [

°]

0

100

200

Frequency [Hz]

10-3 10-1 101 103

Z
q
q
 [

°]

100

200

300

V
b
D

 [
V

]

215

220

225

230

235

240

245

250

255

Figure A.37: M4 Small-Signal Impedance Sensitivity: VbD
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Figure A.38: M4 Small-Signal Impedance Sensitivity: ω
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Figure A.39: M4 Small-Signal Impedance Sensitivity: rC
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Figure A.40: M4 Small-Signal Impedance Sensitivity: LC

A.5. M5: Active and Reactive Power Droop Controlled
Source Considering LCL Filter
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Figure A.41: M5 Small-Signal Impedance Sensitivity: mp
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Figure A.42: M5 Small-Signal Impedance Sensitivity: nq
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Figure A.43: M5 Small-Signal Impedance Sensitivity: Iod < 0
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Figure A.44: M5 Small-Signal Impedance Sensitivity: Iod > 0
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Figure A.45: M5 Small-Signal Impedance Sensitivity: Ioq < 0
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Figure A.46: M5 Small-Signal Impedance Sensitivity: Ioq > 0
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Figure A.47: M5 Small-Signal Impedance Sensitivity: VbD
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Figure A.48: M5 Small-Signal Impedance Sensitivity: ω
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Figure A.49: M5 Small-Signal Impedance Sensitivity: rC
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Figure A.50: M5 Small-Signal Impedance Sensitivity: LC
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