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Quantizations on Nilpotent Lie Groups and Algebras
Having Flat Coadjoint Orbits

M. Mantoiu and M. Ruzhansky

Abstract

For a connected simply connected nilpotent Lie gr@uwith Lie algebrag and unitary duals one
has (a) a global quantization of operator-valued symbdisee onG x G, involving the representation
theory of the group, (b) a quantization of scalar-valued Iyt defined orG x g*, taking the group
structure into account and (c) Weyl-type quantizationslbfre coadjoint orbits{Qg | € € @}. We
show how these quantizations are connected, in the casefl@henadjoint orbits exist. This is done by
a careful analysis of the composition of two different typé&ourier transformations. We also describe
the concrete form of the operator-valued symbol quantmatly using Kirillov theory and the Euclidean
version of the unitary dual and Plancherel measure. In tee ohthe Heisenberg group this corresponds
to the known picture, presenting the representation tlieaigpseudo-differential operators in terms of
families of Weyl operators depending on a parameter. Rastilation, we work out a couple of examples
and put into evidence some specific features of the case oélgebras with one-dimensional center.
WhenG is also graded, we make a short presentation of the symtesesds’; , transferred fronG x G
to G x g* by means of the connection mentioned above.

1 Introduction

The article treats pseudo-differential operators asteti® a connected simply connected nilpotent Lie group
G with Haar measurém(z) and Lie algebray. Denoting byg* the dual ofg and byG the unitary dual ofs,
composed of unitary equivalence classses of irreducilfieesentations, one has various pseudo-differential
calculi:

1. A global quantizatiorOp . of operator-valued symbols.(, 11, 12, 26] defined onG x G, making
strong use of the representation theory of the group (5&€3f] for the compact Lie group case). As
an outcome, we get operators acting in function spaces dedim€ , asL?(G) for instance.

2. A quantizatiorOpg, - Of scalar-valued symbols defined Gnx g*, taking the group law into account
and different from the usual cotangent bundle quantizat®nce again one gets operators acting in
function spaces defined @h.

3. Quantization®ed, [37] of all the coadjoint orbits{Q§ cghlée a} . This generalizes the Weyl calcu-
lus, seen as a pseudo-differential theory on the coadjolitscof the Heisenberg group. The emerging
operators act on the Hilbert spagk of the irreducible representatignor on the corresponding space
Hee of smooth vectors.
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To make things clear, let us indicate the basic formula®fgs, ;- andOp._ ¢ .

Recall first that for connected simply connected nilpoteistdroups the exponential magp : g — G
is a global diffeomorphism; its inverse will be denotedlby. Sinceg andg* are dual finite-dimensional
vector spaces, one can start with the familiar Kohn-Nireglfermula

[Py g (FV] (X) = /g/g XYV (X XY (Y ) dYdX, (1.1)

associating to certain functiois g x g* — C operators acting on € L?(g). Then, suitably composing
with the functionsxp andlog at the level of the vectors or of the symbols, one easily esrat the formula

[opg g f)u] (x) = /G / (108 =108Y1) £ (5 X )u(y) dm(y)dX (1.2)
:

inwhich f : G x g* — C andu : G — C are suitable functions. Although x g* can be identified with
the cotangent bundle of the manifol, it is clear that the group structure Gf(or the Lie algebra structure
of g) plays no role and this makes.®) unsuitable for our purposes. It.({), for instance, iff only depends
onX € g*, the operatopp,, .-(f) is just a convolution by the Euclidean Fourier transfornf offhe group
involved in this convolution is justg, +) , leading to a commutative convolution calculus, and thigiswhat
we want.

A better situation occurs if og, instead of the vector sum, one considers the group oper@kioY’) —
X oY :=loglexp(X) exp(Y')] obtained fromG by transport of structure; it is given by the Baker-Campbell
Hausdorff formula, consisting in our nilpotent case of atéimombination of successive commutatorsXof
andY. We are lead to replacé.(l) by

[Opgsge (FV](X) = / / XXX e (X XY (V) dY dX . (1.3)
gJg*
Performing the same compositions wittp andlog , one finally gets instead of (2) the quantization formula
[OpGXg*(f)u] (z) = /G/g*em(’g(ylm)/wf(w,/l’)u(y) dm(y)dX . (1.4)

To be precise, the needed transformationsiare u := vologandf — f :=fo ( log ® idg*) , followed by a
change of variable (the Haar measuretooorresponds to the Lebesgue measurg ander the exponential
map). Now, if f does not depend an € G, one gets the non-commutative calculus of right-convoiuti
operators on the group; see Reméark

Clearly there is another strategy, using the expresxief-Y") in (1.3) and (thus) the expressidog (zy ")
in (1.4). They provide different (but similar) pseudo-differehtcalculi, reflecting once again the (eventual)
non-commutatativity of our setting. Left convolutions amvered this way.

The global group quantization relies on the formula
[Opg, g0)u] (0) = [ [ Tre[ety 0)o. )] uly) dm(y)am(c). 1.9
GJG

involving representation theoretical ingredients. Aligb the elements ot are, by definition, classes of
equivalence, we can treat them simply as irreducible reptetions chosen each in the corresponding class.
We setdm (¢) for the Plancherel measurg, [L3]. The symbolo can be seen as a fami{y (z,¢) | (z,¢) €
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G x a}, whereo(z, ) is an operator in the Hilbert spa@é; of the irreducible representatiagh. Under
various favorable circumstances the ingredientdlif) (make sense and define an operator acting on various
spaces of functions or distributions @én The theory for graded nilpotent groups, as exposednl?], is
already well developed, but many things can be saifl¢ven for unimodular type | locally compact groups.

In [26, Sect. 8] it has been shown that the two quantizat@pgs, z andOpg, - are actually equivalent
in a strong sense, being both obtained from a crossed prétivatgebraic construction, by applying two dif-
ferent (but both isomorphic) types of partial Fourier tfanss in conjunction with the canonical Schrodinger
representation of the crossed prodattalgebra. The first Fourier transform is defined in terms efdh-
ality betweenG and its unitary duaG and relies on the non-commutative Plancherel theorent waddo for
large classes of non nilpotent groups. The second comesidiemtifying G with g by the exponential map,
and then using the duality betwegrandg*. Composing one partial Fourier transfoid f}‘(G@) with the

inverseid ® .%, E,lg*) of the other provides an isomorphisth® % between the two quantizations; they can
be seen as two equivalent ways to represent operators otioiuispaces over a connected simply connected
nilpotent Lie group. Unfortunately, besides being an isgghsm, this composition seems in general rather
hard to use being not very explicit.

However, for a subclass of nilpotent Lie groups, a remaskd#tt occurs, that is the main subject of
the present paper. It is known,[27] that the unitary duaG can be understood via the coadjoint action of
G on g*. Actually there is a one-to-one correspondence (homedmsy) between classes of equivalences
of irreducible representations and coadjoint orbits. Mwueg, the representation is square integrable with
respect to the center if and only if the corresponding caatjorbit is flat; we refer to §, 30] and to our
Subection2.2 for these notions. A given nilpotent Lie group might not hawy flat coadjoint orbit, but if it
does, these types of orbits are generic in a certain sensagcina case the group and the Lie algebra will be
calledadmissible There are examples of nilpotent Lie algebras with flat cgiatjorbits of arbitrary large
dimension; actually for every there aren-dimensional admissible groups. In addition, every n#potie
algebra can be embedded in such an admissible Lie algebEx[4.5.14].

For these admissible groups we prove our main results, €he8r3 and Corollary4.2, that need the
notion of the Pedersen-Weyl pseudo-differential calcullfsis is due to $2] and is briefly exposed in Sub-
section3.1 Let us only say that it is a way to tranform functions or dimttions defined on any coadjoint
orbit (¢ into operators acting on the Hilbert spake of the irreducible representatigrcorresponding to this
orbit. DefiningPed, relies on a special Fourier transform adapted to the cagdjobit, involving a predual
spacewe C g of Q. If flat orbits exist, one can choose the same predual forfétieem. Remarkably, it is
the (2d + 1) - dimensional Heisenberg group, Pedersen’s quantizagiah(ly reformulated) is just the Weyl
calculus on (generid)d - dimensional coadjoint obits, that can be identified with tisual phase-spade™.

It also involves naturally a parametére R \ {0}, which can actually be understood as a labelling of the
orbits.

Returning to the general case, recall our transforma#onsending scalar functions gyi into operator-
valued sections o . Assuming that is admissible”” can be described in the following way:

e Pick a Schwartz functiows : g* — C.
e Consider all the restriction8; = Blq, , where() is the coadjoint orbit corresponding go= G.
e Apply the Pedersen quantization of the orbit to get an opefRad, (By) .

e Then[# (B)|(§) = Ped¢(Bg) for any§ G.



Consequently, at least within the class of Schwartz symligs (o) = Opgy+(f) is equivalent to

o(2,6) = Pede(fls1x0,), VT EG, £€G.

This is an extension to admissible groups of a picture thiansliar for the Heisenberg group. The fact that
this relation cannot hold for groups without flat coadjoirbits is explained at the end of Subsectibf.

We did not use yet the full power of Kirillov's theory. Besgleeing operator-valued, the functions or
sections on the unitary duél are hard to study or to use beca@éself is, in general, a complicated topo-
logical and Borel space, and its Plancherel measuig also complicated and non-explicit. We describe in
Subsectiort.3 how things simplify for admissible groups and how these $finptions are effective at the
level of the global group quantization. The emerging coecpécture facilitates a more detailed analytical
symbolic calculus, theé G dependence of the symbols being now replaced by the depemdera param-
eter belonging to a (large) open subgeof the dual;* of the center of the Lie algebra. This allows us using
Euclidean techniques.

A main tool in a pseudo-differential theory is to define, depeand use a symbolic calculus, in the spirit
of the traditional one introduced (among others) by L. Hanaker in the casé = R". Suitable classe§m
can be found in 0, Sect. 5] for theOp ¢ calculus, ifG is a graded group, and many results mvolvmg
these spaces of symbols are proven. Their definition malesfulockland operators (or sub-Laplacians if
G is stratified) and suitable difference operators actinghie ‘dual variables”. By the combination of partial
Fourier transforms making the calc@p s andOpg,,- equivalent, one can transfer constructions and
results to theOpGXg* setting, but this is quite implicit. If, in additiorG is also admissible, one can use the
more transparent (and interesting) form of the transfaiona#” to get a better understanding. This is done
in our Sectiorb, but the conditions defining‘;’}(; - classes of: x g* still need further investigation.

In Section6 we do some explicit calculations for a two-step four dimenal admissible graded group. It
is shown by direct computations that the relation betw@pp, = andOp, ;- holds. The pseudo-differential
operators are similar to those appearing for the Heiserdrergp; differences appear mainly because now the
center of the Heisenberg algebr&idimensional. Computations of the group Fourier transfand the Ped-
ersen quantizations have simple connections with usudidean Fourier transforms and the parametrized
Weyl calculus.

By using automorphisms, one can make the link between diifecorresponding coadjoint orbits or,
equivalently, between different corresponding irredleciiepresentations. This can be raised to links between
the Pedersen calculi associated to coadjoint orbits tleat@nnected by automorphisms. In particular, if a
family of automorphisms acts transitively on the set of flsadjoint orbits, computations on just one orbit
generate easily formulae for all the others. This appearguintly in the literature, in the form oA*Weyl
calculi” for the Heisenberg group, where actualle R\ {0} is a label for the flat coadjoint orbits. We show
in an Appendix that this can always be done if the Lie algebesjdes being graded, has a one-dimensional
center; = R (a condition not satisfied by our example presented in Seé)io Then the natural dilations
associated with the grading, supplemented by an inversiomct transitively o = R\ {0} and we are
reduced by simple transformations to the case- 1. We also present briefly two examples of such Lie
algebras, without giving explicitly all the calculationthat can be easily supplied by the reader. They are
both graded without being stratified, so, since sub-Lagptaciare not available, we indicated in each case a
homogeneous positive Rockland operator.

The quantizatiorOpg, 4~ for invariant operators has been initiated by Meliv][and further studied
by Glowacki in [L7, 18, 19], and the Weyl type quantizations on nilpotent groups haenbanalysed by a
different approach by Manchof4, 25]. Invariant operators on two-step nilpotent Lie groupsenbgen also



studied by P9]. Non-invariant pseudo-differential operators on theddaberg group have been analysed in
[1], with further extensions to graded nilpotent Lie group$lif, 11].

2 Framework

We gather here some notions, notations and conventiorlsiding the coadjoint action, its orbits and their
predual vector spaces. Flat coadjoint orbits are discusssame detail.

2.1 General facts and coadjoint orbits

For a given (complex, separable) Hilbert spateone denotes bl (# ) the C*-algebra of all linear bounded
operators irf{ and byB?(#) the bi-sided*-ideal of all Hilbert-Schmidt operators, which is also abitt
space with the scalar producd, B)gz ) := Tr(AB").

Let G be a connected simply connected nilpotent Lie group witheintenterZ and Haar measura . It
is second countable, type | and unimodular. On the unitagaf @wf G one has the Mackey Borel structure
and the Plancherel measutie Plancherel's Theorem holds][ The elements o6 are equivalence classes of
unitary irreducible strongly continuous Hilbert spaceresgntationslin this article we will make a deliberate
convenient confusion between classes and elements thasegp them.

Let g be the Lie algebra o€ with center; = Lie(Z) andg* its dual. If X € gandX € g* we set
(X |X) := X(X). We also denote byxp : g — G the exponential map, which is a diffeomorphism. Its
inverse is denoted blpg : G — g. Under these diffeomorphisms the Haar measur& @orresponds to a
Haar measuréX on g (normalized accordingly). It then follows tha?(G) would be isomorphic td.”(g) .
For eactp € [1, o0] , one has an isomorphism

Exp

LP(G) — LP(g), Exp(u) :== uoexp

with inverse .
LP(g) =& LP(G), Log(v) :=volog .
The Schwartz space®(G) andS(g) are defined as ing| A.2]; they are isomorphic Fréchet spaces.
ForX,Y € gwe set
X oY :=loglexp(X)exp(Y)].

Itis a group composition law o, given by a polynomial expression i, Y (the Baker-Campbel-Hausdorff
formula). The unit element BandX*® = — X is the inverse ofX with respect to .

Associated to the (unitary strongly continuous) represtéont £ : G — B(#,), the space of smooth
vectors
HE = {pe € He | £()pe € C(G, He) }

is a Fréechet space in a natural way and a dense linear sebepat; which is invariant under the unitary
operatoré(x) for everyx € G. We denote bwg“’ the space of all continuous antilinear functionals?lc)‘éﬁ>

and then we have the natural continuous dense inclugigfs— H¢ — H, ™.
Now consider the unitary strongly continuous represemtativo {: G x G — B[B?(H)]| defined by

(f X 5)(951,962)T = §(m1)T§(w2)_1, le,wg S G, VT € BZ(,Hg) .



The corresponding space of smooth vectors is denotéi By )> and is calledhe space of smooth operators
for the representatio. One can prove thadt(#¢)> is only formed of trace-class operators. Actually |]
we obtain continuous inclusion maps

B(He)™ < B (He) = B(He) =~ [BY(He)]" — [B(He)™]" = B(He) ™.
The adjoint actionq, 27] is

Ad: Gxg—g, Ad.(Y) ::i

o ‘t:(] [ac exp(tY)x_l)]

and the coadjoint action & is

Ad*: Gxg" —g", (z,Y)—Ad,(Y): =YoAd,1.
Denoting by

inn:GxG—=G, (r,y)r inng(y) :=azyz !
the action ofG on itself by inner automorphisms, one has
Ad, =logoinn, cexp, Vaxe€G.
Pick U € g* with its corresponding coadjoint orbfe(/) := Adg(U) C g*. The isotropy group & is
Gy:={z e G|Ad;(U) =U}
with the correspondingsotropy Lie algebra
gu=Lie(Gy) ={X €g|Uocadxy =0} D3.

The coadjoint orbit? = Q(U) is a closed submanifold and has a polynomial structure cowgritom its
identification with the symmetric spade/G,,. There is a Schwartz spac¥(2) and a Poisson algebra
structure org* for which the symplectic leaves are exactly the coadjoibtter We refer to 2] for details.

Letn := dim g and fix any sequence of idealsgn

{0}=goCoC---Cogn=9g

such thadim(g;/g;—1) = 1 and[g, g;] C g;—1 forj =1,...,n. PickanyE; € g;\g;j—i1 forj =1,...,n,
so that the set’ := {E1, ..., E,} will be a Jordan-Holder basis in. Of course,g; = Span(Eq,..., E;)
holds for everyj. The set ofump indicesof the coadjoint orbif2 with respect to the above Jordan-Holder
basis is

co={jlogjZoj1+tout=1{1E ¢gj—1+ou}
and does not depend on the choica bkt 2. The correspondingredual of the coadjoint orbif2 [37] is

w:=Span{F; | j €Eeq} Cg

and it turns out that the ma > Y — )|, € w* is a diffeomorphism, explaining the terminology. In
addition, one has the direct vector sum decomposifieng;,+ w .

We recall thatthere is a bijection (even a homeomorphism) betweemd the family of all coadjoint
orbits; we denote by, , with predualw , the orbit corresponding to the (class of equivalence of itiee
ducible representatiofi: G — B(#H,) . Itis not our intention to review the way this bijection isnstructed,;
see b, 27] for excellent presentations. But we do recall recall, imttier use, a concept that is involved in
the construction via the theory of induced representatidiee Lie subalgebran is polarizing (or maximal
subordonatgto the pointi/ € g* if U([m,m]) = 0 and it is maximal with respect to this property. It is
known [6, Th. 1.3.3] that for any point there is at least a polarizifgehra.
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2.2 Flat coadjoint orbits

A coadjoint orbitS2 is calledflat [6, 30] if g;; = 3 for somel/ € ) ; then this will also happen for any other
elementy € Q and thugyy is an ideal . The flatness condition is equivalent with itsesponding irreducible
(class of) representatighbeingsquare integrable modulo the centand also to the fact thad = ¢/ + 31 for
someld € g (soitis an affine subspace gf) ; we set

i={Yeg|Y,=0}

for the annihilator of in the dual. The orbit only depends on the restrictiod/dd 3 . If such orbits2 exist,
they are exactly those having maximal dimension.

SetG, for the family of (classes of equivalence) of irreducibl@resentations o which are square
integrable with respect to the center. In many c&&ess void. But in the opposite cases, when flat coadjoint
orbits do exist, the Plancherel measuré&saé concentrated ofi, .

Definition 2.1. A connected simply connected nilpotent Lie gr@upossessing an irreducible uitary repre-
sentation which is square integrable modulo the center lpélicalledadmissible Its Lie algebrag is also
called admissible

For the full theory of admissible groups we refer @i and to [, Sect. 4.5]. These groups are not
necessarily graded]. There are criteria for a nilpotent group to have flat coadjorbits [6, Prop. 4.5.9].

Remark 2.2. When a flat orbif2 exists, we can choose an adapted Jordan-Holder basis.tWe-selim G,
m := dimj and2d := dim 2 ; thus one has = m + 2d. Let{FE,..., Ey, Eyn41, ..., E,} be a Jordan-
Holder basis ofy such that

3 =Span(Ey,...,E,);

the jump indices arém + 1,...,n} . Correspondingly one has
g=3Dw;

the decomposition is orthogonal with respect to the scaladuyrt ong defined by the basis. The same
decomposition is obtained for any other flat orltitere is a common predual for all the flat coadjoint orbits

In the remaining part of this subsection we are going to surimm&ere some results fror,[30]. Let G
be an admissible group and choose a Jordan-Holder b&sis. ., E,,, Eyt1, ..., By} of g as in Remark
2.2. In terms of annihilators and the dual ba&&s, ..., &, Emt1, - -+, En} IN g* ONe has

Span(&1,...,Em) = w! =3

and
Span(Epit, ..., En) = PR

with
g :wT@gT >3 pwt.
Recall the vector space isomorphisms

Gt =wlox — x| e =g /0"

Rather often, below, we are going to use the vector spaemd some of its subsets; in certain situations a
more direct interpretation is through the isomorphic \asi’.
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For anyl/ € g* we define the skew-symmetric bilinear form
Bily:gxg—R, Biy(X,Y):=(X,Y]|U).

If X € 30rY € ;one clearly ha®il; (X,Y) = 0. Let us denote byily; the restriction oBil;; tow x w;
it is non-degenerate if and only if the orlSi(/) is flat. Its PfaffianPf(i/) = Pf(Bily;) € R is defined by the
relation -

PE(U)* = det (Bily;) = det [(By)i j=1....2a]

where N
B,/ := Bilu(Em+i, Bmtj) = ([Emtis Em+j] | U) .

The orbit Q(U) = U + 3T of U is flat if and only if Pf(Z/) # 0. It can be checked thatf(/) only depends
on the restriction off to 3, so we get a function

Pf:5~wl 5 R

(aG-invariant homogeneous polynomial in the variadle w').

Let us set
g :={Ucg | QU)isflat} = {U € g* | PI(U) # 0}.

The family@. of (classes of equivalence) of irreducible representatafiG which are square integrable with
respect to the center is endowed with the restriction of #letépology onG and with the (full) Plancherel
measure. Then Kirillov's homeomorphis@ = g*/Ad* restricts to

Go = gt /Ad*. (2.1)

Using the centey of the Lie algebra (or the common preduglwe are going to give a more explicit form
of (2.1). The subset
wh =W\ PFH0) = ginw'

or, more conveniently, its isomorphic copy
50 =3 \PIH0) ={Z €5" | Pf(Z) # 0}, (2.2)

with the topological and measure-theoretical structunbsiited from the vector space gf plays an impor-
tant role for admissible groups. This is summarised below:

Proposition 2.3. 1. The map N
Eije = Ge, E(Z2):= §z gt (2.3)

(the equivalence class of irreducible representation®eissed by Kirillov’s theory to the flat coadjoint
orbit Q(Z) = Z + ;') is a homeomorhism.

2. The Plancherel measure & is concentrated ofG, . Transported back through the bijecti@, it is
absolutely continuous with respect to the Lebesgue measuyeC 3*, with density2¢d!|Pf(Z)] .



3 Fourier transformations and the Weyl-Pedersen calculus

3.1 Pedersen quantization of coadjoint orbits

The arbitrary coadjoint orbi2 = Q(1/) is homeomorphic to the homogeneous spa¢€;,. SinceG, G,
being both nilpotent, are unimodular, there At -invariant measures dn ; any two of them are connected
by multiplication with a strictly positive constant. We eefto [6, Sect. 4.2, 4.3] for information concerning
the normalization of the invariant measure in order to fitwKirillov’s Trace Formula.

Let us recall the Fourier transformation associated to djoo# orbit ([32]). For ¥ € S(2) we set
T:g—-C, ¥(X):= / e XY (V) dya (),
Q

wherevq is the canonical invariant measure @r{[6]). It turns out thatd € C*°(g) and its restriction to the
predualw is a Schwartz function. The map

Fa:S8(Q) — S(w), Fo(¥):=VY|,

is a linear topological isomorphism calldte Fourier transform adapted to the coadjoint orfit For some
(suitably normalized) Lebesgue measpireonw, its inverse reads

Fo! :S(w) = 8(Q), [Fo'()]() = /ei(x'yW(X) A, (X) .

w

If the coadjoint orbit is associated toe G, we use notations &, we, e, Ae andF¢. Recall that the
preduaku; depends on a Jordan-Holder basis and that the choice ofthagant measure; fixes \¢ andF .
Also recall our identification of an irreducible represéiata with its equivalence class.

If ¢ € S(we) one sets (in weak sense)
Depe(v) i= | w(X)€lexp X)ire(X)
we

and then, forr € S(€)
Ped¢ (¥) := Dep; [Fe(T)] = / /Q e XV W ()¢ (exp X )drye (X)de (X)) .
we 3

We refer to B7] for the properties and the significations of the correspmeé¥ — Ped(¥) and to P, 3, 4]
for various extensions. In particular, it is know#] that we get a commuting diagram of linear topological

isomorphisms
F
S(Qe) —— S(we)

Ped§
Dep,

B(He)™



If ¥ € S(Q), in terms of the trac@r, on B'(H,) one has
Tre [Ped, ()] = /Q U(X)dye(X).
¢

For the Heisenberg group, by suitable adaptations, ondrgetaticular the usual Weyl calculus on any
of the generic coadjoint orbit. See Subsectiomfor anoher explicit example.

Remark 3.1. One also has dequantization formulae as
Dep; " : B(He)™ — S(we),  [Dep; '(9)](X) = Tre[S€(exp X)*]

followed by
Ped, ! = F. "o Dep; " : B(He)™ — S(Q),

[Ped- ()] () = / T [S ¢ (exp V) dA(Y). (3.1)
we
Remark 3.2. N. Pedersen showed iif, Th 4.1.4.] thaPed, extends to a topological isomorphisfi(€2¢) —
B(H¢) > satifying Ped¢ (1) = 1¢, such that fol; € S(€), ¥y € S'(€) the equality
<Ped§(\1’1), Pedg(\1’2)> = \I’g(qfl)

holds in terms of the duality betwe@{H,)> andB(H¢)~>°. If Ped¢(Vy) € B(H¢) (recall thatB(H¢ ) C
B'(H¢)) one even has
TI‘g [Pedg(\l’l)Pedg(\Pg)} = \I’g(qfl) .

3.2 Fourier transformations

Various Fourier integral formulae will be presented bel&ar the momen€ is connected simply connected
and nilpotent; flat coadjoint orbits are not yet needed.

A. There is a Fourier transformation, given by the dualifyg*) , defined essentially by
(Zag- ) (X) = / e XM (X) dX.
g

It is a linear topological isomorphisn¥, o« : S(g) — S(g*) . Using a good normalization of the Lebesgue
measure oly*, it can be seen (after extension) as a unitary n#ap- : L*(g) — L%(g*) .

B. Composing with the isomorphisni&p andLog one gets Fourier transformations

FG,g = Fgg 0 Exp: S(G) = S(g"), 3“6;* :=Logo 9’9_791* :S(g") = S(G),

(Ze.gu) (X) Z/e‘“X'XW(epr)dX =/e‘i<1°g”>u(x)dm(x),
g G
(ﬁg’;*w)(x):/ei<logzx>w(2€)d2€. (3.2)

g*

These maps can also be regarded as unitary isomorphisms odtilespondingd.?-spaces.
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C. One also has the unitary group Fourier transform
R D
Feg i LA(G) —» #X(C) = /a B?(He) di(€)

defined onL!'(G) N L?(G) as
(Zegu)©) 1= [ u@é(a)dma),

with inverse (on sufficiently regular elemeriis
(Zoi0)@ = [ Treli@)e(lam(e). (3:3)

It also becomes an isomorphism of Schwartz-type spaceg gimply dAefinesﬁ(@) to be the image of (G)
through.7 = with the transported topological structure; the spa€¢G) is difficult to describe explicitly

(see 1L9]).
3.3 The transformation #

We are now interested in the mapping
W= T g0 Top S » (6

and its inverse. Ifj is Abelian, identifying@ with g*, it can be seen as the identity mapping. For reasons that
will be exposed below (see Remaks for instance), we will restrict ourselves to admissibleug®. As we

will see, in this case?” basically consists in restricting the element&yfy*) to all the coadjoint orbits and
then applying the corresponding Pedersen quantizatiorniseise restrictions

Theorem 3.3. LetG be an admissible group.
(i) For B € S(g*) and¢ € G set
B := Blg, and b(§) = Ped (By) .
Thenb(§) € B(H¢)> and one has
b="(B)e Z(G). (3.4)
(i) Conversely, let
b={b¢)| G} e G
For every¢ € Gand everyt’ € (¢ one has

(7 =1(b)](x) = / e VIV Tre [b(€)€(exp Y)* ] dAe (V) . (3.5)

we

We are going to need two lemmas. The first one gives a firsteratieak) control on the mag —
Ped¢(Bg) . The direct integral Banach spacg' (G) is defined similarly to?(G) , but with respect to the
norm

191l @=L 1960 s dR(E)-

11



Lemma 3.4. For any B € D(g*) = C>°(g*) one has(-) € #'(G) N #2(G).

Proof. SetK := supp(B) (a compact subset @f) . Recall thaG is homeomorphic to the quotient gf by

the coadjoint action: one hag —» 0"/ adr = G. Then for{2¢ not belonging to the (quasi-)compact subset
K' := q(K) of g*/aq , meaning thaf2e N K = (), one hasB|o, = 0. Thusb({) = 0 if £ belongs to the

complement of the homeomorphic compact imagé&6fn G.

The Plancherel measure is bounded on compact suliset8.B.4], so one getse€ %' (G) N #2%(G) if
& Pedg(Bg) is essentially locally bounded. Since the Plancherel nreasuconcentrated on the set of
generic flat orbits, only the corresponding irreduciblerespntationg are important. Then local bounded-
ness follows easily from3, Th. 4.4] and the fact tha® € D(g*) . O

Lemma 3.5. For anyC' € S(g*) one has
LI [ cladi]ane = [ e (3.6)
GLJO g*

Proof. See |5, Pag. 153-154] or42, Page 100]. O
One can now prove Theore@n3.
Proof. (i) Taking into account the way is defined, the identity = #'(B) is equivalent to
ycjé(b) = Feq-(B).
It is enough to assumB € D(g*) ; then clearlyB: € D(£2¢) C S(§2¢) and thus
b(€) € B(He)™ C B (He) C B*(He) -

In the computation below we will need to apply formutad) as it is (pointwise). Recall (cf.1f]) that 7 =
restricts to an isomorphism ~ ~ ’
LYG) N A(G) — #(G) n #*(G),

where A(G) is Eymard’s Fourier algebra. In addition,df € %’i(@) N #%(G), the inversion formulad.3)

~

holds pointwisely. But it is shown in Lemn@a4thatb(-) € £'(G) N %?(G), so we have pointwisely
(7] = [ trebere]ante). @)

We work withz = exp X ; by Remark3.2, there is a unique distributio@gﬁ) € §'(9) such that
£(exp X) = Ped (2%),

with
Tre [b(§)&(exp X)] = Tre[Pede (Be)Pedg (9F)] = @ (Be)

Computing the Pedersen symt@ﬁf) of £(exp X)) in general seems to be difficult. But@& is admissible,
sinceG \ G, is m-negligible, in 3.7) we can concentrate on flat orbits and use a result fréth [
Assuming thate = U + 3T is flat, let us decompose

12



(see Remark.2). Note thatexp X = exp X exp X,, ; higher order terms in the BCH formula are trivial,
sinceX; is central.The central charactex, : Z — T of the irreducible representatignis defined by

£(z) =xe(2)le, Vzel

and is given byx¢(z) = ¢*{°8 214 (independent on the choice of the pdint Q) ; thus we have

E(exp X) = &(exp X;)E(exp Xy,) = ei<Xﬁlu>§(eprw) .
Then (some steps will be explained below)
Tre [Pede (Be)&(exp X)| = ei<Xé‘u>Tr5 [Depg (Fe(Be))& (exp Xo) |
= ei<Xé\M>(|:£(B§))(_Xw)
_ X ) / 5l B () e (X) (3.8)
¢

= [ B ().
3

The second equality is equivalent to Lemma 4.1.2 fr6aj,[relying on the deep resulB8p, Th. 2.1.1]; note
that Dep, corresponds to the notatidh of Pedersen, and the extra constantdf, [Lemma 4.1.2] is due to
different conventions. For the last equality recall that = U/ + 3T, which allows one to write for each
X e Qg

(X5 U) + (X | X) = (X | X) + (X, | X) = (X | X).

Replacing this above and also recallirggg) and @.2), one gets
[ﬁgé(b)] (expX) = /A. [ /Qée“X'/ng(X)de(X)} di(€)
- [ B = [F B e X).

Now, once the identity = #/(B) is proven, the fact thak € .7 (G) is clear from.#(G) := F
the definition of .

e [S(G)] and

(i) To compute” !, seen as the inverse & already made explicit at point 1, we have to use the

~

dequantisation formulae of Remaskl: First recall thab € .(G) means by definition that
b= ffc’a(c) , with ¢ e §(G).

In [21, Th. 3.4] it is shown that for every the mapc — [,Q’G é(c)] (&) sendsS(G) (surjectively but not
injectively) toB(H¢)> . Thereforeb(£) belongs tdB(H¢)> and we can construct

B := Ped '[b(¢)] € S(€%)

given by 8.1). ForX' € g* we putB(X) := B¢(X), selecting such that¥ € ¢ . Then @.1) leads finally
to the formula 8.5) for B = % ~1(b). O

Let us briefly indicate how weaker formof the point (i) of Theoren3.3follows from a result in $2].

13



Proof. Using our notations, Theorem 4.2.1 i#] states that for every € S(G) and everyg € G which is
square integrable modulo the center, one has

[ﬁGﬁ(u)} (&) = Ped¢ [ Fg g-(uoexp) |QJ .

Settingu := [.Z, - (B)] o log = .7¢ ..(B) we get for suck

7 (B)I(€) == T e[ Fa g (B)](€) = Pedg (Bla ) =: b(€).

Thus we checked th&¥ (B) andb defined in Theorer.3coincide on the set of square integrable modulo the
center irreducible representationslowever, it seems rather hard to go further. Neither regulproperties

~

of the implicitly defined space”(G), nor the smoothness éfare obvious a priori. O

Corollary 3.6. Let¢ be an irreducible representation of the admissible gréupthat is square integrable
modulo the center, and let

Ew) = /G v(@)€(x)dm(z), v € S(G),

its integrated form acting on the Schwartz space. One has

ker (§) = {v € S(6) | [Fa ()] lo, =0}
Proof. Let v := .7 ..(B) € 8(G) with B = ¢ ¢+(v) € S(g*) and set as abovigr) := Ped, (B|q,) for
everyn € G . With these notations, and using our res@ly, one has
W) = (Foa[Zop-(B)])(©) = b(e).
Since the mayred, is an isomorphism, one h@v) = Oifand only if b(¢) = 0 and if and only ifBlo, =
FE& (v)a, =0. O

Remark 3.7. Working with a general connected simply connected nilpokés group G, Ludwig [23] de-
fines a (two-sided self-adjoint) idedl of L!(G) to begood if Exp(7) is an ideal inL'(g) with the obvious
convolution multiplication. Let

£:8(G) = B(He)™, &(v) = [Fgg(0)] () Z/G’U(w)i(w)*dm(w)

)

the integrated form of € G. Then, for an elemerg of G, he shows thalkerg~ is good if and only if€), is
an affine subspace and if and only if

ker (€) = {v € L'(G) | F g+ (v)|a, = 0} .

It is easy to see that this forbids Theorén3 to hold for non-admissible groups. This has its roots in the
form of the Pedersen symb@lgﬁ) of &(exp X) for general¢ and it is probably related to the necessity of
introducing a modified Fourier transformation instead/qf ;- .

4 Various quantizations and their mutual connections

In this section we discuss different quantizationsGoand relations among them.
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4.1 Alist of quantizations

One has various quantizations on the "phase spagesj* > (X, X),G x g* > (z,X), G x G> (x,8):

D%W'L%gxf>%Bﬁﬂ<ﬂ

4.1
(O (W) = [ [ 0508 2y @
and ) ors
Opgxgs : L (g x g*) = B°[L*(G)],  Opgyq- (f) = Exp o Opy, g (f) 0 Log
_ 4.2
[Opgxg // iflog(y~x |X (logaj X) ( )dm(y)dX ( )
and the one we prefer
OPGrge = opng (Exp ®id) : L*(G x g*) — B*[L*(G)]
4.3
[OpGxge(f // ilog(y™"2)|X) ¢ [z, X)u(y) dm(y) dX . (4.3)

Remark 4.1. Taking into account Schwartz’s Kernel Theorem and the waioua Schwartz spaces were
defined, one gets topological linear isomorphisms

Opgug : S(g x g*) = B?[S(G),8(G)],  Opgug : S'(g x g*) — B*[S(G),S'(G)]

Opgxg- : S(G x g°) = B?[S'(G),S(G)], Opgyg- : S'(G x g*) — B*[S(G),S'(G)] -

Finally, recall that we were interested in the global grouprtization [.0, 26] (irreducible representations
are still identified to corresponding equivalence classes)

Opg. ¢ : #%(G x G) := L*(G) @ #*(G) — B*[L*(G)]

4.4
[OPGXa(U)U](SC)=/G/aﬂg[ﬁ(y_lw)a(w,ﬁ)]U(y)dm(y)dﬁ(é)- @

4.2 Connections among quantizations

It has been shown iref] thatOp., = andOpg 4+ are also equivalent, for general connected simply condecte
nilpotent Lie groups. Actually one has the following comative diagram of isomorphisms:

L*(G) ® L*(G) a7 L*(G) ® #°(G)

id® Fg g+ W Ope..c
P X q*
I2(G) ® L*(g") —— B[L*(G)]

The reason is that one can write

Op¢,¢ = IntoCVo (id ®9G_,€1) and  Opg,g+ = Into CV o (id ®9G_,£14*) ’
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where, besides the Fourier transformations already inted, Int(K) is the integral operator of kerné{
andCV means composition with the change of variables

cv:GxG—=>GxG, cv(ry):= (:E,y_la:).

Using the isomorphisr#’, for A € L?(G) @ L?(g*) one has
Opg,g[(id @ #) f] = Opgyxq- () (4.5)
This is quite easy to handle for admissible groups, siichas the simple form given by TheoresrS.

Corollary 4.2. Assume tha6 is an admissible group. Fof € S(G x g*) and (z,£) € G x G, let us set
fiz6) € S(Q) through
feo)(X) = f(z,X) forevery X € Q¢,

i.e. f(z,¢) IS the restriction off to the subsefz} x ¢, seen as a functiofe; — C. The expression
7(2,€) = Pede(fin)) = | [Felfiwe)] (V) €lexp ) dre(Y) € B(H)
we
denotes the Pedersen quantization of this symbol, asedciatthe coadjoint orbif): . Then one has
(id ® “//)(f) =0 and Opg, (o) = Opgyg (f) -
Proof. This follows from Theoren3.3and from @.5). O

Remark 4.3. We described the corresponder®: x g*) > f — o0 € .7 (G x @). For the reverse one, we
have to use the dequantization formulae of Ren®aik Suppose we are given

o= {o(x,6) € B(He)® | (,6) € Gx G} € (G xG).
For each(z, &) we construct
fla) = Pedg [o(,6)] € S(%)
given by @.1) and then, for(z, X') € G x g* with X’ € ¢, we put
f(@, X) == fa6(X).

This leads finally to the formula
flz, X) = / 1% Tre[o(z,£)E(exp Y ) [dAe(Y), V(2,X) € Gx Q.
we
Remark 4.4. Obviously one can introduce composition laws

S(Qg) XS(Q&) & S(Qg) s Pedg(\ylﬁg\l’g) = Pedg(\l’l)Pedg(\Pg) s

#oxe

L(Gx G)x.F(GxG) = F(GxG), Opg,a(01#c.e02) :=O0pg,c(01)0p¢, c(02),

S(G % g")xS(6 x g") Y S(G x %), Obgge (fi #axer f2) = P (/1)OPacg(f2)
Denotingid ® # by 20 one has
W(f1 #exg-f2) = W(f1) #gg W(fa), Y f1,f2 € S(Gxg").

One can write explicit (but rather complicated) formulaetfeese composition rules. In the casedyf . ¢,
see [L1] for a detailed discussion. Similarly for involutions. Tes'-algebras and their extensions will be
studied separately.
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Remark 4.5. We make a formal statement about how convolution operaiorS(G) , L?(G) or other func-
tion spaces oi6) fit in the setting above; this can be made rigorous undealslgitassumptions. Let us
set

[Conv(w)u)(w) i= (uxw)(a) = [ gy~ a)dm(y).
It is easy to show that, for suitablé : g* — C, one has
Convp[F¢ 4. (B)] = Convg[F 1(B) olog | = Opgyy«(1® B). (4.6)
Such left-invariant (or similar right-invariant) operesoon various types of nilpotent Lie grougswere

studied in detail in17, 18, 19, 27, 28, 29] and other references.
On the other hand, ir’p, Sect. 7.3] we proved that for convenient sectiboser G one gets

Convg[Z_2(b)] = Opg,g(1®D). 4.7)
Of course, this is compatible with Corollay2. Writing (4.6) and @.7) as

Conv(w) = Opgyy- (1 @ [Fa g+ (w)]) = Opg, (1 ® [Fgg(w)])

one could say that, in particula@pg, - andOp ¢ are two different but related ways to study invariant
operators through symbolic calculi. In the first case thelmyisare scalar and defined on the dual of the
Lie algebra, in the second case they are defined on the umitedyof the group and are operator-valued.
The same atitude towards non-invariant operators leadietiutl quantizations4.3) and @.4) with “variable
coefficients” pseudo-differential operators.

4.3 The concrete Fourier transform and concrete quantizatins

The effect of the constructions and results described irs&tlon2.2 is that in the admissible case, for
many purposes, one can replace the rather abstract an@ss#éae measure spa(;@, r?w) by (3f, M) , Where
F= w} is a subset of a finite-dimensional real vector spaceiaadneasure defined by an explicit density.
Taking advantage of Propositi@n3, if £ is a function oG, , we turn it into a function on; by é(F) =
FoZ. Similarly,Z-1(G) := Go="! is a function orG if G is a function on? . The same works for sections
in fiber bundles over the two spaces. Topological vectorespa€ sections oveB, (as those defined over
but insensible to removing the negligible subééxtG.) are transferred to similar topological vector spaces
of sections ovej; . One has, for instance, the family of Banach spﬁéﬁg,) indexed byp € [1,00), in
particular, the Hilbert space

5
B (51) = /5 B2 (Hz(z)) 2°d!|Pf(2)|dZ .

Supposing that flat coadjoint orbits exist, with generic @ision2d , one has

Foy =20 Fgg: L2(G) = #2(50)
defined as
[Fosz)](2) 1= [ @)z @) dm(z)
with inverse



Remark 4.6. Setting
V= PGy 0 3%_91* ,

one can write down explicit formulae, along the lines of Titeen 3.3. Basically, 7" consists in sending
B € .7 (g") into the family of restrictiong B|z i | 2 € wi = 35} and then into the family of operators

{b(2) == Pede,_(Blzysi) | Z € wl}.
Its inverse is given by
(71 (b)](x) = / eV Tre [b(2)ez(expY) |dAz(Y), VX € Z+;3icyg

A direct consequence is
Corollary 4.7. Choosing the concrete option, one can also define a quaittizat
Opgyx;: : #°(G x 35) — B*[L*(G)],
(O (@) =2'at | [ TEE)0 )5, 2)]uty) dm)PH() a2
This one is connected to the quantizatigasd) and (4.4) by
Opgx;;[(id @ ) (f)] = Opg,gl(id @ #)(f)] = Opgug-(f), [ eS(GxgY),

Opgyy:[(id ® 2)(0)] = Opg, a(0), o€ S(GxG).
We recall that[(id ® £)(0)] (2, Z) = o (x,£z,:) foreveryz € GandZ € 3;.

The next diagram tells us the story

BYG x 3f) id®= (G x @) id@w/ L2(G x g°)
O ~
B’[L*(G)]

5 Symbol classes for admissible graded groups
In this section we discuss symbol classes of Hormandepis ity the case of graded nilpotent groups.

5.1 Admissible graded Lie groups, their dilations and theirRockland operators

We are going to review briefly some basic facts about gradedgtdups. Much more information can be
found in [LO, Ch. 4]; see alsol[4, 33)].

Let G be a graded Lie group. Its Lie algebra can be written as atditen of vector subspaces

g=1m1D - Dy, (5.1)
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where [r;, wy] C w;, foreveryi, k € {1,...,1}, and wherd is such thatv; ., = {0} for i+%k > [. Then
G is a connected and simply connected nilpotent Lie groupukeset

ng :=dimtyg, n:=dimg=mn;+ns+---+ng,
and definghe homogeneous dimension
Q:=n1+2no+---+In;.

We are going to use bas€X, ..., X,,} of g such that for every theny vectors{Xj | ni+-4np_1 <
j<ni+---+ng_1+ nk} generatav;, (we setny = 0 for convenience) .

The multiplicative grougR ., -) acts by automorphisms (callelilations) of the Lie algebraZj.1) by
Di[T(Yv(l),YV(Q), ce ,Yv(l)) = (T‘Vlyv(l),T‘WYv(z) e ,T’Vle(l)) , Tre R+ 5 Yv(k) €y, 1< k < l.

One has
Di[T(Xj):TVij, reR,,1<j5<n,

in terms of thedilation weightsy; if ny +--- 4+ np_1 < j < ny +--- 4+ ny . The dilations on the duagl* of
the Lie algebra are defined by

(X |oili(X)) == (vil,1(X)|X), Xeg,XegreR,.

Since the graded groups are exponential, one can appliodabn the group side, setting

dil, () := exp [oil,(logz)], z€G, reRy. (5.2)
This induces unitary operators @h:= L%(G) by

[Dil(r)u] () := ¥ (wodil,)(z) = r%u(dilr(x)) . (5.3)
Finally, using the duality betwee® andG one makesR , -) act on the unitary dual by

[dil, (€)](x) := €[dil,1(z)], z€G,Ee€G,r>0.

The deliberate confusion between irreducible representa@and their unitary equivalence classes is conve-

nient and harmless.

A Rockland operators a (say left) invariant differential operat® on G such that, for every non-trivial
irreducible representatioh: G — B(H¢) , the operatotl{ (R ) is injective on the subspa(‘}eiéé>O of all smooth
vectors. We prefer them to be homogeneous and positive:dimegeneity reads, using.Q)

Dil(r " )RDil(r) = "R, VreR,.

The degree of homogeneity is a multiple of any of the dilation weights. A left invariahbmogeneous
differential operator is hypoelliptic if and only if it is adgkland operator0, 10], see also]Z] for a detailed
discussion.

Convention: From now on we call simplyRockland operatoa left invariant positive and homogeneous
Rockland operator. These are the only ones appearing bitliswknown that they exist on any graded group
and, in fact, if such an operator exists on a connected siogiyected Lie group, it has to be graded.
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Remark 5.1. Concrete examples of homogeneous degree2p are

R = 2_:1(—1)

where{Z;};-: _, is a basis as in1[, Lemma 3.1.14] (see alsd {]) and p is a common multiple of the
dilation weights. The basis is such thatis v;-homogeneous?y, . . ., Z,, generatgy as a Lie algebra, while
Zw+1,- .-, Zy generate a vector space containjpgg] -

t"ﬁ

9P
S Vi
j Zj ,

Remark 5.2. Very concrete Rockland operators can be written dowstaatified groupswhich are graded
groups for whichv, in (5.1) generateg as a Lie algebra. X3, ..., X,,, } is a basis of the first stratum, ,
the left invarian2-homogeneous negative operator

L:=X{+ - +X2
is calleda sub-LaplacianThenR := — L is a Rockland operator.

It is important to note that Rockland operators are decosmipes For the theory of unbounded decom-
posable operators we refer 6, 31]. Let us fix a positive Rockland operat® , homogeneous of order.
We also setT := (id + R)'/¥. The key fact is that bot® and 7T, acting inL?(G) , become decomposable
operators irL2(a) = fgﬁgdrﬁ(g) after applying unitary equivalence by an (extension of)giaip Fourier
transformation. Thus they are affiliated to the von Neumdgelaa

. @
£(0)= [ BOLo)m(E).
which is isomorphically represented as the left group voariNann algebra
B.[L*(G)] := {T € B[L*(G)] | T commutes with the left regular representation }.

Setting

= Z o~ -1 T ag—1
X = T oRoJGﬁ, T = JG,GOTOJG,a’

one has for instanceZ¢) () = Z(£)#(€) , where it is known thatZ(£) = d§(R) with domain?{, the
represented Sobolev space of ordatefined at {0, 5.1.1]. Of course, each fiber operator acts continuously
on the space of smooth vectat§(R) : Hg — Hg°. For.7 one has

1/v

T(€) = (ide + 2(£))"" = (ide + d&(R)) (5.4)

5.2 The classes]’s

Letus fixg € C5)(G) := Log [ngl(g)] C §'(G) (an intrinsic definition is also posible and other condigion
or function spaces can be used). Then the operator of medtijgn defined byMult,(u) = qu is well-
defined linear and continuous &(G) and inS’(G) . We also set

Ay i= g oMulty 0 ZL e B[#(G)] NB[.7(G)]
and

Ty := Fo g0 Multy o Fg 1. € B[S(g)] NB[S'(g")] -
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It follows directly from the definitions that
Iy = FG,g+ 0 Multy o QG_QI*

= (Feq 0 Q’G_al) o (3%76 o Mult, o fG_é) o (3%76 ° 9{791*) (5.5)
=W "o N oW

It can also be shown that, is the operator of (commutative) convolution withg 4<(¢) coming from the
vector structure of the dual of the Lie algebra, but this wilt be needed.

Certain special functiong were used in 10, 17] to express the symbol class conditions. For multi-
indicesa € N[, besides the usual lengfh| := a3 + a2 + - - - + «, , ONe also usethe homogeneous length
la] == >"_, vkay, in terms of the dilation exponents, ..., v, . Also recall that a basis i has been
denoted by{ X, ..., X,}, leading to the differential operatoss) = X7 := X' ... XJ". Itis shown in
[10, 17] that for everyo € Ny there exists a unique homogeneous polynomjal G — R of degre€ga] such
that

(Xﬁqa)(e) =0a08, YVa,BeN.
These polynomials are involved in Taylor developments a®dul in writing down asymptotic developments
for theOpGXa calculus. Fomr € N, we set

Go(2) i= qolz™h), A%:=A;, and I'*:=T,, .
Assuming that the groug is both graded and admissible, let us fix a positive RocklgperatorR

homogeneous of degreeand recall §.4). By sup, g one denotes the essential supremum dvarith

respect to the Plancherel measure. For fixed numbers R, ,p € [0,1] such thatp < §, the classes
;}}5(G x G) were defined in]0, 12] by seminorm-conditions of the form

m — —m+pla]=5[B]+y B a -y
HJHSM;@,M) ilellc) ?elg Hy(@ [(Xz ®A%)o](2,) 7 () HB(H§)< o
involving all the multi-indicesy, 3,~v € N,

We now writeo = (id @ #)f € S(G x a) and try to see what the corresponding conditions on
f e Z(Gx g*) are. We recall that, by Corollar.2, one hag((id ® #)g) (z, &) = Pede (¢lzyxq, ) - Onthe
other hand, by.5),

(XP@AY) o(idaW)=(do#)o (X aT?).

It follows immediately that

[ F W5, ooy @xaey = [ (Id @) fllsmm o
o . _ 5.6
= sup || 7)Y ped [(XE ® T ) fyx0 )7 (€) ”HB : 60
(2,£)eGXG (#e)

Remark 5.3. The spaces of symbols
MG x g7) == (id @ #)TLSTH(G x G) € S (G x g¥)

can be defined along these lines, and they play the same rohefquantizatio®pg, ;- as ;’75(G X @) played
for the Op., ¢ - calculus in L0, 17). This relationship allows one to transfer all results kmoter Op .. &

to this setting. Hopefully, in a future paper, we are goingitoertake the non-trivial task of rephrasing the
conditions 6.6) in a more tractable form, to write down explicit results the pseudo-differential calculus
onG x g*, to compare it with existing (but only left or right invari@rcalculi and to apply it to some concrete
problems.
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6 A four dimensional two-step stratified admissible group

In this section we work out an example of a four dimensionakstep stratified admissible group and demon-
strate the discussed quantizations in this setting.

6.1 General facts
Let g := R? be the Lie algebra with the bracket
(g0, 5,), (¢, 0", 8", 1)) == (0,0,qp"— ¢p, 0(qp’ — qp)) ,
whereé € R is a real number. It is a four-dimensional step two Lie algelith center
3=1{0} x {0} xR xR.
The canonical basis being denoted{lsy, P, S, T'}, the single nontrivial bracket is
[Q,P] =S+ dT.

Remark 6.1. (i) For convenience, we flipped the variables. A direct cgpmndence with the notations of
previous sections, where the central variables stay fistjdwequire the transformatiai, p, s, t) —

(87t7q7p) -

(i) Here and subsequently, in vector spaces with specifesisbone considers the Lebesgue measures
canonically associated to these bases.

The corresponding connected simply connected Lie groGp=sR* with BCH-multiplication

1 1)
(q,p. s, t)e(q,p, s, 1) = (q +¢,p+p,s+s+ §(qp’— qp),t+t' + §(qp’— q'p)> :

The unitis0 := (0,0,0,0) and the inverse ofg, p, s,t) is (—q, —p, —s, —t) . In this realization, the maps
exp and log are simply the identity oR*. ClearlyG is stratified with dilations

(q.p,5.t) = (rq,rp,r’s,7°t), 1> 0.
Remark 6.2. One has two short exact sequences:
1 »R*=7Z G- R 1,

with ®(q,p, s,t) := (¢, p) , and2-cocycle

1 1)
a:RExR* - Z, c((g,p),(dp)) = <§(qp’— qp), 5(ap' = q'p)> :

and
1—>R—>GLH1—>1,

with ¥ (q, p, s,t) := (g, p, s) and2-cocycle

AN |

1)
co:Hy xHi = R, ci1((¢.p,9), (d,p)8)) == §(qp/—q’p)-

The second one presents our nilpotent Lie group as a certegigon of the3-dimensional Heisenberg group
by R. Itis split (actually a direct product) if and onlydf= 0.
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6.2 The coadjoint action
The adjoint action is
Ad 4o p0.50.10) (@ P 5. ) = (q0, Do, S0, t0)(, D, 5, t)(q0, Po, S0, t0) "
1 1)
= <CJ0 +4,p0 Py 50 + 5+ 5 (qo0p— gpo)s to + t + S (qop — qpo)>'(—qo, —po; —S0, —to)
= (¢.p, 5+ qop — qpo,t + 6(q0p — qpo)) -

For the dual we sai*:= R* > (p, 9,5, 7) = pQ + 9P + ¢S + 77T with duality

(g, 5,8)| (p,0,5,7)) == qp+ pI + s + t7.

The anihilator of the center is
3T =R xR x {0} x {0}.

The canonical bilinear form reads

Bil(pg..r) ((a,0,5.1), (¢ 0,8, 1) = ([(@.p, 5, 1), (¢, 0, ', )] | (p.9,5,7))

(6.1)
= (qp'— ¢p)s + 8(qp'— dp)T,

and it is non-degenerate when restrictedto< {(0,0)} .
Now we can compute the coadjoint action:

<(q,p, 5, 1) ‘ Ad;{%mmso,to)(pa197§77_)> = <Ad(_q07_p07_807_t0)(Q>p> s,t) ‘ (p>19>§>7_)>

= <(q,p, s — qop + qpo.t — (qop — qpo)) | (p, 9,5, ¢)>
= q(p +pos + poT) + p(V — gos — dqoT) + 55 +tT,

meaning that

Ad;{qg,pg,so,to)(pﬂ 197 S, T) - (p + PosS + 5p07—7 19 — qoS — 5q07—7 S, T)
- (P7 197 S, T) + (p()[§ + 57—]7 —q0[§ + 57—]7 07 0) .

The fixed points have all the form
(p, 9, =0T, 7), p, 0, 7€R.
If ¢ # —é, the coadjoint orbit passing throudh, ¥, <, 7) is flat and2 - dimensional:
Qo) = (p,0,6,7) —|—R2><{(0,0)} = (p,ﬁ,c,T) 4—3l = (O,O,g,T) —|—3l.
It only depends orfs, 7) and can be written in the form
Q,ry = (0,0,5,7) +R2x{(0,0)} = {(p,9,5,7) | p,¥ € R}.

The restriction ofAdqu0 po,s0,t0) O such an orbit is the translation Wyos + dpo7, —qos — dgo7,0,0), SO

the invariant measures are all proportional to the trarisg@dimensional Lebesgue measui@iv (cf. [6,
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Th. 1.2.12] for a more general statement) . So they can beewidis(s, 7)dpdv for positive numbers(s, ) .
The good normalisation, leading to the canonical meagyie | = dv( ) used repeatedly above, is

Py, (p,9) = (2fs + 67]) " dpdd) . (6.2)

This can be seen rather easily by inspectifgd[3], but it is also explained in Remask3.
The isotropy group and algebra of the generic po(mts?, S, T) are, respectively,

Gpier = {(0,0}xR?, g9 ={(0,0)} xR* =3.

According to the general theory or t6.{), the canonical bilinear form can be seen as a map from
3 = {(0,0)} xR? = R? to the space of antisymmetric bilinear (non-degeneratepgoon the common
pre-dualw = R?x {(0,0)} = R?, given by

Bil(.- ((¢,p), (¢, ")) = (a0’ — d'p)s + 6(qp’ — qp)T.
The determinant islet Bil . ;) = (¢ 4 07)?, S0
Pf(o,7) =¢+dr=0 <<= ¢=—I7,

and the irreducible representations that are square atilgmodulo the center (or, equivalently, the flat
orbits) are labelled by

5o ={(c,7) ER?* | ¢ # —67}.

The transported Plancherel measureydis concentrated on this set and it has a density with respebtet
2-dimensional Lebesgue measure:

du(s,7) = 2|Pf(s, 7)|dodr = 2| + o7|dsdr.

Remark 6.3. One can combine this form of the Plancherel measure with Lefto compute the canonical
measures on our flat coadjoint orbits. Using the concrelesatian, (3.6) becomes

L1 ctoosnii o)z briaodr = [ Clo.o.cr)dpdvdsar
R2 Q7 g*
from which 6.2) follows.

6.3 Irreducible representations

The way to construct the irreducible representation& @ exposed in a general setting i [Sect. 2] and
will be applied without many comments.

We first determine the irreducible representations atth¢bi¢he fixed points. Ifp, 9, —d7, 7) is such a
fixed point, the entire Lie algebrais polarizing (maximal subordinate). The associated atara

X(p,’ﬂ,—(STﬂ') : G = g — C’ X(p,’ﬂ,—(STﬂ') (q’p’ S, t) = ei((q7p,s,t)\(pﬂ97—5’r,7’)> — e’i(qp-‘,—pﬂ-i—(t—(ss)T)

is the representation we were looking for. We recall thaseéheepresentations have no contribution to the
Plancherel measure. #f ¢ L'(G), then its group Fourier tranform computed in these charadjast
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complex numbers) can be expressed as a restriction dftimensional Euclidean Fourier transform:
(Fog ) X(put.-67m)) = /R U9 5 DX (0, ~b7.7) (=0 =, =, —)dqdpdsdt

= / u(vav87t)e_i(qp—i_pﬂ—i_(t_és)ﬂdepdet
R4
= (fR4u) (p, 9, =d7,7).

In search of the irreducible representations correspgnttinthe flat orbits, we fix the (Abelian) Lie
subalgebra
m:= {0} x R3 = Span(P,S,T).

It is clearly polarizing for all these flat orbits, since itshtne right dimensionlimm = %(dimg + dim 3)
and, by 6.1), one has

Bil(y9.¢,r) ((O,p, s,t),(0,p, 8, t')) =0. (6.3)
If (¢,7) € 35,i.e. ¢ # —d7, the character
Xer) M=m =T, xn(0,p,s,t)= e 0Pal00,57))  gilsstin)
serves to induce the irreducible representation
Tie,r) = |nd(MTG;X(<ﬂ_)) :G— B('H((,T)).

As model Hilbert space{, ., we are going to usé?(G/M) = L?(R) . We will need the computation

1 1)
(90,0,0,0)e(q,p,s,t) = (qO + 40,8 + 540p, t+ §poq>

1 1)
= (0,29, §+qop + 54p,t + dqop + §qp)°(qo +¢,0,0,0) .

Then the general theory gives fprc L?(R) the expression of the corresponding irreducible reprasient

1 1)
(7@, 0, 5,8)0] (90) = X(e,r) (0,p, s+ qop + 5ap; t + qop + §qp><p(qo +q)

(6.4)
— ¢ [sc-i—tT-i- (qop-i-%qp) (§+6T)}

©(q0+q)-

Remark 6.4. Letr > 0; denoting bydil ; the unitary dilation operato(dil\/; ©)(q0) == /ro(y/Tqo) in
L?(R), one checks easily that

T(re,rr) ((va S, t) © dll\/F = dll\/F © 7T-(§,7')(\/;qv \/;pv rs, Tt) = dll\/F O T(¢,r) [\/;((va S, t)] .

Settingq for the operator of multiplication with the variable ¥ (R) , i.e. (q¢)(q) := q(q) , the four
infinitesimal generators are

dﬂ'(gﬂ_)(Q) =0, dﬂ'(gﬂ_) (P) = i(g +07)q, d?T(§7T)(S) =1iold, d?T(§7T) (T) =irld.
Thus the repesented version of the canonical sub-Laplatian@? + P? is
drc (L) = 0% — (s + 67)*q>.
The general theory tells us th&t?>° = S(R).

(7))
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6.4 The group Fourier transform and the Pedersen calculus

We are going to make use of Weyl's quantizatias][with a parametei € R, := R\ {0} in one dimension

[Weyly (v)¢](q0) = /R /R 6i(q°‘q’"'y(n,Aq0; q)tp(q)dqdn-

In computing the group Fourier transform and the Pedersantmation, we only treat the (generic) flat
orbits Q. -y = (0,0,¢,7) +R2x{(0,0)}, wheres # —7. One denotes by the usual Euclidean Fourier
transform inR*.

Proposition 6.5. If X := ¢ + 07 # 0 and (say)u € S(G), then(.Z_ z u) (7)) is an integral operator in
L?(R) with kernel

A
k(e (90, 9) = [(Id @ Fga)u] (QO -4 E(QO + Q)7§77')

and also a Weyh-pseudo-differential operator with symb@]—"R4u) ]sz{(w)} , l.e. itis given by

[(gc,a ) (7(.7) %) (20) = /R/Rei(q‘)_q)77 (Frau) (77, : 4_257 (g0 + q),s, T) ©(q)dq.

Proof. If u € L'(G) andy € L?(R), then

[(Feew) ()¢ (@) = /R Jula:p,s,1) (7.1 (=@, —p, —s, —t)] (qo0)dgdpdsdt

— /R4u(q7p’ s, t)e_i [s<+t7+ (qop—%qp) (<+57)] (P(QO _ q)dqdpdsdt

= / [(1d ® Frs)u] (qo —q,* 257 (90 + ), 0, T)@(Q)dq
R

= / / O~ (Fau) (77, ° J;éT(qo + q),c,T)so(Q)dq,
R JR

finishing the proof. O

Proposition 6.6. If (¢,7) € 35, then Pedg . = Ped( ;) only depends on the combinatian= ¢ + 7 # 0
and one has

Ped( ;) = (2|c + 67]) " Weyl 5, -
Proof. We start with the Fourier transform adapted to the coadjmibit. For any¥ € S(Q(W)) , Seen as a
function of (p, ) € R?, and for any(q, p, s, t) € g, we have by §.2) that
W(g,p, s,t) = / e are DTN (p,9) (2] + 67]) ~ dpdd)
Q,m)

and then, since the common predualis= R? x {(0,0)},

[Fo., (0)] (a.) = ¥(g.p.0,0) = (2ls + 7)) /Rf_“q”*”“w(p, 9) dpdd,
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so (after some identifications), we essentially arrivedeomore at the Euclidean Fourier transform. Then,
taking into account@.4) and the definition of the Pedersen quantization ¥fog S(Q(C,T)) one can write

[Ped( ) (¥)¢l(q0) = (2|5 + 67]) " /R ) /R . e PN (p ) [ 1 (q.p,0,0)¢](q0)dadpdpdid
= (2ls + 5TI)_1/Rz /Rz e tr0) g (p, 9)e (00 +392) 7)o 4 ) dpdgdpdd
= 2717 / ( / e[ (w30) 7] dp) e U (p, ) (qo + q)dgdpd?

R3 R
= \2>\!_1/R/R e~ W (p, Mqo + q/2)) (g0 + q)dpdp

= |2A|_1/R/[R ei(qo‘q)”\l’@,kqo;q)w(Q)dqdp-

The forth equality is a formal but easy to justify standarct.fa O

6.5 Quantization
Therefore, as in Corollarg.7, the concrete form of the global group quantization is
(0PG5 (B)u] (¢, 1', 8", 1)
1 0
= 2/ / TT[W«,T) (q/— 0,0 —p,s'—s— 5 (ap' — dp),t' —t — S (ap' -~ q’p))E(q’,p’, Sl,t/;C,T)]
R4.JR2 2 2
u(Q7p7 S, t)‘g + 57—’d§d7’ dqdpdsdt .

(6.5)
On the other hand, the quantization Grx g* indicated in 4.3) reads now
Opgxg(fu] (¢, s, 1) = / / il(d=a)p+(p'—p)0+(s'=5)s+(t—)7] o~ (ap'—ap)(0+57)
Opexg(Nul (07 50) = | ] (6.6)
(.08t p, 0,6, 7)ulq, p, s, t)dgdpdsdt dpdydsdr.
Remark 6.7. By (3.8) and 6.2, one has
1 0
Tr [ﬂ-(o’ﬂ') (q/_ qap/_ p, S/_ S = i(qp/_ q/p)a t/_ t— §(qp/_ q/p)) Ped(g,ﬂ') (f(q/apla 3/7 t/7 5 0, T))]

= (2|0 + 57.’)—1/2 ei<q’—q,p’—p78’—8—%(qp’—q%),t’—t—%(qp’—q’p) | (p’ﬂ’g’T)>f(q',p', s t'p, 0,0, T) dpdV
R
— @lo + 57! / TP o D) (o 1 0,0, 7) dpd).
Replacing this in 6.5)]1% for
E(q/,p/,s/,t/;a, 7‘) = Ped(mT) (f(q’,p',s/,t’; e, 0, 7')) ,

one recoversq.6). This is a confirmation of Corollarg.2in this simple particular case.

7 Appendix: Admissible graded Lie algebras with one-dimensnal center

Here we discuss several examples of admissible graded aigogrand the appearing elements of their rep-
resentatons.
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7.1 Automorphisms and Lie algebras with one-dimensional cger

An automorphism of the Lie algebra generates many othenaarfgthisms that interact well with the coadjoint
picture. Letc : g — g be such an automorphism; then another one is defined by

gt gt (X[F(X) = (X)X
The exponential map being an isomorphism, one can applyutioen®rphism on the group side, setting
c(z) :=exp[c(logz)], z€G. (7.1)
Finally, using the duality betwee® andG one makes the automorphism act on the unitary dual by

[€(©))(z) =¢[c(z)], 2€G, €.

The deliberate confusion between irreducible representatind their unitary equivalence classes is harm-
less. If we adopt the representation point of view, note ttaHilbert spaces af andc(¢) are the same.

Lemma 7.1. Letc be an automorphisms of the Lie algelyra

(i) Foreveryz € G one has

Adyoc=coAdc-1(,), ¢ oAd;=Adi o (7.2)

(i) The automorhisnt* sends coadjoint orbits in coadjoint orbits.
(iiii) If mis a polarizing subalgebra faw € g, thenc(m) is a polarizing subalgebra for*(1/) .
(iv) If Gis admissible, the automorhiseh sends flat coadjoint orbits in flat coadjoint orbits.
Proof. (i) Using (7.1) and notations from Subsecti@nl, one has

Ad, o ¢ =logoinn,oexpoc¢ = logoinn,ocoexp
= logocoinn.-1(,)0exp = cologoinnc-1(,)0 exp
=co Adcf1(x) s
which shows the first identity in7(2). The second one follows by duality.
(ii) The second identity in4.2) implies immediately that
c* (Qu) = Qc*(u) , YU e g* (7.3)

(i) Straightforward proof. seed, Prop. 1.3.6].

(iv) Recall that the flat orbits are of the forfh= Z + 3, with Z € 3% . So, by .3), itis enough to show
thatc* : g* — g* leaves;, invariant. Clearly;* is invariant under the automorphisiit use for instance the
fact that the centey is invariant under any automorphism @f The pointsZ € 3% are characterized by the
conditionPf(Z)? = det (Bilz) # 0. But

Bile(z) = Bilz o (¢ 'x ¢7")

and this implies the invariance gf . O
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The point (ii) tells us that we have a well-defined bijection g*/Ad* — g*/Ad*. It can be shown that
this map is compatible with the one acting on the level of thigamy dual:

(éa) = &), Y€ g/Ad"
This combined with (iv), or a direct proof, shows in the adsib&e case tha‘f(@.) C G,.

Remark 7.2. Having the form(;, = U + 3 for somel/ € 3%, the flat orbits can be obtained from each other
through translations. But these translationg’imare not corresponding to Lie algebra automorphismg of
and they do not match our setting.

If we know in advance that two irreducible representatior@dn are connected by an automorphism,
i.e. n =7¢(&), this is valuable: they both act on the same Hilbert spacg,oae can be easily constructed
in terms of the other. Consequently, the Pedersen quaotizdted: andPed, are also directly connected.
This is particularly effective when an automorphism grouafsdransitively on a relevant family of (classes
of) irreducible representations. Under favorable circiamses, this can be used in the framework of the
quantizations we studied dhx G andG x g* respectively.

Let us just explorghe case wheg is admissible and graded and the cenjesf the Lie algebra is one-
dimensional This happens for the Heisenberg groups and for the examp&&sbsectiong.2and7.3, but it
does not hold in Sectioi. When this is the case, thgh is also one-dimensional and, since the Pfaffian is
a homogeneous polynomal, it is easy to see hat 3*\{0} . The dilation group om generates, as above,
groups of dilations on*, g* /Ad*, G, G, G,, 3* andj; . In particular, in3; =~ R\ {0} there are two orbit® ; .
Another automorphisnmo(X) := —X (or, equivalentlyjnv(z) = ="' at the group level) connects the two
orbits, because it acts as*(Z) = —Z on the dual of the center @f. Thusl € R\ {0} can be connected
with any other element igi; and one has

& =& odil, if >0 and & =& odil.oinv if r<0. (7.4)

Consequently, in this case, if one of the generic irredecibbresentation (corresponding to one of the flat
orbits) is computed, the others are easily generated usindilations and eventually an inversion. We recall
that, by abuse, representations has been identified withuhiary equivalence classes; thus, in terms of
representations,/(4) merely means equivalence and not equality.

7.2 Afive dimensional three-step graded admissible group

For a first exampled, Ex. 5.7], the Lie algebra is generated {¥,, E1, F», E5, E4}, with the non-trivial
brackets
(B4, Br| = [E3, Eo] = Eo,  [Ey, B3] = Ey.

So it can be seen & with bracket

[(q0. q1, 92, 43. q4), (P, P1, P2, P3: P4)| := (qap1 — q1pa + 43P2 — G203, @aP3 — 43p4, 0,0,0) .

One hadg, g] = R? x {(0,0,0)} = Span{Ey, E1} and the center is one-dimensional:

5= [lo.9],8] =R x {(0,0,0,0)} = Span{Fp}.
The Lie algebrg is graded by

g = 101® 1y® tog = Span{FEs3, B4} @ Span{E1, Ey} @ Span{Ep},
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so the dilations are

0il-(q0, 41,42, g3, q1) == (r*qo. 7*q1,7%q2, 7q3,7qs) , T E R,

Since this Lie algebra is not stratified, there is no sub-&eiph to use. A Rockland operator can be computed
by applying Remark.1 Our basis satisfies the assumptions, s{¥e Es, 4} generate§ as a Lie algebra
and{Ey, E1 } generate$g, g linearly; thusn = 5 andn’= 3. One may take = 6 and

R = —ES + E3* + B

is al2-homogeneous Rockland operator.
For the dual we set

g :=R" > (po, p1, p2, p3. p1) = poo + P1E1 + p2&a + P33 + pals .
The anihilator of the center is
37 = {0} x R = Span{&}, &, &3, &4},
while the dual of the center identifies to
3" =R x{(0,0,0,0)} = Span{&} .
On the corresponding connected simply connected Lie goapg = R* one has the multiplication

(q07 q1,492, 493, (]4)'(1907]91,172,}737]94)

1 1
= (QO +po + 5((14191 — q1pa + @3p2— @2p3) + ﬁ(%— P4)(qap3— q3pa),

1
a+p+ 5((141)3— q3p4),q2 + P2,q3 + P3,qa +p4) -

One easily computes the coadjoint action
dquo,q1,q2,q37q4))(p0’pl’p2’p3’p4)
= (po, p1 — qapo, P2 — 3P0, p3 + (a2 — 43 /4)po — qup1, pa + (q1 + (1/4)qaqs)po + asp1) -

The fixed points -dimensional coadjoint orbits) are those situated in thesgace{(0,0)} x R3.
Other @-dimensional) coadjoint orbits are

(07P1707070)+{(07070)} XR27 PlER\{O}
The flat (generic4-dimensional) coadjoint orbits have all the form
Q(PO,O,O,O,O) = QPO = {PO} X R4 = {(PO; 0,0, 070)} + {0} X R4 = {(PO, 0,0, 070)} +3J_

for some fixedog # 0.
The canonical bilinear form reads

Bil ) p1.p2.ps.p0) (205 415 G2, G3, @), (Po, 1, P2, P3, P4))
=(qap1— q1p4 + q3p2— q2p3) po + (q4P3 — q3p4)P1
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and is non-degenerate when restricted to the common predea{0} x R* C g of the flat orbits if and only
if po # 0. Now, if (pg,0,0,0,0) € 3*, one has
Bﬂ(po,o,o,o,O) ((QL 42,3, q4), (p1,p27p3,p4)) = (qap1— q1pa + q3P2— q2p03)p0 »

SO
Pf2(p0) = Pf2 (p07 07 07 07 0) = det Bil(PO,O,O,O,O) - pé )

confirming once again that
3¢ = R\{0} = (R\{0}) x {(0,0,0,0)}.

Based on PropositioB.3, the concrete Plancherel measure;dis

dp(po) = 8|Pt(po)ldpo = 8|pol*dpo -

7.3 Another five dimensional three-step graded admissiblergup

We present briefly a similar case, that is mentionedjriEik. 5.8]; it is different, slightly more complicated,
but still similar to the one treated above. The non-trivialisture equations are

(B4, B3] = Ea,  [Ey, Eo]l = By, [Ey, By = [E3, Es] = Ey,
corresponding to the bracket

[(90, 915 92,435 44), (Pos 1. P2: P3: P4)]| = (q3p2 — q2p3 + qap1 — q1P4; @aD2 — G2P4, 4aP3 — q3p4,0,0) .

The cente = Span(E)) is once again one dimensional, so the relevant square aftiegmodulo the center
irreducible representations are generated by dilationsthe inversion from a given one; we leave their
computation to the reader. The dilation is defined by the {staatified) grading

g = Span{E4} @ Span{FE3} @ Span{Ey} ® Span{E;} ® Span{E},
i.e.
il (Ej) :=7""E;, r>0,;j=0,1,2,34.
Applying Remarks.1with n =5,n' =2, Z; = Es_jandp = 3-4-5 = 60, one checks easily that
R = B 4 B
is a homogeneous Rockland operator of ori).
It is not difficult to see that the flat coadjoint orbits areddéd bypy # 0 :
Qo = {£0,0,0,0,0} + 3 = {(po, p1, 2, p3, p1) | 1, P2, p3, pa € R}
The canonical bilinear form
Bil ). p1.p2.p5.00) (205 415 G2, G3, @), (Po, 1, P2, P3, P4))
=(g3p2 — @203 + qap1 — q1pa)po + (qap2 — G2pa)p1 + (qap3 — q3pa)p2

is most relevant foZ = (0070,070,0) S 3* and X = (07q17Q27Q37Q4)7Y = (07p17p27p37p4) cw (the
commun predual of all the flat coadjoint orbits), leading to

Bil,, ((q0, q1, 92, 43, 94), (Po, D1, P2, D3, P1)) = (g3p2 — q2P3 + qap1 — q1p4)po -
So, as in Subsection 2, the Plancherel measure gh= R\ {0} is

dp(po) = 8[Pf(po)|dpo = 8 det Bil(y, 0.0,0,0)dp0 = 8|po|*dpo -
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