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Quantizations on Nilpotent Lie Groups and Algebras
Having Flat Coadjoint Orbits

M. Măntoiu and M. Ruzhansky∗

Abstract

For a connected simply connected nilpotent Lie groupG with Lie algebrag and unitary dual̂G one
has (a) a global quantization of operator-valued symbols defined onG × Ĝ , involving the representation
theory of the group, (b) a quantization of scalar-valued symbols defined onG × g∗, taking the group
structure into account and (c) Weyl-type quantizations of all the coadjoint orbits

{
Ωξ | ξ ∈ Ĝ

}
. We

show how these quantizations are connected, in the case whenflat coadjoint orbits exist. This is done by
a careful analysis of the composition of two different typesof Fourier transformations. We also describe
the concrete form of the operator-valued symbol quantization, by using Kirillov theory and the Euclidean
version of the unitary dual and Plancherel measure. In the case of the Heisenberg group this corresponds
to the known picture, presenting the representation theoretical pseudo-differential operators in terms of
families of Weyl operators depending on a parameter. For illustration, we work out a couple of examples
and put into evidence some specific features of the case of Liealgebras with one-dimensional center.
WhenG is also graded, we make a short presentation of the symbol classesSm

ρ,δ , transferred fromG× Ĝ

toG× g∗ by means of the connection mentioned above.

1 Introduction

The article treats pseudo-differential operators associated to a connected simply connected nilpotent Lie group
G with Haar measuredm(x) and Lie algebrag . Denoting byg∗ the dual ofg and byĜ the unitary dual ofG ,
composed of unitary equivalence classses of irreducible representations, one has various pseudo-differential
calculi:

1. A global quantizationOp
G×Ĝ

of operator-valued symbols [10, 11, 12, 26] defined onG × Ĝ , making
strong use of the representation theory of the group (see [34, 35] for the compact Lie group case). As
an outcome, we get operators acting in function spaces defined onG , asL2(G) for instance.

2. A quantizationOpG×g∗ of scalar-valued symbols defined onG× g∗, taking the group law into account
and different from the usual cotangent bundle quantization. Once again one gets operators acting in
function spaces defined onG .

3. QuantizationsPedξ [32] of all the coadjoint orbits
{
Ωξ ⊂ g∗ |ξ ∈ Ĝ

}
. This generalizes the Weyl calcu-

lus, seen as a pseudo-differential theory on the coadjoint orbits of the Heisenberg group. The emerging
operators act on the Hilbert spaceHξ of the irreducible representationξ or on the corresponding space
H∞

ξ of smooth vectors.
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To make things clear, let us indicate the basic formulae forOpG×g∗ andOp
G×Ĝ

.

Recall first that for connected simply connected nilpotent Lie groups the exponential mapexp : g → G

is a global diffeomorphism; its inverse will be denoted bylog . Sinceg andg∗ are dual finite-dimensional
vector spaces, one can start with the familiar Kohn-Nirenberg formula

[
opg×g∗(f)ν

]
(X) =

∫

g

∫

g∗
ei〈X−Y |X 〉f(X,X ) ν(Y ) dY dX , (1.1)

associating to certain functionsf : g × g∗ → C operators acting onν ∈ L2(g) . Then, suitably composing
with the functionsexp andlog at the level of the vectors or of the symbols, one easily arrives at the formula

[
opG×g∗(f)u

]
(x) =

∫

G

∫

g∗
ei〈log x−log y|X 〉f

(
x,X

)
u(y) dm(y)dX (1.2)

in which f : G × g∗ → C andu : G → C are suitable functions. AlthoughG × g∗ can be identified with
the cotangent bundle of the manifoldG , it is clear that the group structure ofG (or the Lie algebra structure
of g) plays no role and this makes (1.2) unsuitable for our purposes. In (1.1), for instance, iff only depends
onX ∈ g∗, the operatoropg×g∗(f) is just a convolution by the Euclidean Fourier transform off . The group
involved in this convolution is just(g,+) , leading to a commutative convolution calculus, and this isnot what
we want.

A better situation occurs if ong , instead of the vector sum, one considers the group operation (X,Y ) 7→
X • Y := log[exp(X) exp(Y )] obtained fromG by transport of structure; it is given by the Baker-Campbell-
Hausdorff formula, consisting in our nilpotent case of a finite combination of successive commutators ofX
andY . We are lead to replace (1.1) by

[
Opg×g∗(f)ν

]
(X) =

∫

g

∫

g∗
ei〈(−Y )•X|X 〉f(X,X ) ν(Y ) dY dX . (1.3)

Performing the same compositions withexp andlog , one finally gets instead of (1.2) the quantization formula

[
OpG×g∗(f)u

]
(x) =

∫

G

∫

g∗
ei〈log(y

−1x)|X 〉f
(
x,X

)
u(y) dm(y) dX . (1.4)

To be precise, the needed transformations areν 7→ u := ν◦log and f 7→ f := f ◦
(
log⊗ idg∗

)
, followed by a

change of variable (the Haar measure onG corresponds to the Lebesgue measure ong under the exponential
map). Now, iff does not depend onx ∈ G , one gets the non-commutative calculus of right-convolution
operators on the group; see Remark4.5.

Clearly there is another strategy, using the expressionX•(−Y ) in (1.3) and (thus) the expressionlog(xy−1)
in (1.4). They provide different (but similar) pseudo-differential calculi, reflecting once again the (eventual)
non-commutatativity of our setting. Left convolutions arecovered this way.

The global group quantization relies on the formula

[
Op

G×Ĝ
(σ)u

]
(x) =

∫

G

∫

Ĝ

Trξ
[
ξ(y−1x)σ(x, ξ)

]
u(y) dm(y)dm̂(ξ) , (1.5)

involving representation theoretical ingredients. Although the elements of̂G are, by definition, classes of
equivalence, we can treat them simply as irreducible representations chosen each in the corresponding class.
We setdm̂(ξ) for the Plancherel measure [9, 13]. The symbolσ can be seen as a family{σ(x, ξ) | (x, ξ) ∈
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G × Ĝ} , whereσ(x, ξ) is an operator in the Hilbert spaceHξ of the irreducible representationξ . Under
various favorable circumstances the ingredients in (1.5) make sense and define an operator acting on various
spaces of functions or distributions onG . The theory for graded nilpotent groups, as exposed in [10, 12], is
already well developed, but many things can be said [26] even for unimodular type I locally compact groups.

In [26, Sect. 8] it has been shown that the two quantizationsOp
G×Ĝ

andOpG×g∗ are actually equivalent
in a strong sense, being both obtained from a crossed productC∗-algebraic construction, by applying two dif-
ferent (but both isomorphic) types of partial Fourier transforms in conjunction with the canonical Schrödinger
representation of the crossed productC∗-algebra. The first Fourier transform is defined in terms of the du-
ality betweenG and its unitary dual̂G and relies on the non-commutative Plancherel theorem, valid also for
large classes of non nilpotent groups. The second comes fromidentifying G with g by the exponential map,
and then using the duality betweeng andg∗. Composing one partial Fourier transformid⊗ F

(G,Ĝ)
with the

inverseid ⊗ F
−1
(G,g∗) of the other provides an isomorphismid ⊗ W between the two quantizations; they can

be seen as two equivalent ways to represent operators on function spaces over a connected simply connected
nilpotent Lie group. Unfortunately, besides being an isomorphism, this composition seems in general rather
hard to use being not very explicit.

However, for a subclass of nilpotent Lie groups, a remarkable fact occurs, that is the main subject of
the present paper. It is known [6, 22] that the unitary dual̂G can be understood via the coadjoint action of
G on g∗. Actually there is a one-to-one correspondence (homeomorphism) between classes of equivalences
of irreducible representations and coadjoint orbits. Moreover, the representation is square integrable with
respect to the center if and only if the corresponding coadjoint orbit is flat; we refer to [6, 30] and to our
Subection2.2 for these notions. A given nilpotent Lie group might not haveany flat coadjoint orbit, but if it
does, these types of orbits are generic in a certain sense; insuch a case the group and the Lie algebra will be
calledadmissible. There are examples of nilpotent Lie algebras with flat coadjoint orbits of arbitrary large
dimension; actually for everyn there aren-dimensional admissible groups. In addition, every nilpotent Lie
algebra can be embedded in such an admissible Lie algebra [6, Ex. 4.5.14].

For these admissible groups we prove our main results, Theorem 3.3 and Corollary4.2, that need the
notion of the Pedersen-Weyl pseudo-differential calculus. This is due to [32] and is briefly exposed in Sub-
section3.1. Let us only say that it is a way to tranform functions or distributions defined on any coadjoint
orbitΩξ into operators acting on the Hilbert spaceHξ of the irreducible representationξ corresponding to this
orbit. DefiningPedξ relies on a special Fourier transform adapted to the coadjoint orbit, involving a predual
spaceωξ ⊂ g of Ωξ . If flat orbits exist, one can choose the same predual for all of them. Remarkably, ifG is
the(2d+1) - dimensional Heisenberg group, Pedersen’s quantization (slightly reformulated) is just the Weyl
calculus on (generic)2d - dimensional coadjoint obits, that can be identified with the usual phase-spaceR2n.
It also involves naturally a parameterλ ∈ R \ {0} , which can actually be understood as a labelling of the
orbits.

Returning to the general case, recall our transformationW , sending scalar functions ong∗ into operator-
valued sections on̂G . Assuming thatG is admissible,W can be described in the following way:

• Pick a Schwartz functionB : g∗ → C .

• Consider all the restrictionsBξ ≡ B|Ωξ
, whereΩξ is the coadjoint orbit corresponding toξ ∈ Ĝ .

• Apply the Pedersen quantization of the orbit to get an operator Pedξ(Bξ) .

• Then[W (B)](ξ) = Pedξ(Bξ) for anyξ ∈ Ĝ .
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Consequently, at least within the class of Schwartz symbols, Op
G×Ĝ

(σ) = OpG×g∗(f) is equivalent to

σ(x, ξ) = Pedξ
(
f |{x}×Ωξ

)
, ∀x ∈ G , ξ ∈ Ĝ .

This is an extension to admissible groups of a picture that isfamiliar for the Heisenberg group. The fact that
this relation cannot hold for groups without flat coadjoint orbits is explained at the end of Subsection3.3.

We did not use yet the full power of Kirillov’s theory. Besides being operator-valued, the functions or
sections on the unitary dual̂G are hard to study or to use becauseĜ itself is, in general, a complicated topo-
logical and Borel space, and its Plancherel measurem̂ is also complicated and non-explicit. We describe in
Subsection4.3 how things simplify for admissible groups and how these simplifications are effective at the
level of the global group quantization. The emerging concrete picture facilitates a more detailed analytical
symbolic calculus, theξ ∈ Ĝ dependence of the symbols being now replaced by the dependence on a param-
eter belonging to a (large) open subsetz∗• of the dualz∗ of the center of the Lie algebra. This allows us using
Euclidean techniques.

A main tool in a pseudo-differential theory is to define, develop and use a symbolic calculus, in the spirit
of the traditional one introduced (among others) by L. Hörmander in the caseG = R

n. Suitable classesSm
ρ,δ

can be found in [10, Sect. 5] for theOp
G×Ĝ

calculus, ifG is a graded group, and many results involving
these spaces of symbols are proven. Their definition makes use of Rockland operators (or sub-Laplacians if
G is stratified) and suitable difference operators acting in “the dual variables”. By the combination of partial
Fourier transforms making the calculiOp

G×Ĝ
andOpG×g∗ equivalent, one can transfer constructions and

results to theOpG×g∗ setting, but this is quite implicit. If, in addition,G is also admissible, one can use the
more transparent (and interesting) form of the transformation W to get a better understanding. This is done
in our Section5, but the conditions definingSm

ρ,δ - classes onG× g∗ still need further investigation.

In Section6 we do some explicit calculations for a two-step four dimensional admissible graded group. It
is shown by direct computations that the relation betweenOp

G×Ĝ
andOpG×g∗ holds. The pseudo-differential

operators are similar to those appearing for the Heisenberggroup; differences appear mainly because now the
center of the Heisenberg algebra is2-dimensional. Computations of the group Fourier transformand the Ped-
ersen quantizations have simple connections with usual Euclidean Fourier transforms and the parametrized
Weyl calculus.

By using automorphisms, one can make the link between different corresponding coadjoint orbits or,
equivalently, between different corresponding irreducible representations. This can be raised to links between
the Pedersen calculi associated to coadjoint orbits that are connected by automorphisms. In particular, if a
family of automorphisms acts transitively on the set of flat coadjoint orbits, computations on just one orbit
generate easily formulae for all the others. This appears frequently in the literature, in the form of “λ-Weyl
calculi” for the Heisenberg group, where actuallyλ ∈ R\{0} is a label for the flat coadjoint orbits. We show
in an Appendix that this can always be done if the Lie algebra,besides being graded, has a one-dimensional
centerz ≡ R (a condition not satisfied by our example presented in Section 6). Then the natural dilations
associated with the grading, supplemented by an inversion,do act transitively onz∗• ≡ R\{0} and we are
reduced by simple transformations to the caseλ = 1 . We also present briefly two examples of such Lie
algebras, without giving explicitly all the calculations,that can be easily supplied by the reader. They are
both graded without being stratified, so, since sub-Laplacians are not available, we indicated in each case a
homogeneous positive Rockland operator.

The quantizationOpG×g∗ for invariant operators has been initiated by Melin [27] and further studied
by Głowacki in [17, 18, 19], and the Weyl type quantizations on nilpotent groups have been analysed by a
different approach by Manchon [24, 25]. Invariant operators on two-step nilpotent Lie groups have been also
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studied by [29]. Non-invariant pseudo-differential operators on the Heisenberg group have been analysed in
[1], with further extensions to graded nilpotent Lie groups in[10, 11].

2 Framework

We gather here some notions, notations and conventions, including the coadjoint action, its orbits and their
predual vector spaces. Flat coadjoint orbits are discussedin some detail.

2.1 General facts and coadjoint orbits

For a given (complex, separable) Hilbert spaceH , one denotes byB(H) theC∗-algebra of all linear bounded
operators inH and byB2(H) the bi-sided∗-ideal of all Hilbert-Schmidt operators, which is also a Hilbert
space with the scalar product〈A,B〉B2(H) := Tr(AB∗) .

LetG be a connected simply connected nilpotent Lie group with unit e , centerZ and Haar measurem . It
is second countable, type I and unimodular. On the unitary dual Ĝ of G one has the Mackey Borel structure
and the Plancherel measurem̂ . Plancherel’s Theorem holds [9]. The elements of̂G are equivalence classes of
unitary irreducible strongly continuous Hilbert space representations.In this article we will make a deliberate
convenient confusion between classes and elements that represent them.

Let g be the Lie algebra ofG with centerz = Lie(Z) andg∗ its dual. IfX ∈ g andX ∈ g∗ we set
〈X | X 〉 := X (X) . We also denote byexp : g → G the exponential map, which is a diffeomorphism. Its
inverse is denoted bylog : G → g . Under these diffeomorphisms the Haar measure onG corresponds to a
Haar measuredX ong (normalized accordingly). It then follows thatLp(G) would be isomorphic toLp(g) .
For eachp ∈ [1,∞] , one has an isomorphism

Lp(G)
Exp−→ Lp(g) , Exp(u) := u ◦ exp

with inverse
Lp(g)

Log−→ Lp(G) , Log(ν) := ν ◦ log .
The Schwartz spacesS(G) andS(g) are defined as in [6, A.2]; they are isomorphic Fréchet spaces.

ForX,Y ∈ g we set
X • Y := log[exp(X) exp(Y )] .

It is a group composition law ong , given by a polynomial expression inX,Y (the Baker-Campbel-Hausdorff
formula). The unit element is0 andX• ≡ −X is the inverse ofX with respect to• .

Associated to the (unitary strongly continuous) representation ξ : G → B(Hξ) , the space of smooth
vectors

H∞
ξ :=

{
ϕξ ∈ Hξ | ξ(·)ϕξ ∈ C∞(G,Hξ)

}

is a Fréchet space in a natural way and a dense linear subspace of Hξ which is invariant under the unitary
operatorξ(x) for everyx ∈ G. We denote byH−∞

ξ the space of all continuous antilinear functionals onH∞
ξ

and then we have the natural continuous dense inclusionsH∞
ξ →֒ Hξ →֒ H−∞

ξ .

Now consider the unitary strongly continuous representation ξ ⊗ ξ̄ : G× G → B
[
B
2(Hξ)

]
defined by

(ξ ⊗ ξ̄)(x1, x2)T = ξ(x1)Tξ(x2)
−1, ∀x1, x2 ∈ G , ∀T ∈ B

2(Hξ) .
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The corresponding space of smooth vectors is denoted byB(Hξ)
∞ and is calledthe space of smooth operators

for the representationξ. One can prove thatB(Hξ)
∞ is only formed of trace-class operators. Actually [4, 7]

we obtain continuous inclusion maps

B(Hξ)
∞ →֒ B

1(Hξ) →֒ B(Hξ) ≃
[
B
1(Hξ)

]∗ →֒
[
B(Hξ)

∞]∗
=: B(Hξ)

−∞.

The adjoint action [6, 22] is

Ad : G× g → g , Adx(Y ) :=
d

dt

∣∣∣
t=0

[
x exp(tY )x−1)

]

and the coadjoint action ofG is

Ad∗ : G× g∗ → g∗, (x,Y) 7→ Ad∗x(Y) : = Y ◦ Adx−1 .

Denoting by
inn : G× G → G , (x, y) 7→ innx(y) := xyx−1

the action ofG on itself by inner automorphisms, one has

Adx = log ◦ innx ◦ exp , ∀x ∈ G .

Pick U ∈ g∗ with its corresponding coadjoint orbitΩ(U) := Ad∗G(U) ⊂ g∗. The isotropy group atU is

GU :=
{
x ∈ G | Ad∗x(U) = U

}

with the correspondingisotropy Lie algebra

gU = Lie(GU ) = {X ∈ g | U ◦ adX = 0} ⊃ z .

The coadjoint orbitΩ ≡ Ω(U) is a closed submanifold and has a polynomial structure comming from its
identification with the symmetric spaceG/GU . There is a Schwartz spaceS(Ω) and a Poisson algebra
structure ong∗ for which the symplectic leaves are exactly the coadjoint orbits. We refer to [22] for details.

Let n := dim g and fix any sequence of ideals ing,

{0} = g0 ⊂ g1 ⊂ · · · ⊂ gn = g

such thatdim(gj/gj−1) = 1 and[g, gj ] ⊂ gj−1 for j = 1, . . . , n. Pick anyEj ∈ gj\gj−1 for j = 1, . . . , n,
so that the setE := {E1, . . . , En} will be a Jordan-Hölder basis ing . Of course,gj = Span(E1, . . . , Ej)
holds for everyj . The set ofjump indicesof the coadjoint orbitΩ with respect to the above Jordan-Hölder
basis is

ǫΩ := {j | gj 6⊂ gj−1 + gU} = {j | Ej /∈ gj−1 + gU}
and does not depend on the choice ofU ∈ Ω . The correspondingpredual of the coadjoint orbitΩ [32] is

ω := Span{Ej | j ∈ ǫΩ} ⊂ g

and it turns out that the mapΩ ∋ Y 7→ Y|ω ∈ ω∗ is a diffeomorphism, explaining the terminology. In
addition, one has the direct vector sum decompositiong = gU+̇ω .

We recall thatthere is a bijection (even a homeomorphism) betweenĜ and the family of all coadjoint
orbits; we denote byΩξ , with predualωξ , the orbit corresponding to the (class of equivalence of the) ire-
ducible representationξ : G → B(Hξ) . It is not our intention to review the way this bijection is constructed;
see [6, 22] for excellent presentations. But we do recall recall, for further use, a concept that is involved in
the construction via the theory of induced representations. The Lie subalgebram is polarizing (or maximal
subordonate) to the pointU ∈ g∗ if U([m,m]) = 0 and it is maximal with respect to this property. It is
known [6, Th. 1.3.3] that for any point there is at least a polarizing algebra.
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2.2 Flat coadjoint orbits

A coadjoint orbitΩ is calledflat [6, 30] if gU = z for someU ∈ Ω ; then this will also happen for any other
elementY ∈ Ω and thusgY is an ideal . The flatness condition is equivalent with its corresponding irreducible
(class of) representationξ beingsquare integrable modulo the centerand also to the fact thatΩ = U + z† for
someU ∈ g (so it is an affine subspace ofg∗) ; we set

z† :=
{
Y ∈ g∗ | Y|z = 0

}

for the annihilator ofz in the dual. The orbit only depends on the restriction ofU to z . If such orbitsΩ exist,
they are exactly those having maximal dimension.

Set Ĝ• for the family of (classes of equivalence) of irreducible representations ofG which are square
integrable with respect to the center. In many casesĜ• is void. But in the opposite cases, when flat coadjoint
orbits do exist, the Plancherel measure ofĜ is concentrated on̂G• .

Definition 2.1. A connected simply connected nilpotent Lie groupG possessing an irreducible uitary repre-
sentation which is square integrable modulo the center willbe calledadmissible. Its Lie algebrag is also
calledadmissible.

For the full theory of admissible groups we refer to [30] and to [6, Sect. 4.5]. These groups are not
necessarily graded [5]. There are criteria for a nilpotent group to have flat coadjoint orbits [6, Prop. 4.5.9].

Remark 2.2. When a flat orbitΩ exists, we can choose an adapted Jordan-Hölder basis. We set n := dimG ,
m := dim z and2d := dimΩ ; thus one hasn = m + 2d . Let {E1, . . . , Em, Em+1, . . . , En} be a Jordan-
Hölder basis ofg such that

z = Span(E1, . . . , Em) ;

the jump indices are{m+ 1, . . . , n} . Correspondingly one has

g = z⊕ ω ;

the decomposition is orthogonal with respect to the scalar product ong defined by the basis. The same
decomposition is obtained for any other flat orbit:there is a common predual for all the flat coadjoint orbits.

In the remaining part of this subsection we are going to summarize here some results from [6, 30]. Let G
be an admissible group and choose a Jordan-Hölder basis{E1, . . . , Em, Em+1, . . . , En} of g as in Remark
2.2. In terms of annihilators and the dual basis{E1, . . . , Em, Em+1, . . . , En} in g∗ one has

Span(E1, . . . , Em) = ω† ∼= z∗

and
Span(Em+1, . . . , En) = z† ∼= ω∗,

with
g∗ = ω† ⊕ z† ∼= z∗ ⊕ ω∗.

Recall the vector space isomorphisms

(z†)⊥ = ω† ∋ X → X|z ∈ z∗ ∼= g∗/ω∗.

Rather often, below, we are going to use the vector spacez∗ and some of its subsets; in certain situations a
more direct interpretation is through the isomorphic versionω†.
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For anyU ∈ g∗ we define the skew-symmetric bilinear form

BilU : g× g → R , BilU (X,Y ) := 〈[X,Y ] | U〉 .

If X ∈ z or Y ∈ z one clearly hasBilU (X,Y ) = 0 . Let us denote byBilωU the restriction ofBilU to ω × ω ;
it is non-degenerate if and only if the orbitΩ(U) is flat. Its PfaffianPf(U) ≡ Pf

(
BilωU

)
∈ R is defined by the

relation
Pf(U)2 = det

(
BilωU

)
= det

[
(Bij

U )i,j=1,...,2d

]
,

where
B
i,j
U := BilU (Em+i, Em+j) =

〈
[Em+i, Em+j ] | U

〉
.

The orbit Ω(U) = U + z† of U is flat if and only ifPf(U) 6= 0 . It can be checked thatPf(U) only depends
on the restriction ofU to z , so we get a function

Pf : z∗ ∼= ω† → R

(aG-invariant homogeneous polynomial in the variableU ∈ ω†) .

Let us set
g∗• := {U ∈ g∗ | Ω(U) is flat} = {U ∈ g∗ | Pf(U) 6= 0} .

The familyĜ• of (classes of equivalence) of irreducible representations ofG which are square integrable with
respect to the center is endowed with the restriction of the Fell topology onĜ and with the (full) Plancherel
measure. Then Kirillov’s homeomorphism̂G ∼= g∗/Ad∗ restricts to

Ĝ• ∼= g∗•/Ad
∗. (2.1)

Using the centerz of the Lie algebra (or the common predualω) we are going to give a more explicit form
of (2.1). The subset

ω†
• := ω† \ Pf−1(0) = g∗• ∩ ω†

or, more conveniently, its isomorphic copy

z∗• := z∗ \ Pf−1(0) = {Z ∈ z∗ | Pf(Z) 6= 0} , (2.2)

with the topological and measure-theoretical structures inherited from the vector space ofz∗, plays an impor-
tant role for admissible groups. This is summarised below:

Proposition 2.3. 1. The map
Ξ : z∗• → Ĝ• , Ξ(Z) := ξZ+z† (2.3)

(the equivalence class of irreducible representations associated by Kirillov’s theory to the flat coadjoint
orbit Ω(Z) = Z + z†) is a homeomorhism.

2. The Plancherel measure of̂G is concentrated on̂G• . Transported back through the bijectionΞ , it is
absolutely continuous with respect to the Lebesgue measureon z∗• ⊂ z∗, with density2dd!|Pf(Z)| .
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3 Fourier transformations and the Weyl-Pedersen calculus

3.1 Pedersen quantization of coadjoint orbits

The arbitrary coadjoint orbitΩ ≡ Ω(U) is homeomorphic to the homogeneous spaceG/GU . SinceG,GU ,
being both nilpotent, are unimodular, there areAd∗G-invariant measures onΩ ; any two of them are connected
by multiplication with a strictly positive constant. We refer to [6, Sect. 4.2, 4.3] for information concerning
the normalization of the invariant measure in order to fit with Kirillov’s Trace Formula.

Let us recall the Fourier transformation associated to a coadjoint orbit ([32]). ForΨ ∈ S(Ω) we set

Ψ̂ : g → C , Ψ̂(X) :=

∫

Ω
e−i〈X|Y〉Ψ(Y) dγΩ(Y) ,

whereγΩ is the canonical invariant measure onΩ ([6]). It turns out thatΨ̂ ∈ C∞(g) and its restriction to the
predualω is a Schwartz function. The map

FΩ : S(Ω) → S(ω) , FΩ(Ψ) := Ψ̂|ω

is a linear topological isomorphism calledthe Fourier transform adapted to the coadjoint orbitΩ . For some
(suitably normalized) Lebesgue measureλω onω , its inverse reads

F−1
Ω : S(ω) → S(Ω) ,

[
F−1
Ω (ψ)

]
(Y) :=

∫

ω
ei〈X|Y〉ψ(X) dλω(X) .

If the coadjoint orbit is associated toξ ∈ Ĝ , we use notations asΩξ , ωξ , γξ , λξ andFξ . Recall that the
predualωξ depends on a Jordan-Hölder basis and that the choice of the invariant measureγξ fixesλξ andFξ .
Also recall our identification of an irreducible representation with its equivalence class.

If ψ ∈ S
(
ωξ

)
one sets (in weak sense)

Depξ(ψ) :=

∫

ωξ

ψ(X)ξ(expX)dλξ(X)

and then, forΨ ∈ S
(
Ωξ

)

Pedξ(Ψ) := Depξ
[
Fξ(Ψ)

]
=

∫

ωξ

∫

Ωξ

e−i〈X|X 〉Ψ(X )ξ(expX)dγξ(X )dλξ(X) .

We refer to [32] for the properties and the significations of the correspondenceΨ 7→ Pedξ(Ψ) and to [2, 3, 4]
for various extensions. In particular, it is known [32] that we get a commuting diagram of linear topological
isomorphisms

S
(
Ωξ

)
S
(
ωξ

)

B(Hξ)
∞

✲Fξ

❄

Pedξ

�
�

�
�

�✠
Depξ

9



If Ψ ∈ S
(
Ωξ

)
, in terms of the traceTrξ onB1(Hξ) one has

Trξ
[
Pedξ(Ψ)

]
=

∫

Ωξ

Ψ(X )dγξ(X ) .

For the Heisenberg group, by suitable adaptations, one getsin particular the usual Weyl calculus on any
of the generic coadjoint orbit. See Subsection6.4for anoher explicit example.

Remark 3.1. One also has dequantization formulae as

Dep−1
ξ : B(Hξ)

∞ → S
(
ωξ

)
,

[
Dep−1

ξ (S)
]
(X) = Trξ

[
S ξ(expX)∗

]
,

followed by
Ped−1

ξ = F−1
ξ ◦ Dep−1

ξ : B(Hξ)
∞ → S

(
Ωξ

)
,

[
Ped−1

ξ (S)
]
(X ) =

∫

ωξ

ei〈Y |X 〉Trξ
[
S ξ(expY )∗

]
dλξ(Y ) . (3.1)

Remark 3.2. N. Pedersen showed in [32, Th 4.1.4.] thatPedξ extends to a topological isomorphismS ′(Ωξ) →
B(Hξ)

−∞ satifyingPedξ(1) = 1ξ , such that forΨ1 ∈ S(Ωξ) , Ψ2 ∈ S ′(Ωξ) the equality

〈
Pedξ(Ψ1),Pedξ(Ψ2)

〉
= Ψ2(Ψ1)

holds in terms of the duality betweenB(Hξ)
∞ andB(Hξ)

−∞. If Pedξ(Ψ2) ∈ B(Hξ) (recall thatB(Hξ)
∞ ⊂

B
1(Hξ)) one even has

Trξ
[
Pedξ(Ψ1)Pedξ(Ψ2)

]
= Ψ2(Ψ1) .

3.2 Fourier transformations

Various Fourier integral formulae will be presented below.For the momentG is connected simply connected
and nilpotent; flat coadjoint orbits are not yet needed.

A. There is a Fourier transformation, given by the duality(g, g∗) , defined essentially by

(
Fg,g∗h

)
(X ) :=

∫

g

e−i〈X|X 〉h(X) dX.

It is a linear topological isomorphismFg,g∗ : S(g) → S(g∗) . Using a good normalization of the Lebesgue
measure ong∗, it can be seen (after extension) as a unitary mapFg,g∗ : L2(g) → L2(g∗) .

B. Composing with the isomorphismsExp andLog one gets Fourier transformations

FG,g∗ := Fg,g∗ ◦ Exp : S(G) → S(g∗) , F
−1
G,g∗ := Log ◦ F

−1
g,g∗ : S(g∗) → S(G) ,

(
FG,g∗u

)
(X ) =

∫

g

e−i〈X|X 〉u(expX)dX =

∫

G

e−i〈log x|X 〉u(x)dm(x) ,

(
F

−1
G,g∗w

)
(x) =

∫

g∗
ei〈log x|X 〉w(X )dX . (3.2)

These maps can also be regarded as unitary isomorphisms of the correspondingL2-spaces.

10



C. One also has the unitary group Fourier transform

F
G,Ĝ

: L2(G) → B
2(Ĝ) :=

∫ ⊕

Ĝ

B
2(Hξ) dm̂(ξ) ,

defined onL1(G) ∩ L2(G) as
(
F

G,Ĝ
u
)
(ξ) :=

∫

G

u(x)ξ(x)∗dm(x) ,

with inverse (on sufficiently regular elementsb)

(
F

−1

G,Ĝ
b
)
(x) :=

∫

Ĝ

Trξ[b(ξ)ξ(x)]dm̂(ξ) . (3.3)

It also becomes an isomorphism of Schwartz-type spaces, if we simply defineS (Ĝ) to be the image ofS(G)
throughF

G,Ĝ
with the transported topological structure; the spaceS (Ĝ) is difficult to describe explicitly

(see [16]).

3.3 The transformation W

We are now interested in the mapping

W := F
G,Ĝ

◦ F
−1
G,g∗ : S(g∗) → S (Ĝ)

and its inverse. Ifg is Abelian, identifyingĜ with g∗, it can be seen as the identity mapping. For reasons that
will be exposed below (see Remark3.7 for instance), we will restrict ourselves to admissible groups. As we
will see, in this caseW basically consists in restricting the element ofS(g∗) to all the coadjoint orbits and
then applying the corresponding Pedersen quantizations tothese restrictions.

Theorem 3.3. LetG be an admissible group.

(i) For B ∈ S(g∗) andξ ∈ Ĝ set

Bξ := B|Ωξ
and b(ξ) := Pedξ

(
Bξ

)
.

Then b(ξ) ∈ B(Hξ)
∞ and one has

b = W (B) ∈ S (Ĝ) . (3.4)

(ii) Conversely, let
b ≡

{
b(ξ) | ξ ∈ Ĝ

}
∈ S (Ĝ) .

For everyξ ∈ Ĝ and everyX ∈ Ωξ one has

[
W

−1(b)
]
(X ) =

∫

ωξ

ei〈Y |X 〉Trξ
[
b(ξ)ξ(exp Y )∗

]
dλξ(Y ) . (3.5)

We are going to need two lemmas. The first one gives a first (rather weak) control on the mapξ 7→
Pedξ

(
Bξ

)
. The direct integral Banach spaceB1(Ĝ) is defined similarly toB2(Ĝ) , but with respect to the

norm

‖φ ‖
B1(Ĝ)

:=

∫

Ĝ

‖φ(ξ)‖B1(Hξ) dm̂(ξ) .

11



Lemma 3.4. For anyB ∈ D(g∗) ≡ C∞
c (g∗) one hasb(·) ∈ B1(Ĝ) ∩ B2(Ĝ) .

Proof. SetK := supp(B) (a compact subset ofg∗) . Recall that̂G is homeomorphic to the quotient ofg∗ by
the coadjoint action: one hasg∗

q−→ g∗/Ad∗ ∼= Ĝ . Then forΩξ not belonging to the (quasi-)compact subset
K ′ := q(K) of g∗/Ad∗ , meaning thatΩξ ∩ K = ∅ , one hasB|Ωξ

= 0 . Thusb(ξ) = 0 if ξ belongs to the

complement of the homeomorphic compact image ofK ′ in Ĝ .

The Plancherel measure is bounded on compact subsets [9, 18.8.4], so one getsb ∈ B1(Ĝ) ∩ B2(Ĝ) if
ξ 7→ Pedξ

(
Bξ

)
is essentially locally bounded. Since the Plancherel measure is concentrated on the set of

generic flat orbits, only the corresponding irreducible representationsξ are important. Then local bounded-
ness follows easily from [3, Th. 4.4] and the fact thatB ∈ D(g∗) .

Lemma 3.5. For anyC ∈ S(g∗) one has
∫

Ĝ

[ ∫

Ωξ

C|Ωξ
(X )dγξ(X )

]
dm̂(ξ) =

∫

g∗
C(X )dX . (3.6)

Proof. See [6, Pag. 153-154] or [22, Page 100].

One can now prove Theorem3.3.

Proof. (i) Taking into account the wayW is defined, the identityb = W (B) is equivalent to

F
−1

G,Ĝ
(b) = F

−1
G,g∗(B) .

It is enough to assumeB ∈ D(g∗) ; then clearlyBξ ∈ D(Ωξ) ⊂ S(Ωξ) and thus

b(ξ) ∈ B(Hξ)
∞ ⊂ B

1(Hξ) ⊂ B
2(Hξ) .

In the computation below we will need to apply formula (3.3) as it is (pointwise). Recall (cf. [15]) thatF
G,Ĝ

restricts to an isomorphism
L1(G) ∩A(G) → B

1(Ĝ) ∩ B
2(Ĝ) ,

whereA(G) is Eymard’s Fourier algebra. In addition, ifφ ∈ B1(Ĝ) ∩ B2(Ĝ) , the inversion formula (3.3)
holds pointwisely. But it is shown in Lemma3.4 thatb(·) ∈ B1(Ĝ) ∩ B2(Ĝ) , so we have pointwisely

[
F

−1

G,Ĝ
(b)

]
(x) =

∫

Ĝ

Trξ
[
b(ξ)ξ(x)

]
dm̂(ξ) . (3.7)

We work withx = expX ; by Remark3.2, there is a unique distributionΦ(ξ)
X ∈ S ′(Ωξ) such that

ξ(expX) = Pedξ
(
Φ
(ξ)
X

)
,

with
Trξ

[
b(ξ)ξ(expX)

]
= Trξ

[
Pedξ(Bξ)Pedξ

(
Φ
(ξ)
X

)]
= Φ

(ξ)
X (Bξ) .

Computing the Pedersen symbolΦ
(ξ)
X of ξ(expX) in general seems to be difficult. But ifG is admissible,

sinceĜ \ Ĝ• is m̂-negligible, in (3.7) we can concentrate on flat orbits and use a result from [32].

Assuming thatΩξ = U + z† is flat, let us decompose

X = Xz +Xω ∈ z⊕ ω = g

12



(see Remark2.2). Note thatexpX = expXz expXω ; higher order terms in the BCH formula are trivial,
sinceXz is central.The central characterχξ : Z → T of the irreducible representationξ is defined by

ξ(z) = χξ(z)1ξ , ∀ z ∈ Z

and is given byχξ(z) = ei〈log z|U〉 (independent on the choice of the pointU ∈ Ωξ) ; thus we have

ξ(expX) = ξ
(
expXz

)
ξ
(
expXω

)
= ei〈Xz|U〉ξ

(
expXω

)
.

Then (some steps will be explained below)

Trξ
[
Pedξ(Bξ)ξ(expX)

]
= ei〈Xz|U〉Trξ

[
Depξ

(
Fξ(Bξ)

)
ξ
(
expXω

)]

= ei〈Xz|U〉(Fξ(Bξ)
)
(−Xω)

= ei〈Xz|U〉
∫

Ωξ

ei〈Xω |X 〉Bξ(X )dγξ(X )

=

∫

Ωξ

ei〈X|X 〉Bξ(X )dγξ(X ) .

(3.8)

The second equality is equivalent to Lemma 4.1.2 from [32], relying on the deep result [32, Th. 2.1.1]; note
thatDepξ corresponds to the notationT of Pedersen, and the extra constant in [32, Lemma 4.1.2] is due to
different conventions. For the last equality recall thatΩξ = U + z⊥, which allows one to write for each
X ∈ Ωξ

〈Xz | U〉+
〈
Xω |X

〉
= 〈Xz |X 〉+

〈
Xω |X

〉
= 〈X |X 〉 .

Replacing this above and also recalling (3.6) and (3.2), one gets

[
F

−1

G,Ĝ
(b)

]
(expX) =

∫

Ĝ•

[ ∫

Ωξ

ei〈X|X 〉Bξ(X )dγξ(X )
]
dm̂(ξ)

=

∫

g∗
ei〈X|X 〉B(X )dX =

[
F

−1
G,g∗(B)

]
(expX) .

Now, once the identityb = W (B) is proven, the fact thatb ∈ S (Ĝ) is clear fromS (Ĝ) := F
G,Ĝ

[S(G)] and
the definition ofW .

(ii) To computeW −1, seen as the inverse ofW already made explicit at point 1, we have to use the
dequantisation formulae of Remark3.1: First recall thatb ∈ S (Ĝ) means by definition that

b = F
G,Ĝ

(c) , with c ∈ S(G) .

In [21, Th. 3.4] it is shown that for everyξ the mapc 7→
[
F

G,Ĝ
(c)

]
(ξ) sendsS(G) (surjectively but not

injectively) toB(Hξ)
∞ . Thereforeb(ξ) belongs toB(Hξ)

∞ and we can construct

Bξ := Ped−1
ξ [b(ξ)] ∈ S

(
Ωξ

)

given by (3.1). ForX ∈ g∗ we putB(X ) := Bξ(X ) , selectingξ such thatX ∈ Ωξ . Then (3.1) leads finally
to the formula (3.5) for B = W −1(b) .

Let us briefly indicate how aweaker formof the point (i) of Theorem3.3follows from a result in [32].
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Proof. Using our notations, Theorem 4.2.1 in [32] states that for everyu ∈ S(G) and everyξ ∈ Ĝ which is
square integrable modulo the center, one has

[
F

G,Ĝ
(u)

]
(ξ) = Pedξ

[
Fg,g∗

(
u ◦ exp

)
|Ωξ

]
.

Settingu :=
[
F

−1
g,g∗(B)

]
◦ log = F

−1
G,g∗(B) we get for suchξ

[W (B)](ξ) := F
G,Ĝ

[
F

−1
G,g∗(B)

]
(ξ) = Pedξ (B|Ωξ

) =: b(ξ) .

Thus we checked thatW (B) andb defined in Theorem3.3coincide on the set of square integrable modulo the
center irreducible representations. However, it seems rather hard to go further. Neither regularity properties
of the implicitly defined spaceS (Ĝ) , nor the smoothness ofb are obvious a priori.

Corollary 3.6. Let ξ be an irreducible representation of the admissible groupG , that is square integrable
modulo the center, and let

ξ̃(v) :=

∫

G

v(x)ξ(x)dm(x) , v ∈ S(G),

its integrated form acting on the Schwartz space. One has

ker
(
ξ̃
)
=

{
v ∈ S(G)

∣∣ [FG,g∗(v)
]
|Ωξ

= 0
}
.

Proof. Let v := F
−1
G,g∗(B) ∈ S(G) with B = FG,g∗(v) ∈ S(g∗) and set as aboveb(η) := Pedη

(
B|Ωη

)
for

everyη ∈ Ĝ . With these notations, and using our result (3.4), one has

ξ̃(v) =
(
F

G,Ĝ

[
F

−1
G,g∗(B)

])
(ξ) = b(ξ) .

Since the mapPedξ is an isomorphism, one has̃ξ(v) = 0 if and only if b(ξ) = 0 and if and only ifB|Ωξ
=

FΦ
G,g∗(v)|Ωξ

= 0 .

Remark 3.7. Working with a general connected simply connected nilpotent Lie groupG , Ludwig [23] de-
fines a (two-sided self-adjoint) idealJ of L1(G) to begood if Exp(J ) is an ideal inL1(g) with the obvious
convolution multiplication. Let

ξ̃ : S(G) → B(Hξ)
∞, ξ̃(v) :=

[
F

G,Ĝ
(v)

]
(ξ) =

∫

G

v(x)ξ(x)∗dm(x)

the integrated form ofξ ∈ Ĝ . Then, for an elementξ of Ĝ , he shows thatker ξ̃ is good if and only ifΩξ is
an affine subspace and if and only if

ker
(
ξ̃
)
=

{
v ∈ L1(G) | FG,g∗(v)|Ωξ

= 0
}
.

It is easy to see that this forbids Theorem3.3 to hold for non-admissible groups. This has its roots in the
form of the Pedersen symbolΦ(ξ)

X of ξ(expX) for generalξ and it is probably related to the necessity of
introducing a modified Fourier transformation instead ofFG,g∗ .

4 Various quantizations and their mutual connections

In this section we discuss different quantizations onG and relations among them.
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4.1 A list of quantizations

One has various quantizations on the ”phase spaces”g× g∗ ∋ (X,X ) , G× g∗ ∋ (x,X ) , G× Ĝ ∋ (x, ξ) :

Opg×g∗ : L2(g× g∗) → B
2
[
L2(g)

]
,

[
Opg×g∗(f)ν

]
(X) =

∫

g

∫

g∗
ei〈(−Y )•X|X 〉f(X,X ) ν(Y ) dY dX (4.1)

and
Opg×g∗ : L2(g × g∗) → B

2
[
L2(G)

]
, Opg×g∗(f) = Exp ◦Opg×g∗(f) ◦ Log ,

[
Opg×g∗(f)u

]
(x) =

∫

G

∫

g∗
ei〈log(y

−1x)|X 〉f
(
log x,X

)
u(y) dm(y) dX (4.2)

and the one we prefer

OpG×g∗ := Opg×g∗ ◦ (Exp⊗ id) : L2(G × g∗) → B
2
[
L2(G)

]
,

[
OpG×g∗(f)u

]
(x) =

∫

G

∫

g∗
ei〈log(y

−1x)|X 〉f
(
x,X

)
u(y) dm(y) dX .

(4.3)

Remark 4.1. Taking into account Schwartz’s Kernel Theorem and the way various Schwartz spaces were
defined, one gets topological linear isomorphisms

Opg×g∗ : S(g× g∗)
∼−→ B

2
[
S ′(G),S(G)

]
, Opg×g∗ : S ′(g × g∗)

∼−→ B
2
[
S(G),S ′(G)

]
,

OpG×g∗ : S(G× g∗)
∼−→ B

2
[
S ′(G),S(G)

]
, OpG×g∗ : S ′(G× g∗)

∼−→ B
2
[
S(G),S ′(G)

]
.

Finally, recall that we were interested in the global group quantization [10, 26] (irreducible representations
are still identified to corresponding equivalence classes)

Op
G×Ĝ

: B
2(G× Ĝ) := L2(G)⊗ B

2(Ĝ) → B
2
[
L2(G)

]
,

[
Op

G×Ĝ
(σ)u

]
(x) =

∫

G

∫

Ĝ

Trξ
[
ξ(y−1x)σ(x, ξ)

]
u(y) dm(y)dm̂(ξ) .

(4.4)

4.2 Connections among quantizations

It has been shown in [26] thatOp
G×Ĝ

andOpG×g∗ are also equivalent, for general connected simply connected
nilpotent Lie groups. Actually one has the following commutative diagram of isomorphisms:

L2(G)⊗ L2(G) L2(G)⊗ B
2(Ĝ)

L2(G)⊗ L2(g∗) B
2[L2(G)]

✲
id⊗F

G,Ĝ

❄

id⊗FG,g∗

❄

Op
G×Ĝ

✲
OpG×g∗

✟✟✟✟✟✟✟✯
id⊗W

The reason is that one can write

Op
G×Ĝ

= Int ◦ CV ◦
(
id⊗ F

−1

G,Ĝ

)
and OpG×g∗ = Int ◦ CV ◦

(
id⊗ F

−1
G,g∗

)
,
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where, besides the Fourier transformations already introduced,Int(K) is the integral operator of kernelK
andCV means composition with the change of variables

cv : G× G → G× G , cv(x, y) :=
(
x, y−1x

)
.

Using the isomorphismW , forA ∈ L2(G)⊗ L2(g∗) one has

Op
G×Ĝ

[(
id⊗ W

)
f
]
= OpG×g∗(f) . (4.5)

This is quite easy to handle for admissible groups, sinceW has the simple form given by Theorem3.3.

Corollary 4.2. Assume thatG is an admissible group. Forf ∈ S(G × g∗) and (x, ξ) ∈ G × Ĝ , let us set
f(x,ξ) ∈ S(Ωξ) through

f(x,ξ)(X ) := f(x,X ) for every X ∈ Ωξ ,

i.e. f(x,ξ) is the restriction off to the subset{x} × Ωξ , seen as a functionΩξ → C . The expression

σ(x, ξ) := Pedξ
(
f(x,ξ)

)
=

∫

ωξ

[
Fξ
(
f(x,ξ)

)]
(Y ) ξ(exp Y ) dλξ(Y ) ∈ B(Hξ)

∞

denotes the Pedersen quantization of this symbol, associated to the coadjoint orbitΩξ . Then one has
(
id⊗ W

)
(f) = σ and Op

G×Ĝ
(σ) = OpG×g∗(f) .

Proof. This follows from Theorem3.3and from (4.5).

Remark 4.3. We described the correspondenceS(G× g∗) ∋ f 7→ σ ∈ S (G× Ĝ) . For the reverse one, we
have to use the dequantization formulae of Remark3.1: Suppose we are given

σ ≡
{
σ(x, ξ) ∈ B(Hξ)

∞ | (x, ξ) ∈ G× Ĝ
}
∈ S (G× Ĝ) .

For each(x, ξ) we construct
f(x,ξ) := Ped−1

ξ [σ(x, ξ)] ∈ S
(
Ωξ

)

given by (3.1) and then, for(x,X ) ∈ G× g∗ with X ∈ Ωξ, we put

f(x,X ) := f(x,ξ)(X ) .

This leads finally to the formula

f(x,X ) =

∫

ωξ

ei〈Y |X 〉Trξ
[
σ(x, ξ)ξ(exp Y )∗

]
dλξ(Y ) , ∀ (x,X ) ∈ G× Ωξ .

Remark 4.4. Obviously one can introduce composition laws

S(Ωξ)×S(Ωξ)
♯ξ−→ S(Ωξ) , Pedξ(Ψ1♯ξΨ2) := Pedξ(Ψ1)Pedξ(Ψ2) ,

S (G× Ĝ)×S (G× Ĝ)
#

G×Ĝ−→ S (G× Ĝ) , Op
G×Ĝ

(
σ1#G×Ĝ

σ2
)
:= Op

G×Ĝ
(σ1)OpG×Ĝ

(σ2) ,

S(G× g∗)×S(G× g∗)
#G×g∗−→ S(G × g∗) , OpG×g∗

(
f1#G×g∗f2

)
:= OpG×g∗(f1)OpG×g∗(f2) .

Denotingid⊗ W byW one has

W
(
f1#G×g∗f2

)
= W(f1)#G×Ĝ

W(f2) , ∀ f1, f2 ∈ S(G× g∗) .

One can write explicit (but rather complicated) formulae for these composition rules. In the case ofOp
G×Ĝ

,
see [11] for a detailed discussion. Similarly for involutions. These∗-algebras and their extensions will be
studied separately.
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Remark 4.5. We make a formal statement about how convolution operators (in S(G) , L2(G) or other func-
tion spaces onG) fit in the setting above; this can be made rigorous under suitable assumptions. Let us
set [

ConvR(w)u
]
(x) := (u ∗ w)(x) =

∫

G

u(y)w(y−1x)dm(y) .

It is easy to show that, for suitableB : g∗ → C , one has

ConvR
[
F

−1
G,g∗(B)

]
= ConvR

[
F

−1
g,g∗(B) ◦ log

]
= OpG×g∗(1⊗B) . (4.6)

Such left-invariant (or similar right-invariant) operators on various types of nilpotent Lie groupsG were
studied in detail in [17, 18, 19, 27, 28, 29] and other references.

On the other hand, in [26, Sect. 7.3] we proved that for convenient sectionsb overĜ one gets

ConvR
[
F

−1

G,Ĝ
(b)

]
= Op

G×Ĝ
(1⊗ b) . (4.7)

Of course, this is compatible with Corollary4.2. Writing (4.6) and (4.7) as

ConvR(w) = OpG×g∗
(
1⊗

[
FG,g∗(w)

])
= Op

G×Ĝ

(
1⊗

[
F

G,Ĝ
(w)

])
,

one could say that, in particular,OpG×g∗ andOp
G×Ĝ

are two different but related ways to study invariant
operators through symbolic calculi. In the first case the symbols are scalar and defined on the dual of the
Lie algebra, in the second case they are defined on the unitarydual of the group and are operator-valued.
The same atitude towards non-invariant operators leads to the full quantizations (4.3) and (4.4) with “variable
coefficients” pseudo-differential operators.

4.3 The concrete Fourier transform and concrete quantizations

The effect of the constructions and results described in Subsection2.2 is that in the admissible case, for
many purposes, one can replace the rather abstract and inaccessible measure space

(
Ĝ, m̂

)
by

(
z∗•, µ

)
, where

z∗• ∼= ω†
• is a subset of a finite-dimensional real vector space andµ a measure defined by an explicit density.

Taking advantage of Proposition2.3, if F is a function on̂G• , we turn it into a function onz∗• by Ξ̃(F ) :=
F ◦Ξ . Similarly, Ξ̃−1(G) := G◦Ξ−1 is a function on̂G if G is a function onz∗• . The same works for sections
in fiber bundles over the two spaces. Topological vector spaces of sections over̂G• (as those defined over̂G
but insensible to removing the negligible subsetĜ\Ĝ•) are transferred to similar topological vector spaces
of sections overz∗• . One has, for instance, the family of Banach spacesBp

(
z∗•
)

indexed byp ∈ [1,∞) , in
particular, the Hilbert space

B
2
(
z∗•
)
=

∫ ⊕

z∗•

B
2
(
HΞ(Z)

)
2dd!|Pf(Z)|dZ .

Supposing that flat coadjoint orbits exist, with generic dimension2d , one has

FG,z∗• := Ξ̃ ◦ F
G,Ĝ

: L2(G) → B
2(z∗•)

defined as [
FG,z∗•(u)

]
(Z) :=

∫

G

u(x)ξZ+z†(x)
∗dm(x) ,

with inverse (
F

−1
G,z∗•

Ψ
)
(x) := 2dd!

∫

z∗•

Trξ
Z+z†

[
Ψ(Z)ξZ+z†(x)

]
|Pf(Z)|dZ .
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Remark 4.6. Setting
V := FG,z∗• ◦ F

−1
G,g∗ ,

one can write down explicit formulae, along the lines of Theorem 3.3. Basically,V consists in sending
B ∈ S (g∗) into the family of restrictions

{
B|Z+z†

∣∣Z ∈ ω†
• ≡ z∗•

}
and then into the family of operators

{
b(Z) := Pedξ

Z+z†

(
B|Z+z†

) ∣∣Z ∈ ω†
•
}
.

Its inverse is given by

[
V

−1(b)
]
(X ) =

∫

ω
ei〈Y |X 〉Trξ

[
b(Z)ξZ(expY )∗

]
dλZ(Y ) , ∀X ∈ Z + z†⊂ g∗.

A direct consequence is

Corollary 4.7. Choosing the concrete option, one can also define a quantization

OpG×z∗•
: B

2(G× z∗•
)
→ B

2
[
L2(G)

]
,

[
OpG×z∗•

(Σ)u
]
(x) =2dd!

∫

G

∫

z∗•

Tr
[
Ξ(Z)(y−1x)Σ(x,Z)

]
u(y) dm(y)|Pf(Z)|dZ .

This one is connected to the quantizations(4.3) and (4.4) by

OpG×z∗•
[(id⊗ M )(f)] = Op

G×Ĝ
[(id⊗ W )(f)] = OpG×g∗(f) , f ∈ S(G× g∗) ,

OpG×z∗•
[(id⊗ Ξ̃)(σ)] = Op

G×Ĝ
(σ) , σ ∈ S(G× Ĝ) .

We recall that
[
(id⊗ Ξ̃)(σ)

]
(x,Z) = σ

(
x, ξZ+z†

)
for everyx ∈ G andZ ∈ z∗• .

The next diagram tells us the story

B
2(G × z∗•

)
B

2(G× Ĝ) L2(G× g∗)

B
2
[
L2(G)

]

◗
◗
◗
◗
◗◗s

OpG×z∗•

✛id⊗Ξ̃

❄

Op
G×Ĝ

✛id⊗W

✑
✑

✑
✑

✑✑✰
OpG×g∗

5 Symbol classes for admissible graded groups

In this section we discuss symbol classes of Hörmander’s type in the case of graded nilpotent groups.

5.1 Admissible graded Lie groups, their dilations and theirRockland operators

We are going to review briefly some basic facts about graded Lie groups. Much more information can be
found in [10, Ch. 4]; see also [14, 33].

LetG be a graded Lie group. Its Lie algebra can be written as a direct sum of vector subspaces

g = w1 ⊕ · · · ⊕wl , (5.1)
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where [wi,wk] ⊂ wi+k for everyi, k ∈ {1, . . . , l}, and wherel is such thatwi+k = {0} for i+k > l . Then
G is a connected and simply connected nilpotent Lie group. Letus set

nk := dimwk , n := dim g = n1 + n2 + · · · + nl ,

and definethe homogeneous dimension

Q := n1 + 2n2 + · · ·+ lnl .

We are going to use bases{X1, . . . ,Xn} of g such that for everyk thenk vectors
{
Xj | n1+· · ·+nk−1 <

j ≤ n1 + · · ·+ nk−1 + nk
}

generatewk (we setn0 = 0 for convenience) .

The multiplicative group(R+, ·) acts by automorphisms (calleddilations) of the Lie algebra (5.1) by

dilr
(
Y(1), Y(2), . . . , Y(l)

)
:=

(
rν1Y(1), r

ν2Y(2) . . . , r
νlY(l)

)
, r ∈ R+ , Y(k) ∈ wk , 1 ≤ k ≤ l .

One has
dilr(Xj) = rνjXj , r ∈ R+ , 1 ≤ j ≤ n ,

in terms of thedilation weightsνj if n1 + · · ·+ nk−1 < j ≤ n1 + · · ·+ nk . The dilations on the dualg∗ of
the Lie algebra are defined by

〈
X |dil∗r(X )

〉
:=

〈
dilr−1(X) |X

〉
, X ∈ g ,X ∈ g∗, r ∈ R+ .

Since the graded groups are exponential, one can apply dilations on the group side, setting

dilr(x) := exp
[
dilr(log x)

]
, x ∈ G , r ∈ R+ . (5.2)

This induces unitary operators onH := L2(G) by

[
Dil(r)u

]
(x) := r

Q
2
(
u ◦ dilr

)
(x) = r

Q
2 u

(
dilr(x)

)
. (5.3)

Finally, using the duality betweenG andĜ one makes(R+, ·) act on the unitary dual by

[d̂ilr(ξ)](x) := ξ
[
dilr−1(x)

]
, x ∈ G , ξ ∈ Ĝ , r > 0 .

The deliberate confusion between irreducible representations and their unitary equivalence classes is conve-
nient and harmless.

A Rockland operatoris a (say left) invariant differential operatorR onG such that, for every non-trivial
irreducible representationξ : G → B(Hξ) , the operatordξ(R) is injective on the subspaceH∞

ξ of all smooth
vectors. We prefer them to be homogeneous and positive: the homogeneity reads, using (5.3)

Dil
(
r−1

)
RDil(r) = rνR , ∀ r ∈ R+ .

The degree of homogeneityν is a multiple of any of the dilation weights. A left invarianthomogeneous
differential operator is hypoelliptic if and only if it is a Rockland operator [20, 10], see also [12] for a detailed
discussion.

Convention: From now on we call simplyRockland operatora left invariant positive and homogeneous
Rockland operator. These are the only ones appearing below;it is known that they exist on any graded group
and, in fact, if such an operator exists on a connected simplyconnected Lie group, it has to be graded.
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Remark 5.1. Concrete examples of homogeneous degreeq = 2p are

R :=
n′∑

j=1

(−1)
p
νj Z

2 p
νj

j ,

where{Zj}j=1,...,n is a basis as in [10, Lemma 3.1.14] (see also [12]) and p is a common multiple of the
dilation weights. The basis is such thatZj is νj-homogeneous,Z1, . . . , Zn′ generateg as a Lie algebra, while
Zn′+1, . . . , Zn generate a vector space containing[g, g] .

Remark 5.2. Very concrete Rockland operators can be written down onstratified groups, which are graded
groups for whichw1 in (5.1) generatesg as a Lie algebra. If{X1, . . . ,Xn1} is a basis of the first stratumw1 ,
the left invariant2-homogeneous negative operator

L := X2
1 + · · · +X2

n1

is calleda sub-Laplacian. ThenR := −L is a Rockland operator.

It is important to note that Rockland operators are decomposable. For the theory of unbounded decom-
posable operators we refer to [8, 31]. Let us fix a positive Rockland operatorR , homogeneous of orderν .
We also setT := (id +R)1/ν . The key fact is that bothR andT , acting inL2(G) , become decomposable
operators inL2(Ĝ) :=

∫ ⊕
Ĝ
Hξdm̂(ξ) after applying unitary equivalence by an (extension of) thegroup Fourier

transformation. Thus they are affiliated to the von Neumann algebra

L∞(Ĝ) :=

∫ ⊕

Ĝ

B(Hξ)dm̂(ξ) ,

which is isomorphically represented as the left group von Neumann algebra

BL

[
L2(G)] :=

{
T ∈ B

[
L2(G)] | T commutes with the left regular representation

}
.

Setting
R := F

G,Ĝ
◦ R ◦ F

−1

G,Ĝ
, T := F

G,Ĝ
◦ T ◦ F

−1

G,Ĝ
,

one has for instance(Rφ)(ξ) = R(ξ)φ(ξ) , where it is known thatR(ξ) = dξ(R) with domainHν
ξ , the

represented Sobolev space of orderν defined at [10, 5.1.1]. Of course, each fiber operator acts continuously
on the space of smooth vectorsdξ(R) : H∞

ξ → H∞
ξ . ForT one has

T (ξ) =
(
idξ + R(ξ)

)1/ν
=

(
idξ + dξ(R)

)1/ν
. (5.4)

5.2 The classesSm
ρ,δ

Let us fixq ∈ C∞
pol(G) := Log

[
C∞
pol(g)

]
⊂ S ′(G) (an intrinsic definition is also posible and other conditions

or function spaces can be used). Then the operator of multiplication defined byMultq(u) := qu is well-
defined linear and continuous inS(G) and inS ′(G) . We also set

∆q := F
G,Ĝ

◦Multq ◦ F
−1

G,Ĝ
∈ B

[
S (Ĝ)

]
∩ B

[
S

′(Ĝ)
]

and
Γq := FG,g∗ ◦Multq ◦ F

−1
G,g∗ ∈ B

[
S(g∗)

]
∩ B

[
S ′(g∗)

]
.
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It follows directly from the definitions that

Γq = FG,g∗ ◦Multq ◦ F
−1
G,g∗

=
(
FG,g∗ ◦ F

−1

G,Ĝ

)
◦
(
F

G,Ĝ
◦Multq ◦ F

−1

G,Ĝ

)
◦
(
F

G,Ĝ
◦ F

−1
G,g∗

)

= W
−1◦∆q ◦ W .

(5.5)

It can also be shown thatΓq is the operator of (commutative) convolution withFG,g∗(q) coming from the
vector structure of the dual of the Lie algebra, but this willnot be needed.

Certain special functionsq were used in [10, 12] to express the symbol class conditions. For multi-
indicesα ∈ N

n
0 , besides the usual length|α| := α1 + α2 + · · ·+ αn , one also usesthe homogeneous length

[α] :=
∑n

k=1 νkαk , in terms of the dilation exponentsν1, . . . , νn . Also recall that a basis inG has been
denoted by{X1, . . . ,Xn} , leading to the differential operatorsXβ

x ≡ Xβ := Xβ1
1 . . . Xβn

n . It is shown in
[10, 12] that for everyα ∈ N

n
0 there exists a unique homogeneous polynomialqα : G → R of degree[α] such

that (
Xβqα

)
(e) = δα,β , ∀α, β ∈ N

n
0 .

These polynomials are involved in Taylor developments and useful in writing down asymptotic developments
for theOp

G×Ĝ
calculus. Forα ∈ N

n, we set

q̃α(x) := qα(x
−1) , ∆α := ∆q̃α and Γα := Γq̃α .

Assuming that the groupG is both graded and admissible, let us fix a positive Rockland operatorR
homogeneous of degreeν and recall (5.4). By sup

ξ∈Ĝ one denotes the essential supremum overĜ with
respect to the Plancherel measure. For fixed numbersm ∈ R , δ , ρ ∈ [0, 1] such thatρ ≤ δ , the classes
Sm
ρ,δ(G× Ĝ) were defined in [10, 12] by seminorm-conditions of the form

‖σ‖Sm
ρ,δ;(α,β,γ)

:= sup
x∈G

sup
ξ∈Ĝ

∥∥∥T (ξ)−m+ρ[α]−δ[β]+γ
[(
Xβ

x ⊗∆α
)
σ
]
(x, ξ)T (ξ)−γ

∥∥∥
B(Hξ)

<∞ ,

involving all the multi-indicesα, β, γ ∈ N
n.

We now writeσ = (id ⊗ W )f ∈ Sm
ρ,δ(G × Ĝ) and try to see what the corresponding conditions on

f ∈ S (G× g∗) are. We recall that, by Corollary4.2, one has
(
(id⊗W )g

)
(x, ξ) = Pedξ

(
g|{x}×Ωξ

)
. On the

other hand, by (5.5), (
Xβ

x ⊗∆α
)
◦ (id⊗ W ) = (id⊗ W ) ◦

(
Xβ

x ⊗ Γα
)
.

It follows immediately that

‖f ‖Sm
ρ,δ;(α,β,γ)

(G×g∗) := ‖(id⊗ W )f ‖Sm
ρ,δ;(α,β,γ)

= sup
(x,ξ)∈G×Ĝ

∥∥T (ξ)−m+ρ[α]−δ[β]+γ Pedξ
[(
(Xβ

x ⊗ Γα)f
)∣∣

{x}×Ωξ

]
T (ξ)−γ

∥∥∥
B(Hξ)

.
(5.6)

Remark 5.3. The spaces of symbols

Sm
ρ,δ(G× g∗) := (id⊗ W )−1Sm

ρ,δ(G× Ĝ) ⊂ S (G× g∗)

can be defined along these lines, and they play the same role for the quantizationOpG×g∗ asSm
ρ,δ(G×Ĝ) played

for theOp
G×Ĝ

- calculus in [10, 12]. This relationship allows one to transfer all results known for Op
G×Ĝ

to this setting. Hopefully, in a future paper, we are going toundertake the non-trivial task of rephrasing the
conditions (5.6) in a more tractable form, to write down explicit results forthe pseudo-differential calculus
onG×g∗, to compare it with existing (but only left or right invariant) calculi and to apply it to some concrete
problems.

21



6 A four dimensional two-step stratified admissible group

In this section we work out an example of a four dimensional two-step stratified admissible group and demon-
strate the discussed quantizations in this setting.

6.1 General facts

Let g := R
4 be the Lie algebra with the bracket

[
(q, p, s, t), (q′, p′, s′, t′)

]
:=

(
0, 0, qp′− q′p, δ(qp′− q′p)

)
,

whereδ ∈ R is a real number. It is a four-dimensional step two Lie algebra with center

z = {0} × {0} × R× R .

The canonical basis being denoted by{Q,P, S, T}, the single nontrivial bracket is

[Q,P ] = S + δT.

Remark 6.1. (i) For convenience, we flipped the variables. A direct correspondence with the notations of
previous sections, where the central variables stay first, would require the transformation(q, p, s, t) →
(s, t, q, p) .

(ii) Here and subsequently, in vector spaces with specified basis one considers the Lebesgue measures
canonically associated to these bases.

The corresponding connected simply connected Lie group isG = R
4 with BCH-multiplication

(q, p, s, t)•(q′, p′, s′, t′) =
(
q + q′, p+ p′, s+ s′ +

1

2
(qp′− q′p), t+ t′ +

δ

2
(qp′− q′p)

)
.

The unit is 0 := (0, 0, 0, 0) and the inverse of(q, p, s, t) is (−q,−p,−s,−t) . In this realization, the maps
exp and log are simply the identity ofR4. ClearlyG is stratified with dilations

(q, p, s, t) → (rq, rp, r2s, r2t) , r > 0 .

Remark 6.2. One has two short exact sequences:

1 −→ R
2 ≡ Z −→ G

Φ−→ R
2 −→ 1 ,

with Φ(q, p, s, t) := (q, p) , and2-cocycle

c1 : R
2 × R

2 → Z , c1
(
(q, p), (q′, p′)

)
:=

(1
2
(qp′− q′p),

δ

2
(qp′− q′p)

)
,

and
1 −→ R −→ G

Ψ−→ H1 −→ 1 ,

with Ψ(q, p, s, t) := (q, p, s) and2-cocycle

c2 : H1 × H1 → R , c1
(
(q, p, s), (q′, p′, s′)

)
:=

δ

2
(qp′− q′p) .

The second one presents our nilpotent Lie group as a central extension of the3-dimensional Heisenberg group
byR . It is split (actually a direct product) if and only ifδ = 0 .
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6.2 The coadjoint action

The adjoint action is

Ad(q0,p0,s0,t0)(q, p, s, t) = (q0, p0, s0, t0)•(q, p, s, t)•(q0, p0, s0, t0)−1

=
(
q0 + q, p0 + p, s0 + s+

1

2
(q0p− qp0), t0 + t+

δ

2
(q0p− qp0)

)
•(−q0,−p0,−s0,−t0)

=
(
q, p, s+ q0p− qp0, t+ δ(q0p− qp0)

)
.

For the dual we setg∗ := R
4 ∋ (ρ, ϑ, ς, τ) ≡ ρQ+ ϑP + ςS + τT with duality

〈
(q, p, s, t) |(ρ, ϑ, ς, τ)

〉
:= qρ+ pϑ+ sς + tτ.

The anihilator of the center is
z⊥ = R× R× {0} × {0} .

The canonical bilinear form reads

Bil(ρ,ϑ,ς,τ)
(
(q, p, s, t), (q′, p′, s′, t′)

)
=

〈[
(q, p, s, t), (q′, p′, s′, t′)

]
| (ρ, ϑ, ς, τ)

〉

= (qp′− q′p)ς + δ(qp′− q′p)τ,
(6.1)

and it is non-degenerate when restricted toR
2×{(0, 0)} .

Now we can compute the coadjoint action:
〈
(q, p, s, t)

∣∣Ad∗(q0,p0,s0,t0)(ρ, ϑ, ς, τ)
〉
=

〈
Ad

(−q0,−p0,−s0,−t0)
(q, p, s, t)

∣∣ (ρ, ϑ, ς, τ)
〉

=
〈
(q, p, s− q0p+ qp0, t− δ(q0p− qp0))

∣∣ (ρ, ϑ, ς, τ)
〉

= q(ρ+ p0ς + δp0τ) + p(ϑ− q0ς − δq0τ) + sς + tτ,

meaning that

Ad∗(q0,p0,s0,t0)(ρ, ϑ, ς, τ) =
(
ρ+ p0ς + δp0τ, ϑ− q0ς − δq0τ, ς, τ

)

=
(
ρ, ϑ, ς, τ

)
+

(
p0[ς + δτ ],−q0[ς + δτ ], 0, 0

)
.

The fixed points have all the form

(ρ, ϑ,−δτ, τ) , ρ, ϑ, τ ∈ R .

If ς 6= −δτ , the coadjoint orbit passing through
(
ρ, ϑ, ς, τ

)
is flat and2 - dimensional:

Ω(ρ,ϑ,ς,τ) = (ρ, ϑ, ς, τ) + R
2×{(0, 0)} =

(
ρ, ϑ, ς, τ

)
+ z⊥ =

(
0, 0, ς, τ

)
+ z⊥.

It only depends on(ς, τ) and can be written in the form

Ω(ς,τ) = (0, 0, ς, τ) + R
2×{(0, 0)} = {(ρ, ϑ, ς, τ) | ρ, ϑ ∈ R} .

The restriction ofAd∗(q0,p0,s0,t0) to such an orbit is the translation by(p0ς + δp0τ,−q0ς − δq0τ, 0, 0) , so
the invariant measures are all proportional to the transported2-dimensional Lebesgue measuredρdϑ (cf. [6,
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Th. 1.2.12] for a more general statement) . So they can be written asc(ς, τ)dρdϑ for positive numbersc(ς, τ) .
The good normalisation, leading to the canonical measuredγΩ(ς,τ)

≡ dγ(ς,τ) used repeatedly above, is

dγ(ς,τ)(ρ, ϑ) = (2|ς + δτ |)−1dρdϑ . (6.2)

This can be seen rather easily by inspecting [6, 4.3], but it is also explained in Remark6.3.

The isotropy group and algebra of the generic points
(
ρ, ϑ, ς, τ

)
are, respectively,

G(ρ,ϑ,ς,τ) = {(0, 0)}×R
2, g(ρ,ϑ,ς,τ) = {(0, 0)}×R

2 = z .

According to the general theory or to (6.1), the canonical bilinear form can be seen as a map from
z∗ ∼= {(0, 0)}×R

2 ≡ R
2 to the space of antisymmetric bilinear (non-degenerate) forms on the common

pre-dualω = R
2×{(0, 0)} ≡ R

2, given by

Bil(ς,τ)
(
(q, p), (q′, p′)

)
= (qp′− q′p)ς + δ(qp′− q′p)τ.

The determinant isdet Bil(ς,τ) = (ς + δτ)2, so

Pf(σ, τ) = ς + δτ = 0 ⇐⇒ ς = −δτ,

and the irreducible representations that are square integrable modulo the center (or, equivalently, the flat
orbits) are labelled by

z∗• = {(ς, τ) ∈ R
2 | ς 6= −δτ} .

The transported Plancherel measure onz∗ is concentrated on this set and it has a density with respect to the
2-dimensional Lebesgue measure:

dµ(ς, τ) = 2|Pf(ς, τ)|dσdτ = 2|ς + δτ |dςdτ.

Remark 6.3. One can combine this form of the Plancherel measure with Lemma3.5to compute the canonical
measures on our flat coadjoint orbits. Using the concrete realisation, (3.6) becomes

∫

R2

[ ∫

Ω(ς,τ)

C(ρ, ϑ, ς, τ)dγ(ς,τ)(ρ, ϑ)
]
2|ς + δτ |dσdτ =

∫

g∗
C(ρ, ϑ, ς, τ)dρdϑdςdτ,

from which (6.2) follows.

6.3 Irreducible representations

The way to construct the irreducible representations ofG is exposed in a general setting in [6, Sect. 2] and
will be applied without many comments.

We first determine the irreducible representations attached to the fixed points. If(ρ, ϑ,−δτ, τ) is such a
fixed point, the entire Lie algebrag is polarizing (maximal subordinate). The associated character

χ(ρ,ϑ,−δτ,τ) : G ≡ g → C , χ(ρ,ϑ,−δτ,τ)(q, p, s, t) := ei〈(q,p,s,t)|(ρ,ϑ,−δτ,τ)〉 = ei(qρ+pϑ+(t−δs)τ)

is the representation we were looking for. We recall that these representations have no contribution to the
Plancherel measure. Ifu ∈ L1(G) , then its group Fourier tranform computed in these characters (just
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complex numbers) can be expressed as a restriction of the4-dimensional Euclidean Fourier transform:

(
F

G,Ĝ
u
)(
χ(ρ,ϑ,−δτ,τ)

)
=

∫

R4

u(q, p, s, t)χ(ρ,ϑ,−δτ,τ)(−q,−p,−s,−t)dqdpdsdt

=

∫

R4

u(q, p, s, t)e−i(qρ+pϑ+(t−δs)τ)dqdpdsdt

=
(
FR4u

)
(ρ, ϑ,−δτ, τ) .

In search of the irreducible representations corresponding to the flat orbits, we fix the (Abelian) Lie
subalgebra

m := {0} × R
3 = Span(P, S, T ) .

It is clearly polarizing for all these flat orbits, since it has the right dimensiondimm = 1
2(dim g + dim z)

and, by (6.1), one has
Bil(ρ,ϑ,ς,τ)

(
(0, p, s, t), (0, p′ , s′, t′)

)
= 0 . (6.3)

If (ς, τ) ∈ z∗• , i.e. ς 6= −δτ , the character

χ(ς,τ) : M ≡ m → T , χ(ς,τ)(0, p, s, t) = ei〈(0,p,s,t)|(0,0,ς,τ)〉 = ei(sς+tτ)

serves to induce the irreducible representation

π(ς,τ) := Ind
(
M↑G;χ(ς,τ)

)
: G → B(H(ς,τ)) .

As model Hilbert spaceH(σ,τ) we are going to useL2(G/M) ≡ L2(R) . We will need the computation

(q0, 0, 0, 0)•(q, p, s, t) =
(
q0 + q, p, s+

1

2
q0p, t+

δ

2
p0q

)

=
(
0, p, s + q0p+

1

2
qp, t+ δq0p+

δ

2
qp
)
•
(
q0 + q, 0, 0, 0

)
.

Then the general theory gives forϕ ∈ L2(R) the expression of the corresponding irreducible representation

[
π(ς,τ)(q, p, s, t)ϕ

]
(q0) = χ(ς,τ)

(
0, p, s + q0p+

1

2
qp, t+ δq0p+

δ

2
qp
)
ϕ(q0 + q)

= ei
[
sς+tτ+

(
q0p+

1
2
qp
)
(ς+δτ)

]
ϕ(q0 + q) .

(6.4)

Remark 6.4. Let r > 0 ; denoting bydil√r the unitary dilation operator
(
dil√r ϕ

)
(q0) :=

√
rϕ(

√
rq0) in

L2(R) , one checks easily that

π(rς,rτ)(q, p, s, t) ◦ dil√r = dil√r ◦ π(ς,τ)(
√
rq,

√
rp, rs, rt) = dil√r ◦ π(ς,τ)[

√
r ·(q, p, s, t)] .

Settingq for the operator of multiplication with the variable inL2(R) , i.e. (qϕ)(q) := qϕ(q) , the four
infinitesimal generators are

dπ(ς,τ)(Q) = ∂, dπ(ς,τ)(P ) = i(ς + δτ)q , dπ(ς,τ)(S) = iσId , dπ(ς,τ)(T ) = iτ Id .

Thus the repesented version of the canonical sub-LaplacianL := Q2 + P 2 is

dπ(ς,τ)(L) = ∂2 − (ς + δτ)2q2.

The general theory tells us thatH∞
(ς,τ)= S(R) .
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6.4 The group Fourier transform and the Pedersen calculus

We are going to make use of Weyl’s quantization [13] with a parameterλ ∈ R• := R\{0} in one dimension

[Weylλ(γ)ϕ](q0) :=

∫

R

∫

R

ei(q0−q)ηγ
(
η, λ

q0 + q

2

)
ϕ(q)dqdη .

In computing the group Fourier transform and the Pedersen quantization, we only treat the (generic) flat
orbits Ω(ς,τ) = (0, 0, ς, τ)+R

2×{(0, 0)} , whereς 6= −δτ . One denotes byFRk the usual Euclidean Fourier
transform inRk.

Proposition 6.5. If λ := ς + δτ 6= 0 and (say)u ∈ S(G) , then
(
F

G,Ĝ
u
)(
π(ς,τ)

)
is an integral operator in

L2(R) with kernel

κu(ς,τ)(q0, q) :=
[
(Id⊗FR3)u

](
q0 − q,

λ

2
(q0 + q), ς, τ

)

and also a Weylλ-pseudo-differential operator with symbol
(
FR4u

)
|R2×{(ς,τ)} , i.e. it is given by

[(
F

G,Ĝ
u
)(
π(ς,τ)

)
ϕ
]
(q0) =

∫

R

∫

R

ei(q0−q)η
(
FR4u

)(
η,
ς + δτ

2
(q0 + q), ς, τ

)
ϕ(q)dq.

Proof. If u ∈ L1(G) andϕ ∈ L2(R) , then

[(
F

G,Ĝ
u
)(
π(ς,τ)

)
ϕ
]
(q0) =

∫

R4

u(q, p, s, t)
[
π(ς,τ)(−q,−p,−s,−t)ϕ

]
(q0)dqdpdsdt

=

∫

R4

u(q, p, s, t)e−i
[
sς+tτ+

(
q0p− 1

2
qp
)
(ς+δτ)

]
ϕ(q0 − q)dqdpdsdt

=

∫

R

[
(Id⊗FR3)u

](
q0 − q,

ς + δτ

2
(q0 + q), σ, τ

)
ϕ(q)dq

=

∫

R

∫

R

ei(q0−q)η
(
FR4u

)(
η,
ς + δτ

2
(q0 + q), ς, τ

)
ϕ(q)dq ,

finishing the proof.

Proposition 6.6. If (ς, τ) ∈ z∗• , thenPedΩ(ς,τ)
≡ Ped(ς,τ) only depends on the combinationλ := ς+ δτ 6= 0

and one has
Ped(ς,τ) = (2|ς + δτ |)−1 Weylς+δτ .

Proof. We start with the Fourier transform adapted to the coadjointorbit. For anyΨ ∈ S
(
Ω(ς,τ)

)
, seen as a

function of(ρ, ϑ) ∈ R
2 , and for any(q, p, s, t) ∈ g , we have by (6.2) that

Ψ̂(q, p, s, t) :=

∫

Ω(ς,τ)

e−i〈(q,p,s,t)|(ρ,ϑ,ς,τ)〉Ψ(ρ, ϑ) (2|ς + δτ |)−1dρdϑ

and then, since the common predual isω = R
2×{(0, 0)} ,

[
FΩ(ς,τ)

(Ψ)
]
(q, p) = Ψ̂(q, p, 0, 0) = (2|ς + δτ |)−1

∫

R2

e−i(qρ+pϑ)Ψ(ρ, ϑ) dρdϑ ,
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so (after some identifications), we essentially arrived once more at the Euclidean Fourier transform. Then,
taking into account (6.4) and the definition of the Pedersen quantization, forΨ ∈ S

(
Ω(ς,τ)

)
one can write

[
Ped(ς,τ)(Ψ)ϕ](q0) = (2|ς + δτ |)−1

∫

R2

∫

R2

e−i(qρ+pϑ)Ψ(ρ, ϑ)
[
π(ς,τ)(q, p, 0, 0)ϕ](q0)dqdpdρdϑ

= (2|ς + δτ |)−1

∫

R2

∫

R2

e−i(qρ+pϑ)Ψ(ρ, ϑ)ei
(
q0p+

1
2
qp
)
(ς+δτ)ϕ(q0 + q)dpdqdρdϑ

= |2λ|−1

∫

R3

( ∫

R

eip
[
λ
(
q0+

1
2
q
)
−ϑ

]
dp

)
e−iqρ Ψ(ρ, ϑ)ϕ(q0 + q)dqdρdϑ

= |2λ|−1

∫

R

∫

R

e−iqρ Ψ
(
ρ, λ(q0 + q/2)

)
ϕ(q0 + q)dpdρ

= |2λ|−1

∫

R

∫

R

ei(q0−q)ρ Ψ
(
ρ, λ

q0 + q

2

)
ϕ(q)dqdρ .

The forth equality is a formal but easy to justify standard fact.

6.5 Quantization

Therefore, as in Corollary4.7, the concrete form of the global group quantization is
[
OpG×z∗•

(Σ)u
](
q′, p′, s′, t′

)

= 2

∫

R4

∫

R2

Tr
[
π(ς,τ)

(
q′− q, p′− p, s′− s− 1

2
(qp′− q′p), t′− t− δ

2
(qp′− q′p)

)
Σ
(
q′, p′, s′, t′; ς, τ

)]

u(q, p, s, t)|ς + δτ |dςdτ dqdpdsdt .
(6.5)

On the other hand, the quantization onG× g∗ indicated in (4.3) reads now

[
OpG×g∗(f)u

](
q′, p′, s′, t′

)
=

∫

R4

∫

R4

ei[(q
′−q)ρ+(p′−p)ϑ+(s′−s)ς+(t′−t)τ ] e−

i
2
(qp′−q′p)(σ+δτ)

f
(
q′, p′, s′, t′; ρ, ϑ, ς, τ

)
u(q, p, s, t)dqdpdsdt dρdϑdςdτ.

(6.6)

Remark 6.7. By (3.8) and (6.2), one has

Tr
[
π(σ,τ)

(
q′− q, p′− p, s′− s− 1

2
(qp′− q′p), t′− t− δ

2
(qp′− q′p)

)
Ped(ς,τ)

(
f
(
q′, p′, s′, t′; ·, ·, σ, τ

))]

= (2|σ + δτ |)−1

∫

R2

ei
〈
q′−q,p′−p,s′−s− 1

2
(qp′−q′p),t′−t− δ

2
(qp′−q′p) | (ρ,ϑ,ς,τ)

〉
f
(
q′, p′, s′, t′; ρ, ϑ, σ, τ

)
dρdϑ

= (2|σ + δτ |)−1

∫

R2

ei[(q
′−q)ρ+(p′−p)ϑ+(s′−s)σ+(t′−t)τ ] e−

i
2
(qp′−q′p)(ς+δτ)f

(
q′, p′, s′, t′; ρ, ϑ, σ, τ

)
dρdϑ .

Replacing this in (6.5), for

Σ
(
q′, p′, s′, t′;σ, τ

)
= Ped(σ,τ)

(
f
(
q′, p′, s′, t′; ·, ·, σ, τ

))
,

one recovers (6.6). This is a confirmation of Corollary4.2 in this simple particular case.

7 Appendix: Admissible graded Lie algebras with one-dimensional center

Here we discuss several examples of admissible graded Lie groups and the appearing elements of their rep-
resentatons.
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7.1 Automorphisms and Lie algebras with one-dimensional center

An automorphism of the Lie algebra generates many other automorphisms that interact well with the coadjoint
picture. Letc : g → g be such an automorphism; then another one is defined by

c∗ : g∗ → g∗,
〈
X |c∗(X )

〉
:=

〈
c−1(X) |X

〉
.

The exponential map being an isomorphism, one can apply the automorphism on the group side, setting

c(x) := exp
[
c(log x)

]
, x ∈ G . (7.1)

Finally, using the duality betweenG andĜ one makes the automorphism act on the unitary dual by

[̂c(ξ)](x) := ξ
[
c(x)

]
, x ∈ G , ξ ∈ Ĝ .

The deliberate confusion between irreducible representations and their unitary equivalence classes is harm-
less. If we adopt the representation point of view, note thatthe Hilbert spaces ofξ andĉ(ξ) are the same.

Lemma 7.1. Let c be an automorphisms of the Lie algebrag .

(i) For everyx ∈ G one has

Adx ◦ c = c ◦ Adc−1(x) , c∗◦ Ad∗x = Ad∗c−1(x)◦ c∗. (7.2)

(ii) The automorhismc∗ sends coadjoint orbits in coadjoint orbits.

(iiii) If m is a polarizing subalgebra forU ∈ g , thenc(m) is a polarizing subalgebra forc∗(U) .

(iv) If G is admissible, the automorhismc∗ sends flat coadjoint orbits in flat coadjoint orbits.

Proof. (i) Using (7.1) and notations from Subsection2.1, one has

Adx ◦ c = log ◦ innx◦ exp ◦ c = log ◦ innx◦ c ◦ exp
= log ◦ c ◦ innc−1(x)◦ exp = c ◦ log ◦ innc−1(x)◦ exp
= c ◦ Adc−1(x) ,

which shows the first identity in (7.2). The second one follows by duality.

(ii) The second identity in (7.2) implies immediately that

c∗
(
ΩU

)
= Ωc∗(U) , ∀ U ∈ g∗. (7.3)

(iii) Straightforward proof: see [6, Prop. 1.3.6].

(iv) Recall that the flat orbits are of the formΩ = Z+z⊥, with Z ∈ z∗• . So, by (7.3), it is enough to show
thatc∗ : g∗ → g∗ leavesz∗• invariant. Clearlyz∗ is invariant under the automorphismc∗: use for instance the
fact that the centerz is invariant under any automorphism ofg . The pointsZ ∈ z∗• are characterized by the
conditionPf(Z)2= det

(
BilZ

)
6= 0 . But

Bilc∗(Z) = BilZ ◦
(
c−1× c−1

)

and this implies the invariance ofz∗• .
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The point (ii) tells us that we have a well-defined bijectionc̃∗ : g∗/Ad∗ → g∗/Ad∗. It can be shown that
this map is compatible with the one acting on the level of the unitary dual:

ĉ(ξΩ) = ξc̃∗(Ω) , ∀Ω ∈ g∗/Ad∗.

This combined with (iv), or a direct proof, shows in the admissible case that̂c(Ĝ•) ⊂ Ĝ• .

Remark 7.2. Having the formΩU = U + z† for someU ∈ z∗• , the flat orbits can be obtained from each other
through translations. But these translations ing∗ are not corresponding to Lie algebra automorphisms ofg

and they do not match our setting.

If we know in advance that two irreducible representationsξ andη are connected by an automorphism,
i. e. η = ĉ(ξ) , this is valuable: they both act on the same Hilbert space, and one can be easily constructed
in terms of the other. Consequently, the Pedersen quantizationsPedξ andPedη are also directly connected.
This is particularly effective when an automorphism group acts transitively on a relevant family of (classes
of) irreducible representations. Under favorable circumstances, this can be used in the framework of the
quantizations we studied onG× Ĝ andG× g∗ respectively.

Let us just explorethe case whenG is admissible and graded and the centerz of the Lie algebra is one-
dimensional. This happens for the Heisenberg groups and for the examplesin Subsections7.2and7.3, but it
does not hold in Section6. When this is the case, thenz∗ is also one-dimensional and, since the Pfaffian is
a homogeneous polynomal, it is easy to see thatz∗• = z∗\{0} . The dilation group ong generates, as above,
groups of dilations ong∗, g∗/Ad∗,G, Ĝ, Ĝ•, z∗ andz∗• . In particular, inz∗• ∼= R\{0} there are two orbitsR± .
Another automorphisminv(X) := −X (or, equivalently,inv(x) = x−1 at the group level) connects the two
orbits, because it acts asinv∗(Z) = −Z on the dual of the center ofg . Thus1 ∈ R\{0} can be connected
with any other element inz∗• and one has

ξr = ξ1 ◦ dilr if r > 0 and ξr = ξ1 ◦ dilr ◦ inv if r < 0 . (7.4)

Consequently, in this case, if one of the generic irreducible representation (corresponding to one of the flat
orbits) is computed, the others are easily generated using the dilations and eventually an inversion. We recall
that, by abuse, representations has been identified with their unitary equivalence classes; thus, in terms of
representations, (7.4) merely means equivalence and not equality.

7.2 A five dimensional three-step graded admissible group

For a first example [3, Ex. 5.7], the Lie algebra is generated by{E0, E1, E2, E3, E4} , with the non-trivial
brackets

[E4, E1] = [E3, E2] = E0 , [E4, E3] = E1 .

So it can be seen asR5 with bracket
[
(q0, q1, q2, q3, q4), (p0, p1, p2, p3, p4)

]
:= (q4p1 − q1p4 + q3p2 − q2p3, q4p3 − q3p4, 0, 0, 0) .

One has[g, g] = R
2 × {(0, 0, 0)} ≡ Span{E0, E1} and the center is one-dimensional:

z =
[
[g, g], g

]
= R× {(0, 0, 0, 0)} ≡ Span{E0} .

The Lie algebrag is graded by

g = w1⊕w2⊕w3 = Span{E3, E4} ⊕ Span{E1, E2} ⊕ Span{E0} ,
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so the dilations are

dilr(q0, q1, q2, q3, q4) :=
(
r3q0, r

2q1, r
2q2, rq3, rq4

)
, r ∈ R+ .

Since this Lie algebra is not stratified, there is no sub-Laplacian to use. A Rockland operator can be computed
by applying Remark5.1. Our basis satisfies the assumptions, since{E2, E3, E4} generatesG as a Lie algebra
and{E0, E1} generates[g, g] linearly; thusn = 5 andn′= 3 . One may takep = 6 and

R := −E6
2 + E12

3 + E12
4

is a12-homogeneous Rockland operator.

For the dual we set

g∗ := R
5 ∋ (ρ0, ρ1, ρ2, ρ3, ρ4) ≡ ρ0E0 + ρ1E1 + ρ2E2 + ρ3E3 + ρ4E4 .

The anihilator of the center is

z⊥ = {0} × R
4 = Span{E1, E2, E3, E4} ,

while the dual of the center identifies to

z∗ ≡ R× {(0, 0, 0, 0)} = Span{E0} .

On the corresponding connected simply connected Lie groupG ≡ g = R
4 one has the multiplication

(q0, q1, q2, q3, q4)•(p0, p1, p2, p3, p4)

=
(
q0 + p0 +

1

2
(q4p1− q1p4 + q3p2− q2p3) +

1

12
(q4− p4)(q4p3− q3p4),

q1 + p1 +
1

2
(q4p3− q3p4), q2 + p2, q3 + p3, q4 + p4

)
.

One easily computes the coadjoint action

Ad∗(q0,q1,q2,q3,q4))(ρ0, ρ1, ρ2, ρ3, ρ4)

=
(
ρ0, ρ1 − q4ρ0, ρ2 − q3ρ0, ρ3 + (q2 − q24/4)ρ0 − q4ρ1, ρ4 + (q1 + (1/4)q4q3)ρ0 + q3ρ1

)
.

The fixed points (0-dimensional coadjoint orbits) are those situated in the subspace{(0, 0)} × R
3.

Other (2-dimensional) coadjoint orbits are

(0, ρ1, 0, 0, 0) + {(0, 0, 0)} × R
2 , ρ1 ∈ R \ {0} .

The flat (generic,4-dimensional) coadjoint orbits have all the form

Ω(ρ0,0,0,0,0) ≡ Ωρ0 := {ρ0} × R
4 = {(ρ0, 0, 0, 0, 0)} + {0} × R

4 = {(ρ0, 0, 0, 0, 0)} + z⊥

for some fixedρ0 6= 0 .

The canonical bilinear form reads

Bil(ρ0,ρ1,ρ2,ρ3,ρ4)
(
(q0, q1, q2, q3, q4), (p0, p1, p2, p3, p4)

)

=(q4p1− q1p4 + q3p2− q2p3)ρ0 + (q4p3 − q3p4)ρ1
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and is non-degenerate when restricted to the common predualω = {0}×R
4 ⊂ g of the flat orbits if and only

if ρ0 6= 0 . Now, if (ρ0, 0, 0, 0, 0) ∈ z∗, one has

Bil(ρ0,0,0,0,0)
(
(q1, q2, q3, q4), (p1, p2, p3, p4)

)
= (q4p1− q1p4 + q3p2− q2p3)ρ0 ,

so
Pf2(ρ0) ≡ Pf2(ρ0, 0, 0, 0, 0) = detBil(ρ0,0,0,0,0) = ρ40 ,

confirming once again that
z∗• = R\{0} ≡ (R\{0}) × {(0, 0, 0, 0)} .

Based on Proposition2.3, the concrete Plancherel measure onz∗• is

dµ(ρ0) = 8|Pf(ρ0)|dρ0 = 8|ρ0|2dρ0 .

7.3 Another five dimensional three-step graded admissible group

We present briefly a similar case, that is mentioned in [3, Ex. 5.8]; it is different, slightly more complicated,
but still similar to the one treated above. The non-trivial structure equations are

[E4, E3] = E2 , [E4, E2] = E1 , [E4, E1] = [E3, E2] = E0 ,

corresponding to the bracket
[
(q0, q1, q2, q3, q4), (p0, p1, p2, p3, p4)

]
:= (q3p2 − q2p3 + q4p1 − q1p4, q4p2 − q2p4, q4p3 − q3p4, 0, 0) .

The centerz = Span(E0) is once again one dimensional, so the relevant square integrable modulo the center
irreducible representations are generated by dilations and the inversion from a given one; we leave their
computation to the reader. The dilation is defined by the (non-stratified) grading

g = Span{E4} ⊕ Span{E3} ⊕ Span{E2} ⊕ Span{E1} ⊕ Span{E0} ,
i.e.

dilr(Ej) := r5−jEj , r > 0 , j = 0, 1, 2, 3, 4 .

Applying Remark5.1with n = 5 , n′ = 2 , Zj = E5−j andp = 3 · 4 · 5 = 60 , one checks easily that

R := E120
4 + E60

3

is a homogeneous Rockland operator of order120 .

It is not difficult to see that the flat coadjoint orbits are labelled byρ0 6= 0 :

Ωρ0 = {ρ0, 0, 0, 0, 0} + z⊥ = {(ρ0, ρ1, ρ2, ρ3, ρ4) | ρ1, ρ2, ρ3, ρ4 ∈ R} .
The canonical bilinear form

Bil(ρ0,ρ1,ρ2,ρ3,ρ4)
(
(q0, q1, q2, q3, q4), (p0, p1, p2, p3, p4)

)

=(q3p2 − q2p3 + q4p1 − q1p4)ρ0 + (q4p2 − q2p4)ρ1 + (q4p3 − q3p4)ρ2

is most relevant forZ = (ρ0, 0, 0, 0, 0) ∈ z∗ andX = (0, q1, q2, q3, q4), Y = (0, p1, p2, p3, p4) ∈ ω (the
commun predual of all the flat coadjoint orbits), leading to

Bilρ0
(
(q0, q1, q2, q3, q4), (p0, p1, p2, p3, p4)

)
= (q3p2 − q2p3 + q4p1 − q1p4)ρ0 .

So, as in Subsection7.2, the Plancherel measure onz∗• ≡ R\{0} is

dµ(ρ0) = 8|Pf(ρ0)|dρ0 = 8detBil(ρ0,0,0,0,0)dρ0 = 8|ρ0|2dρ0 .
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[4] I. Beltiţă and D. Beltiţă:Smooth Vectors and Weyl-Pedersen Calculus for Representations of Nilpotent
Lie Groups, Annals of the University of Bucharest (mathematical series) 1 (LIX), no. 1, 17–46 (2010).

[5] D. Burde: Characteristically Nilpotent Lie Algebras and SymplecticStructures, Forum Math.18 (5),
769–787, (2006).

[6] L. J. Corwin and F. P. Greenleaf:Representations of Nilpotent Lie Groups and Applications, Cambridge
Univ. Press, 1990.

[7] G. van Dijk, K.-H. Neeb, H. Salmasian and C. Zellner:On the Characterization of Trace Class Repre-
sentations and Schwartz Operators, arXiv:1512.02451.

[8] K. Dykema, J. Noles, F. Sukochev and D. Zanin:On Reduction Theory and Brown Measure for Closed
Unbounded Operators, arXiv: 1509.03362v1.
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