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Abstract

A core process in forestry planning corresponds to the design of optimal harvesting poli-
cies along with road network layouts. In the most common setting, decision makers seek
for solutions that maximize the profit of the forest while respecting operative and mar-
ket constraints. Due to the long-term nature of the industry, the inherent uncertainty in
both forest growth and market conditions should be taken into account. Nowadays, for-
est planning must target towards a sustainable management; the maximization of carbon
sequestration and the minimization of land erosion are two common environmental goals.

The planning challenge addressed in this paper integrates uncertainty of future forest
growth and timber prices with the need for considering three criteria; net-present value,
carbon sequestration, and land erosion caused by the road construction within the forest. By
using mathematical programming tools and stochastic optimization techniques, we develop
a stochastic multicriteria model that enables decision makers to have not only one, but a
pool of long term planning policies.

Moreover, a risk-averse variant of the framework is also considered. To the best of our
knowledge, this is the first time that this type of forestry planning setting, which responds
to the new challenges of the industry, is addressed.

The proposed tool is used on an eucalyptus forest located in Portugal; the obtained
results show the benefit of the proposed framework for producing a pool of sustainable
forest plans with efficient trade-offs among the three considered criteria.

Keywords: Forest Management, Uncertainty, Multicriteria Optimization, Stochastic
Programming, Risk Management

1. Introduction and Motivation

Forest management concerns the definition of strategic, tactical and operational planning
decisions whose performances are evaluated under conflicting criteria. Such planning deci-
sions shall endorse economical, operational and regulation targets for ensuring the viability
of the project. In a typical setting, decision makers need to design a forest management
plan comprised by harvesting and road building decisions. The first group of decisions are
embodied in a harvest scheduling plan, i.e., decision makers decide on when and how the
different units of the forest must be harvested. The second group of decisions are planned
through a building construction schedule that must enable (i) to access to the land units
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being harvested, and (ii) to transport the extracted timber to the selling points [the reader is
referred to 21, 48, for general references on forest management]. Due to the nature and time
span of the forest decision making context, managers must take into account the variabil-
ity of market conditions (e.g., wood price) and of resource availability (e.g., timber yield),
among other sources of uncertainty. Moreover, in today’s forestry industry, the climate
change process entails ecological concerns that incorporate additional difficulties for man-
agers. On the one hand, there is more uncertainty regarding the forest productivity; and on
the other hand, it calls for the fulfillment of new environmental regulations for guaranteeing
the sustainability of the forestry industry [25, 28].

There are many papers addressing the different sources of uncertainty in forest plan-
ning [see 4, 33, 35, 50, for thorough reviews]. The underlying presence of uncertainty has
been typically managed by means of scenarios [see, e.g., 1, 16, 18, 27]; nonetheless, alterna-
tive uncertainty models, such as fuzzy sets have been also used [see, e.g. 26].

As pointed out before, over the last years, managers are more and more concerned about
sustainability issues associated with forest planning; as a matter of fact, multicrtieria models
for sustainable forest plannings have been proposed in the last decade [see, e.g., 38, 40, and
the references therein]. Moreover, multicriteria forest planning has emerged as one of the
most active areas in the field of forest management. In [13] one can find an extensive
review of related topics; later references on the same area can be found in [9, 44, 43]. Issues
associated with environmental sustainability such as carbon sequestration, land erosion,
water use efficiency, or responsible exploitation planning, have become inevitable aspects
that managers must take into account in their planning process [see, e.g., 9, 38, 40, 45].

Some of the environmental requirements that managers face can be addressed by im-
posing spatial constraints to their harvest schedules. More precisely, environmental goals
such as wildlife protection, water quality protection and scenic beauty preservation, can
be accomplished by specially devised spatial constraints such as adjacency among harvest
areas [see, e.g., 20, 49], or connectivity requirements [see, e.g., 10, 7]. The reader is re-
ferred to [46] for an in-deep discussion on optimization forest planning problems dealing
with spatial constraints.

Based on the different works presented so far, we can conclude that effective forestry
decision-aid tools shall be able to cope with several economic, technical and environmental
issues. The development of such type of integrated framework corresponds to the core of
our paper. From the decision making point of view, one of the main attributes of the
proposed framework is that it provides not a single but a handful of solutions, each of
them embodying different trade-offs among the different criteria. This means that decision
makers will be enabled to include additional considerations, some of them that might have
not been incorporated into the optimization model, when selecting the harvesting policy
that will be implemented.

Contribution and Paper Outline Despite of the broad body of literature addressing
the different aspects described above, to the best of our knowledge, no model tackling all
these aspects simultaneously has been developed. In other words, our first contribution is
the development of a stochastic forest management framework for deciding a harvest and
road building schedule that addresses (i) economic and sustainability criteria, (ii) uncer-
tainty from market conditions and forest growth, and (iii) spatial (adjacency) requirements.
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Moreover, we formulate a risk-averse variant of the model so as to design forest management
policies that respond relatively well even in adverse future events. Along with the definition
of these mathematical models, we also implement an algorithmic strategy for computing
pools of Pareto efficient solutions that enable decision makers to select the policies that
better fit their priorities.

Using a real Eucaliptus forest located in the central region of Portugal, and scenario-
based estimations of future conditions of both forest yield and market selling prices, we
computationally investigate the capacity of the model for producing solutions exhibiting
different trade-offs among the considered criteria. Computational results suggest that, with
the appropriate setting, it is possible to compute harvest and road constructions schedules
that perform well for both economical and environmental criteria. Moreover, complemen-
tary results show the ability of the risk-averse model for reducing the impact of negative
future possible scenarios.

The paper is organized as follows. Mixed integer programming (MIP) models for the
considered problem and the corresponding algorithmic scheme are presented in the Materials
and Methods section 2. In Section 3 we report numerical results on the study case. Finally,
conclusions and paths for future work are drawn in Section 4.

2. Material and Methods

2.1 Multicriteria Optimization and Stochastic Optimization in Forest Management

Already from the 60’s, researches have been studying optimization schemes for address-
ing multicriteria decision making under uncertainty [see 11, for one of the earliest reference
on this topic]. One of the most typical approaches corresponds to stochastic goal program-
ming [see, e.g., 2, 3, 5, and the references therein]. This approach allows to handle several
criteria at once allowing decision makers to define preferences among them; nonetheless, it
requires decision makers to set explicit goals or target values that shall be achieved by the
objective function associated with each criterion. Hence, the approach is suitable only for
conditions in which decision makers have clear insights regarding these target values and
their feasibility. For a relatively recent review on different multiobjective or multiocriteria
stochastic programming methods, we refer the reader to [6].

The development of multicriteria stochastic optimization models in forestry applications
is not new; as a matter of fact, one of the first references dates from 1997 [34] where a
stochastic multiobjective framework for stand management decisions is proposed. More
recent applications of similar tools on forest management optimization can be found in [17]
and [24].

2.2 The Multicriteria Stochastic Forest Management Problem

We now provide a description of our multicriteria decision making model for sustain-
able forest management. As we will show, this model addresses uncertainty and spatially
constrained harvesting decisions along with a road building schedule.

Sets The forest is divided into (management) units or stands, which comprise set I.
Associated with each unit i ∈ I, there is a set of adjacent units δ(i) ⊂ I, i.e., all units
sharing a common border.
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Commonly, within the forest there are intermediate facilities where harvested timber is
stored; such facilities, which are commonly called origins, are represented by set O. For
each origin o ∈ O, there is a set units, η(o) ⊆ I, which correspond to the units whose
harvested timber will be stored in o. Likewise, for each unit i ∈ I, we denote by oi ⊆ O to
the set of origins where the corresponding harvested timber can be stored. Along with these
intermediate facilities, we also need to consider (i) a set of exit points S, from where the
extracted timber leave the forest, and (ii) a set of intersection points J, which correspond
to specifically located crossroads inside the forest.

The sets described before, whose elements correspond to points within the forest, are
part of the network of potential roads that shall be built for the transportation of the timber.
Such network is denoted by set A, which is comprised by roads among origins (⊂ O × O),
roads among origins and intersections (⊂ O×J), roads among intersections (⊂ J×J), roads
among origins and exit points (⊂ O × S), roads and among intersections and exit points
(⊂ J× S). We consider that the elements encompassing set A can be divided into two sets.
Set A1 ⊂ A is regarded as the set of weak roads, i.e., roads whose construction associates
higher levels of land erosion; and set A2 ⊂ A, which are roads whose construction does
not entail particular damage on the land’ surface (note that A2 ⊂ A, A1 ∪ A2 = A and
A1 ∩ A2 = ∅). For ease of exposition, we identify the set of roads associated with the
different points, i.e., γ−(o) ⊂ A roads entering to origin point o ∈ O, γ+(o) ⊂ A roads
leaving from origin point o ∈ O, γ−(j) ⊂ A roads entering to intersection point j ∈ J,
γ+(j) ⊂ A roads leaving from intersection point j ∈ J, and γ−(s) ⊂ A roads entering to
exist point s ∈ S.

Besides these sets that characterize the topological structure of the forest, the planning
horizon will be encoded by a set of 1-year time periods T = {1, . . . , tmax}, the set of growth
and yield scenarios is given by Ω, and future price realizations are represented by set Φ.
Since sets Ω and Φ respond to different sources of uncertainty, and it is realistic to assume
that they are independent [see 47], we define set Π as the set of all possible scenarios
Π = Ω× Φ, and we associate probability ρπ ≥ 0 to each of them (clearly,

∑
π∈Π ρ

π = 1).

Parameters The state of the forest during the planning horizon, for the different sce-
narios, is expressed by the following parameters. Let V hπit be volume of wood that can be
harvested from unit i ∈ I in period t ∈ T if scenario π occurs [m3]; likewise, let V fπit be the
standing volume of wood, at the end of the planning horizon, if unit i ∈ I is harvested in
period t ∈ T if scenario π occurs [m3]. From a sustainability point of view, let Cπit be the
average mass of carbon that is captured during the planning horizon in case unit i ∈ I is
harvested in period t ∈ T if scenario π occurs [Ton].

The future market conditions are characterized by parameter pπt , which corresponds to
the discounted (at some fixed and known discount rate) profit obtained by harvesting a
cubic meter of timber in period t if scenario π is realized [$/m3]; this value depends on the
sale price (subject to uncertainty), the harvesting cost and the production cost. Along with
this market indicator, we also consider Dt and Dt which correspond to an upper and lower
bound, respectively, on total demand of wood in period t ∈ T [m3].

Two important requirements in forest management are characterized by the following
two parameters; Vf is the required volume of standing wood at the end of the planning
horizon [m3], and α is a harvesting balance factor which ensures a maximum variability of
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the harvested volume between consecutive years.
Roads are also characterized by several parameters. From a planning point of view, let

cklt be the cost of building road (kl) ∈ A in period t ∈ T [$]; and let dklt be the length of
road (kl) ∈ A [km]. Complementary, and from a operative point of view, let uklt be the
capacity of road (kl) ∈ A in period t ∈ T [m3].

Variables In the proposed model, we consider three types of variables; one associated
with harvesting decisions, one associated with road building decisions, and a third one
associated with timber transportation decisions. The first set of variables is given by vector
x ∈ {0, 1}|I|×|T |×|Π|, so that

xπit =

{
1, if unit i ∈ I is harvested in period t ∈ T if scenario π ∈ Π occurs

0, otherwise
.

The second, is given by vector y ∈ {0, 1}|A|×|T |×|Π|, such that

yπklt =

{
1, if road (kl) ∈ A is built in period t ∈ T if scenario π ∈ Π occurs

0, otherwise
.

The third set of variables, given by f ∈ R|A|×|T |×|Π|≥0 , is such that fπklt corresponds to the
amount of wood transported through road (kl) ∈ A in period t ∈ T if scenario π ∈ Π occurs
[m3].

Constraints As said in the introduction, one of the issues addressed by our model
corresponds to harvest adjacency requirements; such requirements impose that if a given
unit i ∈ I is harvested at a given period, say t, then none of the adjacent units (i.e., those
in δ(i)) can be harvested at the same time. This constraint is ensured by the following
inequality, ∑

a∈δ(i)

xπat ≤ 1− xπit, ∀i ∈ I, ∀t ∈ T, ∀π ∈ Π. (ADJ)

Complementary, we assume that units can be harvested only once during the planning
horizon, which means that constraint∑

t∈T
xπit ≤ 1, ∀i ∈ I, ∀π ∈ Π (H)

must always hold.
At each period, harvested timber shall be transported from the inner areas of the forest

towards the exit points S through the available road network. From the units, harvested
wood first flows to origin points; this is expressed by constraint∑

i∈η(o)

xπitV h
π
it +

∑
(ko)∈γ−(o)

fπkot =
∑

(ol)∈γ+(o)

fπolt, ∀o ∈ O, ∀t ∈ T, ∀π ∈ Π, (F.1)

which ensures that the wood that comes from both, harvested units and other incoming
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roads, shall exit the origin point. As well as for origin points, intersection points shall also
verify flow conservation, meaning that constraint∑

(kj)∈γ−(j)

fπkjt =
∑

(jl)∈γ+(j)

fπjlt, ∀j ∈ J, ∀t ∈ T, ∀π ∈ Π, (F.2)

shall always hold. Timber that flows towards the exist points should satisfy the demand
requirements, given by Dt and Dt, at each period; this is expressed by

Dt ≤
∑
s∈S

∑
(ks)∈γ−(s)

fkst ≤ Dt, ∀t ∈ T, ∀π ∈ Π, (F.3)

which basically forces that all the timber volume that flows towards the exit points shall be
greater or equal (resp. less or equal) than Dt (resp. Dt). Complementary, we assume that
no stock is maintained between periods, meaning that all harvested timber should leave the
forest. Such requirement is modeled by∑

i∈I
V hπitx

π
it =

∑
s∈S

∑
(ks)∈γ−(s)

fπkst, ∀t ∈ T, ∀π ∈ Π. (F.4)

The constraints presented so far only concern the flow balance of timber within the road
network. For ensuring the feasibility of such flow, we have to force that if there is flow on
road (kl) ∈ A, then the corresponding road was built, and the volume of such flow does not
exceed the capacity of the road, i.e.,

fπklt ≤ Uklt
∑
θ≤t

yπklθ, ∀(kl) ∈ A, ∀t ∈ T, ∀π ∈ Π. (F.5)

Finally, any road building schedule should be such that roads are built only once; this is
accomplished by imposing constraint∑

t∈T
yπklt ≤ 1, ∀(kl) ∈ A, ∀π ∈ Π. (F.6)

One requirement that contributes to the sustainability of the forest as an economic
activity, is to ensure that timber production between consecutive years does not change
abruptly; this is guarantee by the following so-called production balance constraints,∑

i∈I
V hπitx

π
it ≤ (1 + α)

∑
i∈I

V hπit−1x
π
it−1, ∀t ∈ T\{1}, ∀π ∈ Π (P.1)∑

i∈I
V hπitx

π
it ≥ (1− α)

∑
i∈I

V hπit−1x
π
it−1, ∀t ∈ T\{1}, ∀π ∈ Π, (P.2)

that force that the total volume harvested at period t can be at least (resp. at most)
(1 − α) (resp.(1 + α)) times what was harvested in t − 1. Along with this production
balance requirements, decision makers are typically expected to ensure that a final volume
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Figure 1: An example of (temporal) dependencies among a set of 32 scenarios across 15 stages.

of standing forest; in other words, the constraint∑
t∈T

∑
i∈I

xπitV f
π
it ≥ Vf , ∀π ∈ Π (P.3)

must be satisfied in order to contribute to the economical and ecological sustainability of
the forest.

Since we are dealing with a stochastic program, any feasible solution embodied by a
triplet (x,y, f) should also satisfy the so-called non-anticipativity constraints, i.e.,

xπt = xπ
′
t , ∀t ∈ T\{tmax}, ∀π, π′ ∈ Πg, ∀g ∈ Gt (NA.1)

yπt = yπ
′
t , ∀t ∈ T\{tmax}, ∀π, π′ ∈ Πg, ∀g ∈ Gt (NA.2)

fπt = fπ
′

t , ∀t ∈ T\{tmax}, ∀π, π′ ∈ Πg, ∀g ∈ Gt, (NA.3)

where Gt corresponds to the set of scenarios that are indistinguishable up to period t.
Complementary, one can also state that these constraints ensure that at each period t, the
harvesting, road building, and timber flow decisions should depend only on information
available at the time of the decision, i.e., on an observed realization of the economical and
ecological parameters up to period t, and not on future observations. The consideration
of these constraints is independent of the particular stochastic behavior of the uncertain
parameters; hence, even if scenarios are equiprobable, they must be included as long as
some scenarios share common branches along the scenario tree [37]. In Figure 1 we show
an example of the typical structure of a scenario tree and how this encodes their temporal
interdependence. In this example, there are 32 scenarios that evolve across 15 stages or
periods. We can see that, for instance, scenarios 1 and 32 coincide only in the first stage,
while scenarios 17 and 25 are the same up to stage 12. Without the non-anticipativity
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constraints, such temporal relations would be neglected, and the problem would decompose
into |Π| (32 in the case of the example) independent deterministic problems, one for each
scenario; however, the obtained solutions are likely to lack of practical interpretation.

Although all the previously presented inequalities are enough for characterizing the set
of feasible solutions of the stochastic program, it is possible to strengthen the formulation
by adding the following two inequalities. First, we observe that a unit i can be harvested,
in a period t, if and only if there is at least one (previously) built road leaving one of the
origin points to which i is associated with; in other words,

xπit ≤
∑
θ≤t

∑
(oik)∈γ+(oi)

yoikθ, ∀i ∈ I, ∀t ∈ T, ∀π ∈ Π. (S.1)

Second, and following similar arguments, it is clear that at intersection points, a road
(kl) ∈ A is built if and only if another road incident to k ∈ J is (previously) built, i.e.,
constraint

yπklt ≤
∑
θ≤t

∑
(rk)∈γ−(k)

yπrkθ, ∀(kl) ∈ A |k∈J, ∀t ∈ T, ∀π ∈ Π, (S.2)

ensures that no isolated road is built.
For ease of exposition, we define set R(Π) as the set of all triplets (x,y, f) simultaneously

satisfying constraints (ADJ), (H), (F.1)-(F.6), (P.1)-(P.2), (NA.1)-(NA.2), and (S.1)-(S.2).
A given triplet (x,y, f) ∈ R(Π) will be referred to as a (feasible) forest management policy.

Problem Formulation As said before, our model addresses economic and environmen-
tal sustainability criteria. Concretely, the considered criteria are (i) the net-present value
(NPV), (ii) the carbon sequestration, and (iii) the land erosion; they are incorporated into
the model by means of three objective functions.

The economic criterion corresponds to the value of the forest expressed by its net present
value. For a given (x,y, f) ∈ R(Π), the corresponding expected net present value, is ex-
pressed by

NPV (x,y, f) =
∑
π∈Π

ρπ

∑
t∈T

∑
i∈I

pπt V h
π
itx

π
it −

∑
t∈T

∑
(kl)∈A

cklty
π
klt

 ,

i.e., the expected value of the difference between the profit obtained from the harvested
wood and the costs incurred by building the required roads. Note that this NPV criterion
is probably the most common one when defining forest management policies [see, e.g., 29].

As for environmental criteria, in this paper we consider carbon sequestration and land
erosion [see, e.g., 38, 40, 41, and the references therein]. For a feasible forest management
policy (x,y, f) ∈ R(Π), the expected total mass of sequestrated carbon (in tons), across the
whole planning horizon, is given by

CS(x,y, f) =
∑
π∈Π

ρπ

(∑
t∈T

∑
i∈I

Cπitx
π
it

)
.
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In our setting, land erosion is measured by the total length (in kilometers) of roads built
on soil which is more vulnerable to erosion; hence, those roads associated to set A1. This
means that the expected total land erosion (in km) is measured by the function

LE(x,y, f) =
∑
π∈Π

ρπ

∑
t∈T

∑
(kl)∈A1

dkly
π
klt

 .

Given these three functions, the goal of the optimization task is to find a forest manage-
ment policy (x,y, f) ∈ R(Π), so that NPV (x,y, f) is maximized, CS(x,y, f) is maximized,
and LE(x,y, f) is minimized, simultaneously. Hence, the multicriteria stochastic forest
management problem (MSFMP), corresponds to the following (3-objective) stochastic MIP
problem

(x∗,y∗, f∗) = arg max(NPV (x,y, f), CS(x,y, f),−LE(x,y, f)) (MSFMP.1)

s.t.

(ADJ), (H), (F.1)-(F.6), (P.1)-(P.2), (NA.1)-(NA.2), (S.1)-(S.2) (MSFMP.2)

x ∈ {0, 1}|I|×|T |×|Π|, y ∈ {0, 1}|A|×|T |×|Π| and f ∈ R|A|×|T |×|Π|≥0 . (MSFMP.3)

In order to solve problem (MSFMP.1)-(MSFMP.3), we adopt the well-known ε-constrained
method [see, e.g., 30]. This method, whose details will be outlined in Section 2.4, allows to
approximate the whole set of solutions comprising the Pareto frontier, i.e., efficient solutions
that offer an optimal trade-off among the different objectives.

2.3 Risk Averse Forest Management: MSFMP combined with CVaR

The stochastic model encoded by (MSFMP.1)-(MSFMP.3) is a risk-neutral approach,
meaning that criteria performances are measured only with respect to the corresponding
expected values. However, and as we will report in Section 3, such approach leads to
forest management policies that, although performing well in average, verify (very) poor
performances for some scenarios. This behavior is particularly critical when referring to
the NPV criterion, since the eventual occurrence of averse economic outcomes can risk the
overall viability of the project.

Note that reducing the magnitude of averse outcomes corresponds to reducing the thick-
ness of the tail of the NPV distribution. Such reduction can be achieved by incorporating
a risk-averse measure into the model [see, e.g., Part II, Section 2.9 in 8]. In this paper we
consider the well-known Conditional Value-at-Risk (CVaR) measure for reducing the mag-
nitude of net-present values attained for adverse scenarios; below we describe the details of
how this measure is incorporated into our multicriteria stochastic framework.

Let us assume that the decision maker defines a desired net-present value threshold, say
q. For a given triplet (x,y, f) ∈ R(Π) and a given scenario π ∈ Π, the shortfall with respect
to q is

γ (xπ,yπ, fπ) =

∑
t∈T

∑
i∈I

pπt V h
π
itx

π
it −

∑
t∈T

∑
(kl)∈A

cklty
π
klt

− q.
Now, let us assume that the decision maker defines a shortfall threshold α, and a security
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level β ∈ [0, 1]. An additional goal of the decision maker, is to find a risk-averse forest
management policy such that the β-conditional expectation of the shortfalls γ (xω,yω, fω)
greater than α is minimum. For example, if α = 500, 000 [EUR] and β = 0.95, it means
that the decision maker seeks a harvesting policy that ensures that the average of the worst
5% of the shortfalls greater than 500, 000 [EUR], with respect to q, is as small as possible.

For a given harvesting policy (x,y, f) ∈ R(Π) , the (β, α)-Conditional Value-at-Risk
((β, α)-CVaR), defined as the β-conditional expectation of the shortfalls greater than α, is
given by

Γ(x, α, β) = α+
1

1− β
1

|Π|
∑
π∈Π

[γ(xπ)− α]+ , (CVaR)

where

[r]+ =

{
r, if r > 0,

0, if r ≤ 0.

CVaR was proposed in the seminal paper by Rockafellar and Uryasev [36]. In that paper,
CVaR corresponds to the objective of a mathematical optimization problem; such represen-
tation enabled the authors to prove that CVaR is tractable under general circumstances.
Moreover, in case of discrete finite distributions (as our case), CVaR optimization problems
admit linear programming formulations. As shown in [36], one can incorporate function
Γ(x, α, β) into the model by defining a weighted function combining NPV (x,y, f) and
Γ(x, α, β), i.e.,

NPV CV aR(x,y, f) = λNPV (x,y, f)− (1− λ)Γ(x, α, β),

where λ ∈ [0, 1] is a user defined parameter for balancing between the expected net-
present value and the risk-aversion function. Therefore, the CVaR-MSFMP is the prob-
lem obtained when replacing the first objective function of formulation of MSFMP by
NPV CV aR(x,y, f).

Note that for incorporating function Γ(x, α, β) into the model, it is necessary to lin-

earize it; this can be done by introducing a vector of auxiliary variables u ∈ R|Π|≥0 and
rewriting (CVaR) as

Γ(x, α, β) = α+
1

1− β
1

|Π|
∑
π∈Π

uπ,

with

−γ(xπ) + α+ uπ ≥ 0, ∀π ∈ Π (Γ.1)

uπ ≥ 0, ∀π ∈ Π. (Γ.2)

As we will show in Section 3, incorporating this risk-aversion measure yields to policies
with a better performance in adverse scenarios, although at expenses of decreasing the
expected net-present value. In the following section, we will also show how the CVaR-
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MSFMP is solved.

2.4 An Algorithmic Scheme for Solving the (CVaR-)MSFMP

There are different alternatives for solving a multicriteria (stochastic) optimization prob-
lems as the MSFMP [see 14, for a fundamental textbook on these issues]. The most common
approach corresponds to the so-called weighted sum-method ; in this method we aggregate
the set of objectives into a single objective by multiplying each objective with a user defined
weight or score. Such weights shall represent the preferences of the decision maker regarding
the different objectives. As pointed out in [30], the main drawback of this method is that
either decision makers need to have a clear idea of such preferences or shall try several possi-
ble configurations, which might still not be enough for computing the whole Pareto frontier.
One alternative to tackle this drawback is the so-called ε-method. Instead of aggregating
criteria, this is an iterative scheme where a single objective counterpart of the problem is
solved such that the remaining objectives are handled via constraints whose corresponding
right-hand-side values guarantee a good approximation of Pareto-efficiency for the attained
solutions. These right-hand-values correspond to the ε-values which are updated in order
to approximate the Pareto frontier.

Let us assume that for the carbon sequestration criterion we know, beforehand, a mini-
mum quota, say QCS , of (expected) carbon mass to be captured. In other words, CS(x,y, f)
shall not be less than QCS . Likewise, for the land erosion criterion, let QLE a maximum
value for the corresponding objective, i.e., LE(x,y, f) cannot be greater than QLE . These
values correspond to the initial ε-values, i.e., ε0CS = QCS and ε0LE = QLE . The first iteration
of the method corresponds to find the best value of the NPV criterion, NPV (x,y, f) (or of
the risk-averse NPN criterion, CV aRNPV (x,y, f)). Such value is found by solving

NPV 0 or CV aRNPV 0 = maxNPV (x,y, f) or CV aRNPV (x,y, f)

s.t.

CS(x,y, f) ≥ ε0CS
LE(x,y, f) ≤ ε0LE
(MSFMP.2) and (MSFMP.3),

which is a single-objective stochastic MIP problem. Once this problem is solved, the ε-values
are updated as follows: the ε-value associated to the carbon sequestration is increased by
∆0
CS , yielding ε1CS = ε0CS + ∆0

CS ; and the ε-value associated to land erosion is decreased by
∆0
LE , yielding ε1LE = ε0LE −∆0

LE . Note that ∆0
CS ≥ 0 and ∆0

LE ≥ 0 correspond to the step-
length, and the ε-values are updated consecutively (first εCS and then εLE), so as to appropri-
ately explore the Pareto frontier induced by the corresponding expected values. In general,
the values of ∆`

CS and ∆`
LE , of the `-th iteration, shall be small enough in order to enable a

good approximation of the Pareto frontier, large enough in order to avoid a computationally
expensive exploration, and shall guarantee that the obtained solution differs from the one
obtained in the previous iteration. Intuitively speaking, the following trade-off relations can
be establish among NPV (or CV aRNPV ), CS and LE: (i) the better the economic perfor-
mance of the project (NPV ↑, CV aRNPV ↑), the more timber must be harvested (CS ↓),
and the larger road network that must be built (LE ↑); (ii) the more carbon we expect to
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be retained by the forest (CS ↑), the less we can harvest (NPV ↓, CV aRNPV ↓), and the
less roads we are likely to build on vulnerable soil (LE ↓); and, complementary, (iii) the less
land erosion we are willing to accept (LE ↓), the larger road network we have to build on
regular soil (NPV ↓, CV aRNPV ↓) and the more timber we have to harvest to compen-
sate this extra cost (CS ↓). Clearly, after updating the corresponding right-hand-side values
we get that NPV 1 ≤ NPV 0 (resp. CV aRNPV 1 ≤ CV aRNPV 0). The process repeats
until a combination of ε-values, say εL+1

CS and εL+1
LE , yields an infeasible problem (at itera-

tion, say, L+ 1). The collections of objective function values (NPV 0, NPV 1, . . . , NPV L),
(ε0CS , ε

1
CS , . . . , ε

L
CS), and (ε0LE , ε

1
LE , . . . , ε

L
LE) approximate the Pareto frontier of the expected

values.
The efficacy of the described method strongly relies on how burdensome is the single-

objective stochastic programming problem that must be solved at each iteration. The
computational difficulty of such problem mainly depends on how large is the number of
scenarios; as we will show in the following section, we incorporate a scenario reduction
method so as to scale down the computational difficulty and enable a broader exploration
of the solution space.

3. Computational Results for (CVaR-)MSFMP: An Application in Portugal

In this section we report the results obtained when solving both the MSFMP and CVaR-
MSFMP, as described in Section 2.4, on a real eucalyptus forest located in central Portugal.
At each iteration of the ε-method, the resulting (stochastic) MIP problems were solved
using IBM CPLEX 12.6 on a Linux-based server with a 64 GB RAM and an Intel Xeon Ivy
E5-2660 processor. For the considered data, the running time required for solving each of
these MIP problems was below 60 seconds.

3.1 Case Study: a Forest in Portugal

The proposed methodology is applied to a eucalyptus forest located in central Portugal.
The forest is comprised by 1000 management units, and extends over 12435 hectars (ha);
the forest is shown in Figure 2. As can be seen in the figure, there is a whole transportation
network comprised by origin points, intersection points, and potential roads.

Problem Parameter Values In the case study, there are 157 origins (set O), 145
intersections (set J), and 9 exit points (set S). Additionally, there are 1040 potential roads
(set A), extending over 800 kilometers.

Based on interviews with forest managers and records in forest databases, we obtained
the following parameter values. The planning horizon is 15 years; the road construction
cost is uniform and corresponds to 2.6 [$/m]; the production balance factor α, see con-
straints (P.1)-(P.2), is set to 0.15; and, the interest rate, for the NPV calculation, is 3%.

For defining the demand levels, stakeholders suggested to follow the next strategy. Let
us assume that we already have a good approximation of set Π (this is explained later).
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Figure 2: Representation of the forest under evaluation. Management units are delimited by grey lines, weak
roads are shown as red lines, normal roads are shown as blue lines, origins are shown as green triangles,
intersection points are denoted by black circles, and nine exit points are considered in the southern part of
the forest.

First, we solve the following single-objective counterpart of the MSFMP;

V ∗(x∗,y∗, f∗) = max
∑
π∈Π

∑
t∈T

∑
i∈I

V hπitx
π
it

s.t.

(ADJ), (H), (F.1)-(F.2), (F.4)-(F.6), (P.1)-(P.2), (NA.1)-(NA.2), (S.1)-(S.2)

x ∈ {0, 1}|I|×|T |×|Π|, y ∈ {0, 1}|A|×|T |×|Π| and f ∈ R|A|×|T |×|Π|≥0 ,

which aims at maximizing the volume of the harvested wood from the forest without any
demand constraints. Once this problem is solved (using the same machine described above),
we compute, per each period t ∈ T , the average harvested volume, i.e., V t =

∑
i∈I V h

π
itx

π
it
∗.

Finally, and as suggested by decision makers, the demands levels were set to Dt = 0.75V t

and Dt = 0.25V t.
For the carbon sequestration and the land erosion criteria, the corresponding εCS and

εLE values were defined following a similar scheme as for demand levels. For each of these
criteria, we solved single objective counterparts of the MSFMP aiming at producing lower
and upper bounds that guarantee, on the one hand, to be associated with feasible harvesting
and road building plans, and on the other hand an efficient use of the resources. By
applying this process we obtained εCS = {21100, 21300, 21800, 22300, 22800, 23300, 23800}
and εLE = {0, 500, 1000, 1500, 2000, . . . , 9500, 10000}.

Scenario Generation As explained in §2.2, we have two sources of uncertainty; future

13



growth and yield, and future prices. Such uncertainty is translated into scenarios, Ω and
Φ, respectively; which, and due to the assumption of independence, are then combined into
set Π.

Forest growth scenarios (Ω) determine both the volume of timber available for harvest-
ing, and the carbon captured in each management unit. Each growth scenario is induced
by a series of weather data over the planning horizon. Such data includes temperature,
radiation, precipitation, number of frost days, number of rain days and relative humidity.
We used two sources for this data. The first source corresponds to the climate dataset
gathered by the ENSEMBLES project [15], which was developed by [22] using the emission
scenarios developed by the Intergovernmental Panel on Climate Change (IPCC) [see IPCC
Special Report on Emission Scenarios available in 31]. According to [39], the scenarios of
the ENSEMBLES project are considered the most appropriate for Portuguese conditions.
The second source corresponds to data collected by 8 weather stations located within the
case study area. With these two sources of data as input, we used the SADfLOR sys-
tem [12] as a black-box tool for generating 100 growth scenarios (|Ω| = 100). SADfLOR is
a decision support tool that uses a projection scheme that incorporates the process-based
model designed in [42], which simulates the physiological processes involved in forest growth
(e.g., photosynthesis). Due to the functionality of SADfLOR, the resulting 100 scenarios
are such that they cover a wide range of possible climates for the case study area, i.e.,
from an extremely dry and hot climate to a cool one with more rain. It is known that
extremely negative scenarios (also known as black swans) and extremely positive scenarios
are less likely to occur than those that are concentrated around the average. To capture this
pattern, and because we assigned equal weight (i.e., equal probability) to each scenario, we
used a higher number of scenarios around the average expected climate, while we considered
fewer scenarios with (negative and positive) extreme weather.

As for the set Φ, the price scenarios were generated based on the eucalyptus wood
historical prices. On the one hand, we used information from the Portuguese market, which
was reported in the Silviculture national market annual reports from 2009 to 2014 [see 23].
And on the other hand, we gathered information from international wood trading records
from 2009 and up to 2016 [see 19]. We combined these sources of data to create, using
a standard econometric model, a series of yearly prices (in $/Ton), and then we used a
Brownian motion scheme to create 10,000 scenarios of future wood prices for the following
15 years [see 47, for further details]. Afterwards, the scenario reduction scheme proposed
in [32], which is based on scenario clustering, was applied to reduce these 10,000 scenarios.
Preliminary results showed that 10 (cluster) scenarios were enough to embody the full range
of variability of the original 10,000 scenarios, i.e., to cover a wide range of possible future
outcomes of wood price, aiming at embodying the stochastic nature of future prices.

In total, we therefore have 100×10 = 1000 scenarios comprising set Π. In the case of both
sets, Ω and Φ, the corresponding scenarios are characterized by temporal interdependencies
(such as those depicted in the example shown in Figure 1); therefore, the same extends
for the scenarios contained in Π. This means that scenarios comprising set Π yield non-
anticipativity constraints of the type (NA.1)-(NA.2). Having 1000 scenarios yields a quite
burdensome optimization model, we have followed an additional preprocessing strategy to
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(a) Pareto frontier for εCS = 22300 (b) Pareto frontier for εCS = 23300

Figure 3: Pareto frontiers of NPV (x,y, f) (values are given in euros, e) attained for two values of εCS

(denoted as “Carbon” and whose values are given in tons) and several levels of εLE (denoted as “ERO” and
whose values are given in meters)

reduce the number of scenarios. The strategy is as follows; we solve the auxiliary problem

NPV 1 = max {NPV (x,y, f) | (MSFMP.2)and (MSFMP.3)} ,

for a scenario set Π comprised by a single scenario (i.e., |Pi| = 1), and let NPV 1 be the
corresponding solution value. Now, solve the same auxiliary problem but for |Pi| = 2,
and, likewise, let NPV 2 be the corresponding solution value. We repeat the process until
finding a solution, say the i-th solution obtained when having i scenarios, is such that the
difference of NPV i with respect to the previous corresponding value, NPV i−1, is less than
10−3. In other words, we want to find the minimum subset of Π, say Π′, so that including
an additional scenario does not bring much difference with respect to the policies to be
defined. The order in which scenarios are selected as candidates to be included in Π is done
in such way that it ensures an appropriate representation of the different outcomes, i.e., the
resulting scenario tree Π′ is balanced in the same manner as Π. In our experiments, this
convergence was reached in Π′ = 92, so we decided to use 100 scenarios in our computations.
Note that these auxiliary problems were solved using the same resources described before.

3.2 Results: Efficiency Analysis, Trade-offs and the Effect of Uncertainty

The different algorithmic and preprocessing strategies presented before were applied to
solve the MSFMP on the Portuguese data set described in §3.1. In Figure 3, we show the
Pareto frontiers obtained when solving the MSFMP for two values of εCS and several values
of εLE . The frontier shown in Figure 3(a) reports on the y-axis the NPV (x,y, f) values
attained for solutions ensuring a total extension of roads built on weak land limited by the
values shown in the x-axis, and a carbon sequestration of at least 22300 tons (εCS =22300).
The results show that is not economically attractive to implement a forest management
strategy without building at least 2000 meters of roads on weak land (εLE=2000) when
requiring, at the same time, a quota of carbon sequestration of at least 22300 tons. Requiring
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Figure 4: Pareto frontiers obtained for different combinations of εCS and εLE when solving the MSFMP

less than 2 kilometers of roads on weak land would require to build a very extensive, and
thereafter too expensive, network of roads on normal soil. However, if the decision maker is
willing to build roads on weak soil extending over at least 2500 meters, then it is possible to
reach NPV values above 125 millions of euros. Moreover, the NPV can reach values above
130 millions if more than 10 kilometers of weak soil roads are allowed to be built, while still
capturing more than 22 tons of carbon. In Figure 3(b) we report the behavior of the solutions
obtained when the minimum value on the expected mass of sequestrated carbon increased
from 22300 tons to 23300 tons (a 5% approx. increase). The impact on the land erosion
criterion is clear; it is no longer possible to find economically attractive solutions without
building at least 7 kilometers of roads on weak land (this is 300% worse when compared
with the 2 kilometers threshold for the case shown in Figure 3). Such pattern might be
explained as follows. Capturing more carbon requires to keep, in average, greater volumes
of standing forest. Accomplishing such goal, while still exploiting the economic value of the
forest and satisfying the demand, requires to harvest, each year, trees comprising a more
complex mixture of ages. This calls for the construction of a larger transportation network
within the forest. If at the same time we forbid constructing roads on weak land, we are
basically forcing, as said before, the construction of a large number of detours, i.e., a much
more expensive road network, for the access and transportation from the harvesting areas
towards the exit point.

From the Pareto frontiers analyzed before, one can observe that aiming at a better
performance of the carbon sequestration criterion, basically implies that attractive NPV
levels can be reached only if the decision maker is willing to accept a trade-off with respect
to the land erosion criterion. A better picture on this is shown in Figure 4, where the Pareto
frontiers obtained for the different levels of carbon sequestration are reported. From the
displayed plots we can observe that imposing greater quotas of carbon sequestration does
not really affect the economic potential to be obtained from the forest; the Pareto frontiers
are all overlapped and the (attractive) NPV values go from 122 millions (approx.) up to
132 millions (approx.) of euros; what changes between one frontier and the other is the
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(a) Boxplots associated with εCS = 22300 (b) Boxplots associated with εCS = 23300

Figure 5: Boxplots of the NPV values associated with the Pareto frontiers corresponding to εCS = 22300
and εCS = 23300

threshold of the land erosion criterion value for reaching such NPV values.
In the analysis presented so far, we have basically focused on analyzing the performance

of the different criteria through the expected values of the corresponding outcomes. How-
ever, an adequate analysis shall also pay attention on how the obtained solutions behaved
across the different scenarios. In Figure 5 we report, by means of boxplots, the dispersion
of the NPV values attained for the different scenarios. The mean values, marked as red
circles, coincide with those encompassing the Pareto frontiers shown in Figure 3. As we
can see from these plots, there is a clear variability of the NPV values obtained from dif-
ferent scenarios; this is what we refer to as the effect of uncertainty. For some scenarios
the performance is better than the expected one, while for some others this performance is
worse. This latter case is problematic, since decision makers might receive less profit than
expected. As a matter of fact, in both Figures, we can see that for the lowest levels of land
erosion (1710 m and 6615 m, respectively), there are scenarios for which the NPV value
is notoriously worse than the expected value; these scenarios are likely to be black swans
that associate abnormally adverse climate realizations. Although not shown, this situation
occurs also for the values of εCS . It is precisely for hedging against this behavior that we
proposed using a risk-averse counterpart of the MSFMP; the results obtained when solving
the CVaR-MSFMP are reported in the following subsection.

3.3 Results: Reducing Worst-Case Shortfalls via CVaR Approach

As shown before, the policies present a variable performance, in particular for the NPV
criterion, for the different scenarios. In order to mitigate some of the more adverse scenarios,
we propose the use of CVaR as a risk-averse strategy (see §2.3). For this, we have adopted
the following setting: (i) for each pair εCS , εLE , we set the net-present value threshold
q to the corresponding NPV (x,y, f) value; (ii) the shortfall threshold, α, was set to the
difference between NPV (x,y, f) and the value corresponding to the 3rd-quartile of the
associated boxplot; and (iii) the conditional expectation was bounded by β = 0.95.

In Figure 6 we report the resulting boxplots when solving CVaR-MSFMP, with the
setting described above, on the problems resulting when having εCS = 22300 (Figure 6(a))
and εCS = 23300 (Figure 6(b)), and the corresponding εLE values. When comparing the
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(a) Boxplots associated with εCS = 22300 (b) Boxplots associated with εCS = 23300

Figure 6: Boxplots of the NPV values associated with the Pareto frontiers (corresponding to εCS = 22300
and εCS = 23300 for Figures 6(a) and 6(b), respectively) obtained when solving CVaR-MSFMP

reported boxplots with those obtained for the risk-neutral MSFMP (reported in Figure 5)
three observations can be highlight. First, it is possible to reduce the dispersion of the
attained NPV values (for almost all pairs εCS , εLE). Second, the reduction of the impact
of adverse scenarios is achieved at expenses of reducing the NPV (x,y, f) values, i.e., the
expected values across all scenarios. And third, the impact of the land erosion criterion
is more or less similar as the one for the risk-neutral model. These conclusions rely on
the fact that the shortfall threshold, α, and the security level, β, were set with the aim
of forcing the risk-averse NPV values to be as close to the 3rd-quartile as possible. As
a matter of fact, when comparing the curves in Figure 5 with those in Figure 6, we can
see that the expected risk-averse NPV values in Figures 6(a) and 6(b) are all more or
less concentrated relatively close to the value associated with the upper part of the boxes
displayed in Figures 5(a) and 5(b), respectively. The three observations presented above
lead to the following conclusion: constraining the range of the NPV values, by a risk-averse
approach, burdens the capacity of the model to exploit the trade-offs among the criteria in
order to produce more diverse solutions.

Compared to the frontiers shown in Figure 4, the risk-averse harvesting and road building
policies seem more sensitive with respect to the different carbon sequestration levels εCS
(Figure 7). Despite of this variability, when allowing the construction of a road network
with more than 6 kilometers of weak land roads (εLE ≥ 6000), the economical value of
the policies converges towards a value near 129 millions of euros, regardless of the value
of εCS . For the risk-neutral case, when having εLE ≥ 6000 implies that the economical
value converges towards 132 millions; this 3 million euros difference is the cost of having
risk-averse policies.

3.4 Discussion

The results obtained for the risk-neutral and risk-averse MSFMP demonstrate the ca-
pability of the framework for providing a pool of alternative policies for sustainable forest
management, and a strategy for comparing them with respect to the different optimization
criteria. From a managerial perspective, such feature stands as one of the main advantages
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Figure 7: Pareto frontiers obtained for different combinations of εCS and εLE when solving the CVaR-
MSFMP

of the designed tool. Furthermore, and in contrast to the existing literature on multicrite-
ria stochastic approaches for forestry management [see, 17, 24], another advantage of our
approach is the incorporation of road building and transportation decisions; this boosts
the practical interpretation and application of the attained forest policies. However, and
despite of these advantages, the main drawback of the proposed methodology is that, com-
pared to more traditional forest management approaches, there is quite large number of
input parameters involved in the resulting optimization problems. Hence, decision makers
must ensure an accurate manipulation of the input data as well as to perform extensive
sensitivity analyses in order to limit the impact of an eventually biased or imprecise data
manipulation.

4. Conclusions

In this paper we have designed an optimization framework for assisting sustainable
forestry planning when uncertainty and multiple criteria must be taken into account. The
framework relies on solving an optimization problem that has been referred to as multi-
criteria stochastic forest management problem (MSFMP). The resolution of the problem
is performed by the so-called ε-method, which consists of transforming the problem into a
single-objective one, while managing the remaining criteria as constraints.

By using data corresponding to an eucalyptus forest located in central Portugal, we
solved the MSFMP and a risk-averse counterpart. With respect to the considered data, the
obtained results allow us to draw three main conclusions: (i) the economical attractiveness of
the forest is severely affected if decision makers aim at road building decisions encompassing
a limited distance on weak land (i.e., implying reduced levels of land erosion), (ii) different
performances of the carbon sequestration criteria (i.e., different masses of sequestrated
carbon) do not seem to be accompanied by different performances of the other criteria, and
(iii) incorporating road building and transportation decisions, in the planning stage, boosts
the practical interpretation and application of the attained forest policies. From a policy
making perspective, the reported results show the capacity of the proposed model to offer
a diverse pool of solutions to the different actors involved in the exploitation of forestry
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resources, specially when sustainability aspects (e.g., carbon sequestration or land erosion)
must be considered in the planning stage. Likewise, the results obtained when solving
the risk-averse version of the problem show that incorporating Conditional-Value-at-Risk
(CVaR) is an effective strategy for reducing the impact of adverse scenarios. The advantages
of the proposed tool shall motivate forest managers, as well as regulatory institutions,
to incorporate it into their decision making process when designing both investment and
regulation standards for sustainable forest exploitation.
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