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Abstract: This article focused on the estimation of the state of charge (SoC) of a Li-con Cell by
carrying out a series of experimental tests at various operating temperatures and SoC. The cell was
characterized by electrochemical impedance spectroscopy (EIS) tests, from which the impedance
frequency spectrum for different SoC and temperatures was obtained. Indeed, the cell model
consisted of a modified Randles circuit type that included a constant phase element so-called Warburg
impedance. Each circuit parameter was obtained from the EIS tests. The obtained were been used
to develop two numerical models for each parameter, i.e., one based on numerical correlations and
the other based on the artificial neural network (ANN) method. A genetic algorithm was used to
solve and optimize the numerical models. The accuracy of the models was examined and the results
showed that the ANN-based model was more accurate than the correlations-based model. The root
mean square relative error (RMSRE) of the parameters Rs, R1, C1 and W for the ANN-based model
were: 4.63%, 13.65%, 10.96% and 4.4%, respectively, compared to 7.09%, 27.45%, 34.36% and 7.07%
for the correlations-based model, respectively. The SoC was estimated using the extended Kalman
filter based on a Randles model, with an estimation RMSRE of about 1.19%.

Keywords: Li-ion cell; electrochemical impedance spectroscopy; genetic algorithm; neural network;
extended Kalman filter

1. Introduction

Lithium-ion batteries are currently considered some of the most efficient devices for energy storage
in the medium power capacity range, such as that used in electric vehicles and stationary applications.
This is due to their favorable advantages, such as its high power density, long lifetimes, and moderate
discharge rate [1]. Nevertheless, the temperature of lithium-ion batteries varies depending on the
context in which they are, either increasing or decreasing, thus affecting the performance of the battery.
Indeed, the temperature increases during the battery charging and discharging processes.

From the electrical aspect of the batteries it is important to know the state of the battery,
which normally includes the state of charge (SoC), state of health (SoH), state of power (SoP) and state
of energy (SoE). In general, these states are not observable (i.e., cannot be measured), but need to be
estimated from measurements of physical parameters such as voltage, current, temperature or battery
usage time.
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As future vehicular technologies aim to incorporate high performance batteries, they therefore
require an intelligent system to control and monitor the state of the batteries. The current methods
used to estimate the states of a battery require a model that represents the physical behavior of the
battery. To obtain a good estimate, the model must be accurate, but at the same time simple and cheap.

Electric models vary according to their complexity. In some applications, a simple model that
captures the basic electrical behavior of a cell can be used. Electrochemical models are very precise,
but are difficult to parametrize and require a high computational capacity [2]. In most applications,
equivalent electrical circuits (EECs) are used because they offer a balance between precision and
simplicity, and are also useful to obtain an idea of how a cell responds to different usage scenarios.
The electrochemical impedance spectroscopy (EIS) method [3] is used to determine the parameters of
an equivalent circuit of a battery. The method has a reasonable accuracy when compared to a model
with the real-time measurements of the charge/discharge of a battery. However, it does not consider a
constant phase element (CPE) to represent the Nyquist diagram of the battery at low frequency.

Considerable efforts have been made by researchers to find more accurate and reliable methods
to predict the SoC of a battery. One of the most widely used methods has been the Kalman filter
(KF) [4]. The KF estimates the SoC with very low errors and it is easy to implement in real applications.
The purpose of the KF is to estimate the state of a system from measurements that contain errors.
The original KF is a linear estimation method. To expand its application in non-linear systems,
the extended Kalman filter (EKF) [5–8] and the unscented Kalman filter (UKF) [9,10] have been
developed. Both the EKF and UKF methods can estimate the SOC with great accuracy if the battery
model is sufficiently accurate and the system is not highly non-linear.

Other methods combine different types of KF. Andre [11], proposed an advanced mathematical
method to estimate the SoC and SoH in a lithium-ion battery by combining a standard Kalman filter
(KF) and an unscented Kalman filter (UKF). The first filter estimated the polarization overvoltage,
the diffusion overvoltage and the ohmic resistance of the equivalent electrical circuit model of the
lithium-ion battery. The outputs of the first filter were the inputs for the second filter, which estimated
the SoC and the polarization and diffusion resistance. This method was implemented in a code in
MATLAB and the simulations indicated an error in the SoC and SoH estimation below 1%. Fengchun
et al., in [12] proposed a method to estimate the SoC by considering different health conditions in
lithium-ion batteries. The concentrated parameter model was used to model the battery, and was
estimated using the square minimum method. A discretization method of the battery model was
also proposed, which had the advantage of calibrating the parameters in real time. Subsequently,
the parameters were incorporated into the algorithm of the adaptive extended Kalman filter (FKEA) to
estimate the SoC. The simulations indicated that the parameters of the battery model degraded as the
battery aged, therefore the parameters have to be updated to achieve an optimal performance in the
estimation of the battery voltage and the estimation of the SoC. For different levels of battery aging,
the error in the SoC estimation was less than 2.5%. Li et al. [13] developed a comparative study of
algorithms to estimate the SoC in a LiFePO4 (LFP) battery used in an electric vehicle. The algorithms
that were investigated included the Luenberger observer, extended Kalman filter (EKF) and the sigma
Kalman filters or unscented (UKF), which are designed to estimate the SoC in a lithium-ion LFP
battery. To evaluate these algorithms, they were verified with two driving profiles typical of an electric
vehicle, the new European driving cycle (NECD) and the Artemis cycle. Based on the results of the
experimental tests, they concluded that the accuracy of the Luenberger observer was mainly based
on the accuracy of the battery model, since it did not take into account the uncertainty of the model
and the noise of the measurement. The EKF is comparatively more accurate than the Luenberger
observer. Finally, in terms of tracking accuracy, convergence and the robustness of the estimate against
the temperature uncertainty and drift current of the sensor, the UKF provided the best results in the
SoC estimation unlike the other algorithms.

In recent years, the particle filter (PF) [14–18] has been used to estimate the SoC. Additionally,
the PF algorithm is very useful in applications that are considered a non-Gaussian source of uncertainty.
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The PF requires a considerable number of initial particles and the calculation capacity is very high.
In [19], the dependence of the computational load of the PF was solved using a hybrid method
to estimate the SoC of a battery based on an adaptive extended Kalman particle filter (AEKPF).
Five experimental tests were carried out to evaluate the performance of the algorithm and showed
that the average of the absolute error was less than 1%.

The abovementioned methods to estimate the SoC were developed with the model at room
temperature, therefore the operation of the method for different temperature conditions of the batteries
has not been disclosed, which is important to identify the model parameters for each temperature.
The objective of this research was to identify an EEC whose parameters were dependent on the
SoC and temperature. In addition, the EEC identification was used to estimate the SoC of a Li-ion
cell. The rest of the article is organized as follows: Section 2 presents the electric model of a Li-ion
cell, showing that it is necessary to include a constant phase element in the model in relation to the
measured data. Section 3 carries out a parametric identification of the EEC for different values of
SoC and temperature. For this, an optimization problem was solved by means of a genetic algorithm.
In Section 4 a multivariable model was constructed for each EEC parameter based on the SoC and
temperature. Two models were tested; in the first, empirical equations were adjusted, while in the
second, an ANN was used. In Section 5, the SoC was estimated using the extended Kalman filter
algorithm. Finally in Section 6, the conclusions of this research are presented.

2. Electric Model

In this section, an electric model of a Li-ion cell that allowed for the estimation of the electrical
behavior is presented. The electrical dynamics are represented by an electric circuit consisting of a
voltage source, resistance and a network composed of a capacitor in parallel with a resistor in series
with a constant phase element (CPE).

Equivalent Electric Circuit of a Li-ion Cell

The electrical behavior of a battery can be represented by an EEC as shown in Figure 1 [20].
This circuit incorporates a CPE called the Warburg element which accurately reflects the behavior of
the cell. The Warburg impedance is a component that produces a partially capacitive and resistive
behavior with a phase of 45◦ at low frequency [21].
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Figure 1. The EEC model of the Li-ion cell.

Figure 2 shows a Nyquist diagram of a Li-ion cell obtained in the laboratory, where a 45◦ phase
was observed at low frequency. This type of response can be well represented through the circuit
shown in Figure 1.
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A Warburg element can be expressed in the plane of the frequency in terms of a fractional element
as shown in Equation (1):

ZW(jw) =
1

W(jω)β
(1)

where β ∈ R, is an arbitrary number 0 ≤ β ≤ 1 [20]; and W ∈ R is the Warburg coefficient. The phase of
the Warburg element in general is βπ/4 [21]. As the phase measured in the laboratory was 45◦ (π/4),
the parameter βwas equal to 1

2 .
The input impedance of the electrical circuit in Figure 1 can be defined by Equation (2):

Z = Rs +

1
jωC1

(R1 + ZW)

1
jωC1

+ (R1 + ZW)
(2)

The Warburg impedance, defined in Equation (1), indicates that the system has fractional
properties, therefore it is necessary to introduce the Fractional Order Calculation (FOC) in the model.
The fractional calculation involves derivatives and integrals of a non-integer order, which in the
particular case of the Warburg impedance, is determined by the parameter β. The latter is a fractional
number [22]. Equation (3) shows the expression of the Warburg impedance voltage in the plane time,
which corresponds to a fractional differential equation:

W
dβvW

dtβ
= iW, (3)

By way of simplification in this paper, we used the notation defined in Equation (4), to express a
fractional derivative [21]:

dr

dtr = ∆r, (4)

where r ∈ R, is an arbitrary number.
Considering the circuit of Figure 1, the notation defined in Equation (4), and the laws associated

with the electric circuits, we can obtain the equations that represent the electric model of the battery,
which are explained in Equations (6)–(8).

The current flowing through the circuit of Figure 1 is represented by Equation (5):

I(t) = C1∆1v1(t) +
v1(t)− vW(t)

R1
, (5)
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So:

∆1v1(t) = −
v1(t)
C1R1

+
vW(t)
C1R1

+
I(t)
C1

, (6)

v1 is the voltage in the capacitor C1, I(t) is the current of the circuit in a clockwise direction and
vW is the voltage in the Warburg element. In addition, Equation (7) shows the output voltage ratio of
the circuit of Figure 1:

v0(t) = VOCV − v1(t)− RsI(t), (7)

On the other hand, it is known that the current flowing through resistance R1 is equal to the
current flowing in the Warburg impedance and that in combination with Equations (3) and (4), one can
obtain the voltage in the Warburg impedance expressed in Equation (8):

∆
1
2 vW(t) =

v1(t)
WR1

− vW(t)
WR1

, (8)

3. Parametric Identification of the Equivalent Electric Circuit

The EIS is a method commonly used to characterize an electrochemical system [21]. In the
following sections the application of the EIS in a Li-ion cell is shown, and then how the EEC parameters
can be estimated from this technique is described.

3.1. Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy is a technique that allows the characterization of
electrochemical systems, such as batteries, supercapacitors, etc. [23,24]. During the measurements of
an EIS, variable frequency voltage sine wave signals are applied and the current response in the cell
is recorded for the different frequencies. Impedance is defined as the quotient between the voltage
and current. The EIS provides an accurate impedance measurement over a wide range of frequencies,
thus providing a unique tool for analyzing the dynamic behavior of batteries [21].

The EIS tests were performed with the AUTOLAB (Santiago, Chile) instrument model
PGSTAT302N for the frequency range from 10 mHz to 1 kHz and a cylindrical LiFePO4 cell type
ANR26650 manufactured by A123 Systems (Livonia, MI, USA) was used. The characteristics of the
cell were: Voc = 3.35 V, 2.5 Ah. Figure 3 shows the impedance spectrum of the Li-ion cell for different
surface temperatures and a SoC of 80%.
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From Figure 3 it can be seen that the impedance spectrum was displaced for different temperatures,
which was most likely due to variations in the diffusive behavior, electron transfer effect and
electrochemical reactions, such as the, reduction of oxide reaction, magnetic hysteresis of the materials,
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polarization of the electrodes, and electronic conductivity, among others [25,26]. Therefore, in the
parametrization of the electric circuit, the effect of the SoC and the temperature in each parameter
must be considered.

3.2. Parametric Identification

In order to determine a model for the cell, EIS tests were performed on a Li-ion cell for different
values of surface temperature and SoC. The trials ranged between temperatures of 25 ◦C to 60 ◦C and
from 5% to 100% for the SoC.

The experimental procedure started at 100% of the SoC. The Li-ion cell was subjected to heat
through an incandescent halogen lamp inside a chamber with an external temperature controller. Then,
the temperature controller was programmed to 20 ◦C, which corresponded to the initial temperature
of the experiment. In order to have a uniform temperature in the cell, the cell was maintained at said
temperature for 75 min. By the end of this period, the EIS test was carried out.

The above procedure was repeated every 5 ◦C until the temperature reached 60 ◦C. Subsequently,
the cell was discharged until the SoC decreased by 10% with respect to the previous SoC and each
of the steps above-mentioned was conducted to perform the EIS test. The experimental procedure
ended when the SoC was 5%. Therefore, with this experimental procedure, it was possible to obtain
the impedance spectrum for different SoC and temperatures, with a total of 88 experiments carried out.

From the experimental data, the parametric identification of a battery EEC was made.
This model must provide an estimate as accurate as possible of the behavior of the variables
in the cell. In many applications, different algorithms have been implemented to optimize
non-linear process models [27–29]. Considering the high non-linearity presented by this type of
adjustment, the evolutionary technique genetic algorithm (GA) [30] was selected among the different
methodologies, since it produced the smallest adjustment error.

The optimization problem that was solved consists of minimizing the mean square error between
the impedance measured in the EIS and the impedance of the EEC defined in Equation (2). Equation (9)
presents the optimization model, where the design variables were v = [Rs, R1, C1, W]:

min∑k

(
Zmed

k − Zcal
k (v)

)2

s.t. vmin ≤ v ≤ vmax
(9)

where Zk
med is the sample k of the magnitude of the measured impedance in the experiment and,

Zk
cal is the calculated impedance for the sample k. The EEC parameters obtained through (9) were

calculated for the different values of SoC and surface temperature. In this way, 88 sets of parameters
were available.

The GA routine required defining limits for the design variables, which were adjusted to the
following values: 0 ≤ Rs ≤ 20; 0 ≤ R1 ≤ 200; 10−12 ≤ C1 ≤ 200; and 10−12 ≤W ≤ 1200.

The root mean square relative error (RMSRE) of the impedance spectrum adjustment can be
obtained in the following way: First, the root mean square error (RMSE) can be calculated as follows:

RMSE =

√√√√∑nd
i=1

(
Zmed

i − Zcal
i

)2

nd
, (10)

where nd is the number of experimental data. Then the root mean square of the experimental data
(RMSmed) can be calculated as follows:

RMSmed =

√√√√∑nd
i=1

(
Zmed

i

)2

nd
, (11)
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From the analysis shown above the RMSRE was obtained as follows:

RMSRE =
RMSE

RMSmed
, (12)

Figure 4 shows a comparison in the impedance spectrum setting for SoC = 40% and a temperature
of 25 ◦C. The RMSRE obtained was 4%.
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As seen in Figure 4, the adjustment of the impedance spectrum using the set of estimated
parameters was reasonable with respect to the experimental data of the Li-ion cell, given that the
RMSRE was low. For the set of adjustments made, 88, the average error was around 4%.

Figure 5 shows the results obtained from the parameters of the Li-ion cell for different SoC.
The values obtained at different temperatures were superimposed on the same graph. It can be seen
that Rs had a high dependence on temperature and SoC. Regarding R1, it tended to decrease when
the SoC increased. For C1, it was observed that it tended to increase for a SoC higher than 90% and
temperature higher than 45 ◦C. Finally, W increased up to a SoC equal to 40%, staying almost constant
until the SoC was equal 90%, and then it decreased.
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4. Multivariable Model of the Cell

In this section, a multivariable model of each EEC parameter was constructed where the
independent variables were the surface temperature of the cell and the SoC. Two methodologies
were tested. In the first, empirical equations are used [31], while the second used an Artificial Neural
Network (ANN).

4.1. Adjustment with Empirical Equations

In the literature different equations have been reported to model the parameters of a battery [31].
In this section, we tried to find the empirical equations that best fit the parameters obtained in
Section 3.2 of Section 3. The mathematical models chosen were based on polynomial and exponential
functions, in terms of SoC and temperature variables.

As can be seen in Figure 5, each parameter was strongly dependent on the SoC and to a lesser
degree on the temperature. In this way, it was necessary to analyze each parameter separately.
To estimate the coefficients of the equations that represented each parameter, the GA was used. In this
case, the optimization model to solve this is shown in Equation (13):

min∑k

(
Xest

k − Xcal
k (u)

)2

s.t. umin ≤ u ≤ umax
(13)

where Xk
est is the sample k of one of the parameters (Rs, R1, C1, W) estimated in the impedance

spectrum adjustment, while Xk
cal (u) is the parameter obtained by the empirical equation for the

sample k, where u is the design variable, which in our case corresponded to the SoC and surface
temperature of the cell. An adjustment was made for each parameter.

Finding an equation for the Rs parameter is very difficult due to the high variations it has for
different SoC and temperature. Equation (14) shows the best equation we found to model parameter Rs:

Rs = (a1SOC4 + a2SOC3 + a3SOC2 + a4SOC + a5) · a6e(
a7

T−a8
), (14)

For this parameter, all of the coefficient limits were defined between −10 and 10 as shown
in Table 1.

Table 1. Coefficient of parameter equation Rs.

a1 a2 a3 a4 a5 a6 a7 a8

1.3235 −3.9802 4.2746 −1.8183 1.5846 0.0125 −2.0387 −0.6674

Like parameter R1, in this case, there was less difficulty in finding the equation that represented it.
Equation (15) shows the best equation found to model parameter R1:

R1 = b1e(b2T3−b3SOC3) + b4T + b5SOC + b6, (15)

For this parameter, all of the coefficient limits were established between −1 and 1, with the
exception of parameter b3 whose upper limit was 30 shown in Table 2.

Table 2. Coefficient of parameter equation R1.

b1 b2 b3 b4 b5 b6

0.0985 10−5 24.1237 −0.0001 −0.0007 0.0047

Parameter C1 shows an exponential type pattern of temperature dependence throughout the
measurements. The slope of the exponential function decreased slowly with the SoC, while the rise of
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the exponential function began at a low SoC. Furthermore, there was the additional complexity
that at high temperature (>50 ◦C) the behavior of the capacitor changed with respect to other
temperatures, which can be seen in Figure 5. The best equation found to model parameter C1 is
defined in Equation (16):

C1 = d1e(d2−d3SOC) + d4T + d5SOC4 + d6, (16)

For this parameter, the coefficient limits were as follows: −10 ≤ d1 ≤ 10; −1 ≤ d2 ≤ 1; −1 ≤ d3

≤ 1; −1 ≤ d4 ≤ 1; −10 ≤ d5 ≤ 10; and −1 ≤ d6 ≤ 1, thus obtaining the values shown in Table 3.

Table 3. Coefficient of parameter equation C1.

d1 d2 d3 d4 d5 d6

−9.1929 0.3338 0.6734 0.4520 1.9022 −1.0735

Parameter W had a similar behavior at different temperatures. The best equation found to model
parameter W is defined in Equation (17):

W = (g1SOC5 + g2SOC4 + g3SOC3 + g4SOC2 + g5SOC + g6) · g7eg8T, (17)

For this parameter, the coefficient limits were as follows: −50 ≤ g1 ≤ 10; −10 ≤ g2 ≤ 60; −1 ≤ g3

≤ 1; −30 ≤ g4 ≤ 10; −10 ≤ g5 ≤ 50; −20 ≤ g6 ≤ 10; −1 ≤ g7 ≤ 700; and −1 ≤ g8 ≤ 1, thus obtaining
the values that are shown in Table 4.

Table 4. Coefficient of parameter equation W.

g1 g2 g3 g4 g5 g6 g7 g8

−11.3917 22.1522 0.0908 −29.9993 24.3089 −2.2941 314.6256 0.0138

Finally, for the different adjusted models, it was determined that the RMSRE varied in a range
between 7% and 34%, which was high for the purposes of this study. Considering this fact, it was
decided to try other methodologies in the hope of reducing the adjustment error. For this, the use of
an Artificial Neural Network (ANN) was proposed. Section 4.2 details this type of models and the
results obtained.

4.2. Adjustment with Artificial Neuronal Networks

Consider a problem where, after an experiment has been carried out, information is available
that relates a variable to other nv independent variables, that is: y = f(x), where f(x) is a function that
relations nv input variables x with an output variable y.

Let the ANN be that as shown in Figure 6, with inputs x1, x2; output y, and two hidden layers
with three neurons each. wij is the weighting factors that connect the neuron i with the j [32]:
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The output of the first layer is given by Equation (18):

HC1 = xt ×W1 =
(

x1 x2

)( w13 w14 w15

w23 w24 w25

)
=
(

h3 h4 h5

)
, (18)

The output of each neuron can be affected by an activation function, so that yC1 = f (HC1),
where f(x) can be any function, for example f(x) = x, f(x) = x2, f(x) = 1/(1 + e−x) (sigmoid), etc.

By analogy, the output of layer 2 is expressed in Equation (19):

yC2 = f
(
yC1W2

)
= f

f( h3 h4 h5 )

 w36 w37 w38

w46 w47 w48

w56 w57 w58


, (19)

Finally, the output in the last layer is given by Equation (20):

y = f(h9) = f(yC2W3) = f(f(f(xtW1)W2)W3), (20)

From Equation (20) it can be observed that the output of a neural network is numerically speaking
a sequential product of vectors by matrices. The network is completely characterized when the values
of the input variables and the weighting coefficients are known. For the above-mentioned network
there is the ncoeff = nv × nC1 + nC1 × nC2 + nC2 coefficient, where nv is the number of input variables,
nC1 and nC2 are the number of neurons in layers 1 and 2, these parameters being the unknowns
of the problem. The structure defined in Equations (18)–(20) can be used to find a model for the
parameters of the Li-ion cell. For this, it is necessary to formulate the optimization problem. In this
sense, the objective function can be defined as the mean square error between the parameters obtained
in the frequency spectrum adjustment defined in Section 3 and the output delivered by the ANN.
The optimization problem that needs to be solved is as shown in Equation (21):

min
w

∑nd
i=1

(
ytag

i − ytrain
i

)2

s.t. wmin ≤ w ≤ wmax
(21)

In Equation (21) the design variables are the wij weighting factors of the network and yi
tag

corresponds to some of the parameters (Rs, R1, C1, W) that were estimated in Section 3, where training
is required for each of them. It should be remembered that the nd = 88 values are available for each
parameter, each of which is linked to a SoC and temperature value. yi

train is obtained by the network
defined in Equations (18)–(20).

Equations (18)–(20) were programmed in MATLAB (R2014a, The MatWorks Inc., Torrance, CA,
USA), obtaining an algorithm that allowed us to train a network under the supervised learning scheme.
The genetic algorithm was used as an optimization technique as delivered the best results in the
simulations. The program allows for the use of up to two layers of a neural network and an arbitrary
number of neurons per layer. It can be used as an activation function, that can be; linear, quadratic or
sigmoid, the latter being the one that delivered the best results.

Table 5 shows a summary of the structure of the neural network used for the estimation of each
parameter (Rs, R1, C1, W) by using the sigmoid as an activation function.

Table 5. Structure of the neural network for each parameter.

Neural Network Rs R1 C1 W

N◦ Neuron Layer 1 6 7 15 6

N◦ Neuron Layer 2 0 15 6 4
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4.3. Results

Table 6 shows the values of the modeled parameters at SoC = 90% and 25 ◦C room temperature.

Table 6. Values of each parameter obtained for the models.

Model
Rs (Ω) R1 (Ω) C1 (F) W (Fs−1/2)

True Value = 0.01717 True Value = 0.00130 True Value = 5.51794 True Value = 1401.96

Empirical Equation 0.01592 0.01669 4.47270 1405.22

ANN 0.01795 0.00097 5.13073 1403.63

Table 7 shows the results of the RMSRE for each parameter estimated using the empirical equation
methodology and the ANN.

Table 7. Summary of performance of the models for each parameter.

Model RMSRE of Rs % RMSRE of R1 % RMSRE of C1 % RMSRE of W %

Empirical Equation 7.09 27.45 34.36 7.07

ANN 4.63 13.65 10.96 4.40

As seen in Table 7, the estimation model with neural networks presented a better performance
with respect to the estimation model using empirical equations, since it reduced the estimation error
by almost half.

For example, Figure 7 show the estimated data of Rs in the parametric identification in Section 3,
in the modeling with equations and in the modeling with the ANN as a function of temperature and
SoC, respectively.
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Up until now, great effort has been made to obtain a model as accurate as possible of the cell.
The reason for this is that the SoC estimation algorithms of Li-ion cells require models as accurate
as possible, as this allow for good quality estimations of SoC to be made. Section 5 explains the
methodology chosen to estimate the SoC, known as the extended Kalman filter.

5. Estimation of the SoC

In this section, the extended Kalman filter (EKF) algorithm was used to estimate the SoC of a
Li-ion cell. The EKF algorithm has been widely used for SoC estimation [21]. This algorithm deals
with the general problem of estimating a state x ∈ Rn of a process controlled in discrete time that is
modeled by a non-linear stochastic difference equation. The EKF is a recursive prediction filter that is
based on the use of state-space techniques and recursive algorithms. The non-linear dynamic system is
disturbed, and by some noise, mostly corresponds to white noise. To improve the state estimated by
the EKF, measurements that relate to the state are used. Therefore, the EKF is divided into a prediction
stage and a correction stage [33].

Based on the general model of a non-linear discrete stochastic system in state-space, which is
shown in Equation (22), the stages and the equations of the EKF algorithm are shown in Figure 8:

xk = Axk−1 + Buk + w
yk = Cxk + Duk + r

(22)

where Q = E[wwT] and R = E[rrT].
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In discrete time, if we consider that the current is constant in the interval ∆t, the SoC can be
expressed by Equation (23):

SoCk = SoCk−1 −
∆t

3600Cn
Ik, (23)

In the SoC estimation a Randles model is considered to be as that of Figure 1 but considers β = 1,
that is, the constant phase element is considered as a capacitance capacitor C2.

The ratio of the open circuit voltage (VOCV) to the SoC is non-linear. Using the VOCV measured in
the laboratory, the VOCV and SoC ratio can be represented by Equation (24). This model was adjusted
using the methodology presented in Section 4.1:

VOCV = 1 · 10−10SoC6 − 4 · 10−8SoC5 + 5 · 10−6SoC4

−2 · 10−4SoC3 + 5 · 10−3SoC2 + 7 · 10−3SoC + 20, 659
(24)
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The expressions in Equations (6) and (8) can be written in the form of state-space in continuous
time, which is shown in Equation (25):[ .

v1.
v2

]
=

[
− 1

R1C1
1

R1C1
1

R1C2
− 1

R1C2

][
v1

v2

]
+

[
1/C1

0

]
i(t), (25)

The discrete-time solution of a continuous-state state space model is given by Equation (26):

x[k + 1] = eA·∆t · x[k] + 1
A

(
eA·∆t − 1

)
· B · u[k], (26)

Taking the VOCV expressed by Equation (24) in combination with Equation (26) and in addition to
Equation (7), which corresponds to the output voltage ratio of the circuit of Figure 1, will produce a
discrete model in state-space to estimate the SoC using the EKF algorithm. This model is shown in
Equation (27):  V1[k + 1]

V2[k + 1]
SoC[k + 1]

 = A ·

 V1[k]
V2[k]

SoC[k]

 + B · i[k]

V0[k] = VOCV −V1[k]− Rs · i[k]

(27)

where

A =


e−

∆t
R1C1 e

∆t
R1C1 0

e
∆t

R1C2 e−
∆t

R1C2 0
0 0 1

, B =


−R1

(
e−

∆t
R1C1 − 1

)
−R1C2

C1

(
e−

∆t
R1C1 − 1

)
−∆t/3600Cn


C =

[
−1 0 ∂VOCV

∂SOC

]
, D = −Rs

The state variable is defined as x = [V1 V2 SOC]T, the input is uk = ik, and the output is yk = V0

− 2.0659. The values of P0, Qk and Rk are difficult to determine, therefore, these parameters were
selected by trial and error. The following values were obtained: the initial covariance was P0= 2 ×
10−8, noise process covariance and measurements are Qk = 5 × 10−8 and Rk = 2, respectively.

To adjust the algorithm, experimental data from the Li-ion cell discharge process were used. In this
process, a pulse of current is applied to the cell every 45 min until the cell is completely discharged.
The experiment starts with the cell fully charged, then the voltage and the current are measured at the
terminals of the cell, and the current integration method is used to calculate the SoC as a reference.
In this way, the initial SoC in the experiment is known and in this investigation the reference obtained
by the Coulomb-counting method was considered as the true SoC.

To estimate the SoC, the discharge current and voltage data of the experimental procedure
described above were used. To avoid the temperature of the cell increasing due to the current, the cell
discharged with current pulses at a rate of 0.13 C. The temperature of the cell is kept constant at
25 ◦C and the initial SoC was 100%. Figure 9 shows the results obtained in the estimation of the SoC.
The RMSRE obtained was 1.19%, which is similar or less than those found in the literature [4–13,21].
This error is acceptable and it was observed that the prediction of the SoC using EKF, in each instant
managed to follow the reference SoC. In each iteration the EKF obtained the output voltage of the
model based on the measured current and the state variables. This allowed us to compare the response
of the model to the dynamics of voltage measured experimentally.
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Figure 9. Result of the SoC estimation with EKF.

Figure 10 shows the comparison of the output voltage estimated by the algorithm and the
experimental voltage. The voltage behavior was due to the discharge current profile, where the current
was greater than zero for 45 min and was zero for 75 min. When the current was zero the cell voltage
increased until the open circuit voltage was reached, as seen in more detail near the cutoff voltage.
Then when the current was greater than zero the cell voltage decreased [14].
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In Figure 10, it can be seen that the estimated voltage followed the dynamics of the voltage
measured in the laboratory. This is due to the fact that an accurate model was used to represent the
relationship between VOCV and SoC.

6. Conclusions

In this research, a method was developed to identify an equivalent electrical circuit of a Li-ion
cell. The results obtained showed that the behavior of the cell depends on its SoC and temperature.
From the impedance spectrum, a model of a Li-ion cell was derived, where it was verified that the cell
had fractional properties. The adjustment by the genetic algorithm allowed the accurate identification
of an electrical model of the cell. The uncertainty of the adjustment was 4%, therefore the adjustment
provided good accuracy to predict the dynamic effects of the battery. With regard to modeling the
parameters based on the SoC and the temperature, the models with neural networks provided better
results with a RMSRE of 5% for both the Rs and W. The RMSRE for the parameters R1 and C1 were to
be 13% and 10%, respectively. Therefore, the characterization of the cell was carried out under different
conditions allowing us to understand the behavior of a Li-ion cylindrical cell more precisely. This is
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important for monitoring the charge/discharge process in order to know the state of charge or state of
health of the battery precisely.

While the parameterization of the model was carried out for different SoC and temperature
conditions, in the SoC estimation, each parameter of the model was considered as constant and
calculated as the average of the measured values at different SoCs and a fixed temperature of 25 ◦C.
For the SoC estimation, the extended Kalman filter based on a Randles model was used. The maximum
error of estimation of the SoC was 1.19%.

This algorithm can be very useful since the battery is a critical component, which makes the
precision of measuring the SoC more and more important. Future research can improve the estimation
by considering the variation of the SoC and temperature.
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