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EFFECTS OF THE INTRODUCTION OF SPATIAL AND TEMPORAL 
COMPLEXITY ON THE OPTIMAL DESIGN, ECONOMIES OF SCALE 

AND PRICING OF PUBLIC TRANSPORT	
 
En esta tesis estudiamos modelos microeconómicos para el diseño estratégico de 
transporte público de buses, incorporando los efectos que implican tanto la composición 
espacial de la demanda por viajes y la necesidad de representarla en una red, como la 
heterogeneidad entre la cantidad de viajes realizados en distintos períodos del día. Esto 
se realiza complejizando espacial y temporalmente los modelos clásicos de una línea 
estudiados por Jansson (1980) y Jara-Díaz y Gschwender (2009).  
 
Para el análisis espacial, estudiamos el diseño óptimo de estructuras de línea (es decir, 
el conjunto de rutas de las líneas de transporte público) sobre el modelo urbano 
propuesto por Fielbaum et al (2016, 2017) –basado en la jerarquía entre los centros de 
la ciudad- y analizamos los resultados del enfoque heurístico, la presencia de 
economías de escala y sus fuentes, y la densidad espacial de líneas.  
 
Respecto al enfoque heurístico, comparamos las cuatro estructuras básicas propuestas 
por Fielbaum et al (2016) con las resultantes de cuatro heurísticas propuestas 
previamente en la literatura. Los fenómenos de escala se analizan bajo la definición del 
concepto de “directness”, que muestra que al aumentar el flujo de pasajeros el sistema 
prioriza rutas que minimicen los trasbordos, detenciones y los largos de los viajes de los 
pasajeros, es decir, ésta es una nueva fuente de economías de escala; esto permite 
estudiar los efectos de este fenómeno en tarifas y subsidios óptimos. Cuando la 
densidad espacial de líneas se incorpora como variable de diseño, se muestra que ésta 
crece con el número de pasajeros, manteniendo siempre los costos de acceso iguales a 
los costos de espera en el sistema, mostrando cierto nivel de sustitución con el nivel de 
“directness” y constituyendo una nueva fuente de economías de escala. 
 
La heterogeneidad temporal de la demanda se analiza al estudiar los modelos de una 
línea incluyendo dos períodos: punta y fuera de punta. El sistema se optimiza bajo 
distintas maneras de operación, como son el considerar una flota única, una flota 
independiente para cada período y dos flotas que operan de manera conjunta en el 
período punta (y sólo una de ellas en fuera de punta); el sistema con dos flotas 
simultáneas es el más eficiente, siendo ligeramente mejor que el de una sola flota.  Las 
soluciones se comparan con aquellas que se obtienen al considerar solamente un 
período, y los efectos cruzados entre períodos son identificados. Adicionalmente, se 
estudian estrategias de tipo second-best, al comparar la optimización del sistema de 
acuerdo a las características del período punta, y la utilización de una sub-flota para el 
período fuera de punta, con la estrategia inversa: como resultado, una regla aproximada 
es priorizar aquél período en que el número total de pasajeros (en toda su duración) 
sea mayor. 
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EFFECTS OF THE INTRODUCTION OF SPATIAL AND TEMPORAL 
COMPLEXITY ON THE OPTIMAL DESIGN, ECONOMIES OF SCALE 

AND PRICING OF PUBLIC TRANSPORT	
 
In this thesis we study microeconomic models for the strategic design of buses transit 
systems, taking into account the distribution of trips in space and its representation over 
a simplified but meaningful urban network, as well as the heterogeneity of demand 
across different periods of the day. This is done by means of models that extend in 
space and time the classic single-line ones and analyzed by Jansson (1980) and Jara-
Díaz and Gschwender (2009). 
 
Regarding the spatial analysis, we study the optimal lines structure (i.e. the spatial 
arrangement of transit routes) design over the urban model proposed by Fielbaum et al 
(2016, 2017) based on the hierarchy of centers, obtaining and analyzing the results from 
the application of existing heuristics, examining the presence of scale economies and its 
causes, and introducing the spatial density of transit lines as part of the design. 
 
The heuristic approach is studied by comparing the four basic structures proposed by 
Fielbaum et al (2016) with those that emerge when applying four previously existing 
heuristics. Scale effects are analyzed defining the concept of “directness”, showing that 
when the number of passengers increases, the best system evolves such that routes 
reduce transfers, bus stops and the length of passengers’ routes. Directness is shown to 
be yet another source of scale economies; optimal subsidies and fares are also studied. 
When spatial density is considered as a new design variable together with lines 
structure, frequencies and vehicle sizes, it increases with patronage keeping access and 
waiting time costs equal, showing some substitution with directness and inducing scale 
economies as well.  
 
The heterogeneity of demand across different periods is analyzed using single-line 
models that consider peak and off-peak conditions regarding duration, trip length and 
traffic conditions. The system is optimized under different operating rules, such as 
considering a single fleet, considering two fleets that operate independently in each 
period, or considering two fleets that run together at the peak (only one of them runs at 
the off-peak); this last system is shown to be the most efficient one, with the single-fleet 
system just slightly worse. Solutions are compared with those obtained when 
considering each period in isolation, and crossed-effects among periods are identified. 
In addition, we study second-best strategies: we optimize the peak period in isolation 
and use a sub-fleet for the off-peak, and we compare the results of this strategy with the 
opposite one: an approximate rule is to optimize the system according to the conditions 
of the period that presents the highest total number of passengers (across its whole 
extension). 
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Chapter 1. Introduction. 
 
Deciding the adequate public transport provision in space and time presents very 
particular economic characteristics. The chance of combining diverse routes across 
different periods has profound implications over design and optimization of the system, 
and over scale, density and scope economies. All this impacts in a relevant way life 
quality of the inhabitants of each city, due to the central role that the transit system plays 
not only in displacing the citizens, but also in prefigure the development of the city itself. 
 
In public transport, each vehicle can carry passengers that travel from different origins to 
different destinations, which might affect significantly capital, operational and 
infrastructure costs if transit services are structured to combine efficiently the different 
trips. The ways these services are organized have effects over a resource that 
sometimes is ignored in production analysis: users’ time. Different designs yield different 
waiting, access and traveling times. The possible ways to organize a transit system, 
including their routes, itineraries, stopping strategies or vehicles’ sizes require deep 
economical analyses. Similarly, the fact that the same vehicle is used across different 
periods induces complex inter-temporal relationships from the point of view of the 
optimization of the system; crossed effects might emerge (e.g. diversity economies due 
to savings in capital costs) that interact with the spatial effects mentioned above. 
 
The normative-economic analysis of public transport has been usually based on simple 
models that, while allowing relevant advances in the area, rely precisely over the 
omission of spatial and temporal aspects of the design; elements discussed in the 
previous paragraph cannot be included and require an expanded theoretical framework. 
This fact, together with the relevance of public transport systems for the cities and the 
technological changes that are modifying some of their characteristics, make the 
deepening of transit analysis a priority task. The optimization of transit services, the 
obtaining and studying of the associated cost functions, or the identification of scale 
economies are relevant and complex topics, something that is deepened when the 
analysis is done considering the different Origin-Destination-Period triplets. 
 
The economical analysis of any production process requires understanding the cost 
function, which is the minimum necessary expenditure that allows generating a certain 
product, in this case a vector of flows across space and time. The value of the resources 
consumed (!"#) should consider the time spent by users and the resources spent by 
operators. To minimize !"#  it is indispensable to understand and represent the 
technical elements that relate the design variables, in order to optimize the system as a 
function of them. Thereby, the first models of Mohring (1972) and Jansson (1980, 1984) 
consider exclusively the size of the vehicles and their frequency; by omitting the rest of 
the variables, they work over a simplified model, consisting in a single line with 
homogeneous load. Each author introduces other simplifications as well, depending on 
the specific model, such as the cost function associated to each bus, the chance of 
skipping some bus stops because vehicles are fully loaded, or the assumption of a 
constant cycle time, among others. 
 
Although these models are extremely simplified, they reveal some economical 
conclusions that can be extrapolated to more complex schemes. The most known one is 
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the so-called “Mohring effect”, that shows a notable source of economies of scale in 
public transport: when the number of passengers increases, optimal frequency 
increases in response, which induces a decrease in waiting times for all passengers. 
Similar analyses might be done regarding traveling times and operator costs.  
 
There are several possible directions in which these models could be more realistic and 
complex, but introducing spatial and temporal complexity is of particular relevance for an 
economical analysis. A spatial perspective is crucial, since transit systems base their 
operations in the chance of combining different lines to serve flows between diverse 
origin-destination (OD) pairs. Incorporating routes design in the optimization problem 
turns this problem NP-Hard in many of its specifications (as shown by Quak, 2003, 
Schöbel and Scholl, 2006, or Borndörfer et al, 2007); but together with increasing the 
mathematical complexity, these new design variables could induce new optimization 
possibilities and new sources of scale economies. 
 
The researchers have faced the impossibility of solving this problem exactly in different 
ways. There are diverse heuristics (Dubois et al, 1979, Ceder and Wilson, 1986, 
Pattnaik et al, 1998, Borndörfer et al, 2007, and Cenek et al, 2010, propose some 
examples) that seek for nice solutions; this approach, however, is hardly interpretable in 
its results. On the other hand, the literature has been solving these problems in 
networks of an increasing degree of complexity. Chang and Schonfeld (1991), for 
instance, generalized the one-line problem to several parallel lines, while Jara-Díaz and 
Gschwender (2003a) compared direct systems with feeder-trunk in a network with the 
shape of a cross; Tirachini et al (2010) studied a radial city, while Daganzo (2010) and 
Badia et al (2014) study a regular-grid and a radial-grid city, respectively. Fielbaum et al 
(2016) propose four basic structures (feeder-trunk, direct, exclusive and hub and spoke) 
over a parametric city that permits for representations of demand patterns associated to 
monocentric, polycentric or dispersed cities; Hörcher and Graham (2018) return to a 
single line, but with heterogeneous loads. Beyond the specific solutions, it is worth 
mentioning at this point that it is consistently found that the total number of passengers, 
as well as their internal distribution in the cities, plays key roles when optimizing and 
comparing different structures. 
 
Although the existence of different periods does not impose interactions as complex as 
in the spatial analysis, it is very relevant from the operators’ perspective: one of the most 
relevant sources of scope economies in public transport is the chance of using the same 
vehicles for different periods. The basic way of facing this problem was proposed by 
Jansson (1984) in a single-line model, but he only solved it in an intuitive way. Public 
transport problems considering several periods have also been studied by Chang and 
Schonfeld (1991) and Medina et al (2013) in simple spatial contexts, even though they 
have not focused their analyses in the impact of the differences between periods. In a 
different research line, Glaister and Lewis (1978), De Borger et al. (1996), Proost and 
Van Dender (2008), Parry and Small (2009) and Basso and Silva (2014) study some 
different versions of the problem of optimal fares and subsidies for public and private 
transport to achieve an optimal modal split considering peak and off-peak periods. 
Fernández et al. (2005) consider various periods in their analysis of operators costs only 
with fixed bus size. 
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Walker (2012) proposes a new question related to second-best alternatives: is it better 
to optimize for the peak and adapt for the off-peak –as it seems to be usually done- or to 
do it the opposite way? This question reveals that from the optimization process itself, 
the problem of having different periods adds new topics for a proper transit design. 
  
In this thesis we develop, solve and analyze some models that give us new insights 
about the most relevant economical aspects of public transport design. Regarding the 
spatial aspects of the design, we deepen the understanding about which type of lines 
structures (i.e. which spatial arrangement of transit lines) is more convenient depending 
on the characteristics of the city served by it, by studying some results of the heuristic 
approach and comparing them with the results already known over simple networks. We 
also analyze the effects of considering lines structures in the design when identifying 
some relevant economic features, such as scale economies or fares and subsidies; and 
we merge the lines structures analysis with the optimal design of the spatial density of 
the routes (inspired by Chang and Schonfeld, 1991). 
 
The incorporation of differences across periods needs to start at a more basic point, as 
there are no prior clear results even for a single line, which is the case that we are going 
to focus on. We analyze the single-line model considering two periods; we propose 
different transit systems, seeking for analytical and numerical results, and we compare 
them to determine under which conditions each of these systems is better. We also 
tackle the question posed by Walker (2012), i.e., we analyze the second-best solutions 
explained above. 
 
Eight chapters (after this introduction) compose the thesis. Chapter two synthetizes 
some previous models that are used often throughout the thesis, namely the single-line 
model developed by Jansson (1980, 1984) and Jara-Díaz and Gschwender (2003b, 
2009); and a parametric urban model that has been proven useful to analyze transport 
systems, with four basic lines structures proposed over it, which have been developed 
by Fielbaum et al (2016, 2017).   
 
Chapters three to five are oriented to describe and analyze the spatial aspects of public 
transport design. Four heuristics are applied over the parametric city model described by 
Fielbaum et al (2017) in chapter three, and the emerging lines structures are compared 
with the basic ones studied by Fielbaum et al (2016). The contents of this chapter 
correspond to the article by Fielbaum et al (2018). 
 
Chapter four is based in the results of Fielbaum et al (2019a), focusing on the effect of 
considering lines structures as a design variable over scale economies. More precisely, 
it shows that there is a source of scale economies derived from the chance of having 
more direct routes for the passengers when the total flow of passengers increases. The 
subsequent conclusions about fares and subsidies are also included. 
 
Chapter five is about the spatial distance between parallel lines, and how does this 
design variable interact with the whole lines structures design. For this, we first extend 
Chang and Schonfeld’s (1991) model by dropping some unnecessary simplifying 
assumptions, and we then introduce this additional variable (spatial density of lines) to 
the parametric city model to observe if there are changes in the comparison between the 
four basic structures. We study in both schemes the relationship between access time 
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(that cannot be included in the models that do not have lines density as a variable) and 
the other characteristics of users’ trips. These contents are presented in Fielbaum et al 
(2019b). 
 
Chapters six to eight deal with the challenge of transit design considering peak and off-
peak periods. In all of them we study the same single-line model, with a demand evenly 
distributed in space but with a larger flow at the peak. Other exogenous characteristics 
are also assumed to be different, like congestion and length of the trips. 
 
Chapter six studies the “natural” extension from the single-line single-period model to 
two periods, which was also studied by Jansson (1984). We optimize the acquisition and 
operation of a single fleet of vehicles, such that they might (or might not) run full during 
these periods, and some buses might not be used during the off-peak. Although explicit 
expressions for the optimal frequencies and bus size cannot always be found, we 
provide several analytical and numerical results. These are developed in Jara-Díaz et al 
(2017, 2019). 
 
In chapter seven we propose alternative ways to face this same scheme. First we 
deduce the equations that govern a system composed by two fleets: one that operates 
alone in the off-peak, and a second one that complements the former during the peak. 
The vehicles of these two fleets might be of a different size, such that a holding strategy 
is assumed to avoid having different cycle times at the peak (due to different times at 
bus stops). This system is compared with the one studied in chapter six and with a 
system consisting simply in operating each period independently. These results can also 
be found in Jara-Díaz et al (2019). 
 
In chapter eight we analyze the second-best solutions explained above. We study the 
equations resulting from optimizing one period in isolation, and then using that type of 
vehicles (as an exogenous variable) when optimizing for the other period. We 
investigate under which conditions it is better to optimize for the peak and adapt for the 
off-peak instead of proceeding in the inverse way. 
 
At the end of each chapter a list with the most relevant partial conclusions is provided. In 
chapter nine, we make a global synthesis of the thesis, explaining the most relevant 
conclusions and discussing some lines for future research. 
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Chapter 2. Brief review of some necessary previous models: the 
single-line model, the parametric city and the basic lines structures. 

 
In this section we provide a brief review of some relevant previous models that are used 
often throughout the thesis. First, we describe the basic model developed by Jansson 
(1980, 1984) and Jara-Díaz and Gschwender (2003b, 2009) for the optimal design of 
frequencies and bus sizes when only one line is considered in a single period. Our 
models are based over their very useful and simple equations, introducing complexity 
both in time and space.  
 
Second, we describe a not-so-simple spatial model proposed by Fielbaum et al (2016, 
2017), in order to analyze the design of line structures. Finding an optimal design is an 
NP-Hard problem for many cost functions, even if frequencies are not considered; when 
they are taken into account, a second level of the problem emerges, as these 
frequencies need to fit users individual route choices. The simplified model explained in 
this chapter allows for representing different types of cities without increasing spatial 
complexity too much. 
  
 
2.1 The singe-line single-period model 
 
The stylized representation of the single-period design problem follows the 
developments by Mohring (1972), who introduced the “square root formula” in a simple 
model that optimized the frequency of a circular line (without a beginning or an ending) 
considering that operators’ cost increases with frequency, whereas waiting time 
decreases with it; the resulting optimal frequency is proportional to the square root of the 
demand. Many refinements have been made over this basic model. Probably the most 
important one was the inclusion of the impact of passengers boarding and alighting on 
both bus cycle and passengers’ in-vehicle times in such a way that a closed analytical 
solution is obtained (Jansson, 1980, 1984). The relation between optimal frequency and 
demand becomes linear for large patronage volumes (modified square root formula). 
Jara-Díaz and Gschwender (2003b, 2009) analyzed the impact of a financial constraint 
on the optimal frequency and vehicle size, expanding Jansson’s model by making bus 
cost dependent on its size. Let us recall this general formulation for the one-period 
model over a single line, defining at the same time some notation. To do so, we start 
with the Value of the Resources Consumed, !"#: 
 
!"# = !(!! + !!!)+ !!

!! ! + !!!!
!
! !       (2.1) 

 
The first term corresponds to the operators’ costs, while the second and third are those 
corresponding to the users (their time). Operators’ costs is given by the fleet size ! 
times the cost of acquiring and using each bus, which has been shown to have a linear 
dependency on bus capacity ! (Jansson, 1980, 1984); !! and !! are the corresponding 
exogenous unit costs. Users are evenly distributed across the line, and their cost 
depends on total waiting and in-vehicle times, expressed as a function of the number of 
users that enters the system per hour !, frequency of the line !, cycle time !!, and the 
ratio between trip length ! (which is assumed to be equal for all users) and the total route 
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length !, which converts ! into the passengers’ flow at every point of the cycle; !! and 
!! are waiting time and in-vehicle time values, respectively. Note that behind !! and !! 
there are two types of operators’ expenses, operating and capital costs, representing 
usage and acquisition respectively. As this distinction will become relevant in the 
analysis of the two-periods case, it is convenient to recall that each of them can be 
expressed as linear in capacity functions as well (Jansson, 1980. 1984), i.e. capital cost 
is given by !!" + !!"! and operating costs correspond to !!"  + !!"!. 
 
Equation (2.1) may be solved by expressing all the design terms as a function of the 
frequency !. Following Jansson (1980, 1984), vehicle cycle time is given by the addition 
of time in motion ! and time at stops, i.e. !! = ! + !"/!, where ! is boarding-alighting 
time per passenger. As frequency is total fleet size divided by cycle time, we obtain that 
! = !" + !". Regarding vehicles capacity, costs minimization induces a value of !not 
larger than the minimum necessary to carry all passengers, i.e. ! = !"

!". Replacing ! 
and ! in (2.1) yields expression (2.2) where only ! is a variable  
 

!"# = !!!" +
!!! !!(!!!!!)!!!!/!

! + !!! !"! + !"!! +
!!!"#$

!      (2.2) 
 
The optimal values for ! and ! are 
 

!∗ = ! !
!!!!!!!"

!
! !!!!!

!!
!

!!!
   and  !∗ = !"

!!∗       (2.3) 

 
According to this result, both optimal frequency and bus size increase with patronage at 
a decreasing rate but, as shown by Jara-Diaz and Gschwender (2003b, 2009), 
frequency grows faster than capacity. For large patronage, capacity is asymptotic to a 
maximum value while frequency increases linearly. 
 
 
2.2 Parametric description of the urban area. 
 
Let us begin summarizing the parametric representation of an urban area proposed, 
justified and applied by Fielbaum et al (2017). It is a city model based on previous 
studies regarding topologic (Masucci et al, 2009, and Lin and Ban, 2013, are some 
examples) and economic (from the discussion about monocentricity between Alonso, 
1964, and Hamilton and Röell, 1982, to some more recent models like the one by Louail 
et al, 2015) analysis of cities, flexible enough to represent many of the phenomena 
described in the literature about modern cities and, at the same time, simple enough to 
admit a precise analysis of public transport lines. Through its parameters, the city model 
can represent different degrees of monocentricity or polycentricity and its road structure 
is hierarchical, as observed in most of the cities. It is useful for our purpose because it 
has a recognizable structure that allows the design of (alternative) strategic line 
structures. 
 
The city has a CBD and ! zones, each one containing a subcenter (SC) and a periphery 
(P). There are arcs linking the CBD with each subcenter, each subcenter with the 
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periphery of its zone, and neighbouring subcenters. The distance between a subcenter 
and the CBD (measured in the time needed by a bus) is !! and the distance between a 
subcenter and its periphery is !!!. The city presents radial symmetry, so the distance 
between consecutive subcenters is known as well. The CBD is only an attractor and the 
peripheries are only generators of trips; subcenters generate and attract trips (modeling 
morning peak). The city and the demand structure are shown in Figure 2.1, where ! is 
the total patronage and ! is the proportion of trips that start from the peripheries, out of 
which a proportion !  goes to the CBD, ! to the own subcenter and !  to the other 
subcenters, such that ! + ! + ! = 1 . A proportion ! = 1− !  of trips starts at the 
subcenters, and they go to the CBD and to other subcenters in proportions ! = !

!!! and 

! = !
!!! respectively. There are only four flow related independent parameters: !, !, ! 

and !. 
 

   
Figure 2.1. Parametric representation of a city (symmetric version) and its demand 

structure. 
 
The parameters !,!  and !  represent the degree of monocentrity, polycentrity or 
dispersion of the city, respectively: most trips go to the CBD for ! →1, most trips go to 
the own subcenter for ! →1, and most trips are distributed towards other subcenters for 
! →1. Along with ! they will be varied during the analysis to explore how do they affect 
the results. Throughout the thesis, this urban model is referred as “the parametric city”. 
 
 
2.3 The strategic line structures 
 
Fielbaum et al (2016) analyze four strategic structures over the parametric city model 
explained in section 2.2. They are represented in Figure 2.2; due to the symmetry of the 
city, only the lines emerging from the “south” zone, together with the circular lines, are 
drawn1: 
 

● Direct lines structure (DIR): there are lines connecting each OD pair, including 
short lines for specific pairs; nobody needs to transfer.  

																																																								
1 In chapters 4 and 5, structure DIR will be called “No transfers” (NT), and EXC will be called “No stops” 
(NS), to keep the notation used in the associated papers. These changes are useful to prevent being 
confused with the concept of “directness” introduced in chapter 4.  
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● Exclusive lines structure (EXC): there is one line for each OD pair without 
intermediate stops, such that nobody needs to transfer. 

● Hub and spoke structure (HS): lines connect opposite zones through the CBD, 
where a transfer can be made to other zones. A circular line serves the 
subcenters ring, such that shorter trips are sometimes feasible. 

● Feeder trunk (FT): feeder lines connect each periphery with its subcenter. A direct 
lines structure serves the subsystem composed by the subcenters and the CBD. 

               
a. Direct lines structure (DIR)  b. Exclusive lines structure (EXC) 

 
c. Hub and spoke structure (HS)  d. Feeder-trunk lines structure (FT) 

Figure 2.2. Graphic representation of the strategic lines structures 
 
It is worth explaining that the optimization process that will be described in the next 
section might yield null frequencies for some lines, depending on the parameters, i.e., 
the actual set of lines might be a subset of the lines shown in Figure 2.2. 
 
 
2.4 Main results 
 
The best strategic lines structures were obtained in Fielbaum et al (2016) by finding the 
cost function (minimum value of the resources consumed) for each structure, optimizing 
frequencies and bus sizes. The value of the resources consumed is a direct extension of 
the one explained in section 2.1, just summing across all lines for operators, and adding 
a term that takes total transfers ! into account for users: 
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!"# = !! + !! = !!! (!! + !!!!)+ !(!!!! + !!!!)+ !!!    (2.4) 
 
!! is the total fleet of line ! and !! the capacity of its vehicles. Regarding users, !! and 
!!  are the average in-vehicle and waiting times respectively. !!, !!, !! ,!!   and !!  are 
exogenous price related parameters. 
 
Capacities, travel times and waiting times can be written as a function of the frequencies 
of each line on each structure, such that the frequencies vector becomes the main 
decision variable that can be optimized -as explained in detailed in Fielbaum et al 
(2016)- in order to find the minimum !"#. Transfers depend on the lines structure only2. 
Passengers assignment sometimes needs iterations, because more than one route is 
possible. The overall minimum yields the best line structure for different combinations of 
!,! and !, which we present in Figure 2.3 (from Fielbaum et al, 2016), using colors for 
each structure.  
 

                                                          
a)(!,!) space, ! = !    b) (!,!) space, ! = 24000 

Figure 2.3. Optimal strategic structure for different combination of the 
parameters  

 
 
In Figure 2.3a we analyze the effect of ! (between 0 and 1) and ! (between 800 and 
480,000, logarithmic scale), keeping  ! = ! , i.e peripheral passengers whose 
destinations are subcenters split in half between the own subcenter and the foreign 
subcenters. In figure 2.3b patronage is fixed at ! = 24,000 in order to analyze the effect 
of ! and !. The rest of the parameters are shown in Appendix3 A. In both figures each 
color represents one of the structures presented in Figure 2.2, such that the conditions 
(parameters values) under which each one dominates (i.e. that presents the lowest total 

																																																								
2	The number of transfers could depend on frequencies because they might turn a route that includes 
transfers more attractive than a direct alternative. Nevertheless, this theoretical possibility does not 
happen when optimizing the system.	
3 Throughout the thesis, different parameters are going to be used over this same model. We vary the 
parameters to make the conclusions more robust, and because there are some analyses that require 
different emphases. All these parameters are based in different representations of Santiago, Chile.	
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cost) emerges clearly. To facilitate the interpretation, the extreme monocentric (M), 
polycentric (P) and dispersed (D) cases are shown when possible. 
 
Figure 2.3a shows that ! has a very clear role: as patronage increases the structures 
with no transfers (DIR and EXC) dominate. HS and FT are convenient up to a moderate 
demand range, with FT advantageous only for very low proportion of trips to the CBD. 
For a mid-range patronage (Figure 2.3b), DIR dominates for most cases where !+ ! is 
larger than ! (from mono to polycentric cities), except when ! is small. When ! is larger, 
EXC becomes the best. As evident, every structure can become optimal under certain 
conditions.  
 
For synthesis, DIR does not work well for dispersed cities (no ability to collect trips) but 
is optimal when most of the trips are radial; routes are not always the shortest ones, 
inducing the largest in-vehicle times. EXC becomes best only for large patronage; it 
requires a large fleet of relatively small buses inducing large waiting times but the 
smallest in-vehicle times (no intermediate stops). HS collects trips and induces large 
frequencies, reducing in-vehicle times; it dominates for low levels of patronage using a 
small fleet of large vehicles. Finally, the virtues of FT (little idle capacity) show up only if 
the city is dispersed.  
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Chapter 3. The role of heuristics in designing lines structures. 

 
In this chapter we are going to apply some heuristics over the parametric city, to analyze 
the line structures that emerge from them and to compare their results with those from 
the four basic ones. Out of the many heuristics available in the literature we selected 
four for this analysis: Dubois et al (1979), Ceder and Wilson (1986), Borndörfer et al 
(2007) and Cenek (2010). The selection is based on diversity - date of publication and 
methodological approach - and feasibility, i.e. applicable to our scheme4. Parameters 
are shown in Appendix A.  
 
For each heuristic, we solved for one zone and replicated that solution for the others, 
following the same procedure used to design and analyze the basic strategic structures, 
which takes advantage of the symmetry of the city; this obviates some unilateral choices 
when building the routes. In the following sub-sections we describe and apply each of 
the heuristics, providing five elements: the main idea, a brief description of the 
procedure, comments and modifications (if any), results and analysis. As frequencies 
are going to be calculated afterwards using the same procedure for all - i.e. minimizing 
!"# as in Fielbaum et al (2016) - we focus on those parts of the heuristics conceived to 
construct and select the routes (for instance, in Dubois et al, 1979, we omit the selection 
of an optimal subset of streets and the search for optimal frequencies). Specific details 
of the procedures to apply each heuristic to our city model are given in Appendix B. 
 
 
3.1 Description and application of the heuristics 
 
3.1.1 Dubois et al (1979) - DBL. 
- Main idea: “Lines must be rather straight and at the same time a sufficient number of 
passengers must be picked up” (p. 801). 
- Brief description of the heuristic: it begins by identifying the set of shortest routes that 
connect the most distant O-D pairs. Then it admits deviations for all of these routes, but 
keeping their length variation within a range 1+ !, where ! is imposed a priori. With 
these routes as candidates, it builds the structure adding them in some order until the 
graph is fully connected. Finally, if the total number of transfers is too large or if the total 
travel time increases too much relative to the shortest paths, the routes that diminish 
either in a more effective way are added.  
- Comments: !  represents the trade-off between having more direct routes (hence 
diminishing travel times for users and cycle times for operators) and collecting more 
passengers (allowing lower waiting times and smaller fleets). This parameter is 
supposed to be fixed, but we solved for each possibility up to 0.5. Also, we built the 
structure adding the routes from the shortest to the longest. 
- Results: As shown in Figure 3.1, two structures emerge for ! < 0.328 (≈ !

!) and only 

one for ! > !
! . Figure 3.2 shows the structure that presents the minimum !"# for each 

combination of !,!, ! and !. 
																																																								
4 For example, van Nes et al (1988) solve the problem just minimizing user costs - represented by the 
number of transfers - within a given maximum budget for operators; there is no clear way to adapt that 
idea to this scheme. 
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DBL-I.! < !

!, ! > 10%.        DBL-II. ! < !
!, ! < 10%.   DBL-III. ! > !

!, all !.  
Figure 3.1. Lines structures obtained with the DBL heuristic. 

 

 
a) (!,!) space, ! = 24000    b) (!,!) space, ! = ! 

Figure 3.2. Best DBL structure  
 
- Analysis: all resulting structures in Figure 3.1 are mostly direct5, and they emerge 
nearly independently from the demand parameters; in fact, they play a role because we 
turned ! into a varying parameter. If ! > !

! we always obtain DBL-III. If ! < !
! only very 

small values of ! make one line vanish (the black one in DBL-I). Regarding the search 
for the optimal !, Figure 3.2 shows that structure III - with a larger allowed deviation from 
the shortest routes - dominates in most cases, because it is efficient collecting 
passengers and reducing waiting times; Figure 3.2b shows that this happens for 
0.1 < ! < 0.5	and Figure 3.2a suggests that this extends to ! = 1. This virtue weakens 
when patronage is large because large frequencies diminish the relevance of waiting 
times, favoring structures I and II with small or no deviations from the shortest-path. In 
highly monocentric cities structure II is optimal because it is based on trips to the CBD. 

 
																																																								
5 In all cases transfers might occur, but by a small fraction of the total patronage. In our application with 
eight zones, structure II imposes transfers towards four foreign subcenters out of nine destinations, but 
involving less than 5% of the total flow. Although structure III imposes transfers only towards two foreign 
subcenters, the corresponding flow could be much larger in a dispersed city (large γ); for example, if γ was 
70% the flow requiring transfers could reach up to 20%. 
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3.1.2 Ceder and Wilson (1986) – CW 
- Main idea: instead of searching for complete bus routes, they are built node to node, 
controlling for excessive length of the passengers’ routes. 
- Brief description of the heuristic: a set of nodes is defined as “terminals”. Beginning 
with an arbitrary terminal, routes are built starting from that node passing through 
unconnected new nodes but not exceeding by more than ! the length of the shortest 
route from the terminal to each node (similar to Dubois et al, 1979), until no new routes 
are possible. The procedure is then applied from a new terminal, obtaining a tree6 from 
each terminal. 
- Comments: general objective is similar to the previous heuristic, but in this case routes 
are built instead of explored, which may be relevant in terms of computational time for 
big networks. As ! plays the same role as in DBL, we treated it similarly exploring all 
values up to 0.5.   
- Results: we obtain two possible structures shown in Figure 3.3, depending on whether 
! < 0.2517 (≈ !

!); they are compared in Figure 3.4 only in the (!,!) space for ! = !, as 
in the (!,!) space with ! = 24,000, structure CW-I dominates everywhere. 
 

 
   CW-I. ! < !

!    CW-II. ! > !
! 

Figure 3.3  Lines structures obtained with the CW heuristic. 
 

 
Figure 3.4 Best CW structure. 

 
- Analysis: again emerging structures are based on direct trips and, again, they are only 
sensitive to the demand pattern through !. Note that for small ! routes are shorter and 

																																																								
6 A graph is called a tree if it is connected and it has no cycles. 
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passengers spend less time on board, while a larger !  permits to pick up more 
passengers with the same line (generating longer routes). Collecting more passengers 
is useful when patronage is small because passengers perceive higher frequencies with 
a smaller fleet, but when ! increases this advantage vanishes. This makes structure II 
more competitive when the destinations are distributed more evenly across the city. 
 
3.1.3 Borndörfer et al (2007) – BOR 
- Main idea: to solve a Linear Programming Problem (LPP) that calculates frequencies 
and assigns passengers, by means of minimizing travel times and operator costs.  
- Brief description of the heuristic: it starts with all possible lines, each with a given bus 
size; then it defines an optimization problem that minimizes total costs, i.e. the costs 
related to travel times for the passengers plus the operators fixed cost per bus. Then it 
minimizes over the frequencies of each line and the passenger assignment, with 
restrictions that ensure physical feasibility. The heuristic component comes from the 
possible huge number of variables; so approximated methods are needed to solve the 
optimization problem. 
- Comments: because of the simplicity of the graph in our case, considering only lines 
that are shortest-path between their origins and destinations generates a manageable 
number of variables such that the solution may be calculated exactly. The emerging 
structure is composed by those lines whose frequency is not null. As passengers’ 
assignment is optimized to obtain minimum total cost, they are assumed to use the 
system in a way that may differ from what would be their actual individual choices. 
Waiting times and number of transfers play no role. 
- Result: the set of lines with positive frequency yields only one structure for all 
combinations of parameters and bus sizes, shown in Figure 3.5; no comparison is 
needed. 
 

 
Figure 3.5. Lines structure obtained with the BOR heuristic. 

 
- Analysis: although this heuristic also yields a direct lines structure, it is quite different 
from the previous ones. This structure is absolutely insensitive to the demand pattern; it 
represents the set of lines that – as in all other cases –receives the same treatment 
described in section 2.4 in order to obtain frequencies that minimize !"#.  
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3.1.4 Cenek (2010) – CEN 
- Main idea: to build line routes that connect centers and that provide short alternatives 
to the largest number of passengers. 
- Brief description of the heuristic: some nodes are pre-defined as “centers”. Every arc 
has a starting weight, calculated as the number of passengers that would cross it if 
everyone chose shortest routes. Then, each route is built starting at a center, continuing 
through the arcs with the highest weights, and ending when either another center or a 
border-like node is reached. After a line is created, the weight of its arcs is reduced by 
the minimum of its components.  
- Comments: although it is an interesting heuristic for our parametrically described city, 
as it is based on the centers structure, it would create only one-arc lines if applied 
literally. Therefore, we relaxed the criteria of ending the line when another center is 
reached.    
- Results: the results depend on whether ! is larger than !(! + !

! !)+ !(! +
!
! !), i.e. the 

construction of routes does depend on the demand pattern. The two possible structures 
are represented in Figure 3.6. 
 

          
CEN-I. ! > !(! + !

! !)+ !(! +
!
! !)          CEN-II.  ! < !(! + !

! !)+ !(! +
!
! !)           

Figure 3.6. Lines structures obtained with the CEN heuristic. 
 
Analysis: The first structure makes all peripheral passengers that go to the CBD choose 
between a transfer at the own subcenter and a deviation to a neighboring subcenter, 
which seems disadvantageous for the users without diminishing operators’ costs. The 
second case is very similar to the original HS structure presented in Section 2. Grossly 
speaking, structure I emerges when ! → 1 (i.e most trips start at the peripheries) and 
structure II emerges when ! → 1 (i.e. the city is monocentric). CEN-I and CEN-II do not 
compete, as only one of them emerges for a given combination of the demand 
parameters; no comparison is needed. 
 
 
3.2 Results and analysis 
 
In this section we present the overall results considering all the structures presented in 
the two previous sections. The idea is to show which structures are dominant (i.e. those 
that exhibit the minimum total cost) for the different values of the urban parameters. This 
requires the calculation of the minimum !"# for each and every one of the structures. 
As !"# is a function of frequencies and vehicle sizes of all lines belonging to a given 
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structure, the optimal values for these variables were found using the approach 
described at the beginning of section 2.3, where !"# is written as an explicit function of 
the frequency vector and optimized (following Fielbaum et al, 2016). 
 
3.2.1 Main results 
Results are described in the two spaces previously used: the (!,!) space with 
! = 24,000 (Figure 3.7a), and the (!,!) space with ! = ! (Figure 3.7b). In general, the 
strategic structures studied in Fielbaum et al (2016) happen to be inferior to those 
generated by applying DBL, CW or BOR (shown in Figures 3.1, 3.3 and 3.5 
respectively) in most regions of the spaces that described the city, with some exceptions 
for very low and very high patronage. As the structures obtained with heuristics are 
generally (improved) extended versions of the DIR structure, our results show that 
heuristics reinforce the strength of DIR by improving its performance by means of non-
trivial modifications, such that they dominate nearly everywhere; out of these, a few 
transfers might occur only in the DBL structure. 

        
a) (!,!) space, ! = 24000   b) (!,!) space, ! = ! 

Figure 3.7 Dominant structures  
 
Let us examine these results further. The original strategic structures dominate only for 
very small or very large patronage. EXC dominates when patronage is very high, as its 
main problem (large waiting times) diminishes importance when frequencies have to be 
high; this is consistent with previous results (Fielbaum et al, 2016; Gschwender et al, 
2016) and its analysis is deepened in chapter 4. An interesting remark here is that the 
heuristics are not able to produce exclusive services, as they do not allow a route to skip 
stops. HS dominates for small cities with an important CBD but not fully monocentric; its 
structure - that exploits the relevance of the CBD - is useful in these cases. FT 
disappears; the zones where it dominated in the base case are now dominated by CW-I, 
which is a direct-type structure but that has a line very similar to the feeder lines in FT. 
 
The heuristics generate DIR-like structures by admitting deviations from the shortest 
possible lines in order to collect passengers along the routes, constraining the increase 
in travel times and sometimes the number of transfers, which is exactly the declared 
objective of Dubois et al (1979), as quoted above. For example, DIR has one line for 
each foreign zone reached through the CBD (what we called the ! set in Fielbaum et al, 
2016), while CW covers all zones in ! with only two lines from each periphery; by 
reducing the number of lines a good combination of a smaller fleet size with high 
frequencies is achieved. This same idea lies behind DBL-III (quite similar in shape to 
CW-I). The resulting structures based on DBL and CW improve on the strategic 
structures generally by less than 20% of total cost; for highly monocentric cities and 
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intermediate demand levels, a 50% improvement can be achieved. A general analysis of 
the relative performance of all structures is presented in section 3.2.2. 
 
Figure 3.7a shows that as polycentrism grows (larger !) the CW heuristic works better; 
when ! < !, DBL structure dominates, in a zone where previously DIR or EXC did; and 
when ! > ! CW is generally better, replacing DIR and FT. From Figure 3.2b, if 
! ∈ [5,000; 100,000]  then DBL is always dominant if ! >0.3, improving over DIR; 
moreover, it also dominates for most of the demand range if !>0.8, beating mainly HS 
and DIR. For a wide ! range and ! = !, increasing monocentrism makes DBL more 
effective but CW dominates for ! < 0.25. BOR is optimal only in the extreme scenario of 
a very large monocentric city (when ! = !) and CEN never appears.  
 
Conceptually these results can be summarized by saying that the more dispersed the 
city the better is the DBL structure (usually DBL-III), while polycentrism is better served 
with the CW-I structure, as shown in Figure 3.8 where we detail which type of ! related 
structure (shown in Figures 3.1 and 3.3) is the winner when either DBL or CW are 
dominant. The intuition behind this is that the dominant structures are nearly identical 
but, as explained above, DBL has a line that specifically serves various external 
subcenters instead of many lines, which is quite good for collecting passengers. This is 
convenient when there is a high degree of dispersion; otherwise large fleets would be 
required or large waiting times would be obtained. Note that this is achieved because, in 
spite of the similarities, the DBL heuristic extends a path as much as possible while CW 
searches all possible forward movements from a node.  
 

 
a) (!,!) space, ! = 24000    b) (!,!) space, ! = ! 

Figure 3.8. Dominant lines structures in detail. 
 

The flexibility of DBL and CW to obtain different line structures seems to be a relevant 
advantage to adapt well to different kinds of cities, but this arises because we treated 
the exogenously fixed tolerance (!) parametrically, implicitly searching for a good !. 
Figure 3.8 shows that up to ! = 0.8 when DBL dominates it is almost always with 
structure III. In the case of CW, structure I is the dominant one but structure II is better 
for low patronage. 
 
Let us recall that, as shown in Chapter 2, the analysis involving only the four basic 
strategic structures indicated that each one dominates for different urban schemes. 
Although the analysis including the heuristics shows that the direct-type structures 
increase their range of dominance to all non-extreme cases, it is relevant to point out 
that both CW and DBL generate DIR-type because they are conceived as such. One 
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might wonder whether heuristics based on EXC, HS or FT-type structures could 
dominate in the zones where the corresponding basic structures originally did. 
 
In summary, it is interesting to realize that, depending on the demand pattern, the 
solution may vary widely. Actually, five structures out of eight are dominant under certain 
conditions. This means that to find a good structure for a specific city, it is necessary to 
start observing the global conditions to determine first the type of strategic structure to 
be implemented. In our example, two original strategic designs - HS and EXC - 
dominate for very low or very high patronage respectively, and the selected heuristics 
are not able to generate superior schemes because they are conceived with the idea of 
improved direct lines. In these cases heuristics built upon the HS or EXC concepts could 
do a better job. For a specific city it seems convenient to use a heuristic search after a 
careful analysis of the advantages and disadvantages of what we have called strategic 
designs, such that the detailed design could be constructed with the help of a heuristic 
adequately conceived for that structure. 
 
3.2.2 Global indicators 
Our analysis so far shows which structure dominates for each combination of the 
parameters. But some unresolved questions remain. On the one hand, it would be 
useful to have some global indicators (independent of the parameters that describe the 
city) for the comparison among structures, and in particular to decide within a set of 
heuristics which one is the best. On the other hand, the analysis so far gives no clue 
about how good (or bad) are the structures that do not dominate in a specific point that 
represents a city. For short, it is relevant to ask how far from the dominant structures are 
the non-dominant ones. 
 
To explore this, the natural idea is to compare the value of the resources consumed 
!"#, the function that let us decide which structure is dominant. So for each value of 
!,! and !, we calculated the percentage difference between the !"# of each structure 
and the !"# of the dominant structure for the same parameters, i.e., how bad did each 
non-dominant structure did. In Table 3.1 we synthetized these calculations, showing for 
each structure the maximum and the mean difference along the different values of the 
parameters. First row is in the (!,!) space, second row is in the (!,!) space and the 
last row shows the global figures.  
 

Max/mean DIR EXC HS FT DBL CW BOR CEN 
(!,!) 20.3/

10.1 
59.6/
21.2 

45.7/
14.8 

61.9/
27.8 

40.7/
4 

21.2/
2.7 

32.6/
14.8 

141.3/
58.4 

(!,!) 64.7/
15.6 

52.1/
20.2 

88.4/
25.2 

71.8/
28.5 

46.2/
8.7 

79.1/
7.7 

89.7/
22 

246.6/
90.2 

Global 64.7/
12.9 

59.6/
20.7 

88.4/
20 

71.8/
28.2 

46.2/
6.4 

79.1/
5.2 

89.7/
18.4 

246.6/
74.3 

Table 3.1: Relative difference between the value of the resources consumed by 
each structure and the lowest value (maximum/average) 

 
Results in Table 3.1 show that, globally, DBL exhibits the lowest difference with the 
minimum !"#, i.e. it produces the most reliable structures, those that are never too far 
from the minimum. However, structures from CW are the best in average (about 5% 
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from the dominant) but sometimes very far; DBL comes a close second under this 
measure, and DIR comes third.  On the other hand, CEN structures are the worst for 
each of the indicators. This again points to the conclusion that a single heuristic for each 
kind of city is not the best way to face this problem, as shown in Table 3.1 by the first 
numbers in the last row (maximum global deviation from the optimum). These figures 
indicate that all structures may be spending at least 46.2% additional resources with 
respect to the dominant one for some demand pattern. 
 
Note that, with the only exception of EXC (whose relation with ! has already been 
explained) the maximum relative difference is always achieved when covering the (!,!) 
space. This indicates that the total number of passengers may be less relevant than how 
these passengers are spread throughout the city. 
 
3.2.3 Analysis of operators’ and users’ costs  
Which are the elements that make each line structure win under different urban 
structures represented by the parameters combinations? To explore this, let us look at 
the two main components behind !"# - i.e. users’ and operators’ costs – for each of the 
different dominant structures. Note that we are not looking for the optimal structures 
under the specific interest of users or operators, i.e. we do not optimize operators’ or 
users’ costs by their own. We simply want to capture how each overall dominant 
structure is perceived by each type of actor by using the optimal frequencies and 
capacities obtained in order to evaluate separately !! and !! . 
 
In Figure 3.9 we show the variation of !! (solid lines) and !! (dotted lines) for each 
structure as total patronage increases for ! = 0.5, keeping ! = !. CEN was suppressed 
as it systematically showed the largest costs for both operators and users in the whole 
range analyzed. Only in this figure ! is not represented in a logarithmic scale in order to 
emphasize the resulting linear shape. ! = 0.5 was chosen because - as shown in Figure 
3.8 - five structures become dominant as ! increases.  
 

 
 

Figure 3.9. Operators (solid) and Users (dotted) Costs functions; ! = 0.5, ! = !. 
 

Figure 3.9 shows that - given the exogenous parameters used in our study - users costs 
weight more (0 to 10,000) than operators’ (0 to 3,000) and both increase with patronage 
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for all structures. DBL (in yellow) presents, by far, the lowest operator costs, but is 
relatively costly in terms of users’ resources. Recall that this structure is DIR-type but 
with a stronger tendency to collect passengers. This characteristic is good for operators, 
but users need to tolerate longer trips. So when DBL wins, it does because of operators’ 
costs.  
 
Operators’ costs for all structures but DBL are quite similar, which makes users’ costs 
particularly relevant when excluding DBL. Users costs present a larger variance, at least 
for large values of the patronage. FT and DBL present the worst user costs, while EXC 
and CW curves are quite close to each other, exhibiting the lowest users’ costs.  
 
Finally, in an additional analysis, we looked at the behavior of both operators and users 
costs for ! ∈ (0,0.5), ! = 0.5 and ! = 24,000 for all structures, as this permits a further 
look at the role of the subcenters. As expected, the main result is that increasing 
polycentricity (!) while diminishing dispersion (!) makes all costs decrease steadily 
because trips are shorter.  
 
3.2.4 Role of the transfer penalty 
Now we examine the role played by the transfer penalty !!, which has been shown in 
previous analyses to be relevant in determining the optimal line structure (Fielbaum et 
al., 2016; Gschwender et al., 2016). It is worth looking at the results that would be 
obtained if we assume an extreme case in which the only cost associated to a transfer is 
the additional waiting time, i.e. !! = 0. 
 
The results are shown in Figure 3.10, where the most interesting novelty is the re-
emergence of FT for low levels of monocentrism, particularly for intermediate values of 
! and a wide intermediate range of patronage. The other structure that relies on 
transfers, HS, significantly increases its dominance area. Interestingly, DBL now 
dominates for small values of ! (i.e. those close to the hypotenuse in Figure 3.10a). 
Note that the best DBL structure in the area ! < 0.1 is DBL II, different from Figure 3.2a 
(with !! equal to 24 in-vehicle minutes), which now dominates over CW in that area. 
This happens because DBL II presents mandatory transfers that are now less penalized. 
This confirms that !! is a key parameter indeed; given the large variability reported in 
the literature, further research on this is badly required (see Currie, 2005, Raveau et al., 
2014 or Garcia-Martinez et al, 2018, for some results). 

  
a) (!,!) space, ! = 24,000   b) (!,!) space, ! = ! 

Figure 3.10 Dominant structures for  !! = 0. 
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3.3 Main conclusions 
 

- Heuristics create mostly direct-type lines structures, which are seldom sensitive to 
the OD pattern. 

- Lines structures that emerge after applying the heuristics are competitive. In 
particular, for most combinations of the parameters, DBL or CW are dominant. 

- Making routes that do not follow shortest paths in order to collect more 
passengers improve the lines structures. The maximum deviation from shortest 
paths is a parameter that should be optimized. 

- If the number of passengers is very small, HS is dominant; if it is very high, EXC 
is dominant. 

- CW presents the lowest average cost, and DBL presents the lowest maximum 
difference with respect to the cost of the dominant lines structure across all the 
possible value of the parameters.  

- All structures can be up to 45% more costly than the dominant one. From this 
point of view, spatial distribution of the trips is more relevant than the total number 
of trips. 

- The numeric value of the pure transfer penalty plays a key role when comparing 
lines structures, including those created by the heuristics. 

- It seems better to start by defining a global strategy (such as HS, FT, DIR or 
EXC) and then applying a specific heuristic, rather than trying to create a global 
heuristic that is useful for every city. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 22 

Chapter 4. The technical dimensions behind scale economies 
induced by transit lines structures design. 

 
 

4.1 Introduction: scale economies in public transport. 
 
Cost functions and economies of scale are economic concepts that are quite relevant for 
the normative analysis within production theory, where the technical process is 
represented by a production or transformation function that summarizes the conversion 
of inputs into outputs. Although production processes usually involve many inputs and 
outputs, the engineering technology represented by the production function is usually 
formulated using aggregates, something that indeed applies to the study of transport 
activities, where product was described using single scalar measures as ton or 
passenger-miles until mid-eighties, and by means of a vector of a very small dimension 
thereafter, including flows related variables, service quality variables and network 
description variables. The compact description of output prompted two definitions in the 
literature around the analysis of scale economies, both referring to proportional 
expansions of output: returns to density (called RTD) and returns to scale with variable 
network size (called RTS). The former considered a proportional expansion of outputs 
keeping network size fixed, while the latter considered a simultaneous expansion of both 
flows and the network by the same proportion (Caves et al., 1984; Keaton, 1990). 
However, using aggregate output descriptions blurs the technical relations with inputs 
and has some unpleasant consequences in the analysis of economies of scale in 
transport activities. 
 
Behind any compact description of transport output lays the true output of any transport 
firm: a vector of origin-destination (OD) flows of different things during different periods 
(Jara-Díaz, 1982a). In very simple transport systems the analytical derivation of the 
technical relations between inputs and flows - the production function – can be done, 
such that the corresponding cost functions can be obtained analytically as well7. This 
approach proved very useful to show that the use of aggregates introduced ambiguity in 
the economic analysis in transport because, for example, the same amount of 
passenger-miles could require very different types and amounts of inputs depending on 
how these passenger-miles are distributed in space. Most importantly, scale economies 
should be studied holding the origin-destination system constant, as introducing new OD 
pairs means introducing new products, which would require the analysis of economies of 
scope; this means that “economies of scale with variable network size” is actually an ill-
defined concept, as shown by Basso and Jara-Díaz (2006a) while “economies of 
density” is better suited to the definition of economies of scale.8  
 
A corollary from this story is that more attention has to be paid to the transport 
production process itself in order to fully understand scale economies. Besides the 
preceding difficulties, economic efficiency analysis in transport has to include a usually 
forgotten input, which is users’ time, an input whose level is affected by the specific 
																																																								
7 See for example the analysis of the backhaul transport system involving two flows only (Jara-Díaz, 
1982b) or the three-nodes system studied by Jara-Díaz and Basso (2003). 
8 Sometimes RTD has been defined adding the condition that lines structure is unchanged after an 
increase in flows (Basso and Jara-Díaz, 2006b).	
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combination of vehicles, terminals and routes, chosen at the design level. This is indeed 
the case in public transport analysis.9  
 
The provision of public transport services exhibits various technical characteristics that 
have been shown to affect its degree of scale economies (!"#), which is the quotient 
between average and marginal costs. First of all, the so-called Mohring effect described 
in chapter 2, where an increase in patronage makes optimal frequency larger and 
waiting times lower. In addition to this waiting time effect, as demand increases the 
system can also be adapted by incorporating more lines in space, thus reducing another 
component of users’ cost, namely the walking time (this is further studied in chapter 5). 
Lines density has been modeled for a bus feeder system by Hurdle (1973), in a 
rectangular area by Kocur and Hendrickson (1982) for a single period, by Chang and 
Schonfeld (1991) for multiple periods, and by Small (2004), who analyzed the impact of 
road pricing on public transport. All of them obtain a cube root formula for both the 
optimal frequency of each line and for the optimal number of routes. 
 
A third variable that can be adapted according to the demand level is the size of the 
vehicle, which also increases with patronage. As operators’ cost per passenger diminish 
with vehicle size (due to fixed costs per vehicle), this is also a source of scale 
economies. However, when vehicles size increases the time spent at each stop also 
increases because more passengers board to, and alight from, each single vehicle, 
thereby increasing cycle time - which affects operators’ cost as a larger fleet is needed - 
and users’ in-vehicle time. Both effects reduce the degree of scale economies. Including 
these effects in his model of an isolated public transport line, Jansson (1980) obtained 
the modified square root formula explained in chapter 2 for optimal frequency, such that 
frequency is proportional to the square root of the demand if waiting times dominate (low 
demand and frequencies), or directly proportional to the demand if in-vehicle times 
dominate (larger demand and frequencies). In all models the adjustment of frequency 
and vehicle size generates scale economies that, nevertheless, diminish as flow 
increases. 
 
In this chapter we introduce in the analysis of scale economies in public transport an 
important element of design that responds in a discrete way to increases in flow: lines 
structure, i.e. the way in which vehicles serve a number of routes in order to move a 
given set of flows (product). As flows grow these arrangements evolve in a way that 
should be studied specifically; understanding the evolution of design including lines 
structure and analyzing its impact on total costs and scale economies is the main 
objective of the chapter10.  
 
 
																																																								
9 There are studies where passengers’ costs is not included. Farsi et al. (2007) and Viton (1992), for instance, study 
the operators’ production function with an emphasis on multi-modal industrial organization; they consider aggregate 
outputs, and recognize the presence of scale economies. On the other hand, Fernández et al. (2005) find some 
sources of diseconomies of scale when studying operators’ costs in bus corridors.  
10 Scale economies in public transport have also been reported in other dimensions. Tirachini et al. (2010a), for 
example, show that when crowding discomfort is considered diseconomies of scale are found for high levels of 
patronage, a result that vanishes when more than one line is considered (Tirachini et al., 2010b). Tirachini and 
Hensher (2011) and Jara-Díaz and Tirachini (2013) have studied the impact of the boarding-alighting-paying methods, 
finding yet another source of economies of scale. Considering different modes also impacts the analysis, as shown by 
Tirachini and Hensher (2012) or Basso and Jara-Díaz (2010, 2012).  
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4.2. The impact of the discrete nature of lines structure choice on DSE.  
 
As discussed in chapters 2 and 3, how adequate a lines structure is depends on the flow 
pattern, such that the set of transit routes becomes a design variable that should be 
optimized together with frequencies and vehicle sizes. Taking this into account, the 
question is whether adjusting line structures contribute to scale economies in transport 
networks.  
 
Considering operators’ costs only, Basso and Jara-Díaz (2006b) study the difference in 
the analysis of scale economies when lines structures are fixed or a variable to be 
optimized. Kraus (2008) formulates the problem over a general network including users 
and operators’ costs. He finds an expression for optimal frequency for every possible 
line in a network (“where each path of the network is a potential bus line”, pp.175); by 
plugging the result back into the cost formulation (envelope theorem) he argues that in a 
cost-minimizing network (i.e. “one for which the sum of user and capacity costs for the 
network's outputs is at a minimum”, pp. 171), the !"# is not affected by a consideration 
of lines structures. In public transport, however, passengers choose their routes aiming 
at the minimum individual cost, which yields a pattern that differs from the total costs 
minimum because of the presence of externalities. As we will see, the emergence of a 
new line (i.e. a change in lines structure) that occurs at some point of the continuous 
growth in flow, happens with its frequency jumping discretely from zero to a value that 
makes the new line attractive. This discrete change in frequency prevents the envelope 
theorem to be applied. In addition, the problem of finding an optimal lines structure has 
been shown to be NP-Hard, such that in big-size networks - as is the case in any real 
city - it is unfeasible to conceive “every possible line”.  
 
This motivates the proposition expressed below, where we show that the degree of 
scale economies increases when the lines structures is changed (unless common lines 
exist everywhere11), taking into account that frequencies !!on every line are a function of 
flows ! due to some underlying optimization procedure, i.e. !! = !!(!).  The proof is 
based precisely on the discrete jump made by frequencies from zero when passengers 
choose their routes minimizing their individual costs. An example is offered and 
analyzed in detail in the section 4.3. 
 
Let us define a vector of OD flows ! as a threshold point if there exists at least one line ! 
such that frequency !!(!) = 0 and !!(!(1+ !)) > 0 ∀ ! > 0 with no alternative lines for 
some of its passengers. This means that after a ray increase in ! at least a new line 
appears, such that a threshold point implies a new lines structure. 
 
Proposition 4.1: Consider a network served by a public transport system. Then at every 
threshold point the !"#  increases discretely, i.e. !"#

!→!!
!"#(!!) > !"#

!→!!
!"#(!!) , with 

!! = ! ⋅ (1+ !). 
 
 
																																																								
11 In the literature the case known as “common lines” appears when for some portions of the route, the passenger is 
indifferent to choose within a certain set of lines because they all make almost the same trip. See for instance Chriqui 
and Robillard (1975) or Cominetti and Correa (2001). 
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Proof: the proof consists in two parts. 
 

1) First, let us show that !! increases in a discontinuous way from zero. Define  !! 
such that if  !!< !!, then the waiting cost for passengers using line ! is larger than 
the total cost of any other route. In that case no passenger chooses ! and the 
optimal frequency is zero. Then if !! > 0, it must be larger than !!. 
 

Hence, the choice of an optimal line structure is essentially discrete, i.e.  
! = !(!!,. . . ,!! ,!) where !!,...,!! represent continuous variables, such as frequencies or 
capacities, and ! represents a discrete variable: lines structure. The second part of the 
proof applies to any kind of production function that contains a discrete decision. It is 
developed for a single product !, which is equivalent to a ray analysis for a multi-product 
scheme. In the rest of the chapter, ! is actually the total sum of the flows ! = ∑!!. 
 

2) Consider ! = !(!!,. . . ,!! ,!). If ! is such that any increase leads to a change 
from !! to !! when choosing (!!, . . . ,!! ,!) to minimize the production costs, then 
!"#
!→!!

!"#(! + !) > !"#
!→!!

!"#(! + !). To prove this, consider the cost functions !! 
and !! associated to !!  and !!  respectively, i.e. !!(!) represents the minimum 
expenditure to produce !  given  !!. Let us look at the average and marginal 
costs for !!  and !!  at ! . As !!  and !!  are continuous functions, then !!(!) =
!!(!). Regarding the marginal costs, the derivative of the cost with respect to ! 
verifies !!!!" <

!!!
!" , because !! becomes lower than !! when ! grows. As average 

costs are equal and marginal costs are lower for !!, it is direct to conclude that 
the ratio between average and marginal cost, i.e !"#, increases. 
!"#
!→!!

!"#(! + !) = !"#
!→!!

!"!!(! + !) = !"!!(!) > !"!!(!) = !"#
!→!!

!"!!(! + !)
= !"#

!→!!
!"#(! + !) 

Q.E.D. 
 
This is represented in Figures 4.1, where average costs for !! and !! are shown. In the 
exact point where these two cost functions coincide (i.e. where the optimization process 
induces a change from !! to !!), a black arrow shows that a) the marginal cost is lower 
for !! and b) the global !"# increases discreetly.  
 

a) b)  
          

Figure 4.1. Change in DSE due to (discrete) change in lines structure 
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As a conclusion, the structural design of public transport systems involves variables as 
frequency ! (and the associated fleet !), density ! and vehicle capacity !, that can be 
treated as continuous, and lines structure, which has a discrete nature and introduces 
technical novelties that are worth studying. In the following section we introduce a 
multidimensional concept that helps analyzing the relation between lines structure and 
scale economies. 
 
 
4.3. Introducing directness. 
 
4.3.1 The concept. 
We have proved that changes in lines structures always lead to a discrete (local) 
increase in scale economies. This general result, however, says nothing about what 
exactly are the transport-related technical elements that help understanding what lies 
behind this. We do know from the literature that increasing demand induces higher 
frequencies, larger vehicles and an increase in the density of lines. As a result, waiting, 
access and egress times diminish (scale economies) while in-vehicle and cycle times 
increase (scale diseconomies). What is the equivalent technical effect that links overall 
demand with lines structure and scale economies? And how do scale economies 
behave once a change in lines structure has occurred? 
 
This is a quite complex question, as variables such as frequency, vehicle size or lines 
density can be represented by a single, well-defined continuous variable. A lines 
structure, however, can be conceptually described with some precision by a generic 
description, e.g. feeder-trunk or hub-and-spoke, but cannot be represented by a single 
variable. Further, changes in line structures are not continuous but discrete, occurring at 
some specific levels of total patronage. Both elements not only increase the 
mathematical complexity of the associated optimization problem, but also add new 
challenges to scale economies analyses.  
 
Generally speaking the literature on lines structures in the last fifteen years shows that, 
for low levels of overall demand distributed in space, those structures involving transfers 
tend to be appropriate, e.g., hub-and-spoke or feeder-trunk systems12. As patronage 
increases, lines get organized along the idea of routes that follow more closely the 
origin-destination pattern avoiding transfers, increasing what can be called “directness”, 
such that each new passenger generates positive externalities on the rest of the 
passengers because a) transfers diminish, b) distances travelled diminish, and c) 
number of stops diminish13 . Element a) has a clear positive impact on users, b) 
diminishes in-vehicle-time for all, and c) diminishes in-vehicle-time for users and cycle 

																																																								
12 Gschwender et al. (2016), for example, study a Y-shaped city. They show that as the patronage 
increases, the optimal structure changes in one of the following ways (depending on trip distribution):  
from No transfers to No stops, from Feeder-trunk to No stops, or - the only odd case - from No transfers to 
Feeder-trunk. Daganzo (2010) studies a grid city served with direct lines within an internal region and with 
hub and spoke from the external region, optimizing the size of the internal region; he shows that the larger 
the patronage, the larger the zone served with direct lines (internal region). Badia et al. (2014) extend the 
paper by Daganzo (2010) and this conclusion remains valid; also, the set of lines becomes denser when 
the number of passengers increases. 
13 This is an extension of the concept of OD-directness originally defined by Laporte et al (2011) on the 
lines network as the fraction of the OD-pairs that can be joined without transfers. 
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time for operators. So these elements seem to contribute to increase the !"# through 
the reduction of average users’ costs, but all effects should be analyzed. In order to 
represent directness in a more precise way, we propose the following three (continuous) 
indices: average transfers required per trip, average stops required per trip (including 
the extremes) and the average across all passengers of the ratio between their traveled 
distance and the length of the shortest path that link their origin and destination. Note 
that these flow-related indices can also be defined as averages across OD pairs, such 
that these new “network indices” can be calculated irrespective of the assignment of 
flows. 
 
The concept of directness has an extreme case in non-stop services (which have been 
called exclusive in previous chapters14), where each OD pair is served by one line only, 
providing a service similar to a private car but with lower operating costs per passenger 
and larger waiting times. From this viewpoint, as directness increases the number of 
passengers with different origins and destinations sharing the same vehicle diminishes. 
It is worth noting that a connection between patronage and directness has emerged in 
the transit network design literature. For example, the parameter !  studied in chapter 3 
for DBL and CW heuristics -that controls the maximum admissible deviations from the 
shortest paths- represents exactly the trade-off between more directness (! = 0) and 
bus-sharing; !  is inversely related with directness. Recall that it was found 
systematically that small values for this parameter were optimal when patronage was 
large, i.e. increasing directness was the optimal response to demand increases. 
 
4.3.2 An illustrative model 
In order to illustrate in a simple way what has been discussed above, let us consider the 
network and flow characteristics as represented in Figure 4.2, where two destinations 
are located at the same distance !! from a single origin, forming an isosceles triangle; 
the distance between the destinations is !  (Figure 4.2a). The total number of 
passengers in the system is ! – half on each OD pair as represented in Figure 4.2b – 
and the question is whether it is better to have only one line carrying all the passengers 
(full bus-sharing, Figure 4.2c), or two lines, one for each destination (full directness, 
Figure 4.2d); ! represents the load of the lines on each directed arc. The directness 
indices are shown in Table 4.1 (note that in this case the flow indices and the network 
indices coincide, as there is only one flow assignment option). 
 
Under this setting the characteristics of each passenger trip are known. Modeling the 
operators and users costs as in Jara-Díaz and Gschwender (2003b), a simple analysis 
(detailed in Appendix C) yields the results shown in Table 4.2, where capacities, fleets, 
cycle times, waiting times and in-vehicle times for each of these systems are expressed 
as functions of the corresponding frequency !, vehicle speed !, boarding-alighting time 
!, plus !, ! and !!. Note that in the two-lines case lines are symmetric and exhibit the 
same frequency. 
 
 

																																																								
14 As anticipated in chapter 2, we change the nomenclature in this chapter because the “exclusive” 
structure presents a higher directness than the direct one.		
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a) b) c) d)  
Figure 4.2. Network (a), transport demand (b) and alternative service structures: 

one shared line (c) and two direct lines (d). 
 

 
SERVICE STRUCTURE 

DIRECTNESS INDICES 
Bus-Sharing Direct 

Number of transfers 0 0 

Number of stops 2.5 2 

Distance traveled/Minimum distance 1+ !
2!!

 1 

Table 4.1. Indices of directness for the alternative service structures. 
 
 
 One line (Bus-sharing) Two lines (Direct) 

Bus capacity ! !/! !/2! 

Cycle time 2!! + !
! + 2! !! 

2!!
! + ! !! 

Fleet ! !(2!! + !)
! + 2!" 

4!!!
! + 2!" 

Waiting time !! !/2! !/2! 

In-vehicle time !! 1
2
!!
! + 1

4! !" + 12
!! + !
! + 3

4! !"  
!!
! + 1

4! !" 

Table 4.2. Elements of the alternative service structures as a function of 
frequency. 

 
Using the technical relations from Table 4.2 the !"# can be written as a function of 
frequency and optimized as shown in Appendix C. Optimal frequencies and capacities 
are shown to increase with !  (as in Jansson, 1984), such that the scale effects 
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(explained in section 4.1) are preserved. Optimal frequencies can be substituted in !"# 
in order to obtain the cost function !! for each system: 
 

! ! = 2 !!(!!!!!)
! !(2!!!" + !!!!!!"

! )+ 2!!!! + !!!(!!!!!)
! + !!!

!
(!!!!!)

!   (4.1) 

!! = 2 !!!!!
! !(!!!" + !!!!!!"/!

! )+ 2!!!" + !!!!!!
! + !!! !!

!     (4.2) 

 
Note that ! ! and !! can be written as !!(!) = !!!! + !!! + !!!, with !! > !!, !! > !! 
and !! < !!. For high values of patronage, ! and ! dominate, so the 2-lines structure 
(full directness) is better, because the shorter routes become more relevant for both 
users (through !!) and operators (through !!). On the other hand, when ! is small, ! 
dominates, such that the system with only one line (full bus sharing) is better due to the 
lower waiting times (through !!). The average costs resulting from !! and !! are shown 
in Figure 4.3a using the parameters shown in Appendix A. !"# is represented in Figure 
4.3b for each system, with the solid lines representing !"# for the optimal structure.  

 

a) b)  
Figure 4.3. Average costs (a) and DSE (b) for Bus-sharing and Direct services. 

 
The general property advanced in section 4.2 and Figure 4.1 emerges very clear: the 
!"# “jumps” when ! reaches a certain volume that makes the direct lines superior, 
which is explained because of more direct routes and fewer stops. What about !"# after 
the lines structure changes? Using the short notation introduced above !"# can be 
expressed as 
 
!"!! = 1+ !!

!!!!!!!!!!!! !!!!!/!
        (4.3) 

 
This expression shows that economies of scale are always present, but !"#

!→!
 !"# = 1, 

suggesting that the positive externalities induced by each of the elements that 
constitutes “directness” in this model get exhausted in spite of the upward jump in !"# 
induced by the change in lines structure: eventually everybody travels along the shortest 
possible route and with no intermediate stops. 

 
 
4.4. Analysis over the parametric city.  
 
What would happen if the underlying spatial setting was better represented such that 
lines could be structured following many possible arrangements? In order to examine 
the role of the evolution of total costs as patronage increases with an impact on the 
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transit lines structure under a more general setting, we use the parametric city and the 
four basic lines structures described in chapter 2.  
 
The trips paths followed by the passengers are not known a priori because they depend 
on optimal frequencies (some of which could be zero) that in turn depend on !. In order 
to characterize the structures in terms of directness independent of !, Table 4.3 shows 
the network indices of the four structures calculated as averages across OD pairs – 
instead of passenger trips – in a city with eight zones (!=8, 136 OD pairs)15. Directness 
increases from FT to HS, then to NT and finally to NS. 

 
Structure FT HS NT NS 

Number of transfers 0.47 0.35 0 0 

Number of stops                                3.06 3.06 3.06 2 

Distance traveled/Minimum distance 1 1 1 1 
Table 4.3. Network indices describing directness for each lines structure. 

 
 
Figure 4.4a shows the results of Fielbaum et al (2016) regarding the average cost of 
each line structure; as ! increases the optimal structure changes from hub and spoke, to 
no transfers and finally to no stops, i.e., directness increases (and feeder-trunk is never 
optimal). In Figure 4.4b this evolution is shown by means of the corresponding !"# of 
the optimal structure for each level of the total flow: scale economies indeed increase 
after each change (including the emergence of the circular line in HS, which is a change 
in lines structure rigorously speaking), and decrease thereafter. For synthesis, the 
possibility of deciding the line structure introduces directness as a new source of 
economies of scale which are finally exhausted after full directness is achieved.  
 

           a) b)                                                                    
Figure 4.4. Average costs and overall DSE as directness increases. 

 
Which design elements lie behind these results regarding scale economies? Having 
found the superior structures, an analysis of directness can be made taking into account 
the passengers’ trips. Figures 4.5 show the evolution of each of the three flow indices 

																																																								
15 Note that whenever some lines vanish as a result of the optimization process (zero frequency) the flow directness 
indices may increase.  
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that define directness as a function of the number of passengers whose growth induces 
lines structure changes from HS to NT to NS.  
 
As represented in Figure 4.5a, transfers occur only for low values of ! where the HS 
dominates; the emergence of the circular line generates a reduction in the number of 
transfers and also in the number of stops and distance traveled, which shows up in 
Figures 4.5b and 4.5c. The average stops per trip decreases down to 2 when the no-
stops structure dominates for high values of ! (Figure 4.5b). The ratio between the 
distance traveled and the minimum distance possibly required (called “detour” in Figure 
4.5c) generally decreases except when changing from HS to NT, as some passengers 
experience longer trips because some short lines disappear in favor of longer ones that 
collect more passengers; note that this is counterbalanced by the reduction in transfers, 
showing that sometimes there is a trade-off between the different components of 
directness. 
 

a) b)                                                                                       

c)  
Figure 4.5. The three flow indices of directness as a function of patronage.  

 
The physical measures of directness translate into users’ time and users’ costs, which 
are shown in Figures 4.6. Figure 4.6a summarizes the “equivalent time” associated to 
each of the directness indices: length of the routes translates into time-in-motion, the 
number of stops (together with vehicle load) translates into time at stops, and each 
transfer is valuated as 24 minutes in motion (as in Fielbaum et al, 2016). Their sum is 
the total equivalent time (TET) presented at the top of Figure 4.6a, and it synthesizes 
the total effect of directness on users; the fact that TET diminishes when lines structure 
changes clearly shows that increasing directness as patronage increases, contributes to 
scale economies. The slight increase of TET within each structure is caused by the 
larger time at stops induced by larger vehicles, an effect that is almost irrelevant when 
compared with the rest including the reduction in the number of stops each time the 
structure changes. Note that the more than 10 minutes reduction of TET is mostly 
explained by the reduction in time-in-motion and transfers (some 4 minutes each) 
against the 2 minutes reduction in time at stops. 
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Figure 4.6b shows the average costs per passenger due to in-vehicle time, waiting time 
and transfers, which are the three components of the users’ cost function. Looking at the 
points where lines structure changes, it becomes evident that increasing directness 
makes in-vehicle time and transfer cost decrease, but there is a local increase in waiting 
time because directness diminishes bus-sharing and each passenger now has less lines 
to choose from. This local increase in waiting times, however, is more than 
compensated by the frequency growth as patronage increases within each structure 
(Mohring effect). 
 

a) b)  
Figure 4.6. Effects of directness on equivalent users’ times and users’ costs. 

 
So far, we have interpreted scale economies in terms of users’ costs; what about 
operators’ costs? Which are the effects of directness? To tackle these questions, let us 
recall that total operators’ costs are given by !!! + !!! where ! is total fleet and ! is 
total number of seats. Let us analyze both variables. 
 
In Figures 4.7 we show (a) number of seats per passenger and (b) number of buses per 
passenger as a function of patronage. Seats per passenger drop significantly when lines 
structure changes. This effect occurs because bus-sharing diminishes (when directness 
increase) reducing the idle capacity of buses as we now explain in detail. The size of the 
buses for a line is given by its most loaded segment, such that idle capacity is present in 
the rest of the arcs used by the line; only in the NS structure buses are always full. 
Within a given structure increasing ! increases cycle time through boarding-alighting 
time; this makes !/! an increasing function of ! 
 
Figure 4.7b reveals that the number of vehicles per passenger decreases nearly in a 
continuous way, which shows that the effect of the change in lines structure over total 
fleet as ! grows is less important than the increase in bus size. In other words, when ! 
increases, optimal frequencies and vehicle capacities increase as well, but frequency 
grows at a decreasing rate precisely because the capacity grows making fleet per capita 
decrease. 

a)  b)  
Figure 4.7. Effect of directness on the components of operators’ costs. 
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In summary, including lines structures as part of the (optimal) design of public transport 
services in an urban space introduces yet another source of scale economies which has 
been defined here as directness, a concept that encompasses many elements 
summarized by three indices that capture transfers, routes length, and stops; as 
directness increases the total equivalent time for users decreases, approaching the 
(time related) characteristics of a private car trip. 
 
 
4.5 Some results on subsidies and fares 
 
Scale economies are strongly related with the calculation of fares and subsidies. When 
scale economies are present, it is efficient to have a larger production than what is 
reached in an unregulated equilibrium, and the simplest way to achieve this is using 
subsidies (which reduce fares). The usual expression for the subsidy is the difference 
between the average cost !" and the marginal cost !": 
 
! = !" −!"           (4.4) 
 
Regarding the fare, a distinction needs to be done between monetary and non-monetary 
costs. Only operators’ costs are monetary, and they are partially covered by the subsidy, 
such that the difference must be fulfilled with the fare: 
 
! = !"! − !            (4.5) 
 
Using that total cost is the sum of operators’ and users’, (4.5) can be also written as: 
 
! = !" − !!! − ! = !" − !!!         (4.6) 
 
Expression (4.6) shows that users pay the marginal cost of the production (as usual) 
minus what they are already spending by means of their times. With (4.5) and (4.6), 
fares and subsidies can be calculated for the different models studied so far. Let us 
begin with the single-line model studied in chapter 2: 
 
! = !!! + !!!"# !!!!!

! !!! !!
!!!

!"
! !!!!!

   and  ! = !!!!!
! !!!" !!

! !!"
!
! !!!!!

    (4.7) 

 
Note that, as the number of passenger grows, subsidy per passenger decreases at a 
decreasing rate, asymptotically approaching 0; this occurs because scale economies get 
exhausted. The fare, on the other hand, increases at a decreasing rate and converges 
to 
 

lim!→! !∗ = !!! + !!!" !! (!! + !!)       (4.8) 

 
As shown above, average and marginal costs are enough to calculate and represent 
optimal price and subsidy for all levels of !. These are shown in Figure 4.8, where it is 
represented that increasing ! diminishes the subsidy ! per passenger. 
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It is interesting to note that although the subsidy per passenger decreases steadily with 
patronage, the total subsidy !" shown in equation (4.9) increases with ! up to a limit 
given by equation (4.10). 
 
 
 
 

 
Figure 4.8. Fares and subsidies in the single-line model. 

 

!!∗ = !!!!!
! !!! !!

!!!!
!
! !!!!!

  (4.9) 

!"#!→! !!∗ = !! !!!

! ! !! !!!!!
  (4.10) 

 
These general effects are preserved as the system gets more complex. In the illustrative 
model (section 4.3) using that the subsidy is given by: 
 
! = !" −!" = !"# − 1 !"        (4.11) 
 
And recalling that the degree of scale economies converges to zero (equation 4.3), we 
conclude that subsidy per passenger also converges to zero. Further, from equations 
(4.1) and (4.2) marginal costs are also convergent, while (4.3) shows that the same 
happens with ! ⋅ !"#, such that total subsidy !!∗ increases up to a limit again. 
 
What happens at the threshold points where lines structure changes? As average costs 
are the same but marginal costs are lower in the emerging structure, from (4.4) it is 
apparent that subsidy should increase. Nevertheless, an analogous conclusion for fares 
cannot be obtained because it depends on the comparison between the respective 
operators’ and users’ costs. Figure 4.9 shows subsidy and fare for the system from 
section 4.3, with their respective “jumps”; it can be observed that fare decreases 
(discretely) when the change in lines structure occurs. 
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Regarding the parametric city (section 4.4), the only analytical result is obtained 
regarding convergence: as the no-stops structure is the dominant for every large value 
of  !, and because this structure is just a combination of single lines that do not interact, 
the result from the single-line model is preserved and total subsidy is an increasing but 
convergent function of !. 
 

 

 
Figure 4.9. Subsidies and fares in the illustrative model. 

 
Lower levels of the patronage can only be studied numerically. Figure 4.10 shows that 
subsidy decreases and fare increases with the number of passengers, but the contrary 
occurs (discretely) each time the lines structure is changed, which is exactly the same 
effect observed in Figure 4.9 for the illustrative model. 

 

 
Figure 4.10. Subsidies and fares in the parametric city. 

 
4.6 Main conclusions 
 

- When the number of passengers increases, there are specific points in which the 
lines structure changes. At these points, while the average cost remains 
continuous, marginal cost decreases discreetly, inducing a discrete jump on the 
degree of scale economies. 

- The engineering aspects behind this relationship between lines structure and 
scale economies can be explained by a novel concept: the “directness”, which 
encompasses average number of transfers, average number of stops and 
average length of the routes. 

- All these indices are shown to improve (decrease) each time the lines structure 
changes in a very simple network as well as in the parametric city described in 
chapter 2, with some few exceptions that show that, ocassionally, there is a trade-
off between these 3 components of directness. 
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- Each time lines structure changes, waiting time increases and idle capacity 
decreases. 

- While the lines structure remains unchanged, scale effects previously identified 
for single-line models remain valid. 

- Scale effects related to directness get exhausted when the number of passengers 
is too large, such that the degree of scale economies tends to 1. 

- In every system, optimal subsidy per passenger decreases to zero continously, 
but with discrete jumps each time lines structure changes. Total subsidy 
converges to un upper bound. 
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Chapter 5. Introducing lines density in the strategic design of transit 
networks. 

 
The parametric city that we have used in chapters 3 and 4 has a relevant limitation that 
is troublesome: streets are inevitably aggregated because of the simplicity of the 
network representation, i.e., arcs usually represent many arcs. This leads to models that 
- by construction - ignore the access to the transit network as a variable and treat every 
arc as a collector of many lines that actually run along different parallel streets. This is 
not a minor thing, as it also has an evident impact on the calculation of waiting times 
which are underestimated because the modeled frequencies are the sum over possibly 
many lines that run in parallel (which, in turn, affects all other variables). The different 
strategic line structures are affected in different ways by this omission; for example, 
structures that involve lower frequencies may be favored. The impact of density on 
waiting times and transfers in addition to the introduction of access time as a new 
element has also an effect on the analysis of scale economies in transit networks. The 
challenge we address in this chapter is to incorporate spatial density of transit lines as a 
design variable without going into a highly detailed description of its network. 
 
 
5.1 Lines density: the parallel lines model revisited. 
 
Chang and Schonfeld (1991) incorporated in the single-line analyses a first idea of the 
spatial density of transit lines, considering the distance !  between parallel lines 
(spacing) such that the time spent walking to the bus stops (access time) becomes part 
of users’ costs16. Implicitly, they considered a very fine grid street pattern and assume 
that all passengers ! – homogeneously distributed in space - need to travel to a faraway 
point where all lines converge, as represented in Figure 5.1.  

 
Figure 5.1. Chang and Schonfeld’s transit design problem. 

 
The decision (design) variables are the spatial separation of the lines and their 
frequencies, considering that each passenger uses the closest line. The model is built 
assuming two strong simplifications, namely that vehicles’ cycle time does not depend 
on the number of users, dismissing boarding and alighting time, and that operators’ 
costs do not depend on vehicle size (in other words, they assume that ! = !! = 0). 
Under Chang and Schonfeld’s assumptions, the optimal frequency follows a cube root 
rule and the average cost happens to be the sum of a constant plus a term that is 
inversely proportional to the cube root of !, such that economies of scale are present. It 

																																																								
16Kocur and Hendrickson (1982) considered a similar model, but user costs are not shown explicitly. 
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is relevant to point out that this decreasing term is related to the waiting time, to the 
operators’ costs17  and to the access time, as increasing patronage induces larger 
frequencies and smaller spacing, diminishing access time (two positive externalities). 
This last effect is a novelty regarding Mohring’s and Jansson’s approaches, so it is worth 
analyzing it further. What happens if we drop the two simplifications of the model? 
 
Let us keep the same spatial representation and formulate operators’ and users’ costs 
including the two omitted effects: patronage influences cycle time through boarding and 
alighting, and vehicle size influences operators’ costs. As transit lines run in parallel, we 
can work either with spacing or with its inverse, the spatial density ! (number of lines 
per unit width). To calculate the value of the resources consumed per unit of time and 
width, it is necessary to express the different components of !"# as a function of the 
decision variables (frequency and spacing), noting that cycle time !!  is given by 
!! = ! + ! !

!" . Then ! = !!!" , ! = !"
!"#  , !! = ! !

! + !
!
!
!
!"  , !! = !

!!   and !! = !
!!!!

 with !! 
the walking speed. Passengers are now divided into !" buses. 
 
Then the value of the resources consumed per unit of time and width can be easily 
shown to be  

!"# = !!!"# + !!!" + !!! !
! ! +

!!!"!!
!"# + !! !

!!!!
+ !! !

!! + !!! ! !
! +

!"#
!"#  (5.1) 

Equation (5.1) shows the effect of each of the two decision variables very clearly. It is 
evident that analytically ! acts very similar to !, as they always appear as a product with 
the exception of the two terms dealing with their direct specific effects on access time 
(!) and waiting time (!). Therefore, ! is yet another source of scale economies, just as 
the so-called Mohring effect through !. Note that the single-line model explained in 
chapter 2 can be looked at as a particular case with ! = 1 such that access time plays 
no role. Several results are going to be obtained analyzing (5.1) and based in this first 
general conclusion: 

Proposition 5.1: at each of the parallel lines of this model, the relation between 
frequency and number of passengers is the same as in the single-line model. 

Proof: Deriving (5.1) with respect to ! and multiplying times !!!: 

0 = !!!!!!! − !!! !! !
! − !! !

!! − !!!
!
! !

!  (5.2) 

Deriving (5.1) with respect to ! and multiplying times !"!: 
0 = !!!!!!! − !!! !! !

! − !! !
!!!

! − !!! !! !
! (5.3) 

The right hand sides of equations (5.2) and (5.3) have three identical terms, such that 
the remaining ones have to be equal, which means that at the optimum  

! = !" with ! = 2 !!!!!!
            (5.4) 

Using equation (5.4), equation (5.2) can be re-written as 
																																																								
17 When patronage increases, both optimal frequencies and optimal bus size increase. As vehicle size is 
not considered in the cost function for this model, this conclusion is not particularly relevant. 
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0 = !!! !
!! !

! − !!! !! !
! − !! !

!
!
! − !!!

!
! !

!  (5.5) 

  

Dividing it by !! it becomes evident that !"!" > 0, and then !"!" > 0. Equation (5.5) has ! to 
the power of 4 and the analytical solution is quite complex. However, noting that the 
equation is quadratic in !, it can be manipulated to obtain  

!
! =

!
!! !

! !!!!!
!!!
! + !!!

! + 4!!!" !
!
!
!! + !! !!  (5.6) 

From equation (5.6) one obtains expression (5.7) for ! which shows a remarkable novel 
result: without the limitations imposed by Chang and Schonfeld’s assumptions, each of 
the lines (that carries !/! passengers) replicates the same relation between frequency 
and patronage obtained in the one-line model, such that frequency (and vehicle 
capacity) increases with patronage per line:  

!∗ =
!
!
!!!

!!
! + !

!
!
!
! !! + !!   (5.7) 

 
Q.E.D. 
 
Corollary 5.1.  

- The number of passengers per line ! = !
! increases with !, because !"!" =

!"
!"

!"
!"; 

the first factor is positive by equation (5.6) and the second was already shown to 
be positive. 

- Bus size increases with ! because !"!" =
!"
!"

!"
!" and both terms are positive. 

The relationship between Chang and Schonfeld’s and the single-line models shown by 
equation (5.7) suggests some conclusions regarding scale economies. First, those 
sources of scale economies presented for the one-line model remains valid for each of 
the lines in this model as well: increasing patronage induces a larger frequency and 
vehicle size, diminishing waiting time, and also induces larger times at stops increasing 
both in-vehicle time and operators’ costs. Second, introducing space adds a new 
dimension: the separation between lines ! which, as shown earlier, diminishes with 
patronage inducing a reduction in access time, working in favor of scale economies. 
Note that the effect of ! on the optimal frequency in equation (5.7) is “softened” by lines 
density ! (the inverse of !), which also increases with patronage such that the Mohring 
effect is mitigated18; as passengers are divided into many lines, buses become smaller 
when compared to Jansson’s approach, which diminishes the diseconomies of scale 
provoked by the time at the stops.  
 

																																																								
18 In the original (simpler) model by Chang and Schonfeld (1991) this reduced effect is captured by their 
resulting cube root formula for f* that can be recovered here by making t=0 in equation (5.7).	
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Although in our improved model the very complex system of equations does not permit 
to obtain closed analytical expressions for the decision variables, we expect the degree 
of scale economies !"# to be larger than in the single line case as a third dimension 
that works in favor of scale economies has been added; we now show that this is in fact 
the case. In order to compare both models one should add access cost to the transit line 
in the single line model. As access time does not depend on the design, and therefore is 
constant per passenger, the total access cost is linearly increasing with !, which means 
that in the total cost function it has the form !", such that both average and marginal 
costs increase by ! . As the single-line !"#  is larger than 1 when access is not 
considered (i.e. when ! = 0), it is easy to see that adding the same constant term to the 
average cost in the numerator and to the marginal cost in the denominator makes !"# 
smaller, such that !"# decreases with !. This means that !"# has an upper bound for 
! = 0. This upper bound is represented in Figure 5.2 (blue line) together with the !"# of 
the new model (red line). The new !"# is always larger than the upper bound of the 
single-line !"#, which shows that !"# increases when lines density is included. Note 
that scale economies get exhausted eventually. Simulation parameters are shown in the 
Appendix A; a sensitivity analysis on these parameters maintains these conclusions.  

 
Figure 5.2. The effect of lines spacing on the Degree of Scale Economies  

 

Let us now take a closer look at equation (5.4) that implies !! = 2!! !!!!  . An analogous 
property was also found by Chang and Schonfeld and other authors before them 
(Hurdle, 1973, Schonfeld, 1981 and Kocur and Hendrickson, 1991); the nice thing is that 
it remains valid even if the quite strong assumptions regarding costs depending on bus 
size and the absence of boarding-alighting time are dropped. This property states that 
frequency and lines density grow at the same rate, irrespective of the number of 
passengers, the boarding-alighting times, the distances traveled by buses or 
passengers, etc. The intuition behind these is quite attractive: the optimal fleet of 
vehicles of an optimal size could be distributed in a large number of lines with a small 
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frequency or vice versa; what the result says is that this trade-off between ! and ! is 
resolved by making the average waiting time value !!!! equal to the average access time 

value !!
!!!!

, which proves Corollary 5.2. 

Corollary 5.2: Average waiting cost is equal to average access cost in this model. 
 
 
5.2. Lines density in the parametric city 
 
In order to analyze if previous conclusions are still valid in a more complex scheme, let 
us add the design variable ! to the parametric city studied in previous chapters. 
 
5.2.1 Lines density as a new design variable 
How can we adapt the parametric city in order to consider also lines density? To do so, 
we will consider that each former line ! is now a “super-line” containing ! parallel lines 
per unit width, each one with the same frequency !!. This design variable ! represents 
the spatial density of lines. The frequency of the super-line !! is then given by 
 
!! = !!!           (5.8) 
 
The introduction of ! has two effects on the users’ cost that have to be taken into 
account: each user has to walk to the closest line inducing an access time, and buses 
distribute on more lines diminishing perceived frequency, increasing waiting time. If ! is 
the total width represented by each arc, passengers walk in average !!! to access the 
nearest line. We assume that whenever transfers are required the bus stops coincide in 
space such that walking is negligible. The design exercise was made using the four 
strategic lines structures explained in chapter 2, including ! as a design variable in 
addition to frequency and bus size for every line. The value of the resources consumed 
now includes also access times and its value !!!!, as shown in (5.9). 
 
!"# = !!!!(!! + !!!!)+ !(!!!! + !!!! + !!!! + !!!)    (5.9) 
 
Now we show that !"# can be expressed as a function of frequencies and ! in a very 
compact way. First note that fleets, (optimal) bus sizes, in-vehicle times and transfers 
can be expressed as functions of frequencies only. In this case, they depend on the 
frequencies of the super-lines, i.e. 
 
!! = !!(!!, . . . ,!!),!! = !!(!!, . . . ,!!), !! = !!(!!, . . . ,!!),! = !(!!, . . . ,!!)  (5.10) 
 
The intuition behind these relations is straightforward. Fleets depend on the total 
number of buses running per unit time; buses should be large enough to carry the 
maximum load on each line, which again depends on the total number of buses per 
hour; in-vehicle time depends on total time in-motion (which is constant) and on time 
spent at bus stops, which depends on the number of passengers that board a specific 
bus, which in turn depends on the total number of buses; and finally, the number of 
transfers usually depends on the lines structure only, unless passengers assignment 
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plays a role, but if that is the case ! will play no role because access time is the same 
for every route. 
 
Considering relations (5.10), we can rewrite !"# as a function of ! and frequencies. If 
no common lines exist, then 
 
!"# = !(!!!, . . . , !!!)+ !!

! +
!!
!!!        (5.11) 

 
! is a differentiable function that encompasses all terms in equation (5.10) but waiting 
and access users’ cost. !!contains all the information related to waiting costs (like the 
number of passengers and their assignment, among others) for each line, respectively, 
and !! = !!

!!
!"
!!.  

 
If common lines are present, the third term in equation (5.11) becomes more complex, 
as some passengers’ routes can use more than one line. In this case, one needs to sum 
across the OD-pairs ! rather than the lines: 
 
!"# = !(!!!, . . . , !!!)+ !!

! +
!!

!!!!!!...!!!!!"! ∈!"      (5.12) 
 
Where !!! is a binary variable whose variable is 1 if passengers of the OD-pair ! use 
line !, and 0 otherwise19. Note that equation (5.11) can be written as (5.12), with only 
one !!" = 1 for each !, and   
 
!! = !!!!"!           (5.13) 
 
Now we can prove the following Proposition. 
 
Proposition 5.2: total access costs equal total waiting costs in this scheme. 
 
Proof: 
Making the derivative with respect to !! in (5.12) yields: 
 
!!!! − !!"!!

!!!!!!...!!!!!" !! ∈!" = 0 ⇒ !!!!!! = !!"!!!!
!!!!!!...!!!!!" !! ∈!"   (5.14) 

 
Here we are using !! to represent the partial derivative with respect to the !-th variable in 
!, and we are omitting the arguments of the function ! to simplify notation. Making the 
derivative with respect to ! yields: 
 

!!!!!! − !!
!! = 0  ⇒ !!!!!!! = !!

!        (5.15) 
 
Introducing (5.14) into the second equality in (5.15): 
 
 
																																																								
19 If some OD pairs need to make some transfer, the ! corresponding to the intermediate stages of their 
trips take also those passengers into account. 
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!!
! = !!"!!!!

!!!!!!⋯!!!!!" !! ∈!"! = !!
!!!!!!⋯!!!!!" !!∈!" !!"!!! =   

!!
!!!!!!....!!!!!"!∈!"           (5.16) 

 
Q.E.D. 
 
The proposition proves that the property obtained in our generalized simple parallel lines 
model in Section 5.1 remains valid: at the optimum design, average waiting and access 
costs are equal.  
 
The intuition behind this result is interesting, as it is not the usual microeconomic 
equality between some marginal costs. For any given fleet, optimizing ! means deciding 
into how many parallel lines are we distributing the buses. If access cost is larger than 
waiting cost, then splitting the buses into more lines will induce savings in access costs 
that will outbalance the losses in waiting costs (analogously in the opposite situation); 
this happens due to the particular functional forms of both access and waiting costs, that 
depends on !! and !!! respectively.  
 
5.2.2. Results 
Numerical analysis was done using ! as the variable. The rest of the parameters are 
found in the appendix A. The procedure to find the best lines structure for each ! has 
two steps (which are analogous to the steps followed in previous chapters): first, for a 
given structure, the optimal (social cost minimizing) frequencies are found for each line 
together with the optimal !. Second, the best lines structure is found as the one that 
exhibits the minimum !"# across structures for each !. The results are shown for a 
wide range of passenger volumes, which makes the logarithmic scale preferable in order 
to facilitate the analysis for lower values of !.  
 
The optimal ! for each of the four structures as a function of patronage (result of step 
one) is shown in Figure 5.3. Optimal lines density increases with ! within each line 
structure, which fits intuition and is consistent with results in section 5.1. Note that 
structures that are less direct (as defined in chapter 4), present, in general, larger !: 
their ability to collect passengers is useful to split each line into many.  

 
Figure 5.3. Optimal ! per lines structure. 
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As the number of passengers increases, the best lines structure (i.e. the one that 
minimizes !"#) evolves from HS to FT, then NT and finally to NS. The ! corresponding 
to the optimal structure is shown in Figure 5.4. Within each structure the lines density 
increases with the number of passengers, but it decreases locally when the line 
structure changes; this happens because “directness” increases, and it is necessary to 
compensate the fact that less passengers are being collected. Overall, however, ! 
increases with !. 
 

 
Figure 5.4. Optimal !. 

 
In Figure 5.5 we show the impact of including ! as a new design variable. The dotted 
lines represent the average cost curves of the best structures when ! = 1 (fixed), while 
the solid lines show the result when ! is optimized (i.e. the ones that correspond to 
Figure 5.4). In both cases the evolution is towards those structures that are more direct. 
The novelty here is that introducing ! not only reduces !"# but also postpones the 
emergence of NT and NS (the most direct lines structures) as ! increases. This can be 
graphically seen by noting the lower levels of patronage at which a change in lines 
structure occurs along the dotted lines when compared with the solid lines in Figure 5.5. 
Note that the difference in average cost between the best structures considering ! or 
not increases with ! from nearly zero to nearly 24%. 

 
Figure 5.5. Comparison of average costs when lines density is fixed or optimized. 
 
We have shown that under an optimal design average access and waiting costs are 
going to be equal. Their (joint) evolution as ! increase is shown in Figure 5.6, where one 
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can see that for any given lines structure these costs decrease (the Mohring effect 
operates). But when the lines structure changes, this curve jumps upwards (just as ! 
decreases locally). This is consistent with the results of chapter 4 when studying the 
impact of lines structure changes on waiting times. 
 

 
Figure 5.6. Average access (and waiting) costs. 

 
In section 5.1 we studied the effect of considering lines density over scale economies. 
The same analysis can be replied here, by comparing the !"# obtained in this model 
and the !"# if access time is considered but with ! = 1 fixed (Figure 5.7). When the 
same lines structure is being used in both models, !"# is larger in the model that 
optimizes ! (solid lines); the only exception occurs at the beginning of the graph. This 
exception coincides with the zone in which the optimal ! is lower than 1: frequencies are 
large in this zone, making the Mohring effect less relevant, which explains the lower 
!"#. Besides, at the specific points in which lines structure changes, the !"# jumps 
discreetly (as shown in chapter 4); as this happens earlier when ! is not optimized, 
there are some points in which these two models do not present the same lines 
structure, and that show a larger !"# for the ! = 1 model (specifically, when it turns 
from HS to FT). Nevertheless, in the big picture, the !"# is larger for the model that 
optimizes lines density, i.e., this is indeed a source of scale economies. 
 

 
Figure 5.7.  The effect of optimizing lines density on DSE. 

 
As many previous studies have pointed out (see, for instance, Daganzo, 2010, 
Gschwender et al, 2016, or Fielbaum et al, 2016), the internal distribution of the trips has 
a strong impact over public transport design. This is why it is worth studying how does ! 
respond to changes in demand parameters !,! and ! (recall that they represent the 
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degrees of monocentrism, polycentrism and dispersion, respectively). Figure 5.8 shows 
the optimal !  when ! ∈  (0.1,0.9)  and ! = ! , i.e., when the city evolves from an 
irrelevant CBD to almost full monocentrism. For this analysis, we are using ! = 24,000 
passengers per hour, and optimal lines structure evolves from FT to HS; as the city 
becomes more monocentric (hence, trips are more concentrated such that it becomes 
easier to collect the users) lines density increases. It is worth explaining that the sudden 
decrease within HS occurs due to a new line emerging (i.e., its frequency departs from 
zero at that point). 
 

 
Figure 5.8. Optimal lines density when internal distribution of the trips changes. 

 
Here we have treated ! as a continuous variable: the number of lines per width unit. 
Nevertheless, as streets are exogenous, flexibility to adjust this variable is somewhat 
limited. This is why it is worth analyzing if results previously found are still valid if ! is 
modeled as discrete. A graphical analysis (Figures 5.9) reveals that they are valid, but 
some approximations are needed. Figure 5.9a shows the optimal discrete !  as a 
function of the number of passengers (same parameters as in Figure 5.4), Figure 5.9b 
shows the differences in average costs (similar to Figure 5.5), and Figure 5.9c reveals 
the ratio between access and waiting costs. This last Figure is quite interesting, as these 
costs are not equal anymore, because the discreteness of ! prevents full adjustment; 
nevertheless, as ! grows, this ratio approaches 1 oscillating around it. 
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a)  

b)  

c)  
Figure 5.9. Results when ! is discrete. 

 
 
 
 
5.3 Main conclusions 
 

- When the single-line model is extended to admit parallel lines, the relationship 
between each of these lines’ frequency and number of passengers is the same 
as in the original single-line mode. 

- In this same context, lines density induces a scale effect equivalent to the 
Mohring effect. The degree of scale economies increases due to the inclusion of 
this new design variable. 
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- In this context, as well as in the parametric city described in chapter 2, it is proved 
that lines density is adjusted to make average waiting cost equal to average 
access cost. 

- Lines density increases with the number of passengers, but it presents a discrete 
decrease each time lines structure changes. 

- Lines density increases if trips are more concentrated (as is the case for 
monocentric cities). 

- Including lines density delays the emergence of more direct lines. 
- All these conclusions remain (approximately) valid if lines density is modeled as a 

discrete variable. 
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Chapter 6. Two periods optimization over a single line 
 
In this chapter, we return to the single-line model explained in chapter 2, but we 
consider that there are a peak and an off-peak period, such that the optimization 
process minimizes total daily costs, represented by the sum of these two periods’ costs. 
It is assumed that a single fleet of buses is acquired for both periods; what we need to 
optimize is the size of this fleet, the size of its vehicles and how many of them are used 
during each period. 
 
 
6.1 Formulation of the model 
 
Recall that in the single-period model, explicit solutions can be found by deriving the 
!"#. Before moving into the two periods formulation, it is useful to note that defining in 
equation (2.1) ! = !!!  and ! = !!!"

! (!! + !!)+ !!!
! , the !"#  can be re-written as 

!"# = !" + !
! +!, where ! collects all terms that are independent of ! and plays no 

role in the optimization problem. With this notation, the result of the optimizations 

process yields !∗ = !
!, an expression that will prove useful in the analysis that follows. 

 
Let us extend this previous model to the case of optimizing simultaneously peak 
(denoted by P) and off-peak (denoted by N) periods. The general scheme is preserved, 
with a single fleet composed by buses of the same size !, but offering frequencies !! 
and !! in the peak and off-peak periods, respectively. The number of passengers per 
hour, the length of their trips, and the time needed to tour the whole circuit (related to the 
velocity of the buses) are also dependent on the period, so the following parameters are 
needed: !! ,!! , !! , !! ,!!and !!. The durations of each period are denoted by !!and !!. 
 
Operators’ cost must be divided into two types: capital costs (buying the buses and 
terminals) that are the same for all buses, and operational costs (like maintenance or 
fuel) that depend on how many hours the bus is used. Each of these components is well 
described by a function that is linear in vehicle size, as advanced in chapter 2. The 
capital costs are caused by the largest fleet needed considering both periods (usually 
the peak period); in the other period not necessarily all buses will be used. Operating 
costs will depend on the number of buses used during each period of length !! . 
Therefore, the Value of the Resources Consumed in a day is now described by: 
 
!"!! = !"#(!! ,!!)(!!! + !!"!)+ (!!!! + !!!!)(!!" + !!"!)+ !!

! (
!!!!
!!

+ !!!!
!!

)+
!!
! (!!!!"!!!! + !!!!"!!!!)         (6.1) 
 
Two capacity restrictions must be fulfilled to be able to carry all the passengers at both 
periods. Optimality conditions assure that at least one of them must be active. 
 
a) ! ≥ !!!!

!!!
 and b) ! ≥ !!!!

!!!
         (6.2) 
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The maximum fleet is associated with the largest demand flow which defines the peak 
period, making !"#(!! ,!!) = !!.  
 
 
6.2 Buses full at the peak 
 
Let us assume first that buses run full during the peak, as is commonly observed, 
making ! = !!!!

!!!
 (constraint 6.2a active). Replacing these and the values of !! and 

!!" ( ! = !,!)  with the equations for !  and !!  described in chapter 2, the following 
expression is obtained: 
 
!"!! = (!!!! + !!!)(!!" + !!" !!!!!!!

)+ [(!!!! + ! !!)!! + (!!!! + ! !!)!!][!!" +
!!" !!!!

!!!
]+ !!

! (
!!!!
!!

+ !!!!
!!

)+ !!
! (!!!!!![!

!!
!!
+ !!]+ !!!!!![! !!!! + !!])  (6.3) 

 
Expanding on the terms introduced in the single period case we define !!  and !!  (! =
!,!) and ! as 
 
!! = !!!!" + !!!!!!"         (6.4) 
!! = !!!!!!(!!"!!!"!!)

! + !!!!!!!" !!!!
! + !!

! !!!! +
!!
! !!!!!!

!!   (6.5) 
!! = !!!!!!!          (6.6)  
!! = !!

! !!!! +
!!
! !!!!!!

!!        (6.7) 

! = !!!!!!"!!!!
!           (6.8) 

 
The value of the resources consumed can now be written as: 
 
!"!! = !!!! + !!

!!
+ !!!! + !!

!!
+ ! !!

!!
       (6.9) 

 
The derivatives with respect to frequencies in compact form are 
 
!"#!!
!!!

= (!! + ! !
!!

)− !!
!!!

         (6.10) 

 
!"#!!
!!!

= !! − !!!!!!
!!!

           (6.11) 
  
Making these expressions equal to zero yields equations of order 5 for the optimal 
frequencies, such that no analytical solution can be found as established by the Abel-
Ruffini theorem (see, for example, Alekseev, 2004). Although they will be solved and 
analyzed numerically in Section 6.2.4, some interesting properties can be deduced by 
inspection. 
 
6.2.1 Comparing optimal and single period frequencies 
Let us begin analyzing the differences between the optimal frequencies when jointly 
optimizing both periods and the sub-optimal solutions considering each period by itself. 
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We will start with an inspection of frequency in the peak period. From equation (6.11) 
the solution for !!fulfills: 
 

 !!∗ = !!!!!!∗
!!

          (6.12) 

 
This expression can be compared with the solution for the one-period problem 
 

!!! = !
!           (6.13) 

 
Looking at the denominators, ! and !! are equal, as the latter is just the sum of the 
different components within the former. Regarding the numerators, !! > ! due to the 
presence of the term that multiplies !! (involving !!"); moreover, there is an additional 
positive term !!!∗ in (6.12) that also involves !!". This yields  
 
!!∗ > !!!           (6.14) 
 
i.e., the optimal frequency in the peak period is higher if the buses are also going to be 
considered for the off-peak period. The interpretation of inequality (6.14) is quite 
interesting. Looking at equations (6.12) and (6.13) the differences between the 
numerators in the squared roots are related with the optimal value of bus capacity 
(through !!"), that has to be chosen taking into account that buses in this process are 
also going to run during the off-peak period; note that the effect through !!is related with 
the off-peak time at stops while passengers board and alight, while the effect through ! 
is due to the time in-motion. For short, bus size becomes more relevant as increasing ! 
is now more costly than in a single peak-period analysis, making it better to have smaller 
(cheaper) buses and higher peak frequencies. Note that another implicit result is that the 
optimal vehicle capacity is smaller than what a single peak-period analysis would yield; 
this fits the intuition that bus sizes should be somewhere in between peak and off-peak 
optimal sizes when considered in isolation. This result was overlooked by Jansson 
(1980, 1984) because in his first two-periods model bus size is costless, and he argues 
that !! = !!  would be optimal in most cases; in his second model (where bus cost 
depends on size) he solves the problem analytically assuming equality between 
frequencies, which is something examined below. 
 
The analysis for !!∗is similar but the result is inconclusive. To see this, note that from 
equation (6.10) 
 

  !!∗ = !!
!!! !

!!∗
.          (6.15) 

 
!! does not include !!" because fleet size depends on peak frequency, implying that 
the daily fixed capital cost for a bus is not affected by off-peak operations; therefore, !! 
is smaller than !. However, there is a positive term involving !!"  that adds on !! , 
induced by the cost associated to bus sizes that are higher than the size calculated 
when optimizing this period by itself. Therefore, the denominator may be larger or 
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smaller than !  depending on the relative values of !!" and !!" . Regarding the 
numerator, !! < ! because all the terms involving bus size related costs disappear. 
Hence, the relation between !!∗and !!! is unclear because there are elements that 
operate in opposing directions: on the one hand, an extra bus means no extra capital 
cost because total fleet is decided with respect to the peak-period (as in Jansson, 1980, 
1984); this pushes !!∗upwards. On the other hand, increasing !!∗ does not induce a 
reduction in bus size (given by the peak) and, therefore, there are no operators’ savings 
because of this; in addition, the larger buses increase operating costs, which pushes !!∗ 
downwards. Which of these phenomena is going to dominate depends on whether daily 
fixed costs prevail over operating costs or vice versa. The answer is non-trivial, as some 
of the main components (namely drivers wages) may be considered differently 
depending, for example, if it is possible to hire drivers just for some hours of the day. If 
daily fixed costs prevail, off-peak frequencies are going to be higher in the two-periods 
scheme.  
 
6.2.2 Crossed effects between periods. 
We now study how !!∗and !!∗react to changes in the patronage of the other period. Let 
us first explain it intuitively. If !! increases, then both !!∗ and ! will increase. From the 
point of view of off-peak operations, this means that each bus on the street is more 
expensive than before, so optimal frequency will diminish, i.e., !!!

∗

!!!
< 0. If the off-peak 

patronage increases, off-peak frequency will also increase. This means that the size of 
the buses become now more relevant, because more buses will be running the whole 
day. So capacities must go down, meaning the peak frequencies will increase, that is 
!!!∗
!!!

> 0. 
 
To see the first phenomenon analytically, recall that when deriving !"!! with respect to 
!!, we obtain equation (6.15), where the only element that depends on !! is the ratio 
!!/!! (implicit in !/!!). Frequency !!∗increases with !! at a decreasing rate (Jara-Diaz 
and Gschwender, 2003b) because the system responds not only through frequency but 
also increasing bus size; therefore the ratio !!/!! increases when !! increases, and so 
does !. So !!∗ will indeed decrease as !! increases. 
 
In the case of !!∗given by equation (6.12), both !! and !!∗ increase with !!, such that 
the optimal peak frequency increases. This happens because when off-peak flow 
increases, both off-peak frequency and cycle time increase and, therefore, off-peak fleet 
(and operating costs) increase; as vehicle size weights more, this effect that can be 
softened by reducing vehicle size. This, however, requires peak frequency to increase.  
 
6.2.3 Summary of this case and comparison with previous approaches. 
The preceding analytical findings and intuitive explanations are summarized in Table 
6.1. The two-periods model presented and analyzed here can be used to investigate the 
conditions imposed by Jansson (1980, 1984), summarized in the first section. In his first 
model, Jansson assumes that each bus has the same cost, independently of its size. In 
our scheme, this is equivalent to put !!" = !!" = 0. From equations (6.4)-(6.8) it is direct 
to observe that, under these conditions: ! = 0; !! ,!! and !! become equal to the value 
they would have in the single period case; and !!only considers operating costs. From 
the analysis in sub-section 6.3.2 (summarized in Table 6.1, top three rows), the only 
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element that still matters is that buses are already acquired when deciding off-peak 
frequencies; all the other effects depend on the role of bus size, which does not affect 
costs under Jansson’s assumption. The result is quite direct, both analytically (from 
equations 6.12 and 6.15) and conceptually: for the peak period, all the conditions are 
exactly equal to the single period problem, such that optimal frequencies coincide; for 
the off-peak, as !! < !, optimal frequencies are going to be higher than those obtained 
by solving this period in isolation. Therefore, even if size had no effect on buses costs, 
optimal frequencies are going to differ across periods, although off-peak frequency 
would be larger than in the single period analysis, getting closer to the peak period 
frequency (which seems to be what lies behind Jansson’s intuition).  
 
Fact Considerations Effects 

Peak bus sizes affect off-
peak period 

1. Bus size has to be 
chosen considering off-
peak operating cost, that 
increases with ! 
(!! + !!! > !). 
 
2. Off-peak bus size must 
be sufficient to carry peak 
flows (Presence of !/!!in 
the denominator of !!).  
 

1. Optimal ! is lower than in 
the single peak-period case; 
peak frequency is pushed 
upwards. 
 
2. Optimal ! is larger than 
single off-peak period case; 
off-peak frequency is 
pushed downwards (buses 
might not be full).  

Peak fleet is larger, so 
enough buses for off-peak 
are available. 
 

There is no capital cost 
associated to off-peak 
(!! < !). 

Off-peak frequency is 
pushed upwards 

The size of the buses is 
the same in both periods 

Increasing off-peak 
frequency cannot be fully 
compensated by a 
reduction in vehicle size in 
order to reduce operators’ 
costs (!! < !). 

Off-peak frequency is 
pushed downwards. Idle 
capacity appears. 

Increasing off-peak 
passengers increases off-
peak frequency.  

Bus operating costs 
become more important; 
smaller buses are better. 

Peak frequency increases. 
!!!∗
!!!

> 0 

Increasing peak 
passengers increases the 
size of the buses. 

Each bus running during 
the off-peak period 
becomes more costly. 

Off-peak frequency 
decreases.!!!

∗

!!!
< 0 

Table 6.1. Qualitative impacts of the two periods relations.  
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It is interesting to analyze the expressions that represent !!∗and !!∗under Jansson’s 
strong assumption, i.e. when !!" = !!" = 0. These expressions are 
 
!!∗ = !!

!!
!!/! ! !!!!!!!/!
!!"/!!!!!"

 and !!∗ = !!
!!

!!/! ! !!!!!!!/!
!!"

     (6.16) 
 
There are four period-specific elements that are worth looking at in this comparison: 
flow, trip length, time in motion and duration of the peak period. By definition the peak 
flow is larger than the off-peak flow and trip length is usually longer during the peak as 
well. Both elements contribute to make the peak frequency larger than the off-peak one. 
However, time in motion could be larger in the peak due to congestion, which 
contributes to reduce the difference. A short peak period also works in that direction. 
This means that Jansson’s claim that frequencies are equal under his strong assumption 
on costs, might hold under very specific circumstances, although observed relative 
values of these parameters make us expect a systematic positive difference between 
!!∗and !!∗even if this assumption holds, something that can be explored numerically as 
well.  
 
6.2.4. Numerical analysis 
As explained in section 6.2.2, closed analytical solutions for the frequencies are 
impossible to obtain. In this Section we show the optimal values for frequencies, fleet 
and buses size obtained numerically using the parameters presented in Appendix A. 
 
In Figure 6.1 we show the behavior of total fleet (yellow) and the size of buses (blue) as 
patronage increases, keeping constant the ratio between peak and off-peak flows (10/3). 
Just as in the single period case, and as expected, both fleet and bus size increase with 
patronage. Let us analyze now period-specific frequencies and usage. 
 

 
Figure 6.1.  Optimal fleet size and buses capacity as total patronage grows 

proportionally.  
 
As explained, relations between peak and off-peak frequencies are strongly determined 
by the relationship between the different components of the operators’ costs. So we 
studied the resulting frequencies when varying the ratio between total capital costs and 
total operating costs (Figure 6.2), and the ratio between size-independent and size 
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dependent bus costs (Figure 6.3). In both cases the operators’ cost of a standard bus 
(100 seats running 18 hours on the streets) was kept constant. This is done in order to 
alter minimally the ratio between operators’ and users’ costs. In both figures, the scale 
varies from one half to double the original value of these ratios.  
 
In these Figures we show the optimal frequencies considering two periods (solid lines) 
and those that would be obtained considering each period in isolation (dotted lines). 
Peak-period frequencies are drawn in red and off-peak in green. As expected, single 
peak-period frequencies are larger than those considering off-peak parameters in 
isolation, but the optimal peak frequency considering two periods are even larger (as 
predicted theoretically) because of the convenience of smaller buses due to the effect 
on vehicle size of the off-peak operating costs. The numerical novelty is that frequencies 
during the off-peak period are smaller than those obtained for a single period analysis. 
As a result, the difference between optimal frequencies considering two periods is larger 
than the difference between frequencies when periods are considered in isolation. As a 
consequence, the (single) optimal vehicle size is smaller than the single peak period 
case and larger than the single off-peak case. 
 
 

 
Figure 6.2.  Optimal frequencies for varying total capital costs over total operating 

costs ratio.  
 
 
Comparing our results with Jansson’s (1980, 1984), he assumed that frequencies are 
equal, while we show that differences are even larger than when solving peak and off-
peak separately, as predicted theoretically in the previous section. Following Figure 6.2, 
the difference between the optimal frequencies (two periods) diminishes as capital costs 
become more important, which fits intuition: once a bus is bought, it is better to use it.  
 
Figure 6.3 confirms the same general conclusions. Besides, peak frequency drops 
significantly which means that bus size increases as costs related to size turn less 
relevant; this pushes optimal (two-periods) frequencies towards those from a single 
period analysis. Extending Figure 6.3 to the right (where size dependent costs vanish, 
as in Jansson’s model) the difference between peak and off-peak frequencies 
diminishes but remains significantly positive.  
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Figure 6.3. Optimal and single period frequencies for varying size-independent 

over size dependent bus costs ratio. 
 
Next, in Figures 6.4 and 6.5 we analyze the impact of !! and !! on frequencies (right y-
axis) and capacity of buses (left y-axis). The optimal capacity (number of seats of each 
bus) is presented in blue; the load of each bus in the off-peak period is also shown 
(diamonds line), in order to verify that it is always lower than the optimal (assumed to be 
commanded by the peak load).  
 
Figure 6.4 shows responses to changes in peak-period passengers flow. As expected, 
both peak-frequency and bus size increase when !! does, because buses run full in this 
period. As predicted analytically, off-peak frequency decreases (although very slowly) 
due to the rise in bus size. Accordingly, off-peak bus load increases but capacity is 
always enough. 

 
Figure 6.4. Optimal frequencies and bus size for varying peak passengers flow. 

 
Figure 6.5 shows responses to changes in the off-peak period passengers flow. As 
predicted analytically, buses become smaller as !!increases, because each large bus 
becomes more costly as !! grows in response to new passengers. These smaller sizes 
make peak frequencies increase as well. Note that off-peak load approaches capacity 
as patronage increases, so there will be a point where size begins to be determined by 
off-peak conditions, which is analyzed in section 6.3.  
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Figure 6.5.  Optimal frequencies and bus size for varying off- peak passengers 

flow. 
 
 
6.3 Buses full at the off-peak 
 
Figure 6.5 revealed that buses could run full at the off peak; intuitively, this can happen 
because optimal frequency at the off-peak is lower than at the peak such that buses 
could run at capacity under some conditions. In this section, we will analyze the case in 
which the off-peak constraint (6.2b) is active (buses full at the off-peak), i.e. 
 
! = !!!!

!!!
           (6.17) 

 
It should be noted that fleet size is still given by the peak, because both cycle time and 
frequency are larger than at the off-peak (larger flow, trip length and in-motion time). 
Then !"!! can be written as a function of frequencies using equation (6.17) and the 
expressions that link fleet size and cycle time with the corresponding frequencies (in 
chapter 2). This yields: 
 
!"!! = (!!!! + !!!)(!!" + !!" !!!!!!!

)+ [(!!!! + ! !!)!! + (!!!! + ! !!)!!][!!" +
!!" !!!!

!!!
]+ !!

! (
!!!!
!!

+ !!!!
!!

)+ !!
! (!!!!!![!

!!
!!
+ !!]+ !!!!!![! !!!! + !!])   (6.18) 

 
Like in the previous section, this function can be re-written as: 
 
!"!! = !!!! + !!/!! + !!!! + !!/!! + !!!/!! +!     (6.19) 
 
where  
 
!! = !!!!" + !!!!!!"          (6.20) 
!! = !!!!!!"           (6.21) 
!! = !!!!!!

! + !! !!!!!!!!
!           (6.22) 
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!! = !!!!!"!! !!
! + !!!!!!!"!!

!!
! + !!!

!!! !!" !!
! +

!!!!!!
! + !! !!!!!!!!

!   (6.23) 

! = !!!!" !!!!! + !!!!" !!!!
! !!         (6.24) 

! = !!!!!" + !!!!!!!" + !!!!!!" !!
! +

!!
! (!!!!!!!! + !!!!!!!!)    (6.25) 

 
What about constraint 6.2a?  There are two possible cases: active or non-active, i.e. 
buses run either full or not at the peak. The following proposition shows that they indeed 
run full: the peak constraint is also active when the off-peak constraint is. 
 
Proposition: Buses run full at the peak when they run full at the off-peak. 
 
Proof: by contradiction. Let us assume that the constraint (6.2a) is not active. In that 
case, we just take the derivatives in equation (6.19) and make them both equal to zero, 
which yields: 
 

!! = !!!!!! 
!!

 and !! = !!
!!!!/!!

         (6.26) 

 
These expressions can be compared with the frequencies obtained for each period in 

isolation, i.e. !!! = !!!
!!!

, with !!! = !!(!!" + !!!!") and !!! = !!!!!!
! (!!" + !!!!" + !!!!)+

!!!!!!
!  . 

 
It is quite direct to observe that:  
!! = !!! 
!! < !!!: no capital costs !!" at the off-peak. 
!! < !!!: costs associated with bus size, !!" + !!!!", do not appear in !! (as bus size 
is  given by the off-peak, changing frequency does not reduce the bus size). 
!! > !!!: the first two terms in !!, involving !! and costs associated with bus size, do 
not appear in !!!(choosing large buses is costlier than in the isolated case, because the 
same buses will run at the peak; so it is better to have smaller buses). 
 
These relationships show directly that  
i) peak frequency !! is lower than !!! (isolated case);  
ii) off-peak frequency !!is larger than !!! (isolated case). 
 
Conclusion ii) implies that bus size is lower than in the isolated off-peak case, which in 
turn is lower than in the isolated peak case (because ! increases with !). Therefore, the 
assumption of constraint (6.2a) not active when (6.2b) is, leads to a contradiction: at the 
peak, frequency and bus size are simultaneously lower than in the isolated case, which 
cannot occur and proves the assumption wrong. Q.E.D. 
 
The proposition implies that buses run full at the peak under every circumstance (it is 
only the off-peak that may present both cases). Therefore it always holds that 
 
!! = !!!!

!"            (6.27) 
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Combining this with equation (6.17) we obtain an expression for !! as a function of !!: 
 
!! = !!!!

!!!!
!!            (6.28) 

 
This shows that not only the peak frequency has to be larger than the off-peak one, but 
also that their ratio replicates the ratio between the corresponding passengers-
kilometers traveled per hour. Thus, contrary to Jansson’s intuition, it is never optimal that 
frequencies are equal across periods.  
 
Using (6.28) the value of the resources consumed can be expressed as a function of !! 
only: 
 
!"!! = !! !!!!

!!!!
+ !! !! + !! + !! !!!!!!!!

!
!!
+ ! !!!!!!!!

+!    (6.29) 
 
Minimizing !"!!and using equations (6.20) to (6.24) we get (6.30) to (6.32).  
 

!!∗ =
!!!!!"!!!!! !

!!!!(!!!!!!!/!!)
! ! !!!!!!!!! !!!(!!/!)(!!"!!!)

!!!!!!"!!!!!"!!!!/(!!!!)!!!!!!!"!!!!/(!!!!)
,    (6.30) 

 

 !!∗ = !!
!!!!!"

!!!
! !

!!(!!!!! /!!!!!!!)
! ! !!!!!!!!! !(!!!/!)(!!"!!!)

!!!!!!"!!!!!!!!!"!!!!!!!!!!!"!!!!
    (6.31) 

 
!∗ = !!!!!!!!!!"!!!!!"!!!!!!!!!!!"!!!!

!!!!!"!!!!
!!(!!!!!!!/!!)

! !! !!!!!!!!! !(!!"!!!)
         (6.32) 

 
The comparison between the expressions for !!∗  and !!∗  with those given by the 
corresponding isolated ones can be done by looking at the (expanded) generic version 
of the optimal isolated frequencies for a period shown in Equation (6.33):  
 

!!! =
!!(

!!!!
! !!!!(!!/!)(!!!!!!!"!!!"!!))

!!(!!"!!!!!")
           (6.33) 

 
The analytical comparisons between optimal frequencies in equations (6.30) and (6.31) 
with the corresponding expressions of equation (6.33), lead to inconclusive results 
because they depend on the values of all parameters. Instead, a numerical comparison 
is offered in Figures 6.6, varying !!  from 60,000  to 100,000  keeping !! = 50,000  in 
Figure 6.6a, and varying  !! from 50,000 to 95,000 keeping !! = 100,000 in Figure 6.6b. 
 



 60 

a) b)  
Figure 6.6. Comparison of peak and off-peak frequencies considering joint 

optimization against isolated optimization. 
 
From Figures 6.6 we obtain that, numerically, !!∗ > !!! and !!∗ < !!!, the same results 
obtained for the case where the off-peak constraint was not active (shown analytically 
for !!∗) in section 6.2. Figures 6.6 also show that the relations analytically found for the 
crossed effects between frequencies and flows also hold in this case, i.e. 
 
!!!
!!!

> 0,   !!!!!!
< 0             (6.34) 

 
As by definition !! > !! , these equations show that when flow !  approaches flow ! 
unilaterally, frequency ! increases. The intuition behind this deals with the relative values 
of flows across periods: when they tend to converge the day gains homogeneity, 
approaching a single extended period, making capital costs weigh less. 
 
Regarding bus size, although equation (6.32) shows that ! could increase or decrease 
when either !! or !! increases, equations (6.34) imply that  
 
!"
!!!

> 0, !"
!!!

< 0             (6.35) 
 

In this case, when flow ! approaches flow ! unilaterally (i.e. when !!  increases or !! 
decreases) bus size decreases. This could be interpreted in terms of the parameters 
involved in equation (6.32), particularly for the off-peak flow effect: 
 

- When peak passengers increase, bus size has to increase just as in the single 
period case. 

- When off-peak passengers increase, it is better to reduce bus size in order to 
reduce the time spent at bus stops. 

 
If ! = !! + !! remains fixed, the total effects of flow variations when they get closer can 
be examined. These effects can be seen in Figure 6.7, where ! = 150,000 and !!/! 
varies from 5% to 45%. As we are increasing the off-peak flow while decreasing the 
peak flow, off-peak frequency increases because of a direct effect and the 
corresponding crossed effect (equation 6.34). In the case of peak frequency, it is pushed 
upwards because of the crossed effect and downwards because of the decrease of !! 
(direct effect); this last effect prevails resulting in a slight decrease. Bus size decreases 
because both effects represented in equations (6.35) work in the same direction. 
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Figure 6.7. Bus size and peak and off-peak frequencies as a function of !!/! . 

 
Figure 6.7 reveals an evident change of slope in the three curves represented when the 
ratio !!/! reaches 0.31, which is the value where constraint (6.2b) becomes active, i.e. 
when the off-peak buses start to be full. This motivates an examination of the conditions 
on the flows that make constraint (6.2b) active. Such conditions cannot be found 
explicitly, as they depend on the relationship between frequencies and flows when only 
constraint (6.2a) is active, and they are linked by an equation of degree 5. The 
conditions on the flows are represented numerically in Figure 6.8, where the yellow zone 
represents the combinations of flows that activate constraint (6.2b). For the buses in the 
off-peak to run fully loaded at the optimum, the flow in the peak has to be lower than two 
times the off-peak flow approximately.  
 

 
Figure 6.8. Flow conditions that make buses full at the off-peak. 

 
 
6.4 Main conclusions 
 

- Optimizing a single line with two periods yields equations that cannot be solved 
analytically. Nevertheless, some analytical conclusions are possible. 

- At the peak, buses always run full; at the off-peak, they might run full or with idle 
capacity. Which is the case depends on the relative value of each period’s flow. 

- When buses do not run full at the off-peak, it is shown that peak frequency is 
larger than what it is obtained when optimizing this period in isolation. This 
happens because, as these vehicles will also run at the off-peak, decreasing its 
size is less costly. 
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- In this same context, a comparison between optimal off-peak frequency and the 
isolated optimal one is inconclusive, because there are effects pushing in 
opposite directions: having no capital costs pushes off-peak frequency upwards; 
but vehicles are larger than in the isolated case and their size do not diminish 
when frequency increases, which pushes frequency downwards. A numerical 
analysis reveals that off-peak frequency is lower than in the isolated case. 

- In this same context, if peak flow increases, off-peak frequency gets lower 
because vehicles get larger. If off-peak flow increases, peak frequency increases 
as well because the size of the vehicles becomes more relevant. 

- When buses run full at the off-peak, explicit expressions for the frequencies and 
bus size are obtained. All previous conclusions are shown (numerically) to remain 
valid. 
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Chapter 7. Systems that allow for two fleets. 
 
When studying two periods, we have dealt so far with models that assume that all 
vehicles have the same size. Keeping the simple and intuitive model explained in 
chapter 6, but dropping this restriction, might yield better results. In this chapter two 
possible systems that considers two fleets are studied: one that adds extra buses at the 
peak and one that optimizes each period independently. A comparison between these 
systems and the one-fleet system is also provided. 
 
 
7.1 Joint optimization allowing for two fleets 
 
First, let us study the case in which some buses are added for the peak. This requires 
designing two fleets simultaneously: one that runs alone in the off-peak and another that 
runs as a complement during the peak only to satisfy the (larger) demand. Let us denote 
the buses that run all day as small (represented by a subindex ! when needed) and 
those that are used only at the peak as large (represented by !); it is shown below that 
the buses that run exclusively during the peak period are indeed larger than the ones 
that run all day. The fact that large buses operate during one period only (and, therefore, 
depreciate at a slower rate) will be reflected by the operating costs coefficients that are 
multiplied by the duration of the period.  
 
At the peak, both fleets are running. This poses a new and relevant operational difficulty. 
As large buses are carrying more passengers, they spend more time at bus stops, which 
implies that their cycle time is also larger. This could induce at least three undesirable 
effects: 
 

- It is a well-known fact that different time at stops might induce bunching (see, for 
example, Newell, 1974). The explanation in our case is quite simple: if a large 
bus is followed by a small bus, the temporal headway between them is reduced 
after each stop, just because the large bus is spending more time there. 

- Headways between consecutive buses are not constant in time, which means 
that the system becomes much more irregular. Headway variability is an index of 
unreliability and has been shown to be a very relevant (negative) quality factor for 
users by many researchers (like Friman et al., 1998, Beirão et al., 2007, or 
Redman et al., 2013), such that regularity has merit in itself. 

- A particular aspect of the headway variability condition is the chance that some 
buses might get full, forcing passengers to wait for the next bus. This is also likely 
to happen when headways change over time because longer headways induce a 
larger amount of passengers accumulated at the bus stop. 

 
To avoid these nocuous effects, some complementary strategies need to be applied to 
induce equal cycle times across fleets in the peak. In this model we use a holding 
strategy (that has been well studied in other contexts, such as Osuna and Newell, 1972 
or Daganzo, 2009), simply consisting in forcing small vehicles to have the same time at 
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stops than large vehicles. This can be done by waiting with their doors closed for a fixed 
time (after passengers board) before leaving the stop20. This is illustrated in Figure 7.1. 
 

 
Figure 7.1. Graphical description of the holding strategy. 

 
To describe the equations that govern the operation of this system, let us first introduce 
some notation. In this case, !! and !! denote the size of the fleets such that !! + !! 
buses are running at the peak and !! at the off-peak. Vehicles capacities are !! and !! 
respectively. We do not describe operational rules at the off-peak, as this period can be 
represented by the traditional one-line model provided capital costs are correctly 
adjusted to avoid double-counting. At the peak, headways ℎ! and ℎ! are going to be 
used instead of frequencies (which are not particularly informative in this case); ℎ! 
represents the time elapsed between the instant in which the previous vehicle closed its 
doors and the instant in which the current type ! vehicle does. In other words, ℎ! and ℎ! 
represent the period during which passengers arrive at the bus stop to board the 
corresponding vehicle. Please note that, under this definition, the time spent by a small 
bus at the stop with its doors closed is not part of its headway in that stop; it 
corresponds to the headway of the next bus.  
 
During the peak period a total of !! passengers arrive per unit time such that the number 
of passengers that ride a particular vehicle type during a cycle can be expressed as 
!!ℎ!; then total time spent at the stops is !!!ℎ!. Equality of cycle times !! of both types of 
vehicles imply: 
 
!! + !!!ℎ! + ! = !! = !! + !!!ℎ!        (7.1) 
 
Where ! is the total holding time spent by each small vehicle in a cycle. We will show 
that the !"#  can be expressed depending only on !!  and !! , as vehicle sizes and 
headways can be written as functions of the fleet sizes. To do this, let us begin noting 
that vehicle sizes are given by: 
 
!! = !!ℎ! !!! ,      !! = !!ℎ! !!!         (7.2) 
 

																																																								
20 A literal application of this rule could raise complaints from the users. Nevertheless, it can be changed 
to some equivalent rules that do not affect the equations here deduced, such as diminishing the speed of 
the small buses during the peak period. 
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To calculate the average waiting time, note that if the next bus is of type !, passengers 
will wait from zero to ℎ!, such that in average they wait for ℎ!/2. A proportion !!!!

!!!!!!!!!
of 

the users take a bus of type !, which yields an average waiting time given by 
 
!! = !!!!

!!!!!!!!!
!!
! +

!!!!
!!!!!!!!!

!!
!         (7.3) 

 
Equations (7.2) and (7.3) yield 
 
!! = !

!
!!!!!!!!!!!
!!!!!!!!!

          (7.4) 
 
Under this formulation waiting time for passengers boarding a small vehicle includes the 
time waiting for other passengers to board, as is usually done, but once the doors are 
closed time until departure is considered as in-vehicle time. Following Jansson (1980) 
and Jara-Díaz and Gschwender (2003b), time waiting for passengers in other stops is 
always in-vehicle time for those already aboard the bus. Then in-vehicle time can be 
expressed as: 
 
!! = !!

! !! =
!!
! (!! + !!!ℎ!)         (7.5) 

 
So far, we have expressed the components of the users’ costs as functions of both fleet 
sizes and headways. Operators’ costs - that depend on fleet sizes and vehicle sizes - 
can also be expressed as functions of !! and ℎ! using equation (7.2). Two additional 
equations will allow us to have fleet sizes as the only variables. The first one is a 
different way of calculating the cycle time: 
 
!! = !!ℎ! + !!ℎ!          (7.6) 
 
To understand where does this come from, imagine a user observing which bus to take 
during a lapse of time that lasts !!. This user will observe each of the !! large buses as 
the next one coming during a lapse ℎ! (and equivalently with each small bus). Equation 
(7.6) can also be written as !! = (!! + !!)ℎ, i.e., cycle time equals total fleet times 
average headway. 
 
The second equation comes from the fact that small buses have to fulfill off-peak 
conditions. The relationship between fleet and vehicle capacity obtained for the single 
period model explained in chapter 2 does apply in this case; therefore 
 
!! = !!!!!!

!(!!!!!!)
          (7.7) 

 
Equations (7.2) and (7.7) reflect the fact that all buses are full in both periods. 
Combining those equations yields 
 
!!!!ℎ! !!!!!!!!

= !!!!         (7.8) 
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Equations (7.1)-(7.8) are sufficient to make the !"# a function of fleet sizes only, i.e. 
!"#(!! ,!!). In equations (7.9)-(7.11) we show the value of the resources consumed 
during each period, !"!!  and !"!! , and the capital costs of small buses that are 
assigned to the whole day, !"!!.  
 
!"!! = !!!!(!!" + !!!!!

!(!!!!!!)
!!")+ !!!! !!

!(!!!!!!)
+ !!!! !!!

!!!!
!!!!!!

   (7.9) 
 
!"!! = !!(!!" + !!!!" + !! !!!

!!!!!!!!!!!!!!! !!!!!!
!!!! !!!!!! !!!!!!

(!!" + !!!!"))+ !!(!!!!" +

!!!!!
! !!!!!!

!!!!")+ !! !!!
!!

!!!!!!!!!!!!!!! !!!!!!
!!!! !!!!!! !!!!!!

!
!!! !!!!!!

!!!! !!!!!!

!

!!
!!!!!!!!!!!!!!! !!!!!!

!!!! !!!!!! !!!!!!
!!!

!!!!!!
!!!! !!!!!!

+

!!!! !!! !!
!!!!!!!!!!!!!!!(!!!!!!)

!!!!(!!!!!!)(!!!!!!)
+ !!( !!!!!!

!!!!(!!!!!!)
)     (7.10) 

!"!! = !!(!!"+ !!!!!
!(!!!!!!)

!!")        (7.11) 
 
First order conditions for !! and !! yield a system of equations of degree at least 5, 
such that no analytical solutions are possible; a numerical approach is used, using the 
value of the parameters shown in the Appendix A. Figures 7.2 represents the optimal 
values for these variables as a function of the off-peak (7.2a) and the peak (7.2b) 
passengers flows; the Figure also shows the values of the corresponding vehicle sizes 
(7.2c and 7.2d), showing interesting results including some intuitive ones, e.g. buses 
added at the peak (the so-called “large” buses) resulted actually larger than those that 
run all day (the “small” buses). 
 

a) b)  

c) d)  
Figure 7.2.Optimal fleets and vehicle sizes as functions of flows. 

 
As expected, the fleet of small buses and their size increase with the off-peak flow, and 
the fleet of large buses and their size increase with the peak flow, i.e. 
 
!!!
!!!

> 0, !!!!!!
> 0, !!!!!!

> 0, !!!!!!
> 0          (7.12) 
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Additionally, as the off-peak flow increases not only the fleet of small buses increase but 
also their size. As these vehicles also run at the peak, less large buses of a smaller size 
are needed, i.e. 
 
!!!
!!!

< 0, !!!!!!
< 0          (7.13) 

 
Finally, Figures 7.2b and 7.2d also shows that the fleet of small buses and their size are 
practically insensitive to the peak flow, although actually the fleet decreases and 
vehicles size increases by a very small amount, i.e.  
 
!!!
!!!

≈ 0, with  !!!!!!
< 0;  !!!!!!

≈ 0, with  !!!!!!
> 0      (7.14) 

 
The results reflected by equations (7.12) and (7.14) indicate that an increase in the peak 
flow is covered by having more and bigger large buses, and - in a less relevant way - by 
having less and larger small buses, which can be intuitively explained as follows. First, 
the combination of these changes contributes to increasing the average size of the 
vehicles: large buses become larger, small buses become larger and the percentage of 
large buses increases. Second, the model adjusts mostly the large buses in order to 
avoid an unnecessary impact on the off-peak period, whose conditions remain 
unchanged. Nevertheless, as the difference between the vehicle sizes of the two types 
of buses increases, so does the holding time for small buses, which is inefficient; this is 
why the number of small buses also increases slightly. 
 
 
7.2. One or two fleets? Comparison of the models 
 
In this section we compare the single-fleet design (buses of one size running all periods) 
against the two-fleets designs, including not only the one developed in section 7.1 but 
also the basic case of one independent fleet per period, whose design corresponds 
simply to solving twice the classic single period case. 
 

 
Figure 7.3. Ratio between total costs of the two systems. 

 
Let us begin comparing the two-fleet system (chapter 6) and the one analyzed in section 
7.2, recalling that in the single-fleet case buses may run full or not at the off-peak 
depending on the relative values of the flows. Does the two-fleets system imply an 
improvement over the single fleet case? Numerical results yield that total costs for the 
one-fleet system are always larger than the two-fleets case, but by less than 0.3% (with 
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!! = 50,000  and !! ∈ [51,000;  300,000] ), as shown in Figure 7.3. There, the cost 
difference diminishes towards the extremes: at the beginning of the curve, both systems 
yield almost equal costs because peak and off-peak flows are almost equal; when the 
peak flow is much larger than the off-peak, it is the peak that dominates the cost 
calculations in both cases.  
 
Figure 7.4 shows that although operators and users costs are also almost equal, the 
difference between systems is mostly explained by operators’ costs. Actually, the two-
fleets system presents systematically a lower fleet of buses that are larger in average, 
which diminishes operators’ costs. That is to say, the flexibility of the two-fleets system 
allows for having a fleet that is more efficient for the operators. On the other hand, off-
peak users are in a better situation with the two-fleets system, because it allows for 
smaller vehicles that increase frequency and decrease in-vehicle time; the opposite 
happens with peak users, because the holding strategy increases their in-vehicle time. 
 

 
Figure 7.4. Ratios between users’ and operators’ costs for the two systems. 

 
As discussed, the two-fleets system requires the introduction of some operating rules 
that mean an additional planning effort that has not been accounted for, e.g. the holding 
strategy for small buses during the peak (or vehicle speed reduction), which in turn 
induces some possibly unwanted effects on the users (like waiting inside full buses). 
Then the small cost savings for both users and operators do not seem to justify this 
system when compared to the one-fleet case.  
 
What about the two-fleet system optimizing each period independently? The system that 
optimizes each period in isolation does not take advantage of the obvious scope 
economies associated to running one bus during two periods, but fleets can be adapted 
to demand exactly. In Figure 7.5 we compare the total costs of the three designs using 
the two-fleets system with holding as the reference to construct the ratios (same 
parameters as in Figure 7.3): “independent periods” system (red lines) and the one-fleet 
system (blue lines). The independent periods design yields the worst results, although 
differences are quite small for the three systems (less than 1%). As the time spent by 
passengers in the buses in-motion (i.e. not in the stops) is independent of the design, it 
can be subtracted to highlight the differences, which yields that optimizing periods 
independently can increase costs by about 5%. Numerical analysis shows that this 
difference is explained mostly by operators’ costs (losing economies of scope); actually, 
users costs are slightly lower in the system that optimizes each period in isolation. Note 
that when the peak flow is very large, all the systems yield similar designs (and cost 
results). 
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Figure 7.5: Comparison of the three systems. 

 
 
7.3 Main conclusions 
 

- It is possible to design a model with two fleets, with only “small” buses running at 
the off-peak, complemented by “large” buses at the peak. 

- The equations that govern this two-fleets system have been obtained. A 
numerical analysis shows that the fleet of small buses is almost insensitive to 
changes in the peak period; on the other hand, if the off-peak flow increases, as 
we will have more and larger small buses, we will need less and smaller large 
buses. 

- This two-fleets system is always better than the single-fleet one, but the 
difference is extremely low, such that the difficulties induced by having two fleets 
do not seem to be justified. 

- Using two fleets that operate independently at each period is worse than the 
other two systems. 
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Chapter 8. Second-best strategies. 

 
In this chapter, we investigate some second-best strategies for the public transport 
design for a single line considering two periods. We will optimize for one of the periods, 
and then consider the resultant size of the vehicles as a fixed parameter when 
optimizing the frequency for the other period. Asking which of the two emerging 
strategies is better was first done by Walker (2012) in a general scheme; it is worth 
saying that Villalobos (2018) faced this same question over a simplified version of 
Santiago, Chile, that included lines structure design, finding that it would be better to 
design for the off-peak (and adapt for the peak) in that particular case.  
 
 
8.1 Optimizing one line with fixed capacities 
 
Let us begin posing a general optimization problem that will appear throughout this 
chapter. As vehicles’ capacity is going to be fixed form some stages of the analysis, it is 
useful to study the problem that optimizes frequency for a predefined capacity !: 
 
!! :min!!!"!" !"#(!) = !(!)( !! + !!!)+ !!!

!! + !!!"
! !! !      (8.1) 

 
Using the same analysis developed in chapter 2, Problem (!!) may be easily written 
explicitly as a function of the frequency: 
 
!! :min!!!"!" !" + !" !! + !!! + !!!

!! + !!!"
! (! + !"

! )      (8.2) 

 
Let us call !  the traditional single-line problem with vehicles capacity being optimized 
too. Define (!∗,!∗) as the optimal solutions of ! , and !! as the optimal solution of 
!! . How to find !! depends on if it lies in the interior of the feasible zone or in its 

border, i.e., if !! > !"
!" (buses not full) or if they are equal (and buses run full); which is 

the correct option depends on !. If buses do not run full, then !! can be found just by 
making the derivative of !"# equal to zero in !! , yielding 
 

!! =
!!!
! !!!!!!"!
! !!!!!!

          (8.3) 

 

Defining ! ! =
!!!
! !!!!!!"!
! !!!!!!

, we conclude that buses do not run full iff ! ! ⋅ ! > !"
! . 

Otherwise, if ! ! ⋅ ! ≤ !"
! , optimal frequency is given by  

  
!! = !"

!"           (8.4) 
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It is easy to see that ! ! ⋅ ! is an increasing function, such that there exists some !! 
that acts as a threshold: !! = ! !  iff ! ≥ !! (that is to say, buses do not run full when 
their size is larger than !!). Note that if ! = !∗, then !! = !∗, which make buses to run 
full, implying that 
 
!∗ ≤ !!            (8.5) 
 
The inequality in (8.5) is strict, which follows from the following straight-forward 
calculation  
 

! !∗ ⋅  !∗ ! = !!!!
!!

!!
! !

!!!!"
!

!!
! !

!"# !!!!!
!

!!!!
! !!!!!!∗ !

< !!!!
!!      (8.6) 

 
Synthetizing, it has been shown that when we optimize only the frequency in the single-
line design, considering the capacity as an exogenous value, then the solution for the 
frequency can be given by expressions (8.3) or by (8.4). Which is the correct one 
depends on whether the fixed value of the vehicle size is larger (8.3) or smaller (8.4) 
than some !!, which happens to be strictly larger than !∗. 
 
 
8.2 Optimization of one period and adaption of the other 
 
First, let us study the case in which the peak period is optimized as in a classical single-
line model, regardless of the characteristics of the off-peak period. After this, a sub-fleet 
of an optimal size is used at the off-peak. The peak optimization is not going to be 
explained, as it is the same procedure explained in chapter 2 for a single period. 
 
To optimize the off-peak frequency, it is necessary to decompose operators’ costs as in 
chapters 6 and 7 (capital and operating costs). The value of the resources consumed at 
the off-peak is expressed in (8.7), which has no capital costs because the size of the 
fleet is determined by the peak characteristics. 
 
!"!!! = !!!!!! !!" + !!"!! + !!!!! !!" + !!"!! + 
 
!!!!!!
!!!

+ !!!!!!!!!!
!!!

+ !!!!!!!!!!
!         (8.7) 

 
Now, we need to determine if !! is determined by equation (8.3) or (8.4), i.e., if buses 
run full or not. !! is larger than the size obtained if the off-peak is optimized in isolation; 
further, here we are considering an off-peak without capital costs, which yields even 
smaller vehicles. Nevertheless, it is not evident if !! is large enough to induce not-full 
vehicles at the off-peak (i.e., its comparison with the !! defined above is inconclusive). 
We assume that buses do not run full, which we verify numerically afterwards. Off-peak 
frequency is then: 
 

!!!  =
!!!!!!

! !!!
! !!!!!!!

!
!! !!"!!!!!"!!!!

         (8.8)  
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With these expressions, total daily costs can be calculated. They should be compared 
with total daily costs under the alternative system, in which the off-peak period is 
optimized in isolation, and its fleet is expanded (but preserving vehicles’ size) to fulfill 
peak requirements. Please notice that this means that fleet size is still given by the 
peak, i.e., capital costs should be assigned there. Hence, the size of the buses is 
smaller than in the isolated off-peak case (due to no capital costs), which presents in 
turn smaller buses than the isolated peak: this implies that buses will run full, as shown 
in section 8.1, and peak frequency can be expressed as:  
 
!!! = !!!!

!!!
           (8.9) 

 
 
8.3 Comparison between the two alternatives 
 
Which of these two systems results more effective depends on all the parameters. 
Nevertheless, there are two parameters that represent the relevance of each period: on 
the one hand, optimizing for the peak is based intuitively on the fact that this is the most 
loaded period, which makes !! a key variable. On the other hand, the off-peak period 
lasts longer, such that if it is served inefficiently, it might have a strong impact on the 
total costs. This makes !! another key variable. Let us show now that extreme cases for 
these variables yield to these intuitive results. 
 
Proposition 8.1: if !! → ∞, it is better to optimize for the peak; if !! → ∞, it is better to 
optimize for the off-peak. 
 
Proof: First, recall that by equations (2.3), !!  converges to an upper bound when 
!! → ∞. Let us analyze now the impact of !! over the off-peak costs. If the bus size is 
given by the off-peak, !! does not affect at all. In the other case, off-peak costs are 
affected through !!, which is a convergent function of !!. Hence, off-peak costs are 
constant in one system and convergent to a finite quantity in the other. On the other 
hand, peak costs are asymptotically linear (and divergent to infinity) in both cases; but 
they are obviously lower when the peak period is optimized, precisely because we are 
optimizing it.  
 
The proof for !!  is analogous. Bus size does converges to an upper bound when 
!! →�, such that peak costs are convergent as well. This means that the relevant 
comparison is between the linear and divergent off-peak costs, which are obviously 
lower when the off-peak is being optimized. Q.E.D. 
 
One could look at the total number of passengers at each period !!!! to determine which 
period should be considered for the optimization. Although this rule is not exact, 
numerical results shows that this a remarkably good approximation rule, as shown in 
Figure 8.1. 
 
The difference in costs between these two strategies is never larger than 1.3%. 
Nevertheless, if we exclude the costs associated to passengers over the vehicle in-
motion (which are fixed and do not depend on the design), this difference reaches 6% in 
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the extreme cases. When compared with the one-fleet system that optimizes both 
periods jointly, up to 2% might be saved in the first-best. 
 
 
 

 
Figure 8.1. Which second-best strategy is better? 

 
 
8.4 Main conclusions 
 

- Optimizing a single line in one period with fixed capacities yields two possible 
solutions depending on the number of passengers: buses might run full or with 
idle capacity. 

- When the off-peak period is optimized in isolation, and the peak period is 
optimized using the resulting bus capacities, vehicles do run full. In the inverse 
situation (optimizing the peak and adapting the off-peak), a numerical analysis 
shows that they do not run full. 

- If the number of passengers at the peak is large enough, it is better to optimize 
the peak and adapt the off-peak than to proceed inversely. 

- If the off-peak period is long enough, it is better to optimize the off-peak and 
adapt the peak than to proceed inversely. 

- In general, an approximated rule is to optimize the period that presents a larger 
total number of passengers. 
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Chapter 9. Synthesis and conclusions. 

 
In this thesis we have studied several aspects regarding public transport design and its 
economic implications. Mohring (1972), Jansson (1980, 1984) and Jara-Díaz and 
Gschwender (2003b, 2009) have provided clear and explicit solutions for the optimal 
design of a public transport system in only one temporal period and over a single line. 
However, when more daily periods are considered, or when different lines are optimized 
jointly over a network, the problem becomes more complex. 
 
The emergence of a network induces new challenges. Design decisions are not only 
how many buses and of which size, but also following which routes: lines structure is 
now an additional variable to be optimized. This variable is discrete, and optimizing it by 
itself is already an NP-Hard problem for many. Further, users’ behavior becomes less 
predictable, as they may have many possible routes to go from their origins to their 
destinations. These new difficulties make this problem a complex one even when trying 
to pose it, as several assumptions need to be considered; solving it exactly is beyond 
current possibilities. 
 
This is why several strategies have been developed to face this design problem. In this 
thesis we studied in deep one of these strategies (heuristics), we analyzed some of the 
economic topics of this spatial design, and we zoomed over one partial aspect: lines 
density in space. 
 
To study the performance of the heuristics, we selected four of them and we applied 
them over the scheme proposed by Fielbaum et al (2016) and following its methodology. 
The frequencies of the lines structures emerging for each of them were optimized by 
minimizing the value of the resources consumed, which considers operators’ costs 
(including total number of vehicles and total number of seats) and users’ costs (including 
waiting and in-vehicle times, and total number of transfers). This procedure allows us to 
compare these heuristics-lines structures with the basic structures defined by Fielbaum 
et al (2016): hub and spoke, feeder-trunk, no transfers and no stops. 
 
By doing so, we found that heuristics create mostly direct structures, but with some 
flexibility (through some parameter !) that might consider routes that do not follow 
shortest paths in order to collect more passengers. These structures were better than 
the basic structures for most combinations of the parameters that define the OD-matrix. 
Two heuristics in particular (the ones proposed by Dubois et al, 1979, and by Ceder and 
Wilson, 1986) generated the most competitive structures. These heuristics were 
precisely the most flexible ones through !. Nevertheless, none of these heuristics was 
very responsive to changes in the OD-matrix. Actually, the basic hub and spoke 
structure and exclusive structure dominate when the total flow of passengers is too low 
or too large, respectively. 
 
Analyzing scale economies and their relationship with lines structures enlightens the 
effects of this design variable. As the number of passenger increases (preserving the 
internal distribution of the trips), there are some discrete levels of patronage where the 
optimal lines structure changes. If we study a segment of total flow where lines structure 
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is constant, the scale economies analysis over one line remains valid, i.e., there are 
scale economies but they become less relevant for a larger number of passengers. This 
is true because each line preserves the scale effects existing in a single-line system: the 
Mohring effect for users, and the chance of using larger vehicles for operators, which 
are more relevant than the diseconomies of scales induced by larger times at bus stops.  
 
In the exact points where line structure changes, there is a discrete source of scale 
economies (i.e., the degree of scale economies !"# jumps discretely). We first show 
this analytically: average costs of the “old” and the “new” lines structures are equal, but 
the marginal cost of the new one is lower. We then studied these changes in detail, 
analyzing which are the positive externalities induced by the increase in the number of 
passengers and that show up when lines structures changes. 
 
For this, we defined a three-dimensional concept: the “directness”, encompassing the 
number of transfers per trip, the average length of the trips (compared with the case in 
which every passenger travels across shortest paths) and the number of stops per trip. If 
these indices decrease, we say that directness increases. We studied the evolution of 
these indices in a quite simple and ad-hoc network, and then in the model proposed by 
Fielbaum et al (2016). In both cases we found that directness increases 21  with 
patronage. The explanation is quite intuitive: when these indices are low, passengers 
are benefited by lower in-vehicle time and less transfers, which are two of the three 
components of the users’ cost. But lines become useful for less OD pairs, such that a 
lower percentage of the users will use each line, which reduces frequencies, increasing 
waiting times (the other component of users’ costs). This increase in waiting times 
becomes less relevant when the number of passengers is high, inducing changes in 
lines structures. 
 
The numerical analysis of users’ costs in these models verified that waiting time 
increased after each change in lines structures. Regarding operators, numerical analysis 
showed that as lines become more OD-specific, their idle capacity is reduced, i.e., there 
is another source for scale economies regarding the total number of seats. 
 
Fares and subsidies are coherent with these results: subsidies are needed, but subsidy 
per passenger decreases continuously until lines structure changes inducing a discrete 
increase. The opposite happens with the fares. Total subsidy increases but converges 
when the number of passengers goes to infinity. 
 
How dense in space should a transit network be is not a novel topic. We deepened its 
understanding in two directions: first, we improved the model studied by Chang and 
Schonfeld (1991) that optimize frequencies and density in a set of parallel lines that 
includes access time in users’ costs, by dropping some unnecessary simplifications: 
operators costs are now dependent on bus size, and cycle time depends on the number 
of passengers through time needed to board and alight the vehicles. The resulting 
model cannot be solved analytically, but we proved that each of the parallel lines 
preserves the relationship between number of passengers and frequencies found in the 

																																																								
21 In some of the lines structures changes, there is a trade-off between these indices, such that one might 
increase locally while the others decrease. Nevertheless, in the global picture all the three indices 
decrease clearly. 
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single-line model. This result helped us showing that the number of passengers per line 
increases with flow, and to show that the scale analysis for the single-line model is valid 
in this context, but adding here a new source of scale economies: the diminishing in 
access times. We proved that frequency and density are adjusted to make access costs 
equal to waiting costs. 
 
Second, we extended the model proposed by Fielbaum et al (2016), allowing each arc 
to represent many arcs. This was done by splitting each arc into a number (to be 
optimized) of parallel streets per unit area. We showed that when this new decision 
variable is added, total costs are reduced. Directness still increases with patronage, but 
at a slower rate, because each change in lines structures increases not only waiting 
times but also access times. Access and waiting costs are also equal under this 
scheme. 
 
On the other hand, extending a single-period analysis to a model that incorporates a 
peak and an off-peak is less complex in its conception than the evolution of routes 
structures. There are no discrete variables neither user’s choices. However, solving the 
optimization problem that emerges is still an analytical challenge.  
 
We first considered the model in which all buses have the same size. In the single-
period model, the size of the buses is adjusted to fit exactly the constant load that they 
carry. When there are two periods, the loads at each period might be different. To model 
this situation, two capacity constraints need to be considered, namely that buses are 
large enough to carry each period’s load. As having larger buses increases the cost of 
the system, at least one of them is going to be active. The fleet is always given by peak 
conditions, because this period’s flow is larger and trips are longer due to congestion. 
 
We divided the analysis by cases. We first studied what happens when peak constraint 
is active but off-peak is not, i.e., when buses run full only at the peak. In this case, the 
optimization problem can be expressed as a function of two variables: peak and off-peak 
frequencies. The first order conditions, however, lead to equations of degree five, which 
cannot be solved analytically. This means that explicit expressions for the solutions are 
not achievable; nevertheless, managing the equations yield some interesting analytical 
conclusions: 

- Peak frequency is always larger than what is obtained designing for the peak in 
isolation. This happens because as buses are also running at the off-peak, 
having large buses is too costly (for example, due to the gasoline expenses). 
Reducing their size requires increasing their frequency in order to be able to carry 
every passenger. 

- An analogous comparison for the off-peak is inconclusive. On the one hand, 
capital costs must not be considered because the size of the fleet is given by 
peak conditions (which pushes off-peak frequency upwards). But on the other 
hand, buses are larger than in the isolated case, and increasing the frequency 
does not imply savings by means of reducing their size anymore (both effects 
push off-peak frequency downwards). Numerical analysis showed that these last 
effects prevail, i.e., off-peak frequency happens to be lower than in the isolated 
case. 

- The effects of changes in one period’s number of passengers over the other 
period’s frequency were also deduced. If peak’s flow increases, buses get larger 
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inducing a reduction in the off-peak frequency. If the off-peak flow increases, the 
off-peak frequency increases in response, making costs associated to bus size 
weigh more; bus size then decreases, which forces peak frequency to increase. 

 
We then studied what happens if the off-peak constraint is active, i.e., if buses run full at 
the off-peak. It was proved that if the peak constraint was not active as well, then at the 
peak period buses would be smaller and would have a lower frequency than in the 
isolated peak case, which is a contradiction because peak users would not fit into the 
system. The conclusion is that buses also run full at the peak in this case (i.e., they 
always run full at the peak). When both constraints are active, it is possible to express 
the optimization problem depending on only one variable, such that explicit expressions 
for the solutions can be found. These solutions show that all relationships found in the 
previous case depend on the values of the different cost-related parameters. 
Nevertheless, the numerical analysis reveals that all these conclusions are still valid in 
this case. 
 
We also studied numerically in which cases the buses run full at both periods and when 
only at the peak. It was found that this depends on both flows, and that there is a lineal 
boundary; a mnemonic (but not exact) rule is that buses run full at the off-peak if and 
only if off-peak’s hourly flow is larger than half peak’s hourly flow. 
 
Dropping the assumption that all buses need to be of the same size introduces a new 
difficulty: if buses of different size run at the same time, the lapse of time spent at the 
stops is going to be different (because larger buses will have more passengers boarding 
and alighting), such that headways will not be constant anymore. This can be solved in 
two different ways: having separated fleets for each period, which can be analyzed as 
the sum of two independent single-period cases and does not take advantage of the 
scope economies, or by means of a holding strategy, meaning that smaller buses are 
forced to wait unmoved at the stops after passengers finish boarding and alighting, to 
reproduce exactly the time spent by the larger ones. This second system was modeled 
(with the holding strategy used at the peak), and the equations that govern it were 
obtained. No explicit solutions were possible, but we were able to compare this system 
with the one-fleet system and with the system obtained by operating each period 
independently. 
 
We found that the two-fleets system with holding was always the best one. However, the 
difference with the one-fleet system was extremely low, such that it does not seem to 
justify the more intricate rules of operation. Operating each period independently is 
always the worst option. 
 
Although we were able to understand which were the impacts of considering more than 
one period when designing public transport, this was possible only because we were 
considering a single line. When a network is considered, some second-best strategies 
might be necessary in order to find solutions; a very usual one is to optimize considering 
only peak conditions, and then make some adaptions to serve the off-peak with same 
fleets and lines. The following question arises: is this better to proceed in the opposite 
direction, i.e., to optimize according the off-peak conditions and then adapt for the peak? 
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We studied this question in the very simple context of a single line, in order to get some 
insights regarding under which conditions each of these second-best strategies is better. 
To do so, we compared a single-line system in which the peak period is optimized in 
isolation, and the off-peak period is served with an optimal subset of the fleet; versus the 
same single-line scheme in which the off-peak period is optimized in isolation and the 
fleet is then expanded (preserving the size of the vehicles) optimally to carry peak 
passengers. 
 
In this comparison, we showed that if the peak flow is very large, then the strategy that 
optimizes for the peak conditions is better; the opposite happens if the off-peak period 
lasts for too long. A numerical comparison reveals that a good approximation is that the 
strategy that optimizes the period with the maximum total patronage (i.e. flow per time 
unit multiplied by length of the period) should be used. 
 
The complexity and relevance of transit design suggests many lines for future research. 
In this thesis we considered spatial and temporal complexity in parallel, without 
exploring what happens when a network with different periods is considered. This 
design problem can be faced with several different strategies: adjusting current 
heuristics to consider different periods, developing new algorithms or relaxed linear 
programming problems, comparing second-best strategies as done in chapter 8 but over 
the whole network, or performing an analysis similar to what we did in chapter 6 but over 
simple networks rather than a single line. In any of these strategies, the interaction 
between considering different periods and lines structures should be studied with special 
care: are lines structures necessarily constant in time? 
 
All of the analyses performed here can be extended to a scheme in which more than 
one mode is considered. When real public transport networks are designed (or 
extended), a crucial aspect is to decide which modes of transport to use. Considering 
various modes in the simple design problem is a first step to analyze later schemes with 
spatial and/or temporal complexity. This appears to be particularly relevant for scale 
analysis, because gathering enough passengers to justify some faster and more 
expensive transit modes seems to be a new discrete source for scale economies. 
 
When studying heuristics, we found that they all created direct-type lines structures. 
Developing heuristics that create other type of structures, such as feeder-trunk or hub 
and spoke, is also a relevant challenge. There are combinatorial techniques that could 
be useful for this, as the p-hub problem (Ernst and Krishnamoorhty, 1996) that seeks for 
the best set of hubs of size !; these techniques would need to be adapted to represent 
the specific characteristics of transit design. 
 
Finally, new technologies are expected to induce relevant transformations in transport 
systems in general, and in public transport in particular. Studying how to design a transit 
system that includes autonomous vehicles, massive coordination ability between 
vehicles (and between vehicles and passengers), electric combustion and other new 
features is crucial and will inspire new research challenges regarding their economic 
aspects.  
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Appendix 
 

Appendix A: Numeric values of the parameters 
 
Parameter !! !! !! ! ! !! !! ! ! !! 
Value 10.65 

[US$/h] 
0.204 

[US$/h] 
30 

[min] 
1/3 2.5 

[sec] 
1.48 

[US$/h] 
4.44 

[US$/h] 
0.8 8 0.59 

[US$] 
Table A1: Parameters used in chapters 2 and 3. 

 
 

Parameter ! !  !! !! !! ! ! 
Value 0.5 0.25 8.5 

[US$/h] 
0.204 

[US$/h] 
30 

[min] 
1/3 2.5 

[sec] 
 

Parameter !! !! ! ! !! !! ! ! 
Value 1.48 

[US$/h] 
2.96 

[US$/h] 
0.8 8 0.59 

[US$] 
30 

[km] 
2 

[km] 
13 

[km/h] 
Table A2: Parameters used in chapter 4. 

 
 

Parameter ! !  !! !! !! ! ! 
Value 0.25 0.22 10.65 

[US$/h] 
0.204 

[US$/h] 
30 

[min] 
1/3 2.5 

[sec] 
 

Parameter !! !! !! ! ! !! ! !! 
Value 1.48 

[US$/h] 
4.44 

[US$/h] 
5.33 

[US$/h] 
0.8 8 0.37 

[US$] 
2 

[km] 
5 

[km/h] 
Table A3: Parameters used in chapter 5. 

 
 

Parameter !! !!  !! !! !! !! ! 
Value 5      

[h] 
13      
[h] 

2       
[h] 

1.5   
[h] 

10 
[km] 

5 
[km] 

2.5 
[sec] 

 
Parameter ! !!"   !!" !!" !!" !! !! 

Value 40 
[km] 

4.14 
[US$] 

0.45 
[US$] 

1.32 
[US$/h] 

0.1 
[US$/h] 

1.48 
[US$/h] 

4.44 
[US$/h] 

Table A4: Parameters used in chapters 6,7 and 8. 
 
 

Appendix B: Some details on the application of each heuristic to the city model 
(section 3.1). 
 
Dubois et al (1979) 
The following pseudo-code describes the heuristic: 
(0) Define the value of the tolerance ! 
(1) Define the set ! that contains all the minimum-length (i.e. sum of the distances of 
each arc) routes that cannot be extended preserving the length condition. 
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(2) Build the set !∗, which starts empty:  
For each route ! ∈ !, denote ! its initial node and ! its final node. 
For each ! not in !, define !! the route that starts in !, goes to ! and then to ! always 
following minimum-length paths. 
If the length of !! exceeds the length of ! by a fraction smaller than an exogenously 
fixed tolerance !, then add !! to !∗ and stop searching for !. Start searching for !!, but 
always comparing lengths with respect to !. 
(3) Define ! as the union of !∗ and the paths in ! connecting origins and destinations 

that are not connected by paths in !∗. The routes in this set are the candidates. 
(4) Arrange the routes in ! according to some rule. 
(5) Define !′ as an empty set. Add the paths in ! to !′ until the city is fully connected 

(admitting transfers). 
(6) Calculate the portion of trips that need one or more transfers. If this portion is “small”, 

go to step (8). Otherwise, go to (7). 
(7) Add the route in ! that minimizes the number of required transfers. Go to (6). 
(8) Stop if the difference between the average travel time in the system and the average 

time in a system where all the trips go through the minimum-length path is “small”. 
Otherwise, go to (9). 

(9) Add the route in ! that decreases the most the average travel time. Go to (8). 
 
In the parametric city, the set  !  is composed by all the routes connecting two 
peripheries following an optimal path (crossing the CBD or through the subcenters ring, 
depending how far are the respective zones). First we assume ! < 1/3. We check all the 
possible routes !!; we verify that !∗ happens to be composed only by the routes that go 
from one periphery to a periphery that is 3 zones away through the subcenters ring 
(instead of crossing the CBD). So the candidate set ! is composed by paths going 
through the subcenters ring that reach peripheries that are 1, 2 or 3 zones away, and 
paths that go the opposite subcenter (i.e., the one that is 4 zones away) crossing the 
CBD. To arrange ! (step 4), the authors propose criteria such as the most used or the 
least costly routes. We adapt the last one, arranging the set from the shortest to the 
largest route. In step (6), if we only added the shortest routes in !  (i.e., the routes that 
go the neighbor zones) we would connect almost the whole graph: only the CBD would 
remain unconnected. For this not to happen we add the routes that go from each 
periphery to its opposite crossing the CBD. The graph is now connected, but all the trips 
that go to two or more zones away (with the exception of the opposite zone) require a 
transfer, so the number of transfers is at least22 (!" + !!)(! − 4)!. If ! < 0.1, we skip 
step (7); otherwise we add the route that go from one periphery to the periphery that is 
three zones away and we eliminate all the transfers. As the travel time cannot be 
reduced adding more routes, the final line structure has been reached.  
 
Afterwards, we solve for ! > 1/3. Doing so, the line that goes from a periphery to the 
opposite subcenter presents a small variation: after going to the CBD, it goes to one 
neighbor of the opposite subcenter and then finishes in the opposite subcenter. Notice 
that in this case the number of transfers will always be smaller than !!!! (!" + !!), and 

																																																								
22 The routes that minimize the number of transfers are those in which the user goes to the CBD first and 
take the second bus there. Other routes require more transfers. 
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when ! = 8 this is smaller than !!; therefore, for ! > 1/3 a single structure is obtained. It 
is worth commenting that in the case ! < 1/3  with ! > 0.1  passengers whose 
destination is located three zones away from their origin could go either through the 
subcenters ring, without making transfers, or take a shorter trip changing buses in the 
CBD; as their choice depends on the frequencies finding the optimal frequency requires 
iterations. We first assign all these passengers with no transfers and calculate the 
resulting optimal frequencies; then we verify whether the choice with no transfers is in 
fact the min user cost. If not, we re-calculate considering transfers. As expected the 
results depend on the parameters. 
 
Ceder and Wilson (1986) 
This algorithm builds routes that depart from a terminal (the first origin), searching for 
trees (i.e., connected graphs with no cycles). To do so, select any terminal as the first 
one and consider the following pseudo-code: 
 
(1) Search for all the nodes that you can reach from the current origin; if no node is 
reachable, go to (2), otherwise, for each reachable node, if it has not been connected, 
and if the total length of the path does not exceed the length of the shortest path by a 
percentage !, add it to the tree. If there is no such node, go to (2). Otherwise, select any 
of these nodes as the new origin for the same terminal and repeat (1). 
(2) Select as the new origin the last node added to the tree that has not been an origin 
yet. If there is no such node, go to (3). 
(3) If there are no more terminals, end. Otherwise, select a new terminal, define it as the 
origin and go to (1). 
 
In our scheme, routes start from a periphery (predefined as terminals) and necessarily 
go to the own subcenter. Then it is possible to go to neighbor subcenters or to the CBD. 
We start exploring the routes through the CBD such that, depending on the value of !, 
we will reach ! =3, 5 or 7 subcenters. Doing so, ! = 3 if ! < 0.2517 (≈ !

!) and ! =
5 otherwise (recall that ! is the number of foreign subcenters that are reached crossing 
the CBD). Once the routes through the CBD have been explored, the rest of the routes 
tour the subcenter ring until the whole graph is covered. Afterwards it is impossible to 
extend any route without reaching a previously built route that started from the same 
terminal.  
 
Borndörfer et al (2007) 
The optimization problem, in this scheme, turns into 
 
Minimize !!!!!!!∈! + !!!!!∈!  
s.t.  

!!!:! ! !!,! ! !! = !" !" ∀ nodes !, !       (A1) 
!!!:!∈! ≤ !!!!:!∈!  ∀ edge !        (A2)  
!! ≤ Γ!!:!∈!  ∀ edge !        (A3) 

! ≥ 0           (A4) 
! ≥ 0           (A5) 
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The variables are the vector of frequencies ! and the vector of passenger flows !. The 
(total) social cost only considers travel times and a fixed cost per bus. In the original 
model there is a fixed cost per line, but to be consistent we put them equal to zero. 
Waiting times and transfers play no role. 
 
The first equation imposes that passengers on all routes ! serving a given O-D pair add 
up to the corresponding O-D demand. Note that this means that passenger assignment 
to routes is endogenous aiming at minimizing social cost, which may not coincide with 
the individual preference of each user. As ! is the size of each bus, the second equation 
imposes bus capacity constraints. The third equation relates frequency to streets 
capacity, Γ!, but in our model this is not considered so, in practice, we used Γ! = +∞ ∀!. 
 
Cenek (2010) 
First assume that all passengers will take the shortest route to go from their origin to 
their destination; this permits the construction of arc-specific weights as the number of 
passengers that use that arc under this assumption. Then, the following procedure is 
applied:  
 
(1) Select the arc with the largest weight from those that finish in a center (if that weight 
is 0, finish). Define the node ! as the other extreme of that arc. 
(2) Extend the line. Select the arc with the highest weight from those that are incident in 
!. Update ! as the other extreme of that arc. If ! is a center or has no other incident arc 
with positive weight, go to (3). Otherwise, repeat (2). 
(3) The line has been built and added to the set of lines. Calculate ! as the minimum 
weight of the arcs present in this line. Subtract ! from the weight of all the arcs in the 
line. Go to (1). 
 
To analyze the application to our scheme, some route notation is needed. A route will be 
denoted by its initial node (whose zone will be always denoted by !) and the final node 
(denoted by ! if different from !). Note that if the destination is the own subcenter or the 
CBD, there is only one possible route. If the destination is a foreign subcenter, when the 
route goes through the CBD it is marked with an !; if it goes across the subcenters ring 
is marked with an !. For example !!!!"# is a line that starts in a periphery, stops in the 
subcenter from the same zone and finish its tour in the CBD. In this case there is no 
need to specify ! or ! because there is only one route. !"!!!!!! is a route that starts in 
a subcenter and goes to another, but stopping previously in the CBD. 
 
To apply this heuristic to our scheme, let us note that the weight of each arc depends 
only on the types of nodes that it links, e.g. !  of  !! − !!!  is !  or !  of !!! − !"#  is 
! ! + !

! ! + ! ! + !
! + ! . Depending on the values of the parameters !,! and !, the 

largest weight of an arc will be either !! − !!! or !!! − !"#. As all the arcs are incident in 
a center, it would be impossible to have lines that tour more than one arc, so we do not 
stop when arriving at another center. 
 
First case: ! > !(! + !

! !)+ !(! +
!
! !)  

The first line added is !!! − !!! ; then, we start with an arc !!! − !"#  and is then 
extended to !"# − !!!, so the line is !"!!!!!! (we assume that the final subcenter is 
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the opposite to the initial subcenter); finally, the last type starts again with arc !!! − !"# 
but is then extended to !!! − !!!!!: this line is denoted !"!!!"#$.  
 
As a result a posteriori, when finding optimal frequencies the line !"!!!"#$ will always 
present a null frequency. This means that the structure is a mixture between the feeder-
trunk structure (because all the passengers from the periphery take the feeder bus to 
their subcenter) and the hub and spoke structure (because the CBD will be a hub where 
almost all the passengers that go to a foreign subcenter will transfer).  
 
Second case:  ! < !(! + !

! !)+ !(! +
!
! !)  

In this case the first line starts with an arc !!! − !"#, and it extends to !! − !!!, so the 
line is !!!!"# ; the second type starts again with arc !!! − !"#  and it extends to 
!"# − !!! , so the line is !"!!!!!!  (as in the first case, we assume that the final 
subcenter is the opposite to the initial subcenter); finally, the last type of line starts with 
arc !!! − !!!!!, it extends to !!!!! − !!!!! and so on, so finally the line is the circular 
line presented in some previous structures. 
 
 
Appendix C: Analysis of line structures over the isosceles-city (section 4.3.2). 
 
The analysis will be done for the single-line case because it is the more complicated of 
the two cases.  The other one (two identical direct lines) can be solved based on the 
analysis of a single-line case that connects two points. Each of the components of the 
single-line cyclical system can be expressed as a function of frequency: 

● Bus capacity (!): total passengers per unit time ! use ! buses per unit time, 
such that the load of each bus is ! = !/!. 

● Cycle time (!!): regarding vehicle in motion, each bus needs to travel across a 
path whose length is 2!! + !, taking a time of (2!! + !)/!; regarding time at 
stops, each passenger needs 2! to board and alight a bus whose load is !/! 
passengers, which makes a total of 2!"/!. Total cycle time is the sum of these 
two terms: !!!!!! + 2! !!. 

● Fleet (!): recalling that ! = !
!!
, it becomes apparent that ! = ! !!!!!

! + 2!". 
● Waiting time (!!): passengers arrive at an homogeneous rate to the bus stop, 

and buses exhibit a constant headway such that on average each passenger will 
wait half the headway (1/2!). 

● In-vehicle time (!!): it needs to be calculated as the average between two types 
of OD-passengers. Passengers that alight from the bus at the first stop travel a 
distance !! such that time in-motion is !!/!. At the first stop the bus stays !!! !, 
and users that alight there spend on average half of that time. Passengers that 
alight at the second stop travel a distance !! + !; they stay in the vehicle !!! ! at 
the first stop, and - in average - half that time at the second stop. The average in-
vehicle time for passengers is then !!

!!
! +

!
!! ! + !!!!

! + !
!! ! +

!
!! ! . 

 
Replacing all previous expressions in !"# = !(!! + !!!)+ !!!!! + !!!!! yields: 
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!"# = (! !!!!!
! + 2!")(!! + !! !!)+ !!!

!
!! + !!!

!
!

!!
! +

!
!! ! + !!!!

! + !
!! ! +

!
!! !   (A6) 

 
Making the derivative with respect to ! equal to zero yields: 
 

!∗ = !(!!!!!!!/! ! !!!"/!)
!!!(!!!!)/!

,  !∗ = !!!!(!!!!)/!
(!!!!!!!/! ! !!!"/!)

   (A7) 

 
Both expressions increase with !, with !∗ tending to a linear function, and !∗ tending to 
some constant when ! → ∞. 
 

 
 
 

 


